Spacer fabrication for flat panel displays

Abstract
A multi-layered structure, and method for producing same, which may include at least one glass layer anodically bonded to an intermediate layer. The intermediate layer may function as an anodic bonding layer, an etch stop layer, and/or a hard mask layer. A template may be formed of the multi-layered structure by forming a desired pattern of openings therein by way of, for example, etching. Such a template may, for example, be used in the alignment and adherence of spacer structures to an electrode plate during the fabrication of flat panel displays. When used in this context, the construction of such a template results in more precise control of the patterning and sizing of the holes formed therein which thereby allows for more precise placement of spacer structures as well as the use of spacer structures exhibiting relatively higher aspect ratios during the fabrication of flat panel displays.
Description




BACKGROUND OF THE INVENTION




1. Field of the Invention




This invention relates to flat panel display devices generally and, more particularly, to processes for creating a template to align and adhere spacer structures which will provide support against the atmospheric pressure on a flat panel display without impairing the resolution of the image.




2. State of the Art




In flat panel displays of the field emission type, an evacuated cavity is maintained between the cathode electron-emitting surface and its corresponding anode display face. Spacer structures incorporated between the display face and the baseplate perform this function.




In order to be effective, spacer structures must possess certain characteristics. The spacer structures must be sufficiently non-conductive in order to prevent catastrophic electrical breakdown between the cathode array and the anode. In addition, they must exhibit sufficient mechanical strength to prevent the flat panel display from collapsing under atmospheric pressure. Furthermore, they must exhibit stability under electron bombardment, as electrons will be generated at each pixel location within the array. The spacer structures must be capable of withstanding “bake-out” temperatures of about 400° C. that are likely to be used to create the vacuum between the screen and baseplate of the display. The spacers must also be sufficiently small in cross-sectional area, so as to be invisible during display operation.




It has been a challenge in the development of field emission displays (FED) to fabricate spacer structures because of the complex functional requirements they must possess.




Known methods using screen-printing, stencil printing, or glass balls do not provide a spacer having a sufficiently high aspect ratio. The spacers formed by these methods either cannot support the high voltages, or interfere with the display image. Other methods involving the etching of deposited materials suffer from slow throughput (i.e., time length of fabrication), slow etch rates, and etch mask degradation. The use of lithographically defined photoactive organic compounds results in the formation of spacers which are incompatible with the high vacuum conditions and elevated temperatures characteristic in the manufacture of field emission displays (FED).




Methods which employ the use of templates to align and attach the spacer structures to one of the electrode plates of the display have several drawbacks. The templates themselves are not refined enough to maintain the spacer in a sufficiently vertical position for attachment to the display electrode. Further, the prior art methods disclose the use of a sponge to apply an adhesive, such as glue, to the exposed ends of the spacers. The spacers are then mechanically aligned to an electrode plate to which they are attached. The glue emits a gas during subsequent processing, thereby contaminating the system.




Accordingly, there is a need for a high aspect ratio spacer structure for use in a FED, and an efficient method of manufacturing a FED with such a spacer.




BRIEF SUMMARY OF THE INVENTION




One aspect of the present invention provides for a multi-layered template and includes the process for manufacturing such a template. The multi-layered process comprises anodically bonding at least one etch stop layer to at least one glass layer; patterning the layers; and then etching the layers to form an opening. This process can be repeated several times before disposing a spacer structure within the opening in the substrate.




Another aspect of the present invention comprises the process of using a multilayered template having a spacer structure disposed therein to align the spacer structure to an electrode plate of a display device. The spacer can then be adhered to the baseplate or faceplate of the display through the use of an adhesive or, alternatively, by anodic bonding.




A further aspect of the present invention comprises the process of using a template having a spacer structure vertically disposed therein while anodically bonding the spacer structure to the faceplate or baseplate.











BRIEF DESCRIPTION OF THE SEVERAL VIEWS OF THE DRAWINGS




The present invention will be better understood from reading the following description of nonlimitative embodiments, with reference to the attached drawings, wherein below:





FIG. 1

is a schematic cross-section of a representative pixel of a field emission display comprising a faceplate with a phosphor screen, vacuum sealed to a baseplate which is supported by spacer structures;





FIG. 2

is a schematic cross-section of a representative template having a spacer structure disposed therein;





FIG. 3

is a schematic cross-section of a single layer template of the prior art;





FIG. 4

is a schematic cross-section of a template formed according to the process of the present invention;





FIG. 5

is a schematic cross-section of a display baseplate positioned opposite the template of the present invention having a spacer structure disposed therein, according to one embodiment of the present invention;





FIG. 6

is a schematic cross-section of the display baseplate of

FIG. 5

, after the spacer structures have been adhered thereto, according to the process of the present invention;





FIG. 7

is a schematic cross-section of a display faceplate positioned opposite the template of the present invention having a spacer structure disposed therein, according to an alternative embodiment of the present invention; and





FIG. 8

is a schematic cross-section of the display baseplate of

FIG. 7

, after the spacers structures have been adhered thereto, according to the alternative process of the present invention.











DETAILED DESCRIPTION OF THE INVENTION




Referring to

FIG. 1

, a representative field emission display employing a display segment


22


is depicted. Each display segment


22


is capable of displaying a pixel of information. A black matrix (not shown) or grille surrounds the segments for improving the display contrast. Gate


15


serves as a grid structure for applying an electrical field potential to its respective cathode


13


. When a voltage differential, through source


20


, is applied between the cathode


13


and the grid


15


, a stream of electrons


17


is emitted toward a phosphor


19


coated faceplate


16


, sometimes referred to as a screen. A dielectric insulating layer


14


is deposited on the conductive cathode


13


.




Disposed between the faceplate


16


and the baseplate


21


are spacer support structures


18


. The spacer support structures


18


function to support the atmospheric pressure which exists on the electrode plates


16


,


21


as a result of the vacuum which is created between them for the proper functioning of the display.




For a discussion of one method for the preparation and attachment of fibers useful as spacers, see for example, U.S. Pat. No. 5,980,349, entitled “Anodically-Bonded Elements for Flat Panel Displays” which is commonly owned with the present application, and is hereby incorporated by reference as if set forth in its entirety.




Referring to

FIG. 2

, the process of the present invention employs a template, generally represented by


30


, which is used to pre-align the spacer structures


18


before further processing is carried out. The template


30


has one or more apertures in which the spacer structures


18


are disposed and held at an angle substantially perpendicular thereto. The spacers structures


18


of the present invention are preferably formed from glass fibers which have been drawn and pre-cut to the desired diameter and length. The pre-cut spacer fibers are strewn about the top surface of the template, and a vacuum is applied to the underside. The vacuum, applied to the underside of the template, randomly pulls fibers into the template apertures where the spacer fibers are held in an upright position by gravity and by the sides of the template apertures themselves.




As the height of the final spacer structures


18


is increased, the height or thickness of the template


30


must likewise be increased in order to physically maintain the fiber/spacer structure


18


in a vertical position. The preferred template


30


height is approximately 60% of the height of the spacer structure


18


. Currently, process dimensions require a template to have a height of between 150-250μ.




Using conventional processes, such as a simple wet etch, it is currently very difficult to control the size of the template apertures in which the spacers are mechanically held. This is due to the wet etch characteristics of the template material, which is usually some type of glass that has been patterned with a photo-lithographic mask commonly used in the art.




The isotropic nature of the wet etch causes removal of material at substantially the same rate in both the vertical and horizontal directions, thereby creating a characteristic “undercut” profile. The longer the duration of the etch, the greater the undercut. A typical wet etch used in such a process would be a buffered oxide etch or a hydrogen fluoride (HF) dip. The template structure and its corresponding aperture shown in

FIG. 3

represent the result achieved with the prior art method employing a single sheet of glass as a template.




Comparing

FIGS. 3 and 4

, the differences in results between a conventional wet etch and the process of the present application become apparent. The use of a multi-layered structure, as in the present invention, provides for more control over the size of the template apertures than the single layered structure of the prior art.




The process of the present invention permits more precise control over the size of the template apertures in the glass through a unique combination of anodic bonding, photolithography, and etch processes. Anodic bonding is one method whereby glass material may be bonded to an oxidizable material (e.g., a metal or silicon) or another glass material. During anodic bonding, heat is applied to the materials which are to be bonded. Oxygen ions in the heated glass material are drawn across a junction (where the two materials contact each other) to form a chemically bonded oxide bridge between the two materials.




To draw the oxygen ions across the junction between the materials, an electrical field typically is applied to the materials to create a flow of charge through them. The materials are heated until the alkali and alkaline earth ions become mobile allowing non-bridging oxygen ions to diffuse as well. In this manner, negatively charged oxygen ions flow in one direction across the junction, and positively charged ions (e.g., alkali ions, such as sodium and lithium) flow in the opposite direction across the junction.





FIG. 4

illustrates the process of the present invention, in which one or more intermediate layers


27


are used between thin sheets of glass


28


which have been anodically bonded together to form a multi-layered template


30


.




The height of the template


30


which is needed to hold the spacer structures


18


erect and the thickness of the glass sheets will determine the number of sheets of glass


28


to be used. For example, if 210μ is the recommended thickness for the template


30


, three sheets of glass


28


, each having a thickness of 70μ, would be anodically bonded (triple stacks of bonding) before patterning of apertures (or, alternatively, after patterning of apertures). Likewise, five sheets of glass


28


, each having a thickness of 42μ, could alternatively be used.




The glass sheet layer


28


contains mobile ions, such as, for example, sodium, potassium, lithium, and similar elements. Further, the type of glass employed in the process of the present invention preferably has a coefficient of thermal expansion similar to the substrate used to fabricate the electrode plates to which the spacer structures


18


will be ultimately be attached. An example of a material which both contains the mobile ions suitable for glass sheet layer


28


, as well as the desired coefficient of thermal expansion is soda lime silicate glass.




The layers


27


disposed between the sheets of glass


28


include, but are not limited to, one or more of the following: an intermediate anodic bonding layer; an etch stop layer, and/or a hard mask layer. A single film layer


27


disposed between adjacent glass sheets


28


can perform all of the above-listed functions. Alternatively, multiple layers


27


can be used. Layers


27


are preferably comprised of any type of material which forms a stable oxide, such as, for example, silicon, which can be amorphous silicon, polysilicon, crystalline silicon, or other such material.




An illustrative example is the use of a single layer


27


of amorphous silicon, which can function as an anodic bonding layer, as silicon forms a stable oxide. Additionally, it can also function as an etch stop layer and a mask layer, as silicon is selectively etchable with respect to glass. The role/or roles that the silicon layer


27


will play depends on the amount of material deposited, and the amount consumed during the anodic bonding process.




For example, if a 1.5 μm silicon layer


27


is disposed on each side of each glass sheet layer


28


, and during the process of anodic bonding the glass sheets together, all of the silicon is oxidized to form 3 pm of silicon dioxide, then layer


27


functions only as an anodic bonding layer. This is so because during the wet etch process, the etchant, HF for example, will remove all of the silicon dioxide and continue to etch the underlying glass sheet layer


28


, as oxide is not selectively etchable with respect to glass.




If, on the other hand, only 1 μm of silicon is consumed during the anodic bonding process, the remaining silicon will also function as an etch stop layer, as well as an anodic bonding layer. The HF or Buffered Oxide Etch (B.O.E.) will remove the silicon dioxide, but stop upon reaching the unoxidized silicon. Hence, the layer of silicon used for layer


27


will both effectively bond the glass sheets together, and terminate the etch process.




In one embodiment of the process of the present invention, a thin film layer


27


is sputtered or otherwise deposited on both sides of each sheet of glass


28


. The thickness of the film layer


27


is between 1.5 μm and 3 μm. As mentioned above, the thin film layer


27


will function as an intermediate anodic bonding layer, a hard mask, and/or an etch stop layer.




The glass sheets


28


having layer


27


disposed thereon may be patterned before or after they are anodically bonded to other glass sheets


28


. When the verb “patterned” is employed in this description, or in the appended claims, it is intended to inclusively refer to the multiple steps of depositing a photoactive layer, such as a photoresist, on top of a structural layer, exposing and developing the photoactive layer to form a mask pattern on top of the structural layer, and finally, selectively removing portions of the structural layer which are exposed by the mask pattern by a material removal process, such as wet chemical etching, reactive-ion etching, or reactive sputtering, in order to transfer the mask pattern to the etchable layer.




In one embodiment, each of the individual glass sheets


28


is patterned, and preferably wet etched, before the sheets are anodically bonded to each other. This minimizes the amount of undercut experienced by each glass sheet


28


. After the etch step, each glass sheet


28


is anodically bonded to the other glass sheets


28


using an alignment mark, thereby forming a multilayered stack or template


30


.




Alternatively, the structure of

FIG. 4

can be achieved through continuous litho-patterning and wet etching of a multi-layered stack of anodically bonded glass sheets


28


. In this embodiment, a thin film layer


27


is also sputtered or otherwise deposited on both sides of each sheet of glass


28


. However, prior to patterning and etching, the glass sheets


28


are anodically bonded together, thereby forming a multi-layered stack.




The stack is then photolithographically patterned, and etched, preferably using a wet etch. The etch process is selective such that it stops on the first intermediate layer


27


. Then, another etch is performed to remove the exposed first intermediate layer material


27


, and then the second glass sheet layer


28


is etched. Since this etch is also selective, the process stops when it reaches the second intermediate layer


27


, and so on, until the apertures are formed through the entire stack to create the template


30


, as shown in FIG.


4


.




If a hard mask layer is employed as an intermediate layer


27


then, alternatively, a dry or plasma etch can be used to form the apertures in that embodiment of the invention. Chromium is one example of a hard mask.




Based on the results shown in

FIG. 4

, the process of the present invention is a significant improvement over conventional processes by maintaining small critical dimensions.




After the spacer structures


18


are arranged in the template


30


, they must be aligned and attached to an electrode plate of a display device. Another novel aspect of the process of the present invention provides for the use of anodic bonding in combination with a template


30


in order to align and attach the spacer structure to the faceplate or baseplate of a display device.





FIG. 5

shows a template, generally represented at


30


, which is preferably a multi-layered template made according to the process of the present invention. Alternatively, a prior art single-layered template may be used.




The spacer fibers


34


, which are placed in the apertures of template


30


, are preferably made of glass materials which have mobile ions, such as, sodium, potassium, lead, etc., which are necessary for the anodic bonding process. Sample materials, include, but are not limited to soda lime glass and potassium rubidium glass. Currently, lead oxide silicate glasses are used for the spacer fibers


34


, and have the following chemical compositions: 35-45% PbO; 28-35% SiO


2


; balance K


2


O; Li


2


O; and RbO.




A perforated conductive plate


32


contacts the underside of the template


30


. The perforated conductive plate


32


is preferably comprised of a material such as graphite, and preferably has a flat upper surface in order to make intimate contact with the ends of the spacer fibers


34


disposed in the apertures of template


30


. A supporting structure


31


is used to force the path of airflow in an outward direction, in order to maintain the attachment of the spacer fibers


34


to the perforated conductive plate


32


. This is done by applying a vacuum to the underside of the perforated conductive plate


32


.




In the first example, the spacer fibers


34


are aligned to the baseplate of the display. Anodic bond sites


35


, which are located on the electrode plate


11


, are comprised of silicon, aluminum, or other material which can form a stable oxide during the anodic bonding process, such as, for example, nickel. The area


33


is comprised of emitter tips. The passivation layer


36


, comprised of a material such as a nitride or an oxide layer, is disposed over the emitter tip area


33


to protect them, as well as the rest of the baseplate surface. As described above, the baseplate


21


preferably comprises a glass substrate electrode plate


11


. A conductive thin film layer


38


(such as aluminum, chrome, or other metal layer) is located on top of the passivation layer


36


, and is used to generate an electrical field during the anodic bonding step.




In preparation for anodic bonding, the negative (or ground) electrode is connected to the perforated conductive plate


32


, and the positive electrode is connected to the conductive thin film layer


38


. Then either one of the plates (top or bottom) is brought in close to the other in order to form intimate contact between the bond sites


35


and the spacer fibers


34


. The anodic bonding process is then initiated at a recommended temperature usually in the range of 200° C. to 500° C., and the preferred temperature is about 300° C. The temperature is dependent on the strength of the voltage and the amount of mobile ions which are present at the bonding site, and will therefore vary with those parameters.




The amount of mobile ions is measured as a percentage of the mobile ions in the oxide. A suitable amount of mobile ions is 1-15% sodium ions in glass, with a preferred amount being about 7%. Using such a glass, a sample voltage is in the range of 150-1000 volts, and preferably about 700 volts.




An etch step (dry or wet) is applied to remove the conductive thin film layer


38


after the anodic bonding process. Sample etchants include, but are not limited to HF or B.O.E.

FIG. 6

shows the result of the anodic bonding process of the spacer fibers


34


to the baseplate


21


. If the spacer fibers


34


are located outside of one of the bond sites


35


, a bond will not be formed between bond sites


35


and spacer fibers


34


. Therefore, a self-aligned system of spacers to baseplate is achieved.




Referring to

FIG. 7

, an alternative embodiment of the present invention is shown in which the use of the faceplate of the display is illustrated. There is a sub-pixel area


41


for each glass of the faceplate. A black matrix structure


40


, which is used to enhance contrast of the display image, is located between the sub-pixel areas


41


. A transparent conductive layer


39


, which is preferably comprised of a material such as indium tin oxide (ITO), is conformally deposited over the display face. A conductive thin film layer


38


is then conformally deposited over the transparent conductive layer


39


. Again, preparatory to anodic bonding, a negative (or ground) electrode is connected to the perforated conductive plate


32


, and a positive electrode is connected to the conductive thin film layer


38


.




Then either side of the plate (top or bottom) is brought in close contact to the other in order to form intimate contact between bond sites


35


and spacer fibers


34


. To initiate the anodic bonding process, usually a temperature range of 200° C. to 500° C. is recommended, depending on how high the voltage and how high the content of mobile ions which are present.




As before, an etch step (dry or wet) is applied to remove the conductive thin film layer


38


outside of the bond sites after the anodic bonding process is complete.

FIG. 8

shows the result of the anodic bonding process after the majority of this conductive thin film layer


38


has been removed. If the spacer fibers


34


fall outside of the bond sites


35


, no bond will form between bond sites


35


and spacer fibers


34


. Therefore, again a self-aligned system of spacer fibers


34


to baseplate is achieved.




During the anodic bonding process, the spacer fibers


34


which are located on the passivation layer


36


or conductive transparent layer


39


, such as ITO, will not create an anodic bond because an such a bond can not be generated on nitride and/or oxide surfaces. Therefore, after the anodic bonding process is complete, only the spacer fibers


34


located on top of the bond sites


35


will remain on the baseplate or the faceplate, as seen in

FIGS. 6 and 8

.




Once the spacer structures have been adhered to either a faceplate or a baseplate, the complimentary electrode is attached, the display device is sealed, and a vacuum is created between the electrode plates within the display, as seen in FIG.


1


.




While the particular process, as herein shown and disclosed in detail, is fully capable of obtaining the objects and advantages herein before stated, it is to be understood that it is merely illustrative of embodiments of the invention, and that no limitations are intended to the details of the construction or the design herein shown, other than as described in the appended claims.




One having ordinary skill in the art will realize that, even though a field emission display was used as an illustrative example, the process is equally applicable to other vacuum displays (such as gas discharge (plasma) and flat vacuum fluorescent displays), and other devices requiring physical supports in an evacuated cavity.



Claims
  • 1. A multi-layered template comprising:a first glass layer having a first side and another side; a hard mask layer covering the first side of the first glass layer, and a first anodic bonding layer covering the another side of the first glass layer, the first anodic bonding layer comprising at least one of silicon dioxide, aluminum dioxide, and nickel oxide.
  • 2. The multi-layered template of claim 1, further comprising:a second glass layer having a top side and a bottom side, the top side of the second glass layer being adhered to said another side of the first glass layer with the first anodic bonding layer disposed therebetween; and a second anodic bonding layer covering the bottom side of the second glass layer.
  • 3. The multi-layered template of claim 2, wherein a pattern of openings, each extending through the hard mask layer, the first glass layer, and the first anodic bonding layer.
  • 4. The multi-layered template of claim 3, wherein the pattern of openings further each extend through the second glass layer and the second anodic bonding layer.
  • 5. The multi-layered template of claim 2, further comprising a perforated conductive plate attached to the second anodic bonding layer.
  • 6. The multi-layered template of claim 2, wherein the second anodic bonding layer comprises at least one of silicon, aluminum, and nickel.
  • 7. The multi-layered template of claim 1, wherein the hard mask layer comprises chromium.
  • 8. A method for manufacturing a multi-layered template, comprising:providing a first glass layer and a second glass layer; sputtering a film on each of the first glass layer and the second glass layer; anodically bonding the first glass layer to the second glass layer to form a multi-layered glass sheet; patterning the multi-layered glass sheet; and etching the multi-layered glass sheet to form openings therein in accordance with the patterning.
  • 9. The method for manufacturing a multi-layered template according to claim 8, wherein the etching comprises wet etching.
  • 10. The method for manufacturing a multi-layered template according to claim 9, wherein the etching is a multi-step process.
  • 11. The method for manufacturing a multi-layered template according to claim 9, further comprising extending the openings through the multi-layered glass sheet.
  • 12. The method for manufacturing a multi-layered template according to claim 8, wherein the etching comprises plasma etching.
  • 13. The method for manufacturing a multi-layered template according to claim 8, wherein the anodic bonding causes the film to oxidize.
CROSS-REFERENCE TO RELATED APPLICATION

This application is a divisional of application Ser. No. 09/514,962, filed Feb. 29, 2000, now U.S. Patent 6,413,135, issued Jul. 2, 2002.

US Referenced Citations (10)
Number Name Date Kind
5688408 Tsuru et al. Nov 1997 A
5708325 Anderson et al. Jan 1998 A
5717287 Amrine et al. Feb 1998 A
5980346 Anderson et al. Nov 1999 A
5980349 Hofmann et al. Nov 1999 A
6004179 Alwan Dec 1999 A
6103135 Kusner et al. Aug 2000 A
6245249 Yamada et al. Jun 2001 B1
6315397 Truninger et al. Nov 2001 B2
6416374 Mitome et al. Jul 2002 B1