This disclosure relates to a system for acquiring both the spatial and spectral dimensions of a spectral image cube either simultaneously with a single frame acquisition, or sequentially with a small number of frames, using an array of pixel-size, narrow wavelength bandpass filters placed in close proximity to a focal plane array (FPA), and for processing the acquired data to retrieve spectral image cubes at the pixel resolution of the FPA. The system is designed to provide low size, weight and power consumption (SWAP) in comparison with the prior art.
Spectral imaging systems, including hyperspectral imaging (HSI) and multispectral imaging (MSI) systems, are commonly deployed on airborne platforms to address a wide variety of remote sensing problems. Thermal Infrared (TIR) spectral imaging sensors, which respond to wavelengths greater than around 3 microns, have the advantage of operating in both daytime and nighttime, providing the ability to classify and identify materials and objects via their unique spectral signatures.
The complexity of typical long wavelength infrared (LWIR) and other TIR optical systems, and in particular the requirement of large cooling subsystems to suppress thermal noise, contribute to very large SWAP (size, weight and power consumption) and have hindered their widespread use. Typical HSI sensors require dispersive prisms or gratings, or a sensitive interferometer, for collection of spectral data, limiting their use to very large platforms with sufficient power sources to cool all of the optical components. Furthermore, a spectral image—i.e., a “data cube” which contains two spatial dimensions and one spectral dimension—typically suffers from artifacts due to frame-to-frame motion jitter, platform motion and target motion. This is because one of the dimensions, either spectral or spatial, is collected sequentially over time, with resulting errors due to small changes in the instantaneous field of view.
“Snapshot” spectral imaging sensors, which simultaneously collect all three cube dimensions, intrinsically eliminate motion artifacts due to multi-frame collection because they produce complete spectra and imagery in a single frame, undistorted by temporal lag. Snapshot sensors are especially advantageous for monitoring dynamic events, such as moving vehicles, gaseous plumes, and combustion transients. The data are obtained at the focal plane array (FPA) frame rate, and can be combined with algorithms for spectral/temporal signature analysis. However, most snapshot spectral imagers are still burdened by bulky optics, such as lenslet arrays or pinhole masks, contributing to SWAP.
In a patent application (International Patent Application No. PCT/US2015/049608) and publication (Kanaev, A. V., M. R. Kutteruf, M. K. Yetzbacher, M. J. Deprenger, and K. M. Novak, “Imaging with Multispectral Mosaic-Array Cameras, Appl. Opt. 54 (31), pp. F149-F157 (2015)), a system is described that uses a short wave infrared mosaic filter array of repeating unit cells. This system is not designed for operation in the TIR and is susceptible to aliasing artifacts due to the repeating cell pattern. Recently, Bierret et al. [2018] (Bierret, A. G. Vincent, J. Jaeek, J.-L. Pelouard, F. Pardo, F. De La Barrière, and R. Haïdar, “Pixel-sized infrared filters for a multispectral focal plane array,” Appl. Opt. 57, 391-395 (2018)) considered pixel-sized filters for the infrared. However, their design is complex due to the use of guided-mode resonance filters incorporating waveguides and gratings.
The system of the present disclosure is aimed at eliminating the bulky optics inherent in most snapshot spectral imaging designs by using pixel-size bandpass filters placed directly in front of the focal plane. While up to four such filters, arranged in rectangular groups called superpixels, are used in common visible and visible-near IR cameras, the present disclosure provides larger numbers of filters, corresponding to larger numbers of wavelength bands, such that the spectral signatures of materials may be captured. This disclosure is further aimed at enhancing the signal-to-noise of thermal infrared spectral imagers by allowing the spectrally selective optical elements—namely, the filters—to be efficiently cooled by the focal plane. Another object of this disclosure is to provide spectral image cubes at sub-superpixel spatial resolution using an image reconstruction algorithm, often referred to as an “inpainting” or “demosaicking” algorithm. This allows the use of larger number of bands than would otherwise be practical. Another object of this disclosure is to specify arrangements of the filters within the superpixels that both enhance the reconstruction accuracy and provide the option of directly sampling all wavelength bands at pixel resolution using a sequence of exposures while making small shifts of either the viewed scene or the sensor.
Other objects, features and advantages will occur to those skilled in the art from the following detailed description, and the accompanying drawings, in which:
The system and sensor of this disclosure uses a two-dimensional pixelated array of narrow band filters placed directly over the focal plane array (FPA), with each filter pixel co-aligned to a FPA pixel, to collect the image of the scene being viewed. A FPA is an array of light-sensing detectors placed at the focal plane of an imaging system. A subarray of S=n×m filters forms a superpixel, and the S filters span the desired wavelength transmission band. The S filters can have peak transmissions that span a portion of wavelengths of the electro-optical spectrum (the total band). The filter peaks may be spaced uniformly or non-uniformly in wavelength. Each filter may have a full-width-half-maximum (FWHM) transmission band that is much narrower than the total band so that the S filters sample the total band completely at a resolution that is higher than the total band, or they may sparsely sample the total band or they may sample it in a way that favors certain sub-regions of the total band. The FWHM may not be the same for each filter and at least one may be as wide as the total band. The S filters may be randomly arranged within each n×m superpixel, so that no superpixel is like any other, or, in the preferred embodiment, in a Sudoku-type pattern 10, as illustrated in the
The image can be processed with an inpainting algorithm to provide spatial resolution at sub-superpixel dimensions. Alternatively, a multiplicity of data frames can be acquired by sequentially shifting the image across the FPA by a multiplicity of pixels, so that a multiplicity of wavelength bands are collected for each spatial resolution element; the frames are then assembled to form a complete data cube.
In the preferred embodiment, the desired wavelength transmission band is the 8-13 micron LWIR band. The S filters are Fabry-Perot etalon filters formed on a single ZnS substrate. A lower mirror, consisting of multiple quarter wave layers, is deposited on the substrate, followed by a thick cavity layer. The cavity layer is etched on pixel scale to depths prescribed to obtain the S transmission responses. An upper mirror is then deposited on the entire substrate to complete the filter. The substrate is antireflection (AR) coated on the reverse side.
The filter array is mounted as close to the FPA detector elements as possible, ideally within a few microns 30, as illustrated in
The filter array may include filters that have multiple transmission peaks, where only one peak within the total band is desired to be transmitted. A blocking filter 26 may be included inside the chamber to limit light outside the total band from entering. External lens 22 focuses incoming radiation through window 24. Filter 34 has anti-reflective coating 32. Alignment fiducials 42 assist with proper filter alignment.
An example schematic layering of the Fabry Perot filter deposition 50 is shown in
Multispectral mosaic arrays of 3 or 4 pixel superpixels are widely used in RGB and RGB+NIR cameras, with the optical blur diameter matched to the superpixel size. As superpixel size increases, however, the required increased blur diameter and subsequent loss of spatial resolution becomes an obstacle to adoption. Techniques of inpainting or demosaicking have been developed for spectral imaging systems to treat spatial and spectral sparsity (see, e.g., Baone, G. A., “Development of Demosaicking Techniques for Multi-Spectral Imaging Using Mosaic Focal Plane Arrays,” Master's Thesis, University of Tennessee (2005), Chen, Alex, “The inpainting of hyperspectral images: a survey and adaptation to hyperspectral data,” Proc. SPIE 8537, Image and Signal Processing for Remote Sensing XVIII, 85371K (8 Nov. 2012), and Degraux, K., V. Cambareri, L. Jacques, B. Geelen, C. Blanch and G. Lafruit, “Generalized Inpainting Method for Hyperspectral Image Acquisition,” http://arxiv.org/abs/1502.01853 (February 2015)). These techniques assign a full spectrum to each FPA pixel, enabling one to reduce the required optical blur diameter to less than the superpixel dimension, and resulting in recovery of spatial and spectral detail.
A preferred embodiment method of inpainting 70 that is computationally efficient and provides good results is shown schematically in
The use of non-repeating, random positioning of filter bands in each superpixel limits aliasing artifacts in the spectral image reconstruction, regardless of the method. Aliasing artifacts occur when the positions of a given bandpass filter within nearby superpixels are correlated. Aliasing can also be avoided by assigning the filter positions in square superpixels according to the numerical patterns found in Sudoku puzzles. An example is shown in
An advantage of Sudoku-type filter patterns over random patterns is that if a sequence of data frames is acquired in which the scene in view is shifted across the FPA by S or more pixels in either the vertical or horizontal direction, and the scene is effectively static within the acquisition time, then each pixel-level resolution element is sampled at least once by each filter band. Since this shifting method obtains complete spectral and spatial information for the scene, inaccuracies associated with inpainting are avoided. The scene may also be shifted by some number of pixels less than S, in which case each spatial resolution element is sampled by a subset of the S filter bands. With this latter method, a portion of the data values estimated from inpainting may be replaced with direct measurements.
It will be understood that additional modifications may be made without departing from the scope of the inventive concepts described herein, and, accordingly, other embodiments are within the scope of the following claims.
This application claims priority of Provisional Application 62/830,849 filed on Apr. 8, 2019.
Number | Date | Country | |
---|---|---|---|
62830849 | Apr 2019 | US |