The present disclosure is directed to spinal spacers for cervical and other vertebra, and associated systems and methods.
Spinal pain has long been a source of patient discomfort and a limitation on the patient's mobility and quality of life. Spine fusion (arthrodesis) is a procedure in which two or more adjacent vertebral bodies are fused together. It is one of the most common approaches for alleviating various types of spinal pain, particularly pain associated with one or more affected intervertebral discs. While spine fusion generally helps to eliminate certain types of pain, it has been shown to decrease function by limiting the range of motion for patients in flexion, extension, rotation, and lateral bending. Furthermore, the fusion creates increased stresses on adjacent non-fused vertebra, and accelerated degeneration of the vertebra. Additionally, pseudarthrosis (resulting from an incomplete or ineffective fusion) may not provide the expected pain relief for the patient. Also, the device(s) used for fusion, whether artificial or biological, may migrate out of the fusion site, creating significant new problems for the patient.
Various technologies and approaches have been developed to treat spinal pain without fusion in order to maintain or recreate the natural biomechanics of the spine. To this end, significant efforts are being made in the use of implantable artificial intervertebral discs. Artificial discs are intended to restore articulation between vertebral bodies so as to recreate the full range of motion normally allowed by the elastic properties of the natural disc. Unfortunately, the currently available artificial discs do not adequately address all of the mechanics of motion for the spinal column.
More recently, surgical-based technologies, referred to as “dynamic posterior stabilization,” have been developed to address spinal pain resulting from one or more disorders, particularly when more than one structure of the spine has been compromised. An objective of such technologies is to provide the support of fusion-based implants while maximizing the natural biomechanics of the spine. Dynamic posterior stabilization systems typically fall into one of two general categories: posterior pedicle screw-based systems and interspinous spacers.
Examples of pedicle screw-based systems are disclosed in U.S. Pat. Nos. 5,015,247; 5,484,437; 5,489,308; 5,609,636; 5,658,337; 5,741,253; 6,080,155; 6,096,038; 6,264,656; and 6,270,498. These types of systems typically involve the use of screws that are positioned in the vertebral body through the pedicle. Because these types of systems require the use of pedicle screws, implanting the systems is often more invasive than implanting interspinous spacers.
Examples of interspinous spacers are disclosed in U.S. Pat. Nos. Re 36,211; 5,645,599; 6,149,642; 6,500,178; 6,695,842; 6,716,245; and 6,761,720. The spacers, which are made of either a hard or a compliant material, are placed between the adjacent spinous processes of adjacent vertebra. While slightly less invasive than the procedures required for implanting a pedicle screw-based dynamic stabilization system, hard or solid interspinous spacers still require that the muscle tissue and the supraspinous and interspinous ligaments be dissected. Accordingly, in some instances, compliant interspinous spacers are preferred. However, the compliancy of such spacers makes them more susceptible to displacement or migration over time. One type of spacer developed by the assignee of the present application, and disclosed in U.S. patent application Ser. No. 11/314,712, is directed to rigid interspinous spacers that may be deployed from a posterior direction so as to reduce the amount of tissue dissected during implantation. These spacers also include deployable features that are stowed as the spacer is implanted to provide a low profile shape, and are then expanded once the spacer is implanted to provide the structure that stabilizes neighboring vertebra. Such devices have proven beneficial in many instances. However, there remains a need for reducing the invasiveness of an interspinous implant, while at the same time (a) reducing the likelihood for the implant to migrate, and (b) maintaining or improving the ability of the implant to provide suitable stability.
The following summary is provided for the benefit of the reader only, and is not intended to limit in any way the invention as set forth by the claims. Aspects of the present disclosure are directed generally to spinal spacers for cervical and other vertebra, and associated systems and methods. A device for stabilizing a first vertebra relative to a second vertebra in accordance with a particular embodiment includes a hook member having a hook positioned to extend in a first direction, and a post carried by the hook member and extending axially in a second direction transverse to the first direction. The device can further include a cam surface carried by the hook member, and an actuator device moveably engaged with the post. The device can still further include a spinal spacer pivotably coupled to one of the actuator device and the post, and axially moveable relative to the hook member. The spinal spacer can have a spacing element in contact with the cam surface to pivot outwardly away from the post as the actuator device moves.
In further particular embodiments, the device can include one or more of several additional features, For example, the post can have internal threads and the actuator device can have external threads threadably engaged with the internal threads. In another embodiment, this arrangement can be reversed with the post having external threads and the actuator device having internal threads. The hook member can include a first portion and a second portion movably coupled to the first portion. At least one of the first and second portions is movable relative to the other between a stowed position and a deployed position, with the second portion extending in the first direction when in the deployed position. In another embodiment, the cam surface can be a first cam surface, and the device can further comprise a second cam surface carried by the hook member. The spacing element can be a first spacing element, and the spinal spacer can include a second spacing element in contact with the second cam surface to pivot outwardly away from the post as the actuator device moves axially. The first and second spacing elements can be pivotable relative to the post about a common axis, or about different axes.
Other embodiments of the disclosure are directed to methods for stabilizing a first vertebra relative to a second vertebra. A method in accordance with one embodiment includes inserting a hook member into an interspinous space between a first vertebra and a second, neighboring vertebra, with the hook member contacting the first vertebra, and with a post carried by the host member extending axially from the hook member. The method can further include moving an actuator relative to the post to pivot a spinal spacer outwardly away from the post and into contact with the second vertebra. The method can still further include continuing to move the actuator axially along the post while the hook member contacts the first vertebra and the spinal spacer contacts the second vertebra to force the first and second vertebra apart from each other.
In particular embodiments, the hook member can be inserted between the C3 and C4 cervical vertebra. The hook member can be inserted so as to project in an inferior direction, and can be inserted from a posterior position. In further particular embodiments, the spinal spacer can include spacing elements having spaced apart portions that are positioned laterally on opposite sides of the second vertebra to at least restrict lateral motion of the device relative to the first and second vertebra. The hook member can extend into a vertebral foramen of the first vertebra to at least restrict dorsal motion of the device.
A. Overview
Several embodiments of intervertebral spacers, systems, and associated methods are described below. The term “intervertebral” generally refers to the positional relationship between two neighboring vertebral bodies of a human spine. A person skilled in the relevant art will also understand that the devices, systems, and/or methods disclosed herein may have additional embodiments, and that embodiments of the devices, systems, and methods disclosed herein may not include all the details of the embodiments described below with reference to
For purposes of organization, the following discussion is divided into several sections, each generally associated with one of four particular embodiments of spinal spacer devices, or tools used to implant and/or deploy such devices. While the following discussion is divided to enhance the reader's understanding of each embodiment, it will be understood that aspects of each embodiment may be combined with other embodiments without departing from the scope of the present disclosure.
B. Spinal Spacer Device in Accordance with a First Embodiment
In a particular embodiment, the spinal spacer 110 is pivotably attached to the actuator device 140 via a pair of pivot pins 112. The actuator device 140 includes internal actuator threads 141 that are engaged with corresponding external post threads 131 of the post 130. As the post 130 is rotated about the second axis A2, the actuator device 140 travels axially along the post 130. The post 130 includes a tool grip portion 132 that allows a tool to grip and rotate the post 130.
The spinal spacer 110 includes a pair of spacing elements 113, each with a corresponding spacer surface 111. The spacer surfaces 111 bear against corresponding cam surfaces 123 carried by the hook member 120. For example, the hook member 120 can include oppositely facing sides 122, each having a corresponding cam surface 123 against which the corresponding spacer surface 111 bears. As the actuator device 140 moves downwardly along the post 130, each spacer surface 111 slides against the corresponding cam surface 123, and the spinal spacer 110 pivots outwardly.
Referring now to
C. Spinal Spacer Device in Accordance with a Second Embodiment
D. Spinal Spacer Device in Accordance with a Third Embodiment
In
As is also shown in
E. Actuation Tool for Use with a Device in Accordance with the Third Embodiment
The operation of the actuator tool 1150 is now described with reference to
F. Spinal Spacer Device in Accordance with a Fourth Embodiment
Referring to
The spinal spacer 1210 can include two spacing elements 1213 (one is visible in
Referring now to
G. Insertion Tool for Use with a Device in Accordance with the Fourth Embodiment
The cannula insertion tool 1670 can include a penetrating tip 1672 and a corresponding alignment mark 1671a that the practitioner aligns with the alignment mark 1671b of the insertion tool 1670. In operation, the practitioner aligns the two marks 1671a, 1671b and inserts the penetrating tip 1672 into the lumen 1675 through the proximal opening 1665. The practitioner moves the cannula insertion tool 1670 through the lumen 1675, until the penetrating tip 1672 extends outwardly from the distal opening 1676. In preparation for inserting the cannula 1673, the practitioner can make an incision through the patient's skin, and can make a further incision through the patient's spinous ligament. Referring now to
One feature of at least some of the foregoing embodiments is that the device can include a hook member that enters the vertebral foramen to prevent or at least restrict motion of the spinal spacer device after it has been implanted. Accordingly, the likelihood that the device will be dislodged after implantation can be reduced when compared with existing devices.
Another feature of at least some of the embodiments described above is that the spinal spacer device can be inserted into the patient from a posterior direction. An advantage of this feature is that it is expected to be less invasive than procedures in which a spinal spacer is delivered laterally.
Still another feature of at least some of the foregoing embodiments is that elements of the device can be stowed as the device is implanted, and then deployed when the device reaches the implantation site. For example, the hook and/or the spinal spacer elements can be stowed during implantation and then deployed once the device is in position. An advantage of these features, alone or in combination, is that the device can be made more compact during insertion, resulting in a less invasive insertion process. At the same time, the device can include deployable features that securely and stably keep the device in position once it is implanted.
Yet another feature of at least some of the foregoing embodiments is that the actuator can be threadably engaged with the post. One advantage of this feature is that the threads between these two elements can have a relatively fine pitch, allowing the practitioner to adjust the spacing between neighboring vertebra with greater precision than is available with at least some existing devices. For example, in a particular embodiment, the practitioner can track the number of rotations he or she provides to the actuator tool, and can directly correlate this number with the deflection provided to the spinal spacer. Another expected advantage of this arrangement is that the practitioner can adjust the threaded interface between these elements in either direction, with relative ease. Accordingly, if the practitioner overdeploys the spinal spacer, he or she can partially retract the spinal spacer by simply rotating the actuator tool in the opposite direction. Still another advantage of this feature is that it is expected that the mechanical resistance of the threaded arrangement will prevent or at least resist relative motion between the post and the actuator after the device has been implanted. Accordingly, the device is less likely to retract or partially retract, or otherwise become dislodged once implanted. In particular embodiments, the actuator and post can be secured relative to each other after implantation, for example, with an adhesive or mechanical insert.
From the foregoing, it will be appreciated that specific embodiments of the disclosure have been described herein for purposes of illustration, but that various modifications may be made without deviating from the disclosure. For example, certain aspects of the spinal spacer devices and associated tools may be modified in further embodiments. Such modifications can include changing the shape of the spacing elements, and/or the hook to accommodate particular patient physiologies. In other embodiments, the post and actuator can have arrangements other than a male thread/female thread arrangement, for example, a rack and pinion arrangement. In still further embodiments, the hook can project into the vertebral foramen of the superior vertebra, and the spinal spacer can engage the inferior vertebra.
Certain aspects of the disclosure described in the context of particular embodiments may be combined or eliminated in other embodiments. For example, procedures and tools described above for inserting the device shown in
This application is a divisional of U.S. patent application Ser. No. 12/969,328, filed Dec. 15, 2010, which claims priority to and the benefit of U.S. Provisional Patent Application No. 61/286,523, filed Dec. 15, 2009 and titled “SPINAL SPACER FOR CERVICAL AND OTHER VERTEBRA, AND ASSOCIATED SYSTEMS AND METHODS, the disclosures of which are incorporated herein by reference in their entireties.
Number | Name | Date | Kind |
---|---|---|---|
2248054 | Becker | Jul 1941 | A |
2677369 | Knowles | May 1954 | A |
3242120 | Steuber | Mar 1966 | A |
3486505 | Morrison | Dec 1969 | A |
3648691 | Lumb et al. | Mar 1972 | A |
3986383 | Petteys | Oct 1976 | A |
4632101 | Freedland | Dec 1986 | A |
4685447 | Iversen et al. | Aug 1987 | A |
4799484 | Smith et al. | Jan 1989 | A |
4863476 | Shepperd | Sep 1989 | A |
4895564 | Farrell | Jan 1990 | A |
5011484 | Breard | Apr 1991 | A |
5015247 | Michelson | May 1991 | A |
5019081 | Watanabe | May 1991 | A |
5059193 | Kuslich | Oct 1991 | A |
5092866 | Breard et al. | Mar 1992 | A |
5178628 | Otsuka et al. | Jan 1993 | A |
5180393 | Commarmond | Jan 1993 | A |
5182281 | Frigola-Constansa et al. | Jan 1993 | A |
5188281 | Fujiwara et al. | Feb 1993 | A |
5192281 | de la Caffiniere | Mar 1993 | A |
5195526 | Michelson | Mar 1993 | A |
5298253 | LeFiles et al. | Mar 1994 | A |
5368594 | Martin et al. | Nov 1994 | A |
5390683 | Pisharodi | Feb 1995 | A |
5415661 | Holmes | May 1995 | A |
5456722 | McLeod et al. | Oct 1995 | A |
5462738 | LeFiles et al. | Oct 1995 | A |
5472452 | Trott | Dec 1995 | A |
5484437 | Michelson | Jan 1996 | A |
5487739 | Aebischer et al. | Jan 1996 | A |
5489308 | Kuslich et al. | Feb 1996 | A |
5496318 | Howland et al. | Mar 1996 | A |
5531748 | de la Caffiniere | Jul 1996 | A |
5549679 | Kuslich | Aug 1996 | A |
5571189 | Kuslich | Nov 1996 | A |
5591165 | Jackson | Jan 1997 | A |
5609634 | Voydeville | Mar 1997 | A |
5609636 | Kohrs et al. | Mar 1997 | A |
5645599 | Samani | Jul 1997 | A |
5654599 | Casper | Aug 1997 | A |
5658337 | Kohrs et al. | Aug 1997 | A |
5674295 | Ray et al. | Oct 1997 | A |
5700264 | Zucherman et al. | Dec 1997 | A |
5725582 | Bevan et al. | Mar 1998 | A |
5741253 | Michelson | Apr 1998 | A |
5762629 | Kambin | Jun 1998 | A |
5836948 | Zucherman et al. | Nov 1998 | A |
5860977 | Zucherman et al. | Jan 1999 | A |
5863948 | Epstein et al. | Jan 1999 | A |
5876404 | Zucherman et al. | Mar 1999 | A |
RE36211 | Nonomura | May 1999 | E |
5904636 | Chen et al. | May 1999 | A |
5904686 | Zucherman et al. | May 1999 | A |
5928207 | Pisano et al. | Jul 1999 | A |
5972015 | Scribner et al. | Oct 1999 | A |
6039761 | Li et al. | Mar 2000 | A |
6045552 | Zucherman et al. | Apr 2000 | A |
6048342 | Zucherman et al. | Apr 2000 | A |
6066154 | Reiley et al. | May 2000 | A |
6068630 | Zucherman et al. | May 2000 | A |
6074390 | Zucherman et al. | Jun 2000 | A |
6080155 | Michelson | Jun 2000 | A |
6080157 | Cathro et al. | Jun 2000 | A |
6090112 | Zucherman et al. | Jul 2000 | A |
6096038 | Michelson | Aug 2000 | A |
6102928 | Bonutti | Aug 2000 | A |
D433193 | Gaw et al. | Oct 2000 | S |
6132464 | Martin et al. | Oct 2000 | A |
6149642 | Gerhart et al. | Nov 2000 | A |
6149652 | Zucherman et al. | Nov 2000 | A |
6152926 | Zucherman et al. | Nov 2000 | A |
6156038 | Zucherman et al. | Dec 2000 | A |
6159215 | Urbahns et al. | Dec 2000 | A |
6179873 | Zientek | Jan 2001 | B1 |
6183471 | Zucherman et al. | Feb 2001 | B1 |
6190387 | Zucherman et al. | Feb 2001 | B1 |
6225048 | Soderberg-Naucler et al. | May 2001 | B1 |
6235030 | Zucherman et al. | May 2001 | B1 |
6238397 | Zucherman et al. | May 2001 | B1 |
6264651 | Underwood et al. | Jul 2001 | B1 |
6264656 | Michelson | Jul 2001 | B1 |
6267765 | Taylor et al. | Jul 2001 | B1 |
6270498 | Michelson | Aug 2001 | B1 |
6280444 | Zucherman et al. | Aug 2001 | B1 |
6312431 | Asfora | Nov 2001 | B1 |
6332882 | Zucherman et al. | Dec 2001 | B1 |
6332883 | Zucherman et al. | Dec 2001 | B1 |
6336930 | Stalcup et al. | Jan 2002 | B1 |
6348053 | Cachia | Feb 2002 | B1 |
6364883 | Santilli | Apr 2002 | B1 |
6371989 | Chauvin et al. | Apr 2002 | B1 |
6375682 | Fleischmann et al. | Apr 2002 | B1 |
6379355 | Zucherman et al. | Apr 2002 | B1 |
6395032 | Gauchet et al. | May 2002 | B1 |
6402740 | Ellis et al. | Jun 2002 | B1 |
6402750 | Atkinson et al. | Jun 2002 | B1 |
6402784 | Wardlaw | Jun 2002 | B1 |
6413228 | Hung et al. | Jul 2002 | B1 |
6419676 | Zucherman et al. | Jul 2002 | B1 |
6419677 | Zucherman et al. | Jul 2002 | B2 |
6440169 | Elberg et al. | Aug 2002 | B1 |
6443988 | Felt et al. | Sep 2002 | B2 |
6447547 | Michelson | Sep 2002 | B1 |
6451019 | Zucherman et al. | Sep 2002 | B1 |
6451020 | Zucherman et al. | Sep 2002 | B1 |
6471976 | Taylor et al. | Oct 2002 | B1 |
6478796 | Zucherman et al. | Nov 2002 | B2 |
6478822 | Leroux et al. | Nov 2002 | B1 |
6500178 | Zucherman et al. | Dec 2002 | B2 |
6514256 | Zucherman et al. | Feb 2003 | B2 |
6530925 | Boudard et al. | Mar 2003 | B2 |
6558333 | Gilboa et al. | May 2003 | B2 |
6565570 | Sterett et al. | May 2003 | B2 |
6572617 | Senegas et al. | Jun 2003 | B1 |
6575981 | Boyd et al. | Jun 2003 | B1 |
6579319 | Goble et al. | Jun 2003 | B2 |
6582433 | Yun | Jun 2003 | B2 |
6582451 | Marucci et al. | Jun 2003 | B1 |
6599292 | Ray | Jul 2003 | B1 |
6610065 | Branch et al. | Aug 2003 | B1 |
6610091 | Reiley | Aug 2003 | B1 |
6626944 | Taylor et al. | Sep 2003 | B1 |
6645207 | Dixon et al. | Nov 2003 | B2 |
6645211 | Magana | Nov 2003 | B2 |
6652527 | Zucherman et al. | Nov 2003 | B2 |
6652534 | Zucherman et al. | Nov 2003 | B2 |
6663637 | Dixon et al. | Dec 2003 | B2 |
6679886 | Weikel et al. | Jan 2004 | B2 |
6695842 | Zucherman et al. | Feb 2004 | B2 |
6699246 | Zucherman et al. | Mar 2004 | B2 |
6699247 | Zucherman et al. | Mar 2004 | B2 |
6702847 | DiCarlo | Mar 2004 | B2 |
6712819 | Zucherman et al. | Mar 2004 | B2 |
6716245 | Pasquet et al. | Apr 2004 | B2 |
6733534 | Sherman | May 2004 | B2 |
6746485 | Zucherman et al. | Jun 2004 | B1 |
6761720 | Senegas | Jul 2004 | B1 |
6769983 | Slomiany | Aug 2004 | B2 |
6783529 | Hover et al. | Aug 2004 | B2 |
6783546 | Zucherman et al. | Aug 2004 | B2 |
6796983 | Zucherman et al. | Sep 2004 | B1 |
6835205 | Atkinson et al. | Dec 2004 | B2 |
6840944 | Suddaby | Jan 2005 | B2 |
6858029 | Yeh | Feb 2005 | B2 |
6869398 | Obenchain et al. | Mar 2005 | B2 |
6875212 | Shaolian et al. | Apr 2005 | B2 |
6902566 | Zucherman et al. | Jun 2005 | B2 |
6926728 | Zucherman et al. | Aug 2005 | B2 |
6946000 | Senegas et al. | Sep 2005 | B2 |
6949123 | Reiley | Sep 2005 | B2 |
6966930 | Arnin et al. | Nov 2005 | B2 |
6974478 | Reiley et al. | Dec 2005 | B2 |
7011685 | Arnin et al. | Mar 2006 | B2 |
7029473 | Zucherman et al. | Apr 2006 | B2 |
7033358 | Taylor et al. | Apr 2006 | B2 |
7048736 | Robinson et al. | May 2006 | B2 |
7070598 | Lim et al. | Jul 2006 | B2 |
7083649 | Zucherman et al. | Aug 2006 | B2 |
7087055 | Lim et al. | Aug 2006 | B2 |
7087083 | Pasquet et al. | Aug 2006 | B2 |
7097648 | Globerman et al. | Aug 2006 | B1 |
7101375 | Zucherman et al. | Sep 2006 | B2 |
7163558 | Senegas et al. | Jan 2007 | B2 |
7179225 | Shluzas et al. | Feb 2007 | B2 |
7187064 | Tzu et al. | Mar 2007 | B2 |
7189234 | Zucherman et al. | Mar 2007 | B2 |
7189236 | Taylor et al. | Mar 2007 | B2 |
7201751 | Zucherman et al. | Apr 2007 | B2 |
7217291 | Zucherman et al. | May 2007 | B2 |
7223289 | Trieu et al. | May 2007 | B2 |
7229441 | Trieu et al. | Jun 2007 | B2 |
7238204 | Le Couedic et al. | Jul 2007 | B2 |
7252673 | Lim | Aug 2007 | B2 |
7273496 | Mitchell | Sep 2007 | B2 |
7282063 | Cohen et al. | Oct 2007 | B2 |
7297162 | Mujwid | Nov 2007 | B2 |
7306628 | Zucherman et al. | Dec 2007 | B2 |
7318839 | Malberg et al. | Jan 2008 | B2 |
7320707 | Zucherman et al. | Jan 2008 | B2 |
7335200 | Carli | Feb 2008 | B2 |
7335203 | Winslow et al. | Feb 2008 | B2 |
7354453 | McAfee | Apr 2008 | B2 |
7384340 | Eguchi et al. | Jun 2008 | B2 |
7410501 | Michelson | Aug 2008 | B2 |
7442208 | Mathieu et al. | Oct 2008 | B2 |
7445637 | Taylor | Nov 2008 | B2 |
7473268 | Zucherman et al. | Jan 2009 | B2 |
7476251 | Zucherman et al. | Jan 2009 | B2 |
7481839 | Zucherman et al. | Jan 2009 | B2 |
7481840 | Zucherman et al. | Jan 2009 | B2 |
7491204 | Marnay et al. | Feb 2009 | B2 |
7497859 | Zucherman et al. | Mar 2009 | B2 |
7503935 | Zucherman et al. | Mar 2009 | B2 |
7504798 | Kawada et al. | Mar 2009 | B2 |
7510567 | Zucherman et al. | Mar 2009 | B2 |
7520887 | Maxy et al. | Apr 2009 | B2 |
7520899 | Zucherman et al. | Apr 2009 | B2 |
7547308 | Bertagnoli et al. | Jun 2009 | B2 |
7549999 | Zucherman et al. | Jun 2009 | B2 |
7550009 | Arnin et al. | Jun 2009 | B2 |
7565259 | Sheng et al. | Jul 2009 | B2 |
7572276 | Lim et al. | Aug 2009 | B2 |
7575600 | Zucherman et al. | Aug 2009 | B2 |
7585313 | Kwak et al. | Sep 2009 | B2 |
7585316 | Trieu | Sep 2009 | B2 |
7588588 | Spitler et al. | Sep 2009 | B2 |
7591851 | Winslow et al. | Sep 2009 | B2 |
7601170 | Winslow et al. | Oct 2009 | B2 |
7621939 | Zucherman et al. | Nov 2009 | B2 |
7635377 | Zucherman et al. | Dec 2009 | B2 |
7635378 | Zucherman et al. | Dec 2009 | B2 |
7637950 | Baccelli et al. | Dec 2009 | B2 |
7658752 | Labrom et al. | Feb 2010 | B2 |
7662187 | Zucherman et al. | Feb 2010 | B2 |
7666209 | Zucherman et al. | Feb 2010 | B2 |
7666228 | Le Couedic et al. | Feb 2010 | B2 |
7670377 | Zucherman et al. | Mar 2010 | B2 |
7682376 | Trieu | Mar 2010 | B2 |
7691146 | Zucherman et al. | Apr 2010 | B2 |
7695513 | Zucherman et al. | Apr 2010 | B2 |
7699852 | Frankel et al. | Apr 2010 | B2 |
7699873 | Stevenson et al. | Apr 2010 | B2 |
7727233 | Blackwell et al. | Jun 2010 | B2 |
7727241 | Gorensek et al. | Jun 2010 | B2 |
7742795 | Stone et al. | Jun 2010 | B2 |
7749231 | Bonvallet et al. | Jul 2010 | B2 |
7749252 | Zucherman et al. | Jul 2010 | B2 |
7749253 | Zucherman et al. | Jul 2010 | B2 |
7753938 | Aschmann et al. | Jul 2010 | B2 |
7758619 | Zucherman et al. | Jul 2010 | B2 |
7758647 | Arnin et al. | Jul 2010 | B2 |
7763028 | Lim et al. | Jul 2010 | B2 |
7763050 | Winslow et al. | Jul 2010 | B2 |
7763051 | Labrom et al. | Jul 2010 | B2 |
7763073 | Hawkins et al. | Jul 2010 | B2 |
7763074 | Altarac et al. | Jul 2010 | B2 |
7766967 | Francis | Aug 2010 | B2 |
7776090 | Winslow et al. | Aug 2010 | B2 |
7780709 | Bruneau et al. | Aug 2010 | B2 |
7789898 | Peterman | Sep 2010 | B2 |
7794476 | Wisnewski | Sep 2010 | B2 |
7803190 | Zucherman et al. | Sep 2010 | B2 |
7806911 | Peckham | Oct 2010 | B2 |
7811308 | Arnin et al. | Oct 2010 | B2 |
7811322 | Arnin et al. | Oct 2010 | B2 |
7811323 | Arnin et al. | Oct 2010 | B2 |
7811324 | Arnin et al. | Oct 2010 | B2 |
7811330 | Arnin et al. | Oct 2010 | B2 |
7819921 | Grotz | Oct 2010 | B2 |
7828822 | Zucherman et al. | Nov 2010 | B2 |
7828849 | Lim | Nov 2010 | B2 |
7833272 | Arnin et al. | Nov 2010 | B2 |
7837688 | Boyer, II et al. | Nov 2010 | B2 |
7837711 | Bruneau et al. | Nov 2010 | B2 |
7837734 | Zucherman et al. | Nov 2010 | B2 |
7846183 | Blain | Dec 2010 | B2 |
7846185 | Carls et al. | Dec 2010 | B2 |
7846186 | Taylor | Dec 2010 | B2 |
7857815 | Zucherman et al. | Dec 2010 | B2 |
7862569 | Zucherman et al. | Jan 2011 | B2 |
7862586 | Malek | Jan 2011 | B2 |
7862590 | Lim et al. | Jan 2011 | B2 |
7862592 | Peterson et al. | Jan 2011 | B2 |
7862615 | Carli et al. | Jan 2011 | B2 |
7867276 | Matge et al. | Jan 2011 | B2 |
7871426 | Chin et al. | Jan 2011 | B2 |
8012207 | Kim | Sep 2011 | B2 |
8025684 | Garcia-Bengochea et al. | Sep 2011 | B2 |
8057513 | Kohm et al. | Nov 2011 | B2 |
8062332 | Cunningham et al. | Nov 2011 | B2 |
8123782 | Altarac et al. | Feb 2012 | B2 |
8123807 | Kim | Feb 2012 | B2 |
8128662 | Altarac et al. | Mar 2012 | B2 |
8152837 | Altarac et al. | Apr 2012 | B2 |
8167944 | Kim | May 2012 | B2 |
8226690 | Altarac et al. | Jul 2012 | B2 |
8273108 | Altarac et al. | Sep 2012 | B2 |
8277488 | Altarac et al. | Oct 2012 | B2 |
8292922 | Altarac et al. | Oct 2012 | B2 |
8313512 | Kwak et al. | Nov 2012 | B2 |
8317864 | Kim | Nov 2012 | B2 |
8409282 | Kim | Apr 2013 | B2 |
8425559 | Tebbe et al. | Apr 2013 | B2 |
8613747 | Altarac et al. | Dec 2013 | B2 |
8628574 | Altarac et al. | Jan 2014 | B2 |
8740948 | Reglos et al. | Jun 2014 | B2 |
8845726 | Tebbe et al. | Sep 2014 | B2 |
8864828 | Altarac et al. | Oct 2014 | B2 |
8900271 | Kim | Dec 2014 | B2 |
8945183 | Altarac et al. | Feb 2015 | B2 |
20010031965 | Zucherman et al. | Oct 2001 | A1 |
20020143331 | Zucherman et al. | Oct 2002 | A1 |
20030040746 | Mitchell et al. | Feb 2003 | A1 |
20030074075 | Thomas et al. | Apr 2003 | A1 |
20030149438 | Nichols et al. | Aug 2003 | A1 |
20030153976 | Cauthen et al. | Aug 2003 | A1 |
20030176921 | Lawson | Sep 2003 | A1 |
20030220643 | Ferree | Nov 2003 | A1 |
20030220650 | Major et al. | Nov 2003 | A1 |
20040087947 | Lim et al. | May 2004 | A1 |
20040167625 | Beyar et al. | Aug 2004 | A1 |
20040220568 | Zucherman et al. | Nov 2004 | A1 |
20050049708 | Atkinson et al. | Mar 2005 | A1 |
20050075634 | Zucherman et al. | Apr 2005 | A1 |
20050101955 | Zucherman et al. | May 2005 | A1 |
20050125066 | McAfee | Jun 2005 | A1 |
20050143738 | Zucherman et al. | Jun 2005 | A1 |
20050165398 | Reiley | Jul 2005 | A1 |
20050192586 | Zucherman et al. | Sep 2005 | A1 |
20050192671 | Bao et al. | Sep 2005 | A1 |
20050209603 | Zucherman et al. | Sep 2005 | A1 |
20050216087 | Zucherman et al. | Sep 2005 | A1 |
20050228383 | Zucherman et al. | Oct 2005 | A1 |
20050228384 | Zucherman et al. | Oct 2005 | A1 |
20050228426 | Campbell | Oct 2005 | A1 |
20050245937 | Winslow | Nov 2005 | A1 |
20050261768 | Trieu | Nov 2005 | A1 |
20050278036 | Leonard et al. | Dec 2005 | A1 |
20060036258 | Zucherman et al. | Feb 2006 | A1 |
20060064165 | Zucherman et al. | Mar 2006 | A1 |
20060064166 | Zucherman et al. | Mar 2006 | A1 |
20060074431 | Sutton et al. | Apr 2006 | A1 |
20060084976 | Borgstrom et al. | Apr 2006 | A1 |
20060084983 | Kim | Apr 2006 | A1 |
20060084985 | Kim | Apr 2006 | A1 |
20060084988 | Kim | Apr 2006 | A1 |
20060084991 | Borgstrom et al. | Apr 2006 | A1 |
20060085069 | Kim | Apr 2006 | A1 |
20060085070 | Kim | Apr 2006 | A1 |
20060085074 | Raiszadeh | Apr 2006 | A1 |
20060089718 | Zucherman et al. | Apr 2006 | A1 |
20060102269 | Uchida et al. | May 2006 | A1 |
20060122620 | Kim | Jun 2006 | A1 |
20060149254 | Lauryssen et al. | Jul 2006 | A1 |
20060149289 | Winslow et al. | Jul 2006 | A1 |
20060167416 | Mathis et al. | Jul 2006 | A1 |
20060195102 | Malandain | Aug 2006 | A1 |
20060217811 | Lambrecht et al. | Sep 2006 | A1 |
20060224159 | Anderson | Oct 2006 | A1 |
20060235386 | Anderson | Oct 2006 | A1 |
20060241597 | Mitchell et al. | Oct 2006 | A1 |
20060241614 | Bruneau et al. | Oct 2006 | A1 |
20060241757 | Anderson | Oct 2006 | A1 |
20060247623 | Anderson et al. | Nov 2006 | A1 |
20060247632 | Winslow et al. | Nov 2006 | A1 |
20060247633 | Winslow et al. | Nov 2006 | A1 |
20060247650 | Yerby et al. | Nov 2006 | A1 |
20060247773 | Stamp | Nov 2006 | A1 |
20060264938 | Zucherman et al. | Nov 2006 | A1 |
20060264939 | Zucherman et al. | Nov 2006 | A1 |
20060265066 | Zucherman et al. | Nov 2006 | A1 |
20060265067 | Zucherman et al. | Nov 2006 | A1 |
20060271044 | Petrini et al. | Nov 2006 | A1 |
20060271049 | Zucherman et al. | Nov 2006 | A1 |
20060271055 | Thramann | Nov 2006 | A1 |
20060271061 | Beyar et al. | Nov 2006 | A1 |
20060271194 | Zucherman et al. | Nov 2006 | A1 |
20060276801 | Yerby et al. | Dec 2006 | A1 |
20060276897 | Winslow et al. | Dec 2006 | A1 |
20060282077 | Labrom et al. | Dec 2006 | A1 |
20060282078 | Labrom et al. | Dec 2006 | A1 |
20070016196 | Winslow et al. | Jan 2007 | A1 |
20070055237 | Edidin et al. | Mar 2007 | A1 |
20070055246 | Zucherman et al. | Mar 2007 | A1 |
20070073289 | Kwak et al. | Mar 2007 | A1 |
20070100340 | Lange et al. | May 2007 | A1 |
20070100366 | Dziedzic et al. | May 2007 | A1 |
20070123863 | Winslow et al. | May 2007 | A1 |
20070123904 | Stad et al. | May 2007 | A1 |
20070161991 | Altarac et al. | Jul 2007 | A1 |
20070161993 | Lowery et al. | Jul 2007 | A1 |
20070173818 | Hestad et al. | Jul 2007 | A1 |
20070173821 | Trieu | Jul 2007 | A1 |
20070173822 | Bruneau et al. | Jul 2007 | A1 |
20070173823 | Dewey et al. | Jul 2007 | A1 |
20070173832 | Tebbe et al. | Jul 2007 | A1 |
20070173939 | Kim et al. | Jul 2007 | A1 |
20070179500 | Chin et al. | Aug 2007 | A1 |
20070185490 | Implicito | Aug 2007 | A1 |
20070191948 | Arnin et al. | Aug 2007 | A1 |
20070198045 | Morton et al. | Aug 2007 | A1 |
20070198091 | Boyer et al. | Aug 2007 | A1 |
20070203493 | Zucherman et al. | Aug 2007 | A1 |
20070203495 | Zucherman et al. | Aug 2007 | A1 |
20070203496 | Zucherman et al. | Aug 2007 | A1 |
20070203497 | Zucherman et al. | Aug 2007 | A1 |
20070203501 | Zucherman et al. | Aug 2007 | A1 |
20070208345 | Marnay et al. | Sep 2007 | A1 |
20070208346 | Marnay et al. | Sep 2007 | A1 |
20070208366 | Pellegrino et al. | Sep 2007 | A1 |
20070225706 | Clark et al. | Sep 2007 | A1 |
20070225724 | Edmond | Sep 2007 | A1 |
20070225807 | Phan et al. | Sep 2007 | A1 |
20070225814 | Atkinson et al. | Sep 2007 | A1 |
20070233068 | Bruneau et al. | Oct 2007 | A1 |
20070233074 | Anderson et al. | Oct 2007 | A1 |
20070233076 | Trieu | Oct 2007 | A1 |
20070233077 | Khalili | Oct 2007 | A1 |
20070233081 | Pasquet et al. | Oct 2007 | A1 |
20070233082 | Chin et al. | Oct 2007 | A1 |
20070233083 | Abdou | Oct 2007 | A1 |
20070233084 | Betz et al. | Oct 2007 | A1 |
20070233088 | Edmond | Oct 2007 | A1 |
20070233089 | DiPoto et al. | Oct 2007 | A1 |
20070233096 | Garcia-Bengochea | Oct 2007 | A1 |
20070233098 | Mastrorio et al. | Oct 2007 | A1 |
20070233129 | Bertagnoli et al. | Oct 2007 | A1 |
20070250060 | Anderson et al. | Oct 2007 | A1 |
20070260245 | Malandain et al. | Nov 2007 | A1 |
20070265623 | Malandain et al. | Nov 2007 | A1 |
20070265624 | Zucherman et al. | Nov 2007 | A1 |
20070265625 | Zucherman et al. | Nov 2007 | A1 |
20070265626 | Seme | Nov 2007 | A1 |
20070270822 | Heinz | Nov 2007 | A1 |
20070270823 | Trieu et al. | Nov 2007 | A1 |
20070270824 | Lim et al. | Nov 2007 | A1 |
20070270826 | Trieu et al. | Nov 2007 | A1 |
20070270827 | Lim et al. | Nov 2007 | A1 |
20070270828 | Bruneau et al. | Nov 2007 | A1 |
20070270829 | Carls et al. | Nov 2007 | A1 |
20070270834 | Bruneau et al. | Nov 2007 | A1 |
20070272259 | Allard et al. | Nov 2007 | A1 |
20070276368 | Trieu et al. | Nov 2007 | A1 |
20070276369 | Allard et al. | Nov 2007 | A1 |
20070276372 | Malandain et al. | Nov 2007 | A1 |
20070276373 | Malandain | Nov 2007 | A1 |
20070276493 | Malandain et al. | Nov 2007 | A1 |
20070276496 | Lange et al. | Nov 2007 | A1 |
20070276497 | Anderson | Nov 2007 | A1 |
20070276500 | Zucherman et al. | Nov 2007 | A1 |
20080015700 | Zucherman et al. | Jan 2008 | A1 |
20080021468 | Zucherman et al. | Jan 2008 | A1 |
20080021560 | Zucherman et al. | Jan 2008 | A1 |
20080021561 | Zucherman et al. | Jan 2008 | A1 |
20080027545 | Zucherman et al. | Jan 2008 | A1 |
20080027552 | Zucherman et al. | Jan 2008 | A1 |
20080027553 | Zucherman et al. | Jan 2008 | A1 |
20080033445 | Zucherman et al. | Feb 2008 | A1 |
20080033553 | Zucherman et al. | Feb 2008 | A1 |
20080033558 | Zucherman et al. | Feb 2008 | A1 |
20080033559 | Zucherman et al. | Feb 2008 | A1 |
20080039853 | Zucherman et al. | Feb 2008 | A1 |
20080039858 | Zucherman et al. | Feb 2008 | A1 |
20080039859 | Zucherman et al. | Feb 2008 | A1 |
20080039945 | Zucherman et al. | Feb 2008 | A1 |
20080039946 | Zucherman et al. | Feb 2008 | A1 |
20080039947 | Zucherman et al. | Feb 2008 | A1 |
20080045958 | Zucherman et al. | Feb 2008 | A1 |
20080045959 | Zucherman et al. | Feb 2008 | A1 |
20080046081 | Zucherman et al. | Feb 2008 | A1 |
20080046085 | Zucherman et al. | Feb 2008 | A1 |
20080046086 | Zucherman et al. | Feb 2008 | A1 |
20080046087 | Zucherman et al. | Feb 2008 | A1 |
20080046088 | Zucherman et al. | Feb 2008 | A1 |
20080051785 | Zucherman et al. | Feb 2008 | A1 |
20080051898 | Zucherman et al. | Feb 2008 | A1 |
20080051899 | Zucherman et al. | Feb 2008 | A1 |
20080051904 | Zucherman et al. | Feb 2008 | A1 |
20080051905 | Zucherman et al. | Feb 2008 | A1 |
20080058806 | Klyce et al. | Mar 2008 | A1 |
20080058807 | Klyce et al. | Mar 2008 | A1 |
20080058808 | Klyce et al. | Mar 2008 | A1 |
20080058941 | Zucherman et al. | Mar 2008 | A1 |
20080065086 | Zucherman et al. | Mar 2008 | A1 |
20080065212 | Zucherman et al. | Mar 2008 | A1 |
20080065213 | Zucherman et al. | Mar 2008 | A1 |
20080065214 | Zucherman et al. | Mar 2008 | A1 |
20080071280 | Winslow | Mar 2008 | A1 |
20080071378 | Zucherman et al. | Mar 2008 | A1 |
20080086212 | Zucherman et al. | Apr 2008 | A1 |
20080108990 | Mitchell et al. | May 2008 | A1 |
20080132952 | Malandain et al. | Jun 2008 | A1 |
20080167655 | Wang et al. | Jul 2008 | A1 |
20080167656 | Zucherman et al. | Jul 2008 | A1 |
20080172057 | Zucherman et al. | Jul 2008 | A1 |
20080177272 | Zucherman et al. | Jul 2008 | A1 |
20080183210 | Zucherman et al. | Jul 2008 | A1 |
20080188895 | Cragg et al. | Aug 2008 | A1 |
20080208344 | Kilpela et al. | Aug 2008 | A1 |
20080215058 | Zucherman et al. | Sep 2008 | A1 |
20080221692 | Zucherman et al. | Sep 2008 | A1 |
20080228225 | Trautwein et al. | Sep 2008 | A1 |
20080234824 | Youssef et al. | Sep 2008 | A1 |
20080287997 | Altarac et al. | Nov 2008 | A1 |
20080288075 | Zucherman et al. | Nov 2008 | A1 |
20080294263 | Altarac et al. | Nov 2008 | A1 |
20080319550 | Altarac et al. | Dec 2008 | A1 |
20090118833 | Hudgins et al. | May 2009 | A1 |
20090125030 | Tebbe et al. | May 2009 | A1 |
20090138046 | Altarac et al. | May 2009 | A1 |
20090138055 | Altarac et al. | May 2009 | A1 |
20090222043 | Altarac et al. | Sep 2009 | A1 |
20090292315 | Trieu | Nov 2009 | A1 |
20100042217 | Zucherman et al. | Feb 2010 | A1 |
20100082108 | Zucherman et al. | Apr 2010 | A1 |
20100131009 | Roebling et al. | May 2010 | A1 |
20100234889 | Hess | Sep 2010 | A1 |
20100262243 | Zucherman et al. | Oct 2010 | A1 |
20100280551 | Pool et al. | Nov 2010 | A1 |
20100305611 | Zucherman et al. | Dec 2010 | A1 |
20110313457 | Reglos et al. | Dec 2011 | A1 |
20120078301 | Hess | Mar 2012 | A1 |
20120158063 | Altarac et al. | Jun 2012 | A1 |
20120226315 | Altarac et al. | Sep 2012 | A1 |
20130012998 | Altarac et al. | Jan 2013 | A1 |
20130150886 | Altarac et al. | Jun 2013 | A1 |
20130165974 | Kim | Jun 2013 | A1 |
20130165975 | Tebbe et al. | Jun 2013 | A1 |
20130172932 | Altarac et al. | Jul 2013 | A1 |
20130172933 | Altarac et al. | Jul 2013 | A1 |
20130289622 | Kim | Oct 2013 | A1 |
20140081332 | Altarac et al. | Mar 2014 | A1 |
20140214082 | Reglos et al. | Jul 2014 | A1 |
20140228884 | Altarac et al. | Aug 2014 | A1 |
Number | Date | Country |
---|---|---|
268461 | Feb 1927 | CA |
69507480 | Sep 1999 | DE |
322334 | Jun 1989 | EP |
0767636 | Apr 1997 | EP |
0768843 | Apr 1997 | EP |
0959792 | Dec 1999 | EP |
1027004 | Aug 2000 | EP |
1030615 | Aug 2000 | EP |
1138268 | Oct 2001 | EP |
1330987 | Jul 2003 | EP |
1056408 | Dec 2003 | EP |
1343424 | Sep 2004 | EP |
1454589 | Sep 2004 | EP |
1148850 | Apr 2005 | EP |
1299042 | Mar 2006 | EP |
1578314 | May 2007 | EP |
1675535 | May 2007 | EP |
1861046 | Dec 2007 | EP |
2681525 | Mar 1993 | FR |
2722980 | Feb 1996 | FR |
2816197 | May 2002 | FR |
2884136 | Oct 2006 | FR |
2888744 | Jan 2007 | FR |
988281 | Jan 1983 | SU |
WO-9404088 | Mar 1994 | WO |
WO-9426192 | Nov 1994 | WO |
WO-9525485 | Sep 1995 | WO |
WO-9531158 | Nov 1995 | WO |
WO-9600049 | Jan 1996 | WO |
WO-9829047 | Jul 1998 | WO |
WO-9921500 | May 1999 | WO |
WO-9921501 | May 1999 | WO |
WO-9942051 | Aug 1999 | WO |
WO-0013619 | Mar 2000 | WO |
WO-0044319 | Aug 2000 | WO |
WO-0044321 | Aug 2000 | WO |
WO-0128442 | Apr 2001 | WO |
WO-0191657 | Dec 2001 | WO |
WO-0191658 | Dec 2001 | WO |
WO-0203882 | Jan 2002 | WO |
WO-0207623 | Jan 2002 | WO |
WO-0207624 | Jan 2002 | WO |
WO-02051326 | Jul 2002 | WO |
WO-02067793 | Sep 2002 | WO |
WO-02071960 | Sep 2002 | WO |
WO-02076336 | Oct 2002 | WO |
WO-03007791 | Jan 2003 | WO |
WO-03007829 | Jan 2003 | WO |
WO-03008016 | Jan 2003 | WO |
WO-03015646 | Feb 2003 | WO |
WO-03024298 | Mar 2003 | WO |
WO-03045262 | Jun 2003 | WO |
WO-03099147 | Dec 2003 | WO |
WO-03101350 | Dec 2003 | WO |
WO-2004073533 | Sep 2004 | WO |
WO-2004110300 | Dec 2004 | WO |
WO-2005009300 | Feb 2005 | WO |
WO-2005013839 | Feb 2005 | WO |
WO-2005025461 | Mar 2005 | WO |
WO-2005041799 | May 2005 | WO |
WO-2005044152 | May 2005 | WO |
WO-2005055868 | Jun 2005 | WO |
WO-2005079672 | Sep 2005 | WO |
WO-2005086776 | Sep 2005 | WO |
WO-2005115261 | Dec 2005 | WO |
WO-2006033659 | Mar 2006 | WO |
WO-2006034423 | Mar 2006 | WO |
WO-2006039243 | Apr 2006 | WO |
WO-2006039260 | Apr 2006 | WO |
WO-2006045094 | Apr 2006 | WO |
WO-2006063047 | Jun 2006 | WO |
WO-2006064356 | Jun 2006 | WO |
WO-2006065774 | Jun 2006 | WO |
WO-2006089085 | Aug 2006 | WO |
WO-2006102269 | Sep 2006 | WO |
WO-2006102428 | Sep 2006 | WO |
WO-2006102485 | Sep 2006 | WO |
WO-2006107539 | Oct 2006 | WO |
WO-2006110462 | Oct 2006 | WO |
WO-2006110464 | Oct 2006 | WO |
WO-2006110767 | Oct 2006 | WO |
WO-2006113080 | Oct 2006 | WO |
WO-2006113406 | Oct 2006 | WO |
WO-2006113814 | Oct 2006 | WO |
WO-2006118945 | Nov 2006 | WO |
WO-2006119235 | Nov 2006 | WO |
WO-2006119236 | Nov 2006 | WO |
WO-2006135511 | Dec 2006 | WO |
WO-2007015028 | Feb 2007 | WO |
WO-2007035120 | Mar 2007 | WO |
WO-2007075375 | Jul 2007 | WO |
WO-2007075788 | Jul 2007 | WO |
WO-2007075791 | Jul 2007 | WO |
WO-2007089605 | Aug 2007 | WO |
WO-2007089905 | Aug 2007 | WO |
WO-2007089975 | Aug 2007 | WO |
WO-2007097735 | Aug 2007 | WO |
WO-2007109402 | Sep 2007 | WO |
WO-2007110604 | Oct 2007 | WO |
WO-2007111795 | Oct 2007 | WO |
WO-2007111979 | Oct 2007 | WO |
WO-2007111999 | Oct 2007 | WO |
WO-2007117882 | Oct 2007 | WO |
WO-2007121070 | Oct 2007 | WO |
WO-2007127550 | Nov 2007 | WO |
WO-2007127588 | Nov 2007 | WO |
WO-2007127677 | Nov 2007 | WO |
WO-2007127689 | Nov 2007 | WO |
WO-2007127694 | Nov 2007 | WO |
WO-2007127734 | Nov 2007 | WO |
WO-2007127736 | Nov 2007 | WO |
WO-2007131165 | Nov 2007 | WO |
WO-2007134113 | Nov 2007 | WO |
WO-2008009049 | Jan 2008 | WO |
WO-2008048645 | Apr 2008 | WO |
WO-2008057506 | May 2008 | WO |
WO-2008130564 | Oct 2008 | WO |
WO-2009014728 | Jan 2009 | WO |
WO-2009033093 | Mar 2009 | WO |
WO-2009086010 | Jul 2009 | WO |
WO-2009091922 | Jul 2009 | WO |
WO-2009094463 | Jul 2009 | WO |
WO-2009114479 | Sep 2009 | WO |
WO-2011084477 | Jul 2011 | WO |
Entry |
---|
European Office Action Application No. EP05849654.8; Applicant: The Board of Trustees of the Leland Stanford Junior University; Date of Completion: Jun. 21, 2011, 4 pages. |
Final Office Action; U.S. Appl. No. 10/970,843; Mailing Date: Feb. 12, 2009, 7 pages. |
Final Office Action; U.S. Appl. No. 10/970,843; Mailing Date: Jul. 2, 2010, 9 pages. |
Final Office Action; U.S. Appl. No. 11/006,502; Mailing Date: Aug. 17, 2009, 7 pages. |
Final Office Action; U.S. Appl. No. 11/006,521; Mailing Date: May 17, 2010, 10 pages. |
Final Office Action; U.S. Appl. No. 11/006,521; Mailing Date: Dec. 5, 2008, 10 pages. |
Final Office Action; U.S. Appl. No. 11/052,002; Mailing Date: Apr. 1, 2009, 7 pages. |
Final Office Action; U.S. Appl. No. 11/052,002; Mailing Date: Sep. 1, 2010, 7 pages. |
Final Office Action; U.S. Appl. No. 11/079,006; Mailing Date: Nov. 10, 2009, 7 pages. |
Final Office Action; U.S. Appl. No. 11/190,496; Mailing Date: May 19, 2009, 8 pages. |
Final Office Action; U.S. Appl. No. 11/305,820; Mailing Date: Jun. 16, 2008, 9 pages. |
Final Office Action; U.S. Appl. No. 11/314,712; Mailing Date: Sep. 4, 2009, 9 pages. |
Final Office Action; U.S. Appl. No. 11/582,874; Mailing Date: Sep. 10, 2010, 10 pages. |
International Search Report and Written Opinion; Application No. PCT/US2005/038026; Mailing Date: Apr. 22, 2008, 9 pages. |
International Search Report and Written Opinion; Application No. PCT/US2005/044256; Mailing Date: Jul. 28, 2006, 7 pages. |
International Search Report and Written Opinion; Application No. PCT/US2006/047824; Mailing Date: Oct. 16, 2008, 3 pages. |
International Search Report and Written Opinion; Application No. PCT/US2006/048611; Mailing Date: Oct. 14, 2008; 10 pages. |
International Search Report and Written Opinion; Application No. PCT/US2006/048614; Mailing Date: Feb. 3, 2006; 23 pages. |
International Search Report and Written Opinion; Application No. PCT/US2007/022171; Mailing Date: Apr. 15, 2008, 13 pages. |
International Search Report and Written Opinion; Application No. PCT/US2007/023312; Mailing Date: May 22, 2008, 14 pages. |
International Search Report and Written Opinion; Application No. PCT/US2008/004901; Mailing Date: Aug. 19, 2008, 7 pages. |
International Search Report and Written Opinion; Application No. PCT/US2008/008382; Mailing Date: Mar. 2, 2009, 12 pages. |
International Search Report and Written Opinion; Application No. PCT/US2008/008983; Mailing Date: Feb. 23, 2009, 7 pages. |
International Search Report and Written Opinion; Application No. PCT/US2008/075487; Mailing Date: Dec. 31, 2008, 7 pages. |
International Search Report and Written Opinion; Application No. PCT/US2008/087527; Mailing Date: Jul. 30, 2009, 7 pages. |
International Search Report and Written Opinion; Application No. PCT/US2009/031150; Mailing Date: Aug. 28, 2009, 5 pages. |
International Search Report and Written Opinion; Application No. PCT/US2009/031710; Mailing Date: Sep. 1, 2009, 10 pages. |
International Search Report and Written Opinion; Application No. PCT/US2009/036561; Mailing Date: Sep. 17, 2009, 12 pages. |
Minns, R.J., et al., “Preliminary Design and Experimental Studies of a Noval Soft Implant for Correcting Sagittal Plane Instability in the Lumbar Spine,” (1997) Spine, 22(16): 1819-1827. |
Non-Final Office Action; U.S. Appl. No. 10/970,843; Mailing Date: Aug. 29, 2008, 9 pages. |
Non-Final Office Action; U.S. Appl. No. 10/970,843; Mailing Date: Oct. 8, 2009, 8 pages. |
Non-Final Office Action; U.S. Appl. No. 11/006,502; Mailing Date: Nov. 7, 2008, 7 pages. |
Non-Final Office Action; U.S. Appl. No. 11/006,521; Mailing Date: Feb. 28, 2008, 13 pages. |
Non-Final Office Action; U.S. Appl. No. 11/006,521; Mailing Date: Aug. 26, 2009, 9 pages. |
Non-Final Office Action; U.S. Appl. No. 11/052,002; Mailing Date: Sep. 18, 2007, 7 pages. |
Non-Final Office Action; U.S. Appl. No. 11/052,002; Mailing Date: Dec. 24, 2009, 6 pages. |
Non-Final Office Action; U.S. Appl. No. 11/079,006; Mailing Date: Jan. 30, 2009, 7 pages. |
Non-Final Office Action; U.S. Appl. No. 11/079,006; Mailing Date: Aug. 18, 2007, 6 pages. |
Non-Final Office Action; U.S. Appl. No. 11/190,496; Mailing Date: Aug. 25, 2008, 6 pages. |
Non-Final Office Action; U.S. Appl. No. 11/190,496; Mailing Date: Oct. 31, 2007, 7 pages. |
Non-Final Office Action; U.S. Appl. No. 11/305,820; Mailing Date: Oct. 9, 2007, 8 pages. |
Non-Final Office Action; U.S. Appl. No. 11/314,712; Mailing Date: Jan. 21, 2009, 8 pages. |
Non-Final Office Action; U.S. Appl. No. 11/582,874; Mailing Date: Jan. 4, 2010, 9 pages. |
Non-Final Office Action; U.S. Appl. No. 11/593,995; Mailing Date: Apr. 19, 2010, 10 pages. |
Non-Final Office Action; U.S. Appl. No. 12/205,511 Mailing Date: Apr. 20, 2011 9 pages. |
Non-Final Office Action; U.S. Appl. No. 12/338,793; Mailing Date: Aug. 21, 2010, 9 pages. |
Non-Final Office Action; U.S. Appl. No. 12/358,010 Mailing Date: Jul. 14, 2011; 9 pages. |
Supplementary European Search Report; Application No. EP05849654.8; Applicant: Vertiflex, Inc.; Date of Completion: May 15, 2009, 10 pages. |
Supplementary European Search Report; Application No. EP07861426.0; Applicant: Vertiflex, Inc.; Date of Completion: Jun. 7, 2011, 6 pages. |
Supplementary European Search Report; Application No. EP07861721.4; Applicant: Vertiflex, Inc.; Date of Completion: Nov. 24, 2009, 6 pages. |
Supplementary European Search Report; Application No. EP09170304.1; Applicant: Vertiflex, Inc.; Date of Completion: Nov. 11, 2009, 5 pages. |
Supplementary European Search Report; Application No. EP09170338.9; Applicant: Vertiflex, Inc.; Date of Completion: Nov. 12, 2009, 6 pages. |
Supplementary European Search Report; Application No. EP09702116.6; Applicant: Vertiflex, Inc.; Date of Completion: Feb. 11, 2011, 6 pages. |
Supplementary European Search Report; Application No. EP11151901.3; Applicant: Vertiflex, Inc.; Date of Completion: Apr. 7, 2011, 6 pages. |
Swan, Colby, “Preliminary Design and Experimental Studies of a Novel Soft Implant for Correcting Sogittal P{lane Instability in the Lumbar Spine,” Spine, 1997, 22(16), 1826-1827. |
Supplementary European Search Report; Application No. EP05815519.3; Applicant: The Board of Trustees of Leland Stanford Junior University; Date of Completion: Sep. 28, 2011, 9 pages. |
Supplementary European Search Report; Application No. EP05849654; Applicant: The Board of Trustees of Leland Stanford Junior University; Date of Completion: May 15, 2009, 5 pages. |
Australia Exam Report for Application No. AU2006329867, Applicant: The Board of Trustees of Leland Stanford Junior University; Date of Issue: Jan. 27, 2012, 2 pages. |
Australia Exam Report for Application No. AU2007317886, Applicant: VertiFlex, Inc.; Date of Issue: Jun. 18, 2012, 3 pages. |
Australia Exam Report for Application No. AU2008241447, Applicant: VertiFlex, Inc. Date of Issue: Jul. 5, 2012, 4 pages. |
Australia Exam Report for Application No. AU2008275708, Applicant: VertiFlex, Inc. Date of Issue: Nov. 12, 2012, 4 pages. |
Australia Exam Report for Application No. AU2008279680, Applicant: VertiFlex, Inc. Date of Issue: Oct. 30, 2012, 5 pages. |
Australia Exam Report for Application No. AU2008296066, Applicant: VertiFlex, Inc. Date of Issue: Mar. 6, 2013, 3 pages. |
Australia Exam Report for Application No. AU2008343092, Applicant: VertiFlex, Inc. Date of Issue: Feb. 8, 2013, 4 pages. |
Australia Exam Report No. 2 for Application No. AU2009206098, Applicant: VertiFlex, Inc.; Date of Issue: Aug. 19, 2014, 4 pages. |
Australia Exam Report No. 1 for Application No. AU2009206098, Applicant: VertiFlex, Inc.; Date of Issue: Mar. 6, 2013, 4 pages. |
Canada Exam Report for Application No. CA2634251, Applicant: The Board of Trustees of Leland Stanford Junior University; Date of Issue: Dec. 3, 2013, 2 pages. |
Canada Exam Report for Application No. CA2668833, Applicant: Vertiflex, Inc.; Date of Issue: Dec. 5, 2013, 2 pages. |
Canada Exam Report for Application No. CA2695937, Applicant: Vertiflex, Inc.; Date of Issue: Aug. 7, 2014, 2 pages. |
Canada Exam Report for Application No. CA2697628, Applicant: Vertiflex, Inc.; Date of Issue: Oct. 16, 2014, 2 pages. |
Canada Exam Report for Application No. CA2698718, Applicant: Vertiflex, Inc.; Date of Issue: May 20, 2014, 3 pages. |
Supplementary European Search Report for Application No. EP06845480; Applicant: VertiFlex, Inc.; Date of Completion: Aug. 14, 2012, 9 pages. |
Supplementary European Search Report for Application No. EP13184922.6; Applicant: VertiFlex, Inc.; Date of Issue: Oct. 30, 2013, 8 pages. |
Supplementary European Search Report for Application No. EP07861426; Applicant: VertiFlex, Inc.; Date of Issue: Jun. 7, 2011, 6 pages. |
Supplementary European Search Report for Application No. EP07861721.4; Applicant: VertiFlex, Inc.; Date of Issue: Nov. 24, 2009, 6 pages. |
Supplementary European Search Report for Application No. EP09170304.1; Applicant: VertiFlex, Inc.; Date of Issue: Nov. 24, 2009, 5 pages. |
Supplementary European Search Report for Application No. EP09170338.9; Applicant: VertiFlex, Inc.; Date of Issue: Nov. 24, 2009, 6 pages. |
Supplementary European Search Report for Application No. EP11151901.3; Applicant: VertiFlex, Inc.; Date of Issue: Apr. 7, 2011, 6 pages. |
Supplementary European Search Report for Application No. EP08742949.4; Applicant: VertiFlex, Inc.; Date of Issue: Sep. 17, 2012, 6 pages. |
Supplementary European Search Report for Application No. EP08780034.8; Applicant: VertiFlex, Inc.; Date of Issue: Sep. 19, 2012, 7 pages. |
Supplementary European Search Report for Application No. EP08794704.0; Applicant: VertiFlex, Inc.; Date of Issue: Oct. 23, 2012, 9 pages. |
Supplementary European Search Report for Application No. EP08799267.3; Applicant: VertiFlex, Inc.; Date of Issue: Jun. 29, 2011, 7 pages. |
Supplementary European Search Report for Application No. EP08867282.9; Applicant: VertiFlex, Inc.; Date of Issue: Nov. 28, 2012, 10 pages. |
Supplementary European Search Report for Application No. EP09702116.6; Applicant: VertiFlex, Inc.; Date of Issue: Feb. 11, 2011, 7 pages. |
International Search Report and Written Opinion for Counterpart Application No. PCT/US2010/060498; Mailing Date: Aug. 25, 2011, 17 pages. |
Australia Exam Report for Application No. AU2009223607, Applicant: VertiFlex, Inc.; Date of Issue: Jun. 4, 2013, 3 pages. |
Number | Date | Country | |
---|---|---|---|
20140214082 A1 | Jul 2014 | US |
Number | Date | Country | |
---|---|---|---|
61286523 | Dec 2009 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 12969328 | Dec 2010 | US |
Child | 14256752 | US |