Spinneret for manufacture of melt blown nonwoven fabric

Information

  • Patent Grant
  • 10835216
  • Patent Number
    10,835,216
  • Date Filed
    Wednesday, December 24, 2014
    9 years ago
  • Date Issued
    Tuesday, November 17, 2020
    3 years ago
Abstract
A bimodal spinneret system including the bimodal spinneret and method for making a surgical buttress having improved characteristics are disclosed. The bimodal spinneret includes at least a distribution of hole diameters to create fibers with a more heterogeneous shear history and die swell. The system and method of using the bimodal spinneret creates a melt blown non-woven fiber mat that is cut into a surgical buttress having unique fabric properties such as differentiated load deflection behavior, flexural stiffness, polymer fiber alignment, fiber crystallinity and subsequent strength retention during in vitro degradation not attainable with unimodal spinneret hole diameters.
Description
TECHNICAL FIELD

The present disclosure relates to surgical buttresses and equipment for their manufacture, and more particularly, to a spinneret configured to make a nonwoven fabric surgical implant or buttress created from a melt blown process.


BACKGROUND

Surgical stapling instruments that are used to sequentially or simultaneously apply one or more rows of fasteners to join segments of body tissues are well known in the art. Such devices generally include a pair of jaws to clamp therebetween the body tissues to be joined. Typically, one of the jaw members includes a staple cartridge which accommodates a plurality of staples while the other jaw member has an anvil that defines a surface for forming the staple legs as the staples are driven from the staple cartridge. When stapling relatively thin or fragile tissues, it is often necessary to reinforce the staple line against the tissue to prevent tears in the tissue or pulling of the staples through the tissue. One method of preventing tears or pull through involves the placement of a biocompatible fabric reinforcing material, or a “buttress,” between the staple and the underlying tissue.


A common method for making a buttress is to extrude a biocompatible material through a spinneret having a unimodal distribution of hole diameters to form fibers, collect the fibers to create a fiber mat and then cut the nonwoven fiber mat into a predetermined shape. However, using a spinneret with a unimodal distribution of hole diameters produces a buttress having a certain flexibility and strength.


It is a desire of the present application to provide a spinneret, system and method for making a nonwoven fiber mat that results in a buttress having improved flexibility and strength characteristics.


Specifically, this disclosure presents a spinneret design that includes at least a distribution of hole diameters to create fibers with a more heterogeneous shear history and die swell. All of these advantages confer unique fabric properties not attainable with unimodal spinneret hole diameters such as differentiated load deflection behavior, flexural stiffness, polymer fiber alignment, fiber crystallinity and subsequent strength retention during in vivo degradation.


SUMMARY

In accordance with aspects of the present disclosure, a multi-modal spinneret is provided, including a body defining a longitudinal axis, wherein the body includes a first side surface and a second side surface, and a top surface and a bottom surface; and at least two holes disposed along the longitudinal axis of the spinneret, each of the at least two holes having a hole diameter, wherein at least one hole has a first diameter and least one hole has a second diameter different than the first diameter.


The spinneret can include additional holes, and wherein each of the additional holes has a hole diameter equivalent to either the first or second diameter. The additional holes of the spinneret may be disposed along the longitudinal axis of the spinneret in a pattern of alternating first and second diameters or randomly disposed along the longitudinal axis of the spinneret. The number of holes having a first diameter and the number of holes having a second diameter may be equal.


In aspects, each of the additional holes has a center and an edge, the additional holes may be disposed along the longitudinal axis of the spinneret such that the centers of the additional holes are equidistant or the distance between each edge of each of the additional holes are equidistant.


In aspects, the at least two holes of the spinneret have a hole depth, and wherein each of the at least two holes has a ratio that is defined by the hole depth divided by the hole diameter. Each of the ratios of the at least two holes may be equal or unequal.


In accordance with another aspect of the present disclosure, a method of making a nonwoven fiber mat is disclosed and comprises providing a material, an extruder and a spinneret, wherein the spinneret defines at least one hole having one diameter and at least one hole having a second diameter different than the first diameter; coupling the spinneret to the extruder; feeding the material into the extruder; melting the material in the extruder; extruding the melted material through the spinneret forming a plurality of fibers; and collecting the plurality of fibers onto a conveyer surface to form a nonwoven fiber mat, wherein the nonwoven fiber mat includes at least one fiber having a first diameter and at least one fiber having a second diameter.


In certain embodiments, the material is a polymer selected from the group consisting of lactide homopolymer, glycolide homopolymer, polydioxanone homopolymer, glycolide trimethylene carbonate copolymer, glycolide lactide copolymer, glycolide dioxanone trimethylene carbonate copolymer, and glycolide caprolactone trimethylene carbonate lactide copolymer.


In certain embodiments, the material is a bioabsorbable polymeric material. The melting temperature of the polymer may be between about 180 and about 270 degrees Celsius. In other embodiments, the melting temperature of the polymer is between about 80 degrees Celsius and about 190 degrees Celsius.


The method may also include blowing hot air on the plurality of fibers as they exit the spinneret and before they are collected on the conveyer surface. The hot air may have a temperature greater than or equal to the melting temperature of the plurality of fibers. The hot air may have a temperature of between about 225 and about 290 degrees Celsius. The hot air may have a temperature of about 240 degrees Celsius.


In certain embodiments, the method includes plasma treating at least a portion of a surface of the non-woven fiber mat with an ionizable gas species or combination of ionizable gas species configured to chemically modify or functionalize the surface of the non-woven fiber mat. The ionizable gas species is selected from the group consisting of air, water vapor, oxygen, nitrogen, argon, and combinations thereof.


In certain embodiments, the method includes applying heat and pressure to the non-woven fiber mat before plasma treating the non-woven fiber mat.


In certain embodiments, the non-woven material is cut into a shape corresponding to the shape of the tissue contacting surfaces of a linear surgical stapler. In other embodiments, the non-woven material is cut into a shape corresponding to the shape of the tissue contacting surfaces of a circular surgical stapler.


In accordance with another aspect of the present disclosure, a system for making a surgical buttress for surgical staplers is disclosed and comprises an extruder configured to receive and melt a material; a spinneret coupled to the extruder and configured to form a plurality of fibers, wherein the spinneret defines at least two holes of different sizes; and a conveyer surface configured to receive the plurality of fibers extruded from the spinneret. The extruder may reach a temperature between about 180 and about 270 degrees Celsius or temperatures between about 80 degrees Celsius and about 190 degrees Celsius. The system may include a blower and/or compressed air, wherein the blower and/or compressed air blows hot air on the plurality of fibers as they exit the spinneret.


In certain embodiments, the hot air from the blower and/or compressed air may have a temperature greater than or equal to the melting temperature of the plurality of fibers. The hot air may have a temperature approximately between 225 and 290 degrees Celsius.


In certain embodiments, the system may include a plasma treatment apparatus, wherein the plasma treatment apparatus treats at least a portion of a surface of the non-woven fiber mat with an ionizable gas species or combination of ionizable gas species configured to chemically modify or functionalize the surface of the non-woven fiber mat. The ionizable gas species is selected from the group consisting of air, water vapor, oxygen, nitrogen, argon, and combinations thereof.


In certain embodiments, the system may include a cutting apparatus to cut the nonwoven fiber mat into a buttress. The non-woven fiber mat is cut into a shape corresponding to the shape of the tissue contacting surfaces a linear surgical stapler or into a shape corresponding to the shape of the tissue contacting surfaces a circular surgical stapler.





BRIEF DESCRIPTION OF THE DRAWINGS

The foregoing objects and advantages of the disclosure will become more apparent from the reading of the following description in connection with the accompanying drawings, in which:



FIG. 1 is a schematic illustration of a system for making a surgical buttress according to the present disclosure;



FIG. 2 is a perspective view of a spinneret, in accordance with an embodiment of the present disclosure, for use in the system of FIG. 1;



FIG. 3 is a bottom view of the spinneret of FIG. 2;



FIG. 4 is a front, elevational view of the spinneret of FIG. 2;



FIG. 5 is a cross-sectional of the spinneret of FIGS. 2 and 3, as taken along 5-5 or FIG. 4;



FIG. 6 is a schematic illustration of an apparatus which is suitable for carrying out plasma treatment of a nonwoven fiber mat in accordance with the present disclosure; and



FIG. 7 is a flow chart illustrating a method of making a nonwoven fiber mat.





DETAILED DESCRIPTION

The present disclosure is directed to a spinneret design, system and method of using a melt blown process to make a nonwoven fiber mat having a distribution of fiber diameters.


For the purposes of discussion, the nonwoven fiber mat will be discussed in terms of a surgical buttress. However, those skilled in the art will appreciate the presently disclosed nonwoven fiber mat may be any surgical implant, such as meshes, scaffolds, grafts (e.g., fabrics and/or tubes), rings, sutures, patches, slings, pledgets, growth matrices, drug delivery devices, wound plugs, and, in general, soft tissue repair devices and surgical prostheses. In other embodiments, a suitable nonwoven fiber mat may be cut as topically applied medical products, such as wound dressings, coverings, gauzes, and the like, that can be used in medical/surgical procedures.


Referring now to the figures, wherein like components are designated by like reference numerals throughout the several views,


With reference to FIG. 1, a system for making a surgical buttress material, is generally designated as 10. As will be discussed in greater detail below, system 10 generally includes a bimodal spinneret 100, an extruder 200 configured to supply material 210 to spinneret 100, a blower and/or compressed air 500 configured to blow hot air onto fibers 400 and transport fibers 400 to a plasma apparatus 700 and then onto a cutting apparatus 800.



FIG. 2 illustrates a perspective view of a spinneret 100 in accordance with one embodiment of the present disclosure. Spinneret 100 includes a body portion 101 defining a longitudinal axis 102 extending from a proximal end 103 to a distal end 104 of the body portion 101. Preferably, spinneret 100 may have a substantially V-shaped profile, however spinneret 100 may be any other suitable shape. The body portion further defines a cavity 107 defining a nadir 108 that is formed along the longitudinal axis 102 of the body portion 101. Disposed along longitudinal axis 102 of body portion 101 are at least two through holes 120,130. Through hole 120 has a first diameter “D1” and through hole 130 has a second diameter “D2” that is different from first diameter “D1”. First diameter “D1” may be more than 100% larger than second diameter “D2”. Optimally, the size difference between first and second diameters “D1”, “D2” is at least 10%. Generally, the first and second diameters “D1”, “D2” range from about 0.13 mm to about 0.3 mm, in some embodiments, from about 0.175 mm to about 0.25 mm. Spinneret 100 may be composed of steel, however any other suitable material may be used.



FIG. 3 illustrates a bottom view of spinneret 100. In an embodiment, the body portion 101 of spinneret 100 has a plurality of holes 110, where the plurality of holes 110 includes through holes 120, 130. Each of the holes 110 has a diameter equal to either the first or second diameter “D1”, “D2”. Holes 110 are disposed along longitudinal axis 102 in an alternating pattern such that a hole having first diameter “D1” is next to a hole having a second diameter “D2”. Alternatively, holes 110 may be disposed along longitudinal axis 102 in a random pattern (not shown) or any pattern desired.


Still referring to FIG. 3, each of the holes 110 is circular, having a center 140 and a side edge 150. Each hole 110 may be disposed along longitudinal axis 102 such that a distance “L1” between each center 140 is equal. Alternatively, each hole 110 may be disposed along longitudinal axis 102 such that a distance “L2” between each side edge 150 is equal.


Turning to FIG. 4, the nadir 108 of spinneret 100 may be substantially flat and dimensioned such that the width “W1” is greater than each of the holes 110.


Shown in FIG. 5 is a cross-sectional view of spinneret 100 as taken along cross-sectional line 5-5 of FIG. 4. Each of the holes 110 has a hole depth extending from a top surface 105 to a bottom surface 106 of the body portion 110. Preferably, each hole depth is different; however, each hole depth may be the same. Here, through hole 120 has a hole depth “HD1” and through hole 130 has a hole depth “HD2” that is greater than “HD1.”


Referring back to FIG. 1, as mentioned above, spinneret 100 is operatively connected to extruder 200. Extruder 200 is configured to receive material 210 therein from a supply source (not shown). Material 210 may include polymers such as those made from lactide, glycolide, caprolactone, valerolactone, carbonates (e.g., trimethylene carbonate, tetramethylene carbonate, and the like), dioxanones (e.g., 1,4-dioxanone), δ-valerolactone, 1,dioxepanones (e.g., 1,4-dioxepan-2-one and 1,5-dioxepan-2-one), ethylene glycol, ethylene oxide, esteramides, γ-hydroxyvalerate, β-hydroxypropionate, alpha-hydroxy acid, hydroxybuterates, poly (ortho esters), hydroxy alkanoates, tyrosine carbonates, poly(imide carbonates), poly(imino carbonates) such as poly (bisphenol A-iminocarbonate) and poly (hydroquinone-iminocarbonate), polyurethanes, polyanhydrides, polymer drugs (e.g., polydiflunisol, polyaspirin, and protein therapeutics), and copolymers and combinations thereof.


In embodiments, material 210 may be a lactomer copolymer of glycolide and lactide derived from glycolic and lactic acids. In embodiments, the porous nonwoven fiber mat may be fabricated from polyglyconate, a copolymer of glycolic acid and trimethylene carbonate.


In other embodiments, material 210 may be a synthetic polyester composed of glycolide, dioxanone, and trimethylene carbonate. The polymer may include from about from about 50% to about 70% by weight glycolide, in embodiments, from about 55% to about 65% by weight glycolide, and in some embodiments, about 60% by weight glycolide; from about 4% to about 24% by weight dioxanone, in embodiments, from about 9% to about 19% by weight dioxanone, and in some embodiments, about 14% by weight dioxanone; and from about 16% to about 36% by weight trimethyl carbonate, in embodiments, from about 21% to about 31% by weight trimethyl carbonate, and in some embodiments, about 26% by weight trimethyl carbonate.


In yet other embodiments, material 210 may be a copolymer of glycolide and trimethylene carbonate. The polymer may include from about 55% to about 75% by weight glycolide, in embodiments, about 60% to about 70% by weight glycolide, and in some embodiments, about 65% by weight glycolide, and from about 25% to about 45% by weight trimethylene carbonate, in embodiments, from about 30% to about 40% by weight trimethylene carbonate, and in some embodiments, about 35% by weight trimethylene carbonate.


Extruder 200 is configured to heat material 210 until it becomes a melted material 220, and then forces melted material 220 into spinneret 100 and through the array of holes therein. In some embodiments, the temperature of spinneret 100 is between about 200 degrees Celsius, and about 275 degrees Celsius in some embodiments, from between about 235 degrees Celsius and about 255 degrees Celsius. In some embodiments, the pressure, at spinneret 100, acting on melted material 220, is between about 10 bar and about 80 bar. In some embodiments, the pressure can be 125 bar.


Spinneret 100 forms melted material 220 into fibers 400 having differing fiber diameters. Blower and/or compressed air 500 blows hot air onto fibers 400 exiting spinneret 100 to force fibers 400 onto a conveyor surface 600. In some embodiments, the hot air has a temperature of between about 225 degrees Celsius and about 325 degrees Celsius, and in other embodiments hot air has a temperature from about 265 degrees Celsius and about 295 degrees Celsius. The speed of conveyor surface 600 is between about 1 meter per minute and about 10 meters per minute. Fibers 400 randomly land on conveyor surface and build up to several layers in thickness. Suction 610 is applied through conveyor surface 600 to help compact fibers 400 against each other to form a nonwoven fiber mat 410 as fibers 400 cool.


It is contemplated that fibers 400 can be generated at lower temperatures. In certain embodiments, fibers 400 are formed from a material 210 having a lower melting temperature. For example, a copolymer of glycolide, caprolactone, trimethylene carbonate and lactide could be melt extruded at between about 140 degrees Celsius and about 185 degrees Celsius. Thus, the nonwoven fiber mat 410 may be formed from fibers 400 that are melt extruded from polymers having a melting temperature of between about 80 degrees Celsius and about 190 degrees Celsius.


The diameter of the individual fibers 400 may be from about 5 μm to about 100 μm in embodiments, from about 10 μm to about 40 μm in some embodiments, and from about 15 μm to about 35 μm in some embodiments, and in some further embodiments, from about 18 μm to about 33 μm. The nonwoven fiber mat 410 thickness may be from about 100 μm to about 400 μm in embodiments, and from about 100 μm to about 300 μm in some embodiments, and from about 200 μm to about 250 microns in some embodiments, and in some further embodiments about 230 μm. The nonwoven fiber mat 410 weight may be from about 75 g/m2 to about 100 g/m2, in embodiments, from about 80 g/m2 to about 95 g/m2, and in some embodiments, about 87 g/m2. It should be understood that different mat thicknesses, weights, and porosities may be selected by varying manufacturing conditions. In certain embodiments, the fabric can be between 35 to 80 g/m2.


In accordance with the present disclosure, the nonwoven fiber mat 410 may be chemically modified to render at least a portion of a surface of nonwoven fiber mat 410 hydrophilic. For example, in embodiments, the nonwoven fiber mat 410 is carried on conveyer surface 600 and delivered to a plasma apparatus 700 where a plasma treatment is used. The plasma may be formed of a single gas species such as oxygen, carbon dioxide, ammonia, nitrogen, or argon. The use of oxygen, for example, will result in surface activation of an oxygenate type, such as the formation of —OH, —CHO, and/or —COOH groups. It is envisioned that other gases, mixtures of gases, vapours of volatile organic molecules such as alcohols, water, or open air plasma may also be utilized. For example, ozone may be used in place of oxygen. In other examples, the plasma gas may be produced using an oxygen-containing molecule, a nitrogen-containing molecule, or mixtures thereof. In some embodiments, plasma gases may be used serially.


Once fiber mat 410 is plasma treated, nonwoven fiber mat 410 is carried on conveyor surface 600 and delivered to a cutting apparatus 800. Cutting apparatus 800 cuts nonwoven fiber mat 410 into a surgical buttress having a profile corresponding to a linear or circular stapling instrument.


An illustrative plasma apparatus is shown in FIG. 6. Plasma apparatus 700 includes a chamber 721 including a rack 722, such as a stainless steel rack, and a pair of parallel electrode plates 724 and 726 between which a plasma is formed. A radio frequency generator 723 is provided as a source of potential, with an output terminal of the generator 723 being connected to electrode plate 724 and electrode plate 726 being grounded, thereby providing means for generating an electrical field between the electrode plates 724 and 726, in which field the plasma can be created and sustained. To provide the desired gas from which the plasma is formed, the apparatus 700 includes a plasma gas source 730 (typically a standard gas cylinder) connected through a gas inlet system 732 to the chamber 721. The plasma gas source 730 includes a valve 736 for controlling the flow of gas through a supply line 734. A purge gas source 742, such as helium, is also connected through a line 744 and valve 738 to gas inlet system 732. A vacuum pump 740 is connected to the chamber 721 for reducing the gas pressure therein.


Preferably, the nonwoven fiber mat 410 may travel through the plasma field between reels in a continuous reel to reel system requiring no support rack. Alternatively, the nonwoven fiber mat 410 is mounted within the chamber 721 on the rack 722, positioned between electrode plates 724 and 726. Alternatively, the rack 722 may be movable so that nonwoven fiber mat 410 may be pulled through the chamber 721. The gas inlet system 732 is operated to permit reacting gas monomer from plasma gas source 730 to flow into the chamber 721 through the supply line 734 before generating a plasma.


The plasma is created by applying the output of the radio frequency generator 723 to the electrode plate 724. The power supplied by the generator 723 is at the minimum required to sustain the plasma, as higher powered plasma will only degrade the surface of nonwoven fiber mat 410. The reaction between the plasma and nonwoven fiber mat 410 is allowed to proceed for a period of time determined by the desired thickness and surface energy on nonwoven fiber mat 410 and the concentration of gas monomers in the reacting vapor. The pressure within the chamber 721 is measured by a capacitance manometer 746 to maintain appropriate pressure throughout the reaction period.


Following the reaction period, the flow of gas from the plasma gas source 730 is terminated, the power from the generator 723 sustaining the plasma is turned off, and valve 738 is opened to permit gas to flow into the chamber 721 from purge gas source 742 to purge nonwoven fiber mat 410 surface of highly reactive radicals which could cause premature contamination of nonwoven fiber mat's 410 surface. Valve 838 is then closed, the chamber 721 is opened so that chamber 721 is returned to atmospheric pressure, and the plasma treated nonwoven fiber mat 410 is removed.


The plasma treated nonwoven fiber mat 410 may then be sterilized by any means within the purview of those skilled in the art including, but not limited to, ethylene oxide, electron beam, gamma irradiation, autoclaving, plasma sterilization, and the like.


It should be understood that the conditions under which treatment occurs may be dependent upon a number of factors, such as the type, size, thickness, and porosity of material being treated, the type and concentration of gas species being utilized and the flow rate thereof, the plasma technology system being utilized, and plasma treatment conditions such as voltage, pressure, temperature, duration, and the like.


For example, the plasma may include from about 1% to about 100% by weight of oxygen, nitrogen, or argon, in embodiments, from about 15% to about 90% by weight of oxygen, nitrogen, or argon, and in some embodiments, from about 25% to about 75% by weight oxygen, nitrogen, or argon. The gas may have a mass flow rate of from about 10 sccm to about 200 sccm, in embodiments, from about 25 sccm to about 150 sccm, and in some embodiments, about 50 sccm to about 100 sccm. The plasma generating electrodes may operate at a power of about 25 watts to about 1000 watts, in embodiments, from about 50 watts to about 750 watts, and in some embodiments, about 100 watts to about 500 watts. The treatment pressure may be about 25 mtorr to about 500 mtorr, in embodiments, from about 50 mtorr to about 400 mtorr, and in some embodiments, from about 100 mtorr to about 250 mtorr. The treatment may occur at a temperature of less than 100° C., and, in embodiments, at ambient temperature. The length of exposure may range from about 10 seconds to about 120 minutes, in embodiments, from about 30 seconds to about 60 minutes, and in some embodiments, from about 2 minutes to about 30 minutes. It will be appreciated by those skilled in the art that the treatment conditions may be outside the ranges set forth as discussed above.


In embodiments, the nonwoven fiber mat 410 treated in accordance with the present disclosure may also be subjected to a plasma polymerization process to form a polymer coating on at least a portion of the surface of nonwoven fiber mat 410. Such methods are disclosed, for example, in U.S. Pat. No. 7,294,357 and U.S. Patent Application Publication No. 2013/0123816 the entire contents of which are incorporated herein by reference.


The monomers used to form the polymer coating may be polymerized directly on nonwoven fiber mat's 410 surface using plasma-state polymerization techniques generally known to those skilled in the art. In brief, the monomers are polymerized onto the surface of nonwoven fiber mat 410 by activating the monomer in a plasma state. The plasma state generates highly reactive species, which form a highly cross-linked and highly-branched ultra-thin polymer coating, which is deposited on the surface of nonwoven fiber mat 410 during plasma polymerization.


In embodiments, a suitable organic monomer or a mixture of monomers having polymerizable unsaturated groups is introduced into the chamber where it is fragmented and/or activated forming further excited species in addition to the activated plasma gases. The excited species and fragments of the monomer recombine upon contact with the surface of nonwoven fiber mat 410 to form a largely undefined structure which contains a complex variety of different groups and chemical bonds and forms a highly cross-linked polymer coating. If oxygen, nitrogen, argon, or molecules possessing these elements are present, either within the plasma reactor during the polymer coating process or on exposure of the polymer coated nonwoven fiber mat 410 to oxygen or air subsequent to the plasma process, the polymeric deposit will include a variety of polar groups.


In embodiments, plasma polymerization may utilize solvents such as diglyme and tetraglyme, to produced PEG-like surfaces. In other embodiments, plasma polymerization may utilize fluorochemicals such as aliphatic fluorine-containing gases, to produced fluorinated polymer surfaces.


The amount and relative position of polymer deposition on the nonwoven fiber mat 410 is influenced by at least three geometric factors: (1) location of the electrode plates and distribution of charge; (2) monomer flow; and (3) nonwoven fiber mat 410 position within the chamber. In practice, an electric discharge from the RF generator may be applied to the electrode plates within the chamber and the selected monomers may be introduced into the chamber and energized into a plasma, saturating the space between the electrode plates with an abundance of energetic free radicals and lesser amounts of ions and free electrons produced by the monomers. As nonwoven fiber mat 410 is passed through, or positioned between, the electrode plates, the surface of nonwoven fiber mat 410 is bombarded with free radicals, resulting in the formation of the polymer coating.


In embodiments, siloxane monomers with hydrophilic end groups may be used in the plasma polymerization process to produce polymer coatings on the surface of nonwoven fiber mat 410. In some embodiments, aliphatic hydrocyclosiloxane monomers, alone or mixed with co-monomers, may be utilized to provide polymer coatings having a homogenous or mixed property coating. For example, by introducing reactive functionalizing monomers, organo-based monomers, or fluorocarbon monomers together with the aliphatic hydrocyclosiloxane monomers in the plasma polymerization system, physical pore size and chemical affinity of the plasma copolymerized aliphatic hydrocyclosiloxane coating with selective monomers can be controlled. This allows the use of the copolymerized plasma polymer coating for applications which require the coating to differentiate between certain types of gases, ions, and molecules and it also may be utilized to introduce functional groups to the polymer coating which, in turn, can help link hydrophilic molecules to the polymer coating.


Referring now to FIG. 7, the use and operation of spinneret 100 in a system for making a nonwoven fiber mat is detailed. Although detailed with respect to spinneret 100 and system 10 of FIG. 1 for exemplary purposes, the system detailed herein is equally applicable for use with other spinnerets for making a nonwoven fiber mat.


Initially, as indicated in step 810, the extruder 200 is supplied with an appropriate amount of a material 210. Next, extruder 200 is activated. Once activated, as indicated in step 820, extruder 200 heats material 210 until it changes into melted material 220. Extruder 200 then proceeds to force melted material 220 through the array of holes 110 (See FIG. 3) in spinneret 100 thereby creating fibers 400, as indicated in step 830. Shown in steps 840 and 843, blower and/or compressed air 500 is activated and blows hot air onto fibers 400 as they exit spinneret 100. The air blown fibers 400 then collect onto conveyor surface 600 and cool to form a non-woven fiber mat 410, as indicated in step 850. As previously discussed, conveyor surface 600 includes a suction 610 to pull fibers 400 together as they cool.


The method may also include plasma treating non-woven fiber mat 410. Indicated in step 860, non-woven fiber mat 410 is delivered to a plasma treatment apparatus 700. Delivery may be by conveyor surface 600 or manually. In step 870, plasma treatment apparatus 700 is activated thereby surface treating non-woven fiber mat 410. A detailed discussion of the operation of plasma treatment apparatus 700 is discussed with reference to FIG. 6. Following plasma treatment, as indicated in step 880, non-woven fiber mat 410 is delivered to cutting apparatus 800. In step 890, cutting apparatus 800 is then activated to cut non-woven fiber mat 410 into a surgical buttress having a profile corresponding to a linear or circular surgical stapling instrument. However, as mentioned above, those skilled in the art will appreciate the presently disclosed nonwoven fiber mat may be cut to form any surgical implant, such as meshes, scaffolds, grafts, and the like.


While several embodiments of the disclosure have been shown in the drawings, it is not intended that the disclosure be limited thereto, as it is intended that the disclosure be as broad in scope as the art will allow and that the specification be read likewise. For example, a bimodal spinneret has been disclosed, but multiple different diameter holes can be used in other embodiments. In any of the embodiments disclosed herein, the holes can be arranged in a pattern or randomly. The spacing may be equidistant or otherwise. In certain embodiments, techniques for injecting cold air to the molten polymer can be used and/or techniques for removing process heat from the system during fiber mat deposition can be used. In any of the embodiments disclosed herein the material may be annealed. In any of the embodiments, the material may be formed or cut into sheets, threads, or three dimensional shapes can be made. In certain embodiments, a dye may be used to achieve a characteristic color or to make the material radio-opaque. In any of the embodiments, a step of applying pressure or compressing the material may be used to condense the material, improve thickness control or for some other reason. Therefore, the above description should not be construed as limited, but merely as exemplifications of particular embodiments. Those skilled in the art will envision other modifications within the scope and spirit of the claims appended hereto.

Claims
  • 1. A method of making a nonwoven fiber mat, comprising: providing a material, an extruder and a bimodal spinneret, wherein the spinneret defines first holes each having a first diameter and second holes each having a second diameter different than the first diameter, the first and second holes disposed along a longitudinal axis of the spinneret, at a nadir of a cavity of the spinneret, in a pattern of alternating first and second diameters wherein each of the first holes is disposed axially adjacent to one of the second holes;coupling the spinneret to the extruder;feeding the material into the extruder;melting the material in the extruder;passing the melted material into the spinneret;extruding an equal number of first and second fibers through the respective first and second holes of the spinneret in the pattern of alternating first and second diameters; andcollecting the first and second fibers onto a conveyer surface to form a nonwoven fiber mat.
  • 2. The method of claim 1, wherein the material is a polymer selected from the group consisting of lactide homopolymer, glycolide homopolymer, polydioxanone homopolymer, glycolide trimethylene carbonate copolymer, glycolide lactide copolymer, glycolide dioxanone trimethylene carbonate copolymer, and glycolide caprolactone trimethylene carbonate lactide copolymer.
  • 3. The method of claim 1, wherein the material is a bioabsorbable polymeric material.
  • 4. The method of claim 1, wherein the melting temperature of the material is between about 180 and about 270 degrees Celsius.
  • 5. The method of claim 1, wherein the melting temperature of the material is between about 80 degrees Celsius and about 190 degrees Celsius.
  • 6. The method of claim 1, further including blowing hot air on the first and second fibers as they exit the spinneret and before they are collected on the conveyer surface.
  • 7. The method of claim 6, wherein the hot air has a temperature greater than or equal to the melting temperature of the first and second fibers.
  • 8. The method of claim 6, wherein the hot air has a temperature of between about 225 and about 290 degrees Celsius.
  • 9. The method of claim 6, further including plasma treating at least a portion of a surface of the nonwoven fiber mat with an ionizable gas species or combination of ionizable gas species configured to chemically modify or functionalize the surface of the nonwoven fiber mat.
  • 10. The method of claim 9, further including applying heat and pressure to the nonwoven fiber mat before plasma treating the nonwoven fiber mat.
  • 11. The method of claim 9, further including cutting the nonwoven fiber mat.
  • 12. The method of claim 11, wherein cutting the nonwoven mat includes cutting the nonwoven fiber mat into a shape corresponding to the shape of a tissue contacting surface of a surgical stapler.
  • 13. The method of claim 6, further including allowing the first and second fibers to cool on the conveyer surface after blowing hot air on the first and second fibers to form the nonwoven fiber mat.
  • 14. A method of making a nonwoven fabric surgical implant, the method comprising: passing melted bioabsorbable material into a spinneret defining first holes each having a first diameter and second holes each having a second diameter different from the first diameter, the first and second holes disposed along a longitudinal axis of the spinneret, at a nadir of a cavity of the spinneret, in a pattern of alternating first and second diameters wherein each of the first holes is disposed axially adjacent to one of the second holes;extruding an equal number of first and second fibers through the respective first and second holes of the spinneret in the pattern of alternating first and second diameters;depositing the first and second fibers on a conveyor surface; andcooling the first and second fibers on the conveyor surface to form a nonwoven fabric surgical implant.
  • 15. The method of claim 14, further including applying heat and pressure to the first and second fibers before cooling the first and second fibers.
  • 16. The method of claim 15, wherein applying heat includes blowing hot air onto the first and second fibers exiting the spinneret to force the first and second fibers onto the conveyor surface.
  • 17. The method of claim 16, wherein applying pressure includes applying suction through the conveyor surface to compact the first and second fibers against each other.
  • 18. The method of claim 15, further comprising: transporting the nonwoven fabric surgical implant on the conveyor surface to a plasma apparatus; andplasma treating at least a portion of a surface of the nonwoven fabric surgical implant with an ionizable gas species or combination of ionizable gas species configured to chemically modify or functionalize the surface of the nonwoven fabric surgical implant.
  • 19. The method of claim 18, further comprising: transporting the nonwoven fabric surgical implant on the conveyor surface from the plasma apparatus to a cutting apparatus; andcutting the nonwoven fabric surgical implant.
  • 20. The method of claim 8, wherein extruding an equal number of first and second fibers includes melt extruding the first and second fibers at a temperature between about 140 and about 185 degrees Celsius.
US Referenced Citations (455)
Number Name Date Kind
3054406 Usher Sep 1962 A
3079606 Bobrov et al. Mar 1963 A
3124136 Usher Mar 1964 A
3364200 Ashton et al. Jan 1968 A
3490675 Green et al. Jan 1970 A
3499591 Green Mar 1970 A
3939068 Wendt et al. Feb 1976 A
3948666 Kitanishi et al. Apr 1976 A
4064062 Yurko Dec 1977 A
4166800 Fong Sep 1979 A
4282236 Broom Aug 1981 A
4347847 Usher Sep 1982 A
4354628 Green Oct 1982 A
4416698 McCorsley, III Nov 1983 A
4429695 Green Feb 1984 A
4452245 Usher Jun 1984 A
4605730 Shalaby et al. Aug 1986 A
4626253 Broadnax, Jr. Dec 1986 A
4655221 Devereux Apr 1987 A
4834090 Moore May 1989 A
4838884 Duncan et al. Jun 1989 A
4927640 Dahlinder et al. May 1990 A
4930674 Barak Jun 1990 A
5002551 Linsky et al. Mar 1991 A
5014899 Presty et al. May 1991 A
5040715 Green et al. Aug 1991 A
5057334 Vail Oct 1991 A
5065929 Schulze et al. Nov 1991 A
5162430 Rhee et al. Nov 1992 A
5205459 Brinkerhoff et al. Apr 1993 A
5263629 Trumbull et al. Nov 1993 A
5266255 Gibbon Nov 1993 A
5307976 Olson et al. May 1994 A
5312023 Green et al. May 1994 A
5314471 Brauker et al. May 1994 A
5318221 Green et al. Jun 1994 A
5324775 Rhee et al. Jun 1994 A
5326013 Green et al. Jul 1994 A
5332142 Robinson et al. Jul 1994 A
5344454 Clarke et al. Sep 1994 A
5392979 Green et al. Feb 1995 A
5397324 Carroll et al. Mar 1995 A
5410016 Hubbell et al. Apr 1995 A
5425745 Green et al. Jun 1995 A
5441193 Gravener Aug 1995 A
5441507 Wilk Aug 1995 A
5443198 Viola et al. Aug 1995 A
5468253 Bezwada et al. Nov 1995 A
5484913 Stilwell et al. Jan 1996 A
5503638 Cooper et al. Apr 1996 A
5514379 Weissleder et al. May 1996 A
5542594 McKean et al. Aug 1996 A
5543441 Rhee et al. Aug 1996 A
5549628 Cooper et al. Aug 1996 A
5550187 Rhee et al. Aug 1996 A
5575803 Cooper et al. Nov 1996 A
5653756 Clarke et al. Aug 1997 A
5683809 Freeman et al. Nov 1997 A
5690675 Sawyer et al. Nov 1997 A
5702409 Rayburn et al. Dec 1997 A
5752965 Francis et al. May 1998 A
5752974 Rhee et al. May 1998 A
5762256 Mastri et al. Jun 1998 A
5766188 Igaki Jun 1998 A
5769892 Kingwell Jun 1998 A
5782396 Mastri et al. Jul 1998 A
5799857 Robertson et al. Sep 1998 A
5810855 Rayburn et al. Sep 1998 A
5814057 Oi et al. Sep 1998 A
5819350 Wang Oct 1998 A
5833695 Yoon Nov 1998 A
5843096 Igaki et al. Dec 1998 A
5874500 Rhee et al. Feb 1999 A
5895412 Tucker Apr 1999 A
5895415 Chow et al. Apr 1999 A
5902312 Frater et al. May 1999 A
5908427 McKean et al. Jun 1999 A
5915616 Viola et al. Jun 1999 A
5931847 Bittner et al. Aug 1999 A
5964774 McKean et al. Oct 1999 A
5997895 Narotam et al. Dec 1999 A
6019791 Wood Feb 2000 A
6030392 Dakov Feb 2000 A
6032849 Mastri et al. Mar 2000 A
6045560 McKean et al. Apr 2000 A
6063097 Oi et al. May 2000 A
6080169 Turtel Jun 2000 A
6093557 Pui et al. Jul 2000 A
6099551 Gabbay Aug 2000 A
6149667 Hovland et al. Nov 2000 A
6152943 Sawhney Nov 2000 A
6155265 Hammerslag Dec 2000 A
6156677 Brown Reed et al. Dec 2000 A
6165201 Sawhney et al. Dec 2000 A
6179862 Sawhney Jan 2001 B1
6210439 Firmin et al. Apr 2001 B1
6214020 Mulhauser et al. Apr 2001 B1
6241139 Milliman et al. Jun 2001 B1
6258107 Balazs et al. Jul 2001 B1
6267772 Mulhauser et al. Jul 2001 B1
6273897 Dalessandro et al. Aug 2001 B1
6280453 Kugel et al. Aug 2001 B1
6299631 Shalaby Oct 2001 B1
6309569 Farrar et al. Oct 2001 B1
6312457 DiMatteo et al. Nov 2001 B1
6312474 Francis et al. Nov 2001 B1
6319865 Mikami Nov 2001 B1
6325810 Hamilton et al. Dec 2001 B1
6399362 Pui et al. Jun 2002 B1
6436030 Rehil Aug 2002 B2
6454780 Wallace Sep 2002 B1
6461368 Fogarty et al. Oct 2002 B2
6500777 Wiseman et al. Dec 2002 B1
6503257 Grant et al. Jan 2003 B2
6514283 DiMatteo et al. Feb 2003 B2
6514534 Sawhney Feb 2003 B1
6517566 Hovland et al. Feb 2003 B1
6551356 Rousseau Apr 2003 B2
6566406 Pathak et al. May 2003 B1
6590095 Schleicher et al. Jul 2003 B1
6592597 Grant et al. Jul 2003 B2
6605294 Sawhney Aug 2003 B2
6627749 Kumar Sep 2003 B1
6638285 Gabbay Oct 2003 B2
6652594 Francis et al. Nov 2003 B2
6656193 Grant et al. Dec 2003 B2
6656200 Li et al. Dec 2003 B2
6669735 Pelissier Dec 2003 B1
6673093 Sawhney Jan 2004 B1
6677258 Carroll et al. Jan 2004 B2
6685714 Rousseau Feb 2004 B2
6702828 Whayne Mar 2004 B2
6703047 Sawhney et al. Mar 2004 B2
6704210 Myers Mar 2004 B1
6723114 Shalaby Apr 2004 B2
6726706 Dominguez Apr 2004 B2
6736823 Darois et al. May 2004 B2
6736854 Vadurro et al. May 2004 B2
6746458 Cloud Jun 2004 B1
6746869 Pui et al. Jun 2004 B2
6764720 Pui et al. Jul 2004 B2
6773458 Brauker et al. Aug 2004 B1
6818018 Sawhney Nov 2004 B1
6896684 Monassevitch et al. May 2005 B2
6927315 Heinecke et al. Aug 2005 B1
6939358 Palacios et al. Sep 2005 B2
6946196 Foss Sep 2005 B2
6959851 Heinrich Nov 2005 B2
7009034 Pathak et al. Mar 2006 B2
7060087 DiMatteo et al. Jun 2006 B2
7087065 Ulmsten et al. Aug 2006 B2
7108701 Evens et al. Sep 2006 B2
7128253 Mastri et al. Oct 2006 B2
7128748 Mooradian et al. Oct 2006 B2
7141055 Abrams et al. Nov 2006 B2
7147138 Shelton, IV Dec 2006 B2
7160299 Baily Jan 2007 B2
7232449 Sharkawy et al. Jun 2007 B2
7241300 Sharkawy et al. Jul 2007 B2
7247338 Pui et al. Jul 2007 B2
7279322 Pui et al. Oct 2007 B2
7294357 Roby Nov 2007 B2
7307031 Carroll et al. Dec 2007 B2
7311720 Mueller et al. Dec 2007 B2
7347850 Sawhney Mar 2008 B2
7377928 Zubik et al. May 2008 B2
7434717 Shelton, IV et al. Oct 2008 B2
7438209 Hess et al. Oct 2008 B1
7498063 Pui et al. Mar 2009 B2
7547312 Bauman et al. Jun 2009 B2
7559937 de la Torre et al. Jul 2009 B2
7594921 Browning Sep 2009 B2
7595392 Kumar et al. Sep 2009 B2
7604151 Hess et al. Oct 2009 B2
7611494 Campbell et al. Nov 2009 B2
7649089 Kumar et al. Jan 2010 B2
7662801 Kumar et al. Feb 2010 B2
7665646 Prommersberger Feb 2010 B2
7666198 Suyker et al. Feb 2010 B2
7669747 Weisenburgh, II et al. Mar 2010 B2
7717313 Criscuolo et al. May 2010 B2
7722642 Williamson, IV et al. May 2010 B2
7744627 Orban, III et al. Jun 2010 B2
7776060 Mooradian et al. Aug 2010 B2
7793813 Bettuchi Sep 2010 B2
7799026 Schechter et al. Sep 2010 B2
7823592 Bettuchi et al. Nov 2010 B2
7824420 Eldridge et al. Nov 2010 B2
7845533 Marczyk et al. Dec 2010 B2
7845536 Viola et al. Dec 2010 B2
7846149 Jankowski Dec 2010 B2
7892247 Conston et al. Feb 2011 B2
7909224 Prommersberger Mar 2011 B2
7909837 Crews et al. Mar 2011 B2
7938307 Bettuchi May 2011 B2
7942890 D'Agostino et al. May 2011 B2
7950561 Aranyi May 2011 B2
7951166 Orban, III et al. May 2011 B2
7951248 Fallis et al. May 2011 B1
7967179 Olson et al. Jun 2011 B2
7988027 Olson et al. Aug 2011 B2
7989371 Angadjivand et al. Aug 2011 B2
8011550 Aranyi et al. Sep 2011 B2
8011555 Tarinelli et al. Sep 2011 B2
8016177 Bettuchi et al. Sep 2011 B2
8016178 Olson et al. Sep 2011 B2
8028883 Stopek Oct 2011 B2
8033483 Fortier et al. Oct 2011 B2
8038045 Bettuchi et al. Oct 2011 B2
8062330 Prommersberger et al. Nov 2011 B2
8083119 Prommersberger Dec 2011 B2
8123766 Bauman et al. Feb 2012 B2
8123767 Bauman et al. Feb 2012 B2
8146791 Bettuchi et al. Apr 2012 B2
8152777 Campbell et al. Apr 2012 B2
8157149 Olson et al. Apr 2012 B2
8157151 Ingmanson et al. Apr 2012 B2
8167895 D'Agostino et al. May 2012 B2
8192460 Orban, III et al. Jun 2012 B2
8210414 Bettuchi et al. Jul 2012 B2
8225799 Bettuchi Jul 2012 B2
8225981 Criscuolo et al. Jul 2012 B2
8231043 Tarinelli et al. Jul 2012 B2
8235273 Olson et al. Aug 2012 B2
8245901 Stopek Aug 2012 B2
8256654 Bettuchi et al. Sep 2012 B2
8257391 Orban, III et al. Sep 2012 B2
8276800 Bettuchi Oct 2012 B2
8286849 Bettuchi Oct 2012 B2
8308042 Aranyi Nov 2012 B2
8308045 Bettuchi et al. Nov 2012 B2
8308046 Prommersberger Nov 2012 B2
8312885 Bettuchi et al. Nov 2012 B2
8313014 Bettuchi Nov 2012 B2
8348126 Olson et al. Jan 2013 B2
8348130 Shah et al. Jan 2013 B2
8365972 Aranyi et al. Feb 2013 B2
8371491 Huitema et al. Feb 2013 B2
8371492 Aranyi et al. Feb 2013 B2
8371493 Aranyi et al. Feb 2013 B2
8393514 Shelton, IV et al. Mar 2013 B2
8408440 Olson et al. Apr 2013 B2
8413871 Racenet et al. Apr 2013 B2
8424742 Bettuchi Apr 2013 B2
8453652 Stopek Jun 2013 B2
8453904 Eskaros et al. Jun 2013 B2
8453909 Olson et al. Jun 2013 B2
8453910 Bettuchi et al. Jun 2013 B2
8464925 Hull et al. Jun 2013 B2
8474677 Woodard, Jr. et al. Jul 2013 B2
8479968 Hodgkinson et al. Jul 2013 B2
8485414 Criscuolo et al. Jul 2013 B2
8496683 Prommersberger et al. Jul 2013 B2
8511533 Viola et al. Aug 2013 B2
8512402 Marczyk et al. Aug 2013 B2
8529600 Woodard, Jr. et al. Sep 2013 B2
8540131 Swayze Sep 2013 B2
8551138 Orban, III et al. Oct 2013 B2
8556918 Bauman et al. Oct 2013 B2
8561873 Ingmanson et al. Oct 2013 B2
8584920 Hodgkinson Nov 2013 B2
8590762 Hess et al. Nov 2013 B2
8616430 (Prommersberger) Stopek et al. Dec 2013 B2
8631989 Aranyi et al. Jan 2014 B2
8668129 Olson Mar 2014 B2
8684250 Bettuchi et al. Apr 2014 B2
8757466 Olson et al. Jun 2014 B2
8789737 Hodgkinson et al. Jul 2014 B2
8820606 Hodgkinson Sep 2014 B2
9266046 Kuroda et al. Feb 2016 B2
20010000189 Hayes Apr 2001 A1
20020028243 Masters Mar 2002 A1
20020086990 Kumar et al. Jul 2002 A1
20020091397 Chen Jul 2002 A1
20030065345 Weadock Apr 2003 A1
20030078209 Schmidt Apr 2003 A1
20030083676 Wallace May 2003 A1
20030120284 Palacios et al. Jun 2003 A1
20030181927 Wallace Sep 2003 A1
20030183671 Mooradian et al. Oct 2003 A1
20030208231 Williamson et al. Nov 2003 A1
20040107006 Francis et al. Jun 2004 A1
20040254590 Hoffman et al. Dec 2004 A1
20040260315 Dell et al. Dec 2004 A1
20050002981 Lahtinen et al. Jan 2005 A1
20050021085 Abrams et al. Jan 2005 A1
20050059996 Bauman et al. Mar 2005 A1
20050059997 Bauman et al. Mar 2005 A1
20050070929 Dalessandro et al. Mar 2005 A1
20050118435 DeLucia et al. Jun 2005 A1
20050131225 Kumar et al. Jun 2005 A1
20050149073 Arani et al. Jul 2005 A1
20050154093 Kwon et al. Jul 2005 A1
20060004407 Hiles et al. Jan 2006 A1
20060008505 Brandon Jan 2006 A1
20060093672 Kumar et al. May 2006 A1
20060121266 Fandel et al. Jun 2006 A1
20060135992 Bettuchi et al. Jun 2006 A1
20060173470 Oray et al. Aug 2006 A1
20060178683 Shimoji et al. Aug 2006 A1
20060271104 Viola et al. Nov 2006 A1
20070026031 Bauman et al. Feb 2007 A1
20070034669 de la Torre et al. Feb 2007 A1
20070049953 Shimoji et al. Mar 2007 A2
20070054880 Saferstein et al. Mar 2007 A1
20070057414 Hartge Mar 2007 A1
20070123839 Rousseau et al. May 2007 A1
20070179528 Soltz et al. Aug 2007 A1
20070203509 Bettuchi Aug 2007 A1
20070203510 Bettuchi Aug 2007 A1
20070213522 Harris et al. Sep 2007 A1
20070237741 Figuly et al. Oct 2007 A1
20070237742 Figuly et al. Oct 2007 A1
20070246505 Pace-Floridia et al. Oct 2007 A1
20080026659 Brandner et al. Jan 2008 A1
20080029570 Shelton et al. Feb 2008 A1
20080082126 Murray et al. Apr 2008 A1
20080110959 Orban et al. May 2008 A1
20080125812 Zubik et al. May 2008 A1
20080140115 Stopek Jun 2008 A1
20080161831 Bauman et al. Jul 2008 A1
20080161832 Bauman et al. Jul 2008 A1
20080164440 Maase et al. Jul 2008 A1
20080169327 Shelton et al. Jul 2008 A1
20080169328 Shelton Jul 2008 A1
20080169329 Shelton et al. Jul 2008 A1
20080169330 Shelton et al. Jul 2008 A1
20080169331 Shelton et al. Jul 2008 A1
20080169332 Shelton et al. Jul 2008 A1
20080169333 Shelton et al. Jul 2008 A1
20080194805 Vignon et al. Aug 2008 A1
20080200949 Hiles et al. Aug 2008 A1
20080214695 Pathak et al. Sep 2008 A1
20080290134 Bettuchi et al. Nov 2008 A1
20080308608 Prommersberger Dec 2008 A1
20080314960 Marczyk et al. Dec 2008 A1
20090001121 Hess et al. Jan 2009 A1
20090001122 Prommersberger et al. Jan 2009 A1
20090001123 Morgan et al. Jan 2009 A1
20090001124 Hess et al. Jan 2009 A1
20090001125 Hess et al. Jan 2009 A1
20090001126 Hess et al. Jan 2009 A1
20090001128 Weisenburgh, II et al. Jan 2009 A1
20090001130 Hess et al. Jan 2009 A1
20090005808 Hess et al. Jan 2009 A1
20090030452 Bauman et al. Jan 2009 A1
20090043334 Bauman et al. Feb 2009 A1
20090076510 Bell et al. Mar 2009 A1
20090076528 Sgro Mar 2009 A1
20090078739 Viola Mar 2009 A1
20090095791 Eskaros et al. Apr 2009 A1
20090095792 Bettuchi Apr 2009 A1
20090120994 Murray et al. May 2009 A1
20090134200 Tarinelli et al. May 2009 A1
20090206125 Huitema et al. Aug 2009 A1
20090206126 Huitema et al. Aug 2009 A1
20090206139 Hall et al. Aug 2009 A1
20090206141 Huitema et al. Aug 2009 A1
20090206142 Huitema et al. Aug 2009 A1
20090206143 Huitema et al. Aug 2009 A1
20090218384 Aranyi Sep 2009 A1
20090220560 Wan et al. Sep 2009 A1
20090263441 McKay Oct 2009 A1
20090277947 Viola Nov 2009 A1
20090287230 D'Agostino et al. Nov 2009 A1
20100012704 Tarinelli Racenet et al. Jan 2010 A1
20100065606 Stopek Mar 2010 A1
20100065607 Orban, III et al. Mar 2010 A1
20100065660 Hull et al. Mar 2010 A1
20100072254 Aranyi et al. Mar 2010 A1
20100096481 Hull et al. Apr 2010 A1
20100147921 Olson Jun 2010 A1
20100147922 Olson Jun 2010 A1
20100147923 D'Agostino et al. Jun 2010 A1
20100203151 Hiraoka Aug 2010 A1
20100243707 Olson et al. Sep 2010 A1
20100243708 Aranyi et al. Sep 2010 A1
20100243711 Olson et al. Sep 2010 A1
20100249805 Olson et al. Sep 2010 A1
20100264195 Bettuchi Oct 2010 A1
20100282815 Bettuchi et al. Nov 2010 A1
20110024476 Bettuchi et al. Feb 2011 A1
20110024481 Bettuchi et al. Feb 2011 A1
20110036894 Bettuchi Feb 2011 A1
20110042442 Viola et al. Feb 2011 A1
20110046650 Bettuchi Feb 2011 A1
20110057016 Bettuchi Mar 2011 A1
20110082427 Golzarian et al. Apr 2011 A1
20110087279 Shah et al. Apr 2011 A1
20110089375 Chan et al. Apr 2011 A1
20110215132 Aranyi et al. Sep 2011 A1
20110293690 Griffin et al. Dec 2011 A1
20120074199 Olson et al. Mar 2012 A1
20120080336 Shelton, IV et al. Apr 2012 A1
20120156289 Blaskovich et al. Jun 2012 A1
20120187179 Gleiman Jul 2012 A1
20120241499 Baxter, III et al. Sep 2012 A1
20120273547 Hodgkinson et al. Nov 2012 A1
20120315225 Porbeni et al. Dec 2012 A1
20130037596 Bear et al. Feb 2013 A1
20130105548 Hodgkinson et al. May 2013 A1
20130105553 (Tarinelli) Racenet et al. May 2013 A1
20130112732 Aranyi et al. May 2013 A1
20130112733 Aranyi et al. May 2013 A1
20130123816 Hodgkinson et al. May 2013 A1
20130146641 Shelton, IV et al. Jun 2013 A1
20130153633 Casasanta, Jr. et al. Jun 2013 A1
20130153634 Carter et al. Jun 2013 A1
20130153635 Hodgkinson Jun 2013 A1
20130153636 Shelton, IV et al. Jun 2013 A1
20130153638 Carter et al. Jun 2013 A1
20130153639 Hodgkinson et al. Jun 2013 A1
20130153640 Hodgkinson Jun 2013 A1
20130153641 Shelton, IV et al. Jun 2013 A1
20130161374 Swayze et al. Jun 2013 A1
20130181031 Olson et al. Jul 2013 A1
20130193186 (Tarinelli) Racenet et al. Aug 2013 A1
20130193190 Carter et al. Aug 2013 A1
20130193191 Stevenson et al. Aug 2013 A1
20130193192 Casasanta, Jr. et al. Aug 2013 A1
20130209659 Racenet et al. Aug 2013 A1
20130221062 Hodgkinson Aug 2013 A1
20130240600 Bettuchi Sep 2013 A1
20130240601 Bettuchi et al. Sep 2013 A1
20130240602 Stopek Sep 2013 A1
20130277411 Hodgkinson et al. Oct 2013 A1
20130306707 Viola et al. Nov 2013 A1
20130310873 Stopek (nee Prommersberger) et al. Nov 2013 A1
20130327807 Olson et al. Dec 2013 A1
20140012317 Orban et al. Jan 2014 A1
20140021242 Hodgkinson et al. Jan 2014 A1
20140027490 Marczyk et al. Jan 2014 A1
20140034704 Ingmanson et al. Feb 2014 A1
20140048580 Merchant et al. Feb 2014 A1
20140061280 Ingmanson et al. Mar 2014 A1
20140061281 Hodgkinson Mar 2014 A1
20140084042 (Prommersberger) Stopek et al. Mar 2014 A1
20140097224 Prior Apr 2014 A1
20140103556 Diaz de Leon Izquierdo et al. Apr 2014 A1
20140117066 Aranyi et al. May 2014 A1
20140130330 Olson et al. May 2014 A1
20140131418 Kostrzewski May 2014 A1
20140131419 Bettuchi May 2014 A1
20140138423 Whitfield et al. May 2014 A1
20140151431 Hodgkinson et al. Jun 2014 A1
20140155916 Hodgkinson et al. Jun 2014 A1
20140158742 Stopek (nee Prommersberger) et al. Jun 2014 A1
20140166721 Stevenson et al. Jun 2014 A1
20140197224 Penna Jul 2014 A1
20140203061 Hodgkinson Jul 2014 A1
20140217147 Milliman Aug 2014 A1
20140217148 Penna Aug 2014 A1
20140239046 Milliman Aug 2014 A1
20140239047 Hodgkinson et al. Aug 2014 A1
20140305090 Kuroda et al. Oct 2014 A1
Foreign Referenced Citations (67)
Number Date Country
2 667 434 May 2008 CA
19924311 Nov 2000 DE
0 327 022 Aug 1989 EP
0 594 148 Apr 1994 EP
0 667 119 Aug 1995 EP
1 064 883 Jan 2001 EP
1 256 317 Nov 2002 EP
1 256 318 Nov 2002 EP
1 520 525 Apr 2005 EP
1 621 141 Feb 2006 EP
1 702 570 Sep 2006 EP
1 759 640 Mar 2007 EP
1 815 804 Aug 2007 EP
1 825 820 Aug 2007 EP
1 929 958 Jun 2008 EP
1 994 890 Nov 2008 EP
2 005 894 Dec 2008 EP
2 005 895 Dec 2008 EP
2 008 595 Dec 2008 EP
2 090 231 Aug 2009 EP
2 090 244 Aug 2009 EP
2 090 252 Aug 2009 EP
2 198 787 Jun 2010 EP
2 236 098 Oct 2010 EP
2 236 099 Oct 2010 EP
2 311 386 Apr 2011 EP
2 436 348 Apr 2012 EP
2 462 880 Jun 2012 EP
2 517 637 Oct 2012 EP
2 586 380 May 2013 EP
2 604 195 Jun 2013 EP
2 604 197 Jun 2013 EP
2 620 106 Jul 2013 EP
2 630 922 Aug 2013 EP
2 644 125 Oct 2013 EP
2 792 777 Oct 2014 EP
02289107 Nov 1990 JP
05186240 Jul 1993 JP
08209432 Aug 1996 JP
11131353 May 1999 JP
2000-166933 Jun 2000 JP
2001040566 Feb 2001 JP
2002-202213 Jul 2002 JP
2007-124166 May 2007 JP
9005489 May 1990 WO
9516221 Jun 1995 WO
9622055 Jul 1996 WO
9701989 Jan 1997 WO
9713463 Apr 1997 WO
9817180 Apr 1998 WO
9923285 May 1999 WO
9945849 Sep 1999 WO
03088845 Oct 2003 WO
03082126 Oct 2003 WO
03094743 Nov 2003 WO
03105698 Dec 2003 WO
2005079675 Sep 2005 WO
2006023578 Mar 2006 WO
2006044490 Apr 2006 WO
2006083748 Aug 2006 WO
2007121579 Nov 2007 WO
2008057281 May 2008 WO
2008109125 Sep 2008 WO
2008085546 Dec 2008 WO
2010075298 Jul 2010 WO
2011143183 Nov 2011 WO
2012044848 Apr 2012 WO
Non-Patent Literature Citations (60)
Entry
Extended European Search Report corresponding to EP 13 19 4995.0, completed Jun. 5, 2014 and dated Jun. 16, 2014; (5 pp).
Extended European Search Report corresponding to EP 14 15 7195.0, completed Jun. 5, 2014 and dated Jun. 18, 2014; (9 pp).
Extended European Search Report corresponding to EP 14 15 6342.9, completed Jul. 22, 2014 and dated Jul. 29, 2014; (8 pp).
Extended European Search Report corresponding to counterpart Int'l Appln. No. EP 15 20 0068.3 dated Jun. 3, 2016.
European Search Report corresponding to EP 05 02 2585.3, completed Jan. 25, 2006 and dated Feb. 3, 2006; (4 pp).
European Search Report corresponding to EP 06 00 4598, completed Jun. 22, 2006; (2 pp).
European Search Report corresponding to EP 06 01 6962.0, completed Jan. 3, 2007 and dated Jan. 11, 2007; (10 pp).
International Search Report corresponding to International Application No. PCT/US2005/036740, completed Feb. 20, 2007 and dated Mar. 23, 2007; (8 pp).
International Search Report corresponding to International Application No. PCT/US2007/022713, completed Apr. 21, 2008 and dated May 15, 2008; (1 p).
International Search Report corresponding to International Application No. PCT/US2008/002981, completed Jun. 9, 2008 and dated Jun. 26, 2008; (2 pp).
European Search Report corresponding to EP 08 25 1779, completed Jul. 14, 2008 and dated Jul. 23, 2008; (5 pp).
European Search Report corresponding to EP 08 25 1989.3, completed Mar. 11, 2010 and dated Mar. 24, 2010; (6 pp).
European Search Report corresponding to EP 10 25 0639.1, completed Jun. 17, 2010 and dated Jun. 28, 2010; (7 pp).
European Search Report corresponding to EP 10 25 0715.9, completed Jun. 30, 2010 and dated Jul. 20, 2010; (3 pp).
European Search Report corresponding to EP 05 80 4382.9, completed Oct. 5, 2010 and dated Oct. 12, 2010; (3 pp).
European Search Report corresponding to EP 10 25 1437.9, completed Nov. 22, 2010 and dated Dec. 16, 2010; (3 pp).
European Search Report corresponding to EP 09 25 2897.5, completed Feb. 7, 2011 and dated Feb. 15, 2011; (3 pp).
European Search Report corresponding to EP 10 25 0642.5, completed Mar. 25, 2011 and dated Apr. 4, 2011; (4 pp).
European Search Report corresponding to EP 11 18 8309.6, completed Dec. 15, 2011 and dated Jan. 12, 2012; (3 pp).
European Search Report corresponding to EP 12 15 2229.6, completed Feb. 23, 2012 and dated Mar. 1, 2012; (4 pp).
European Search Report corresponding to EP 12 15 0511.9, completed Apr. 16, 2012 and dated Apr. 24, 2012; (7 pp).
European Search Report corresponding to EP 12 15 2541.4, completed Apr. 23, 2012 and dated May 3, 2012; (10 pp).
European Search Report corresponding to EP 12 16 5609.4, completed Jul. 5, 2012 and dated Jul. 13, 2012; (8 pp).
European Search Report corresponding to EP 12 15 8861.0, completed Jul. 17, 2012 and dated Jul. 24, 2012; (9 pp).
European Search Report corresponding to EP 12 16 5878.5, completed Jul. 24, 2012 and dated Aug. 6, 2012; (8 pp).
Extended European Search Report corresponding to EP 12 19 1035.0, completed Jan. 11, 2013 and dated Jan. 18, 2013; (7 pp).
Extended European Search Report corresponding to EP 12 18 6175.1, completed Jan. 15, 2013 and dated Jan. 23, 2013; (7 pp).
Extended European Search Report corresponding to EP 12 19 1114.3, completed Jan. 23, 2013 and dated Jan. 31, 2013; (10 pp).
Extended European Search Report corresponding to EP 12 19 2224.9, completed Mar. 14, 2013 and dated Mar. 26, 2013; (8 pp).
Extended European Search Report corresponding to EP 12 19 6904.2, completed Mar. 28, 2013 and dated Jul. 26, 2013; (8 pp).
Extended European Search Report corresponding to EP 12 19 6911.7, completed Apr. 18, 2013 and dated Apr. 24, 2013; (8 pp).
Extended European Search Report corresponding to EP 07 00 5842.5, completed May 13, 2013 and dated May 29, 2013; (7 pp).
Extended European Search Report corresponding to EP 12 19 8776.2, completed May 16, 2013 and dated May 27, 2013; (8 pp).
Extended European Search Report corresponding to EP 12 19 8749.9, completed May 21, 2013 and dated May 31, 2013; (8 pp).
Extended European Search Report corresponding to EP 13 15 6297.7, completed Jun. 4, 2013 and dated Jun. 13, 2013I; (7 pp).
Extended European Search Report corresponding to EP 13 17 3985.6, completed Aug. 19, 2013 and dated Aug. 28, 2013; (6 pp).
Extended European Search Report corresponding to EP 13 17 3986.4, completed Aug. 20, 2013 and dated Aug. 29, 2013; (6 pp).
Extended European Search Report corresponding to EP 13 17 7437.4, completed Sep. 11, 2013 and dated Sep. 19, 2013; 6 pages.
Extended European Search Report corresponding to EP 13 17 7441.6, completed Sep. 11, 2013 and dated Sep. 19, 2013; (6 pp).
Extended European Search Report corresponding to EP 07 86 1534.1, completed Sep. 20, 2013 and dated Sep. 30, 2013; (5 pp).
Extended European Search Report corresponding to EP 13 18 3876.5, completed Oct. 14, 2013 and dated Oct. 24, 2013; (5 pp).
Extended European Search Report corresponding to EP 13 17 1856.1, completed Oct. 29, 2013 and dated Nov. 7, 2013; (8 pp).
Extended European Search Report corresponding to EP 13 18 0373.6, completed Oct. 31, 2013 and dated Nov. 13, 2013; (7 pp).
Extended European Search Report corresponding to EP 13 18 0881.8, completed Nov. 5, 2013 and dated Nov. 14, 2013; (6 pp).
Extended European Search Report corresponding to EP 13 17 6895.4, completed Nov. 29, 2013 and dated Dec. 12, 2013; (5 pp).
Extended European Search Report corresponding to EP 13 18 2911.1, completed Dec. 2, 2013 and dated Dec. 16, 2013; (8 pp).
Extended European Search Report corresponding to EP 10 25 1795.0, completed Dec. 11, 2013 and dated Dec. 20, 2013; (6 pp).
Extended European Search Report corresponding to EP 13 18 7911.6, completed Jan. 22, 2014 and dated Jan. 31, 2014; (8 pp).
Extended European Search Report corresponding to EP 13 19 2111.6, completed Feb. 13, 2014 and dated Feb. 27, 2014; (10 pp).
Extended European Search Report corresponding to EP 13 19 5919.9, completed Feb. 10, 2014 and dated Mar. 3, 2014; (7 pp).
Extended European Search Report corresponding to EP 08 72 6500.5, completed Feb. 20, 2014 and dated Mar. 3, 2014; (7 pp).
Extended European Search Report corresponding to EP 13 19 5019.8, completed Mar. 14, 2014 and dated Mar. 24, 2014; (7 pp).
Extended European Search Report corresponding to EP 13 19 6816.6, completed Mar. 28, 2014 and dated Apr. 9, 2014; (9 pp).
Extended European Search Report corresponding to EP 13 19 7958.5, completed Apr. 4, 2014 and dated Apr. 15, 2014; (8 pp).
European Office Action corresponding to counterpart Int'l Application No. EP 15 20 0068.3 dated Sep. 8, 2017.
Chinese First Office Action corresponding to counterpart Patent Appln. CN 201510896261.0 dated Dec. 26, 2018.
Chinese Third Office Action dated Jul. 2, 2019 corresponding to counterpart Patent Application CN 201510896261.0.
Chinese Second Office Action corresponding to counterpart Patent Appln. CN 201510896261.0 dated Apr. 23, 2019.
Japanese Office Action dated Dec. 2, 2019 corresponding to counterpart Patent Application JP 2015-239080.
Australian Examination Report No. 1 dated Jun. 5, 2020 corresponding to counterpart Patent Application AU 2015252118.
Related Publications (1)
Number Date Country
20160183929 A1 Jun 2016 US