Spinous process fusion plate assembly

Information

  • Patent Grant
  • 8591548
  • Patent Number
    8,591,548
  • Date Filed
    Thursday, March 31, 2011
    13 years ago
  • Date Issued
    Tuesday, November 26, 2013
    10 years ago
Abstract
A spinal implant helps stabilize vertebrae for fusion. The implant includes first and second plates, a brace and a locking mechanism. When installed, the plates extend superiorly-inferiorly along respective lateral sides of the spinous processes. The plates are moved toward one another and relative to the brace by the locking mechanism to clamp the implant to the spinous processes.
Description
BACKGROUND

This invention relates generally to devices for the treatment of spinal conditions, and more particularly, to the treatment of various spinal conditions that cause back pain. Even more particularly, this invention relates to devices that may be placed between adjacent spinous processes to treat various spinal conditions. For example, spinal conditions that may be treated with these devices may include spinal stenosis, degenerative disc disease (DDD), disc herniations and spinal instability, among others.


The clinical syndrome of neurogenic intermittent claudication due to lumbar spinal stenosis is a frequent source of pain in the lower back and extremities, leading to impaired walking, and causing other forms of disability in the elderly. Although the incidence and prevalence of symptomatic lumbar spinal stenosis have not been established, this condition is the most frequent indication of spinal surgery in patients older than 65 years of age.


Lumbar spinal stenosis is a condition of the spine characterized by a narrowing of the lumbar spinal canal. With spinal stenosis, the spinal canal narrows and pinches the spinal cord and nerves, causing pain in the back and legs. It is estimated that approximately 5 in 10,000 people develop lumbar spinal stenosis each year. For patients who seek the aid of a physician for back pain, approximately 12%-15% are diagnosed as having lumbar spinal stenosis.


Common treatments for lumbar spinal stenosis include physical therapy (including changes in posture), medication, and occasionally surgery. Changes in posture and physical therapy may be effective in flexing the spine to decompress and enlarge the space available to the spinal cord and nerves—thus relieving pressure on pinched nerves. Medications such as NSAIDS and other anti-inflammatory medications are often used to alleviate pain, although they are not typically effective at addressing spinal compression, which is the cause of the pain.


Surgical treatments are more aggressive than medication or physical therapy, and in appropriate cases surgery may be the best way to achieve lessening of the symptoms of lumbar spinal stenosis and other spinal conditions. The principal goal of surgery to treat lumbar spinal stenosis is to decompress the central spinal canal and the neural foramina, creating more space and eliminating pressure on the spinal nerve roots. The most common surgery for treatment of lumbar spinal stenosis is direct decompression via a laminectomy and partial facetectomy. In this procedure, the patient is given a general anesthesia and an incision is made in the patient to access the spine. The lamina of one or more vertebrae may be partially or completely removed to create more space for the nerves. The success rate of decompressive laminectomy has been reported to be in excess of 65%. A significant reduction of the symptoms of lumbar spinal stenosis is also achieved in many of these cases.


The failures associated with a decompressive laminectomy may be related to postoperative iatrogenic spinal instability. To limit the effect of iatrogenic instability, fixation and fusion may also be performed in association with the decompression. In such a case, the intervertebral disc may be removed, and the adjacent vertebrae may be fused. A discectomy may also be performed to treat DDD and disc herniations. In such a case, a spinal fusion would be required to treat the resulting vertebral instability. Spinal fusion is also traditionally accepted as the standard surgical treatment for lumbar instability.


A wide variety of spinal fusion devices are used following partial or total discectomies for stabilization of the spine at that site. Many such devices are secured extradiscally, such as to the pedicles or spinous processes. For example, the spinous process fusion plate available from Medtronic, Spinal and Biologics of Memphis, Tenn. under the brand name CD Horizon Spire is typically secured to the spinous processes. See for example the devices and methods disclosed in U.S. Pat. Nos. 7,048,736 and 7,727,233, the entire contents of which are expressly incorporated herein by reference. These devices typically work for there intended purposes. However, with the demands of spinal surgery, the medical device industry is continually looking for ways to improve currently available devices.


SUMMARY

The spinal implant described herein may include first and second plates, a brace extending between the plates and a locking mechanism that moves the two plates toward each other and locks them in an appropriate relative position. When installed in the patient's anatomy, the brace extends laterally through the interspinous space, and the plates extend superiorly-inferiorly along respective lateral sides of the spinous processes.


The first plate and the second plate may each have a generally linear longitudinal axis or may extend along curved longitudinal axes or may have a longitudinal axis that is off-set along its height. Each plate may also have an inner face configured to abut adjacent spinous processes with projections extending therefrom that engage or “bite into” the spinous processes. The brace may be fixed to the first plate and extend through an opening in the second plate. Alternatively, the first plate may include an opening through which the brace extends and the brace may include an enlarged proximal end that can be located on the proximal side of the first plate to prevent that plate from moving proximally with respect to the brace. The opening in the second plate allows the brace to be placed through the opening and allows the second plate to slide along the brace and thus vary the distance between the first and second plate. The axis of the brace is transverse to the longitudinal axes of the first and second plates. The brace may be a hollow tube defining a lumen extending therethrough. The plate to which the brace is affixed may also define an opening to allow a locking element to extend through the first and second plates and through the brace.


The locking element may include an enlarged distal element connected along its proximal portion to a proximal rod. The diameter of the enlarged distal element is chosen so that its maximum diameter is greater than the diameter of the lumen of the brace. The locking element is located within the lumen of the brace so that the enlarged distal element extends distally beyond the distal end of the brace and the rod extends proximally beyond the proximal end of the brace. When the locking element is pulled proximally, the enlarged distal end deforms the distal portion of the brace so the diameter of the distal portion of the brace increases so as to be greater than the diameter of the opening in the second plate, thus preventing the second plate from being moved distally off of the brace. Continued proximal movement of the locking element moves the two plates together so that the projections of each plate engage and “bite into” the spinous processes and lock the implant to the spinous processes. The proximal portion of the rod of the locking element extending from the proximal end of the brace may then be broken or cut off from enlarged distal end or the remainder of the distal portion of the rod.


A method of implanting the spinal implant may include the following steps. After access to the desired spinal motion segment is obtained, a first plate is located adjacent to the proximal lateral sides of adjacent superior and inferior spinous processes. Where the brace is fixed to the first plate, placement of the first plate should be made so that the brace extends in the interspinous space through the sagittal plane. Where the brace is not fixed to the first plate, the brace is inserted through an opening in the first plate so the brace extends in the interspinous space through the sagittal plane and moved distally until an enlarged proximal tab abuts the proximal face of the first plate. The second plate is located over the brace so that the second plate is placed adjacent to the distal lateral sides of the adjacent superior and inferior spinous processes. The locking mechanism is then placed through the brace such that the proximal rod is first inserted through the distal opening to the lumen of the brace and moved proximally until the enlarged distal element abuts the distal opening of the brace. The surgeon may then pull the proximal rod from the proximal side of the brace to enlarge the distal portion of the brace. Continued proximal movement of the locking mechanism forces the enlarged distal element into the distal portion of the brace, enlarging this portion of the brace and forcing the distal plate to move proximally into engagement with the distal lateral faces of the adjacent superior and inferior spinous processes. Once the surgeon is satisfied with the placement of the implant, the surgeon may then break or cut off the proximal rod of the locking element.





BRIEF DESCRIPTION OF THE DRAWINGS


FIG. 1 is a perspective view of a spinal motion segment with a spinal implant located therein;



FIG. 2 is a perspective view of the opposite side of the spinal implant shown in FIG. 1;



FIG. 3A is a front elevation view of a spinal implant;



FIG. 3B is a front elevation view of the spinal implant shown in FIG. 3A but with the locking mechanism moved proximally with respect to the spinal implant;



FIG. 3C is a front elevation view of the spinal implant shown in FIG. 3B but with the locking mechanism moved further proximally with respect to the spinal implant;



FIG. 3D is a front elevation view of the spinal implant shown in FIG. 3C but with the proximal end of the locking mechanism removed;



FIG. 4 is a cross-sectional view of the spinal implant shown in FIG. 3A;



FIG. 5 is a cross-sectional view of the spinal implant shown in FIG. 3D; and



FIG. 6 is a cross-sectional view of another embodiment of a spinal implant.





DETAILED DESCRIPTION

As used in this specification and the appended claims, the singular forms “a,” “an” and “the” include plural referents unless the context clearly dictates otherwise. Thus, for example, the term “a member” is intended to mean a single member or a combination of members, and “a material” is intended to mean one or more materials, or a combination thereof. Furthermore, the words “proximal” and “distal” refer to directions closer to and away from, respectively, an operator (e.g., surgeon, physician, nurse, technician, etc.) who would insert the medical device into the patient, with the tip-end (i.e., distal end) of the device inserted inside a patient's body first. Thus, for example, the device end first inserted inside the patient's body would be the distal end of the device, while the device end last to enter the patient's body would be the proximal end of the device.


As used in this specification and the appended claims, the terms “up”, “upper”, “top”, “down”, “lower”, “bottom”, “front”, “back”, “rear”, “left”, “right”, “side”, “inner”, “middle” and “center”, and similar terms, refer to portions of or positions in or on the implant when the implant is oriented in its implanted position, such as shown in FIG. 1.


As used in this specification and the appended claims, the term “axial plane” when used in connection with particular relationships between various parts of the implant means a plane that divides the implant into upper and lower parts. As used in this specification and the appended claims, the term “coronal plane” when used in connection with particular relationships between various parts of the implant means a plane that divides the implant into front and back parts. As used in this specification and the appended claims, the term “sagittal plane” when used in connection with particular relationships between various parts of the implant means a plane that divides the implant into left and right parts.


As used in this specification and the appended claims, the term “body” when used in connection with the location where the device of this invention is to be placed, or to teach or practice implantation methods for the device, means a mammalian body. For example, a body can be a patient's body, or a cadaver, or a portion of a patient's body or a portion of a cadaver. A “body” may also refer to a model of a mammalian body for teaching or training purposes.


As used in this specification and the appended claims, the term “parallel” describes a relationship, given normal manufacturing or measurement or similar tolerances, between two geometric constructions (e.g., two lines, two planes, a line and a plane, two curved surfaces, a line and a curved surface or the like) in which the two geometric constructions are substantially non-intersecting as they extend substantially to infinity. For example, as used herein, a line is said to be parallel to a curved surface when the line and the curved surface do not intersect as they extend to infinity. Similarly, when a planar surface (i.e., a two-dimensional surface) is said to be parallel to a line, every point along the line is spaced apart from the nearest portion of the surface by a substantially equal distance. Thus, two geometric constructions are described herein as being “parallel” or “substantially parallel” to each other when they are nominally parallel to each other, such as for example, when they are parallel to each other within a tolerance. Such tolerances can include, for example, manufacturing tolerances, measurement tolerances or the like.


As used in this specification and the appended claims, the terms “normal”, “perpendicular” and “orthogonal” describe a relationship between two geometric constructions (e.g., two lines, two planes, a line and a plane, two curved surfaces, a line and a curved surface or the like) in which the two geometric constructions intersect at an angle of approximately 90 degrees within at least one plane. For example, as used herein, a line is said to be normal, perpendicular or orthogonal to a curved surface when the line and the curved surface intersect at an angle of approximately 90 degrees within a plane. Thus two geometric constructions are described herein as being “normal”, “perpendicular”, “orthogonal” or “substantially normal”, “substantially perpendicular”, “substantially orthogonal” to each other when they are nominally 90 degrees to each other, such as for example, when they are 90 degrees to each other within a tolerance. Such tolerances can include, for example, manufacturing tolerances, measurement tolerances or the like.


A spinal implant 100 for spinal fusion that attaches to adjacent spinous processes to fixate the corresponding vertebrae relative to the other is described herein. Implant 100 may include two fixation plates 10, 20, a brace 30 and a locking element 40. Plates 10, 20 are adapted to be disposed on respective lateral sides of the adjacent superior and inferior spinous processes. Projections 15 may extend from the inner surfaces of plates 10, 20 and are adapted to engage or “bite into” the surfaces of the spinous processes to fix plates 10, 20 with respect to the spinous processes. Brace 30 may be fixed to plate 10 and is adapted to extend through at least plate 20 with distal plate 20 adapted to be moveable proximally with respect to brace 30. Brace 30 may be hollow and may define a lumen 31 extending therethrough that defines a first diameter. Locking element 40 is adapted to be disposed within lumen 31.


Both proximal plate 10 and distal plate 20 may have a generally curved configuration that extends along a curving longitudinal axis. It is to be understood however that plates 10, 20 may be generally rectangular with a straight longitudinal axis or may have an offset configuration where the upper and lower portions of the longitudinal axis are offset from each other. Projections, or teeth, 15 extend inwardly away from the longitudinal axis of the plate on which they are located and toward the spinous process. As mentioned above, projections 15 are adapted to engage or “bite into” the surfaces of the spinous processes to fix plates 10, 20 with respect to the spinous processes. Each plate 10, 20 defines an opening 11, 21, respectively, therein along a medial portion. Opening 21 in distal plate 20 should have a diameter large enough to allow distal plate 20 to slide proximally along brace 30. Opening 11 in proximal plate 10 should have a diameter large enough to allow the proximal rod 42 of locking element 40 to slide proximally past proximal plate 10. As shown in FIG. 6, plates 10, 20 may be substantially mirror images of each other.


Brace 30 may have a generally tubular configuration defining lumen 31 therein. Brace 30 may be fixed to either plate 10, 20. As shown in FIGS. 1-5, brace 30 may be fixed along its proximal end to proximal plate 10 using any suitable means such as welding, brazing, adhesive or mechanical engagement. Distal plate 20 may define an opening 21 to allow brace 30 to extend through plate 20 and thus slide along brace 30 and vary the distance between proximal plate 10 and distal plate 20. The axis of brace 30 is generally transverse to the longitudinal axes of plates 10, 20. Proximal plate 10 may also define an opening 11 to allow proximal rod 42 to extend proximally through plate 10. As shown, in FIG. 6, brace 30′ need not be fixed to plate 10′. Instead, plate 10′ may define an opening 11′ having a diameter to allow brace 30′ to extend through plate 10′. A proximal flange 35 may be located at the proximal end of brace 30′ to prevent plate 10 from moving proximally off of brace 30′. As mention above, the diameter of the proximal portion of brace 30′ and the diameter of opening 11′ may be matched to provide an interference fit therebetween.


Locking element 40 includes an enlarged distal knob 41 and a proximal rod 42 attached to distal knob 41. The maximum diameter of enlarged distal knob 41 is chosen so that it is greater than the diameter of lumen 31. Although knob 41 is shown in the FIGS. as having a generally circular cross-section, it is to be understood that other configurations could be used for knob 41. However, it is desirable that the proximal portion of knob 41 have a tapered proximal configuration that increases in diameter in the distal direction. This taper facilitates proximal movement of locking element 40 with respect to brace 30. Locking element 40 is disposed within lumen 31 of brace 30 so that knob 41 is initially located beyond the distal end of brace 30 and the proximal end of rod 42 extends proximally beyond the proximal end of brace 30 and plate 10. See, e.g. FIG. 4. When locking element 40 is pulled proximally, the tapered portion of knob 41 engages the distal end of brace 30 and forces the distal portion of brace 30 to deform so it increases in diameter such that the enlarged diameter is greater than the diameter of opening 21 in distal plate 20. This increase in diameter for the distal portion of brace 30 prevents plate 20 from being moved distally off of brace 30 and thus locks plate 20 to brace 30 and plate 10. In addition, since the increased diameter of the distal portion of brace 30 caused by knob 41 is larger than the diameter of opening 21, proximal movement of knob 41 forces plate 20 to move proximally. Continued proximal movement of locking element 40 moves plates 10, 20 together so that projections 15 of each plate 10, 20 engage and “bite into” the spinous processes and lock implant 100 to the spinous processes.


Once plates 10, 20 are fixed to the adjacent spinous processes, rod 42 may then be removed from knob 41 so that there is nothing that extends proximally beyond plate 10. See FIG. 5. Rod 42 or a proximal portion of rod 42 can be removed from locking element 40 by any number of mechanisms. For example, the compressive force between plates 10, 20 that is necessary to ensure that plates 10, 20 can be compressed so that projections 15 “bite into” the spinous processes can be determined. Once this force is determined, the cross-sectional area of a segment of rod 42 can be locally decreased so that it fractures after the desired compressive force has been reached. This cross-sectional area can be computed based on the mechanical properties chosen for knob 41 and rod 42 of locking element 40. Alternatively, a mechanical connection, such as a thread located along the distal end of rod 42 and a tapped hole formed in knob 41, may be used. In such an embodiment, the user would be able to manually disengage rod 42 from knob 41 after plates 10, 20 have been fixed to the spinous processes. Also, a cutting device may be used to cut off a proximal portion of rod 42.


A method of implanting the spinal implant may include the following steps. After access to the desired spinal motion segment is obtained, proximal plate 10 is located adjacent to the proximal lateral sides of adjacent superior and inferior spinous processes. Where brace 30 is fixed to plate 20, proper placement of plate 10 ensures that brace 30 extends in the interspinous space through the sagittal plane. Where brace 30′ is not fixed to plate 10′, the distal end of brace 30′ may be inserted through opening 11′ in plate 10′, after plate 10′ is properly located adjacent the proximal lateral sides of the adjacent spinous processes, and moved distally through the interspinous space until flange 35 abuts the proximal medial face of plate 10′ around opening 11′. With proximal plate 10 and brace 30 properly located with respect to the spinal segment, the distal end of brace 30 should extend past the distal lateral sides of the adjacent spinous processes. Distal plate 20 may then be placed over the distal end of brace 30 so that plate 20 is placed adjacent to the distal lateral sides of the adjacent superior and inferior spinous processes. Locking mechanism 40 may then be placed into lumen 31 through brace 30 such that the proximal end of rod 42 is first inserted into the distal end of brace 30 and moved proximally through brace 30 until knob 41 abuts the distal opening of brace 30. Rod 42 may continue to be pulled from the proximal side of brace 30 so knob 41 enlarges the distal portion of brace 30 and locks plate 20 onto brace 30 and with respect to plate 10. Continued proximal movement of locking mechanism 40 forces knob 41 further into the distal portion of brace 30, enlarging this portion of brace 30 and forcing distal plate 20 to move proximally into engagement with the distal lateral faces of the adjacent superior and inferior spinous processes. Once the surgeon is satisfied with the placement of implant 100, rod 42 may be cut or broken off of knob 41. For example, knob 41 may be connected to rod 42 by a frangible connection that may be broken by specific manipulation of rod 42. If desired, the distal portion of brace 30 extending beyond the distal face of distal plate 20 can be removed to minimize the space occupied by implant 100. However, it is contemplated that only a minor length of the distal portion of brace 30 will extend beyond the distal face of distal plate 20 after plates 10, 20 have been compressed into engagement with the spinous processes. Thus it may be unnecessary to remove any portion of the distal portion of brace 30.


Implant 100 may be formed of suitable biocompatible materials. For example, plates 10, 20 may be formed from stainless steel, titanium and its alloys, polymers such as PEEK, carbon fiber and the like. A softer, more ductile material, such as 316 stainless steel, may be used for brace 30. This material would allow brace 30 to deform without fracture and would not require an extremely high force to deform. A harder material, such as a cobalt chrome alloy, may be used for locking element 40. The various materials used for the parts of implant 100 may be considered in combination with the geometry of the various parts to obtain a customized force/implantation profile to facilitate implantation by the surgeon and achieve an optimized function.


While various embodiments of the spinous process fusion device are described herein, it should be understood that they have been presented by way of example only, and not limitation. Many modifications and variations will be apparent to the practitioner skilled in the art. The foregoing description of the spinous process fusion device is not intended to be exhaustive or to limit the scope of the invention. It is intended that the scope of the invention be defined by the following claims and their equivalents.

Claims
  • 1. A spinal implant, comprising: a first plate extending along a first longitudinal axis and having a first inner face configured to abut adjacent spinous processes and having projections extending from the first inner face;a second plate extending along a second longitudinal axis and having a second inner face configured to abut the adjacent spinous processes and having projections extending from the second inner face;a brace extending along a third longitudinal axis, the brace having a first diameter and including a flange fixed to a proximal end of the brace;the first and second plates disposed along the brace such that the first and second longitudinal axes are transverse to the third longitudinal axis and the first inner face and the second inner face are oriented toward each other in spaced relation; anda locking element engaging a distal end of the brace and longitudinally moveable relative to the brace such that longitudinal displacement of the locking element toward a proximal end of the brace modifies the brace such that a distal portion of the brace has a second diameter being greater than the first diameter and configured to prevent the second plate from being moved distally past a distal end of the brace,wherein longitudinal displacement of the locking element toward the proximal end of the brace narrows a distance between the first plate and the second plate.
  • 2. The spinal implant of claim 1 wherein a proximal portion of the brace is fixed to the first plate.
  • 3. The spinal implant of claim 1 wherein the locking element includes a distal end defined by a knob having a tapered proximal portion and a rod extending proximally from the knob.
  • 4. The spinal implant of claim 3 wherein the knob has a circular cross section.
  • 5. The spinal implant of claim 4 wherein the rod is connected to the knob by a frangible connection.
  • 6. The spinal implant of claim 3 wherein the knob has a tapered proximal portion.
  • 7. The spinal implant of claim 3 wherein the knob defines a third diameter that is greater than the second diameter and less than the first diameter.
  • 8. The spinal implant of claim 1 wherein the flange prevents the first plate from being moved proximally past the proximal end of the brace.
  • 9. The spinal implant of claim 1 wherein the brace defines a first configuration wherein the brace has a distal portion with an outer diameter having an initial diameter and a second configuration wherein the outer diameter of the distal portion of the brace has a subsequent diameter and wherein the subsequent diameter is greater than the initial diameter.
  • 10. The spinal implant of claim 9 wherein the initial diameter is less than the first diameter and the subsequent diameter is greater than the first diameter.
  • 11. A spinal implant, comprising: a first plate extending along a first longitudinal axis and having a first inner face configured to abut adjacent spinous processes and having projections extending from the first inner face and having a first opening extending therethrough along a medial portion of the first plate;a second plate extending along a second longitudinal axis and having a second inner face configured to abut the adjacent spinous processes and having projections extending from the second inner face and having a second opening extending therethrough along a medial portion of the second plate, the second opening defining a first diameter;a brace extending along a third longitudinal axis and adapted to be disposed in the second opening and having a proximal portion connected to the first plate adjacent to the first opening, the brace being formed from a deformable material and defining a lumen having a second diameter, the brace including a flange fixed to the proximal portion of the brace and being configured to prevent the first plate from proximally moving off the brace; anda locking element adapted to be moveably disposed at least partially in the brace, the locking element further comprising a distal knob and a proximal rod connected to the distal knob,wherein the brace defines a first configuration wherein the brace has a distal portion with an outer diameter having an initial diameter and a second configuration wherein the outer diameter of the distal portion of the brace has a subsequent diameter and wherein the subsequent diameter is greater than the initial diameter.
  • 12. The spinal implant of claim 11 wherein the distal knob has a tapered proximal portion.
  • 13. The spinal implant of claim 12 wherein the distal knob defines a third diameter that is greater than the second diameter and less than the first diameter.
  • 14. The spinal implant of claim 11 wherein the proximal rod defines a length that is adapted to be shortened.
  • 15. The spinal implant of claim 11 wherein the initial diameter is less than the first diameter and the subsequent diameter is greater than the first diameter.
  • 16. A method for implanting a spinal implant into an interspinous space defined by a superior spinous process and an inferior spinous process, comprising; placing a first plate, having a first opening, adjacent to proximal lateral sides of the adjacent spinous processes;placing a brace into the interspinous space, the brace including a flange fixed to a proximal portion of the brace preventing the first plate from proximally moving off the brace;placing a second plate, having a second opening, adjacent to distal lateral sides of the adjacent spinous processes such that the brace extends through the second opening;inserting a locking mechanism into a distal portion of the brace; andmoving the locking mechanism proximally to change the distance between the first plate and the second plate and to lock the implant with respect to the superior spinous process and the inferior spinous process and to change the diameter of the brace along a distal portion of the brace from a first diameter to a second diameter, wherein the second diameter is larger than the first diameter.
  • 17. The method of claim 16 further comprising changing the length of the locking mechanism from a first length to a second length wherein the second length is shorter than the first length.
  • 18. The method of claim 16 further comprising placing the brace through the first opening.
US Referenced Citations (363)
Number Name Date Kind
624969 Peterson May 1899 A
1153797 Kegreisz Sep 1915 A
1516347 Pataky Nov 1924 A
1870942 Beatty Aug 1932 A
2077804 Morrison Apr 1937 A
2299308 Creighton Oct 1942 A
2485531 Dzus et al. Oct 1949 A
2607370 Anderson Aug 1952 A
2677369 Knowles May 1954 A
2685877 Dobelle Aug 1954 A
3065659 Eriksson et al. Nov 1962 A
3108595 Overment Oct 1963 A
3397699 Kohl Aug 1968 A
3426364 Lumb Feb 1969 A
3648691 Lumb et al. Mar 1972 A
3779239 Fischer et al. Dec 1973 A
4011602 Rybicki et al. Mar 1977 A
4237875 Termanini Dec 1980 A
4257409 Bacal et al. Mar 1981 A
4274324 Giannuzzi Jun 1981 A
4289123 Dunn Sep 1981 A
4327736 Inoue May 1982 A
4401112 Rezaian Aug 1983 A
4499636 Tanaka Feb 1985 A
4519100 Wills et al. May 1985 A
4553273 Wu Nov 1985 A
4554914 Kapp et al. Nov 1985 A
4573454 Hoffman Mar 1986 A
4592341 Omagari et al. Jun 1986 A
4599086 Doty Jul 1986 A
4604995 Stephens et al. Aug 1986 A
4611582 Duff Sep 1986 A
4632101 Freedland Dec 1986 A
4636217 Ogilvie et al. Jan 1987 A
4646998 Pate Mar 1987 A
4657550 Daher Apr 1987 A
4662808 Camilleri May 1987 A
4686970 Dove et al. Aug 1987 A
4704057 McSherry Nov 1987 A
4721103 Freedland Jan 1988 A
4759769 Hedman et al. Jul 1988 A
4787378 Sodhi Nov 1988 A
4822226 Kennedy Apr 1989 A
4827918 Olerud May 1989 A
4834600 Lemke May 1989 A
4863476 Shepperd Sep 1989 A
4886405 Blomberg Dec 1989 A
4892545 Day et al. Jan 1990 A
4913144 Del Medico Apr 1990 A
4931055 Bumpus et al. Jun 1990 A
4932975 Main et al. Jun 1990 A
4969887 Sodhi Nov 1990 A
5000166 Karpf Mar 1991 A
5011484 Breard Apr 1991 A
5047055 Bao et al. Sep 1991 A
5059193 Kuslich Oct 1991 A
5092866 Breard et al. Mar 1992 A
5098433 Freedland Mar 1992 A
5171278 Pisharodi Dec 1992 A
5201734 Cozad et al. Apr 1993 A
5267999 Olerud Dec 1993 A
5290312 Kojimoto et al. Mar 1994 A
5306275 Bryan Apr 1994 A
5306310 Siebels Apr 1994 A
5312405 Korotko et al. May 1994 A
5316422 Coffman May 1994 A
5356423 Tihon et al. Oct 1994 A
5360430 Lin Nov 1994 A
5366455 Dove Nov 1994 A
5370697 Baumgartner Dec 1994 A
5390683 Pisharodi Feb 1995 A
5395370 Muller et al. Mar 1995 A
5401269 Buttner-Janz et al. Mar 1995 A
5403316 Ashman Apr 1995 A
5415661 Holmes May 1995 A
5437672 Alleyne Aug 1995 A
5437674 Worcel et al. Aug 1995 A
5439463 Lin Aug 1995 A
5454812 Lin Oct 1995 A
5456689 Kresch et al. Oct 1995 A
5458641 Ramirez Jimenez Oct 1995 A
5480442 Bertagnoli Jan 1996 A
5496318 Howland et al. Mar 1996 A
5518498 Lindenberg et al. May 1996 A
5554191 Lahille et al. Sep 1996 A
5562662 Brumfield et al. Oct 1996 A
5562735 Margulies Oct 1996 A
5571192 Schonhoffer Nov 1996 A
5609634 Voydeville Mar 1997 A
5609635 Michelson Mar 1997 A
5628756 Barker, Jr. et al. May 1997 A
5630816 Kambin May 1997 A
5645599 Samani Jul 1997 A
5653762 Pisharodi Aug 1997 A
5653763 Errico et al. Aug 1997 A
5658335 Allen Aug 1997 A
5665122 Kambin Sep 1997 A
5674295 Ray et al. Oct 1997 A
5676702 Ratron Oct 1997 A
5685826 Bonutti Nov 1997 A
5690649 Li Nov 1997 A
5693100 Pisharodi Dec 1997 A
5702395 Hopf Dec 1997 A
5702452 Argenson et al. Dec 1997 A
5702455 Saggar Dec 1997 A
5707390 Bonutti Jan 1998 A
5716416 Lin Feb 1998 A
5723013 Jeanson et al. Mar 1998 A
5725341 Hofmeister Mar 1998 A
5746762 Bass May 1998 A
5755797 Baumgartner May 1998 A
5800547 Schafer et al. Sep 1998 A
5810815 Morales Sep 1998 A
5836948 Zucherman et al. Nov 1998 A
5849004 Bramlet Dec 1998 A
5860977 Zucherman et al. Jan 1999 A
5888196 Bonutti Mar 1999 A
5941881 Barnes Aug 1999 A
5976186 Bao et al. Nov 1999 A
5980523 Jackson Nov 1999 A
6022376 Assell et al. Feb 2000 A
6048342 Zucherman et al. Apr 2000 A
6068630 Zucherman et al. May 2000 A
6074390 Zucherman et al. Jun 2000 A
6102922 Jakobsson et al. Aug 2000 A
6126689 Brett Oct 2000 A
6126691 Kasra et al. Oct 2000 A
6127597 Beyar et al. Oct 2000 A
6132464 Martin Oct 2000 A
6190413 Sutcliffe Feb 2001 B1
6190414 Young Feb 2001 B1
6214037 Mitchell et al. Apr 2001 B1
6214050 Huene Apr 2001 B1
6245107 Ferree Jun 2001 B1
6293949 Justis et al. Sep 2001 B1
6336930 Stalcup et al. Jan 2002 B1
6348053 Cachia Feb 2002 B1
6352537 Strnad Mar 2002 B1
6364883 Santilli Apr 2002 B1
6371987 Weiland et al. Apr 2002 B1
6375682 Fleischmann et al. Apr 2002 B1
6402750 Atkinson et al. Jun 2002 B1
6402751 Hoeck et al. Jun 2002 B1
6419703 Fallin et al. Jul 2002 B1
6419704 Ferree Jul 2002 B1
6432130 Hanson Aug 2002 B1
6440169 Elberg et al. Aug 2002 B1
6447513 Griggs Sep 2002 B1
6451019 Zucherman et al. Sep 2002 B1
6500178 Zucherman et al. Dec 2002 B2
6511508 Shahinpoor et al. Jan 2003 B1
6514256 Zucherman et al. Feb 2003 B2
6520991 Huene Feb 2003 B2
6554833 Levy Apr 2003 B2
6582433 Yun Jun 2003 B2
6582467 Teitelbaum et al. Jun 2003 B1
6592585 Lee et al. Jul 2003 B2
6626944 Taylor Sep 2003 B1
6645207 Dixon et al. Nov 2003 B2
6669729 Chin Dec 2003 B2
6685742 Jackson Feb 2004 B1
6695842 Zucherman et al. Feb 2004 B2
6699246 Zucherman et al. Mar 2004 B2
6709435 Lin Mar 2004 B2
6723126 Berry Apr 2004 B1
6730126 Boehm, Jr. et al. May 2004 B2
6733531 Trieu May 2004 B1
6733534 Sherman May 2004 B2
6736818 Perren et al. May 2004 B2
6743257 Castro Jun 2004 B2
6758863 Estes et al. Jul 2004 B2
6761720 Senegas Jul 2004 B1
6770096 Bolger et al. Aug 2004 B2
6783530 Levy Aug 2004 B1
6835205 Atkinson et al. Dec 2004 B2
6902580 Fallin et al. Jun 2005 B2
6905512 Paes et al. Jun 2005 B2
6946000 Senegas et al. Sep 2005 B2
6981975 Michelson Jan 2006 B2
7011685 Arnin et al. Mar 2006 B2
7041136 Goble et al. May 2006 B2
7048736 Robinson et al. May 2006 B2
7070598 Lim et al. Jul 2006 B2
7081120 Li et al. Jul 2006 B2
7087055 Lim et al. Aug 2006 B2
7087083 Pasquet et al. Aug 2006 B2
7097648 Globerman et al. Aug 2006 B1
7097654 Freedland Aug 2006 B1
7101375 Zucherman et al. Sep 2006 B2
7163558 Senegas et al. Jan 2007 B2
7201751 Zucherman et al. Apr 2007 B2
7217293 Branch, Jr. May 2007 B2
7238204 Le Couedic et al. Jul 2007 B2
7306628 Zucherman et al. Dec 2007 B2
7335203 Winslow et al. Feb 2008 B2
7377942 Berry May 2008 B2
7431735 Liu et al. Oct 2008 B2
7442208 Mathieu et al. Oct 2008 B2
7445637 Taylor Nov 2008 B2
7458981 Fielding et al. Dec 2008 B2
7582106 Teitelbaum et al. Sep 2009 B2
7604652 Arnin et al. Oct 2009 B2
7611316 Panasik et al. Nov 2009 B2
7621950 Globerman et al. Nov 2009 B1
7658752 Labrom et al. Feb 2010 B2
7749252 Zucherman et al. Jul 2010 B2
7763073 Hawkins et al. Jul 2010 B2
7771456 Hartman et al. Aug 2010 B2
7862615 Carli et al. Jan 2011 B2
7901430 Matsuura et al. Mar 2011 B2
8128702 Zucherman et al. Mar 2012 B2
20010016743 Zucherman et al. Aug 2001 A1
20020143331 Zucherman et al. Oct 2002 A1
20030040746 Mitchell et al. Feb 2003 A1
20030045940 Eberlein et al. Mar 2003 A1
20030065330 Zucherman et al. Apr 2003 A1
20030153915 Nekozuka et al. Aug 2003 A1
20040010312 Enayati Jan 2004 A1
20040010316 William et al. Jan 2004 A1
20040087947 Lim et al. May 2004 A1
20040097931 Mitchell May 2004 A1
20040106995 LeCouedic et al. Jun 2004 A1
20040117017 Pasquet et al. Jun 2004 A1
20040133204 Davies Jul 2004 A1
20040133280 Trieu Jul 2004 A1
20040158248 Ginn Aug 2004 A1
20040167625 Beyar et al. Aug 2004 A1
20040199255 Mathieu et al. Oct 2004 A1
20040260397 Lambrecht et al. Dec 2004 A1
20050010293 Zucherman et al. Jan 2005 A1
20050033434 Berry Feb 2005 A1
20050049708 Atkinson et al. Mar 2005 A1
20050085814 Sherman et al. Apr 2005 A1
20050143827 Globerman et al. Jun 2005 A1
20050165398 Reiley Jul 2005 A1
20050203512 Hawkins et al. Sep 2005 A1
20050203519 Harms et al. Sep 2005 A1
20050203624 Serhan et al. Sep 2005 A1
20050228391 Levy et al. Oct 2005 A1
20050245937 Winslow Nov 2005 A1
20050261768 Trieu Nov 2005 A1
20050267579 Reiley et al. Dec 2005 A1
20050273166 Sweeney Dec 2005 A1
20050288672 Ferree Dec 2005 A1
20060004447 Mastrorio et al. Jan 2006 A1
20060004455 Leonard et al. Jan 2006 A1
20060015181 Elberg Jan 2006 A1
20060064165 Zucherman et al. Mar 2006 A1
20060084983 Kim Apr 2006 A1
20060084985 Kim Apr 2006 A1
20060084987 Kim Apr 2006 A1
20060084988 Kim Apr 2006 A1
20060085069 Kim Apr 2006 A1
20060085070 Kim Apr 2006 A1
20060085074 Raiszadeh Apr 2006 A1
20060089654 Lins et al. Apr 2006 A1
20060089719 Trieu Apr 2006 A1
20060095136 McLuen May 2006 A1
20060106381 Ferree et al. May 2006 A1
20060106397 Lins May 2006 A1
20060111728 Abdou May 2006 A1
20060116690 Pagano Jun 2006 A1
20060122620 Kim Jun 2006 A1
20060129239 Kwak Jun 2006 A1
20060136060 Taylor Jun 2006 A1
20060142858 Colleran et al. Jun 2006 A1
20060149242 Kraus et al. Jul 2006 A1
20060182515 Panasik et al. Aug 2006 A1
20060184247 Edidin et al. Aug 2006 A1
20060184248 Edidin et al. Aug 2006 A1
20060195102 Malandain Aug 2006 A1
20060217726 Maxy et al. Sep 2006 A1
20060224159 Anderson Oct 2006 A1
20060224241 Butler et al. Oct 2006 A1
20060235387 Peterman Oct 2006 A1
20060235532 Meunier et al. Oct 2006 A1
20060241601 Trautwein et al. Oct 2006 A1
20060241613 Bruneau et al. Oct 2006 A1
20060241643 Lim et al. Oct 2006 A1
20060241757 Anderson Oct 2006 A1
20060247623 Anderson et al. Nov 2006 A1
20060247640 Blackwell et al. Nov 2006 A1
20060264938 Zucherman et al. Nov 2006 A1
20060271044 Petrini et al. Nov 2006 A1
20060271049 Zucherman et al. Nov 2006 A1
20060271061 Beyer et al. Nov 2006 A1
20060282075 Labrom et al. Dec 2006 A1
20060282079 Labrom et al. Dec 2006 A1
20060293662 Boyer, II et al. Dec 2006 A1
20060293663 Walkenhorst et al. Dec 2006 A1
20070005064 Anderson et al. Jan 2007 A1
20070010813 Zucherman et al. Jan 2007 A1
20070032790 Aschmann et al. Feb 2007 A1
20070043362 Malandain et al. Feb 2007 A1
20070043363 Malandain et al. Feb 2007 A1
20070073289 Kwak et al. Mar 2007 A1
20070100340 Lange et al. May 2007 A1
20070123861 Dewey et al. May 2007 A1
20070142915 Altarac et al. Jun 2007 A1
20070151116 Malandain Jul 2007 A1
20070162000 Perkins Jul 2007 A1
20070167945 Lange et al. Jul 2007 A1
20070173822 Bruneau et al. Jul 2007 A1
20070173823 Dewey et al. Jul 2007 A1
20070191833 Bruneau et al. Aug 2007 A1
20070191834 Bruneau et al. Aug 2007 A1
20070191837 Trieu Aug 2007 A1
20070191838 Bruneau et al. Aug 2007 A1
20070198091 Boyer et al. Aug 2007 A1
20070225807 Phan et al. Sep 2007 A1
20070233068 Bruneau et al. Oct 2007 A1
20070233074 Anderson et al. Oct 2007 A1
20070233076 Trieu Oct 2007 A1
20070233081 Pasquet et al. Oct 2007 A1
20070233089 DiPoto et al. Oct 2007 A1
20070250060 Anderson et al. Oct 2007 A1
20070270823 Trieu et al. Nov 2007 A1
20070270824 Lim et al. Nov 2007 A1
20070270825 Carls et al. Nov 2007 A1
20070270826 Trieu et al. Nov 2007 A1
20070270827 Lim et al. Nov 2007 A1
20070270828 Bruneau et al. Nov 2007 A1
20070270829 Carls et al. Nov 2007 A1
20070270834 Bruneau et al. Nov 2007 A1
20070270874 Anderson Nov 2007 A1
20070272259 Allard et al. Nov 2007 A1
20070276368 Trieu et al. Nov 2007 A1
20070276369 Allard et al. Nov 2007 A1
20070276493 Malandain et al. Nov 2007 A1
20070276496 Lange et al. Nov 2007 A1
20070276497 Anderson Nov 2007 A1
20070282443 Globerman et al. Dec 2007 A1
20080021457 Anderson et al. Jan 2008 A1
20080021460 Bruneau et al. Jan 2008 A1
20080058934 Malandain et al. Mar 2008 A1
20080097446 Reiley et al. Apr 2008 A1
20080114357 Allard et al. May 2008 A1
20080114358 Anderson et al. May 2008 A1
20080114456 Dewey et al. May 2008 A1
20080147190 Dewey et al. Jun 2008 A1
20080161818 Kloss et al. Jul 2008 A1
20080167685 Allard et al. Jul 2008 A1
20080183209 Robinson et al. Jul 2008 A1
20080183211 Lamborne et al. Jul 2008 A1
20080183218 Mueller et al. Jul 2008 A1
20080195152 Altarac et al. Aug 2008 A1
20080215094 Taylor Sep 2008 A1
20080221685 Altarac et al. Sep 2008 A9
20080234824 Youssef et al. Sep 2008 A1
20080262617 Froehlich et al. Oct 2008 A1
20080281360 Vittur et al. Nov 2008 A1
20080281361 Vittur et al. Nov 2008 A1
20090062915 Kohm et al. Mar 2009 A1
20090105766 Thompson et al. Apr 2009 A1
20090105773 Lange et al. Apr 2009 A1
20090234389 Chuang et al. Sep 2009 A1
20090240283 Carls et al. Sep 2009 A1
20090270918 Attia et al. Oct 2009 A1
20100087869 Abdou Apr 2010 A1
20100121379 Edmond May 2010 A1
20100204732 Aschmann et al. Aug 2010 A1
20100211101 Blackwell et al. Aug 2010 A1
20120109198 Dryer et al. May 2012 A1
Foreign Referenced Citations (61)
Number Date Country
2821678 Nov 1979 DE
3922044 Feb 1991 DE
4012622 Jul 1991 DE
0322334 Feb 1992 EP
0767636 Jan 1999 EP
1004276 May 2000 EP
1011464 Jun 2000 EP
1138268 Oct 2001 EP
1148850 Oct 2001 EP
1148851 Oct 2001 EP
1302169 Apr 2003 EP
1330987 Jul 2003 EP
1552797 Jul 2005 EP
1854433 Nov 2007 EP
1905392 Apr 2008 EP
1982664 Oct 2008 EP
2623085 May 1989 FR
2625097 Jun 1989 FR
2681525 Mar 1993 FR
2700941 Aug 1994 FR
2703239 Oct 1994 FR
2707864 Jan 1995 FR
2717675 Sep 1995 FR
2722087 Jan 1996 FR
2722088 Jan 1996 FR
2724554 Mar 1996 FR
2725892 Apr 1996 FR
2730156 Aug 1996 FR
2731643 Sep 1996 FR
2775183 Aug 1999 FR
2799948 Apr 2001 FR
2816197 May 2002 FR
02-224660 Sep 1990 JP
09-075381 Mar 1997 JP
2003079649 Mar 2003 JP
988281 Jan 1983 SU
1484348 Jun 1989 SU
WO 9426192 Nov 1994 WO
WO 9426195 Nov 1994 WO
WO 9718769 May 1997 WO
WO 9820939 May 1998 WO
WO 9926562 Jun 1999 WO
WO 0044319 Aug 2000 WO
WO 0154598 Aug 2001 WO
WO 03057055 Jul 2003 WO
WO 2004047689 Jun 2004 WO
WO 2004047691 Jun 2004 WO
WO 2004084743 Oct 2004 WO
WO 2004084768 Oct 2004 WO
WO 2004110300 Dec 2004 WO
WO 2005009300 Feb 2005 WO
WO 2005011507 Feb 2005 WO
WO 2005044118 May 2005 WO
WO 2005048856 Jun 2005 WO
WO 2005110258 Nov 2005 WO
WO 2006064356 Jun 2006 WO
WO 2007034516 Mar 2007 WO
WO 2007052975 May 2007 WO
WO 2009083276 Jul 2009 WO
WO 2009083583 Jul 2009 WO
WO 2009098536 Aug 2009 WO
Non-Patent Literature Citations (68)
Entry
“Dispositivo Intervertebrale Ammortizzante DIAM,” date unknown, p. 1.
“Tecnica Operatoria Per II Posizionamento Della Protesi DIAM,” date unknown, pp. 1-3.
“Wallis Operative Technique: Surgical Procedure for Treatment of Degenerative Disc Disease (DDD) of Lumbar Spine,” date unknown, pp. 1-24, Spine Next, an Abbott Laboratories company, Bordeaux, France.
Anasetti et al., “Spine Stability After Implantation of an Interspinous Device: An In Vitro and Finite Element Biomechanical Study,” J. Neurosurg. Spine, Nov. 2010, vol. 13, pp. 568-575.
Bellini et al., “Biomechanics of the Lumbar Spine Afer Dynamic Stabilization,” J. Spinal Discord Tech., 2006, vol. 00, No. 00, pp. 1-7.
Benzel et al., “Posterior Cervical Interspinous Compression Wiring and Fusion for Mid to Low Cervical Spinal Injuries,” J. Neurosurg., Jun. 1989, pp. 893-899, vol. 70.
Buric et al., “DIAM Device for Low Back Pain in Degenerative Disc Disease 24 Months Follow-up,” Advances in Minimally Invasive Surgery and Therapy for Spine and Nerves, Alexandre et al., eds., 2011, pp. 177-182, Spinger-Verlat/Wien.
Caserta et al., “Elastic Stabilization Alone or Combined with Rigid Fusion in Spinal Surgery: a Biomechanical Study and Clinical Experience Based on 82 Cases,” Eur. Spine J., Oct. 2002, pp. S192-S197, vol. 11, Suppl. 2.
Christie et al., “Dynamic Interspinous Process Technology,” Spine, 2005, pp. S73-S78, vol. 30, No. 16S.
Cousin Biotech, “Analysis of Clinical Experience with a Posterior Shock-Absorbing Implant,” date unknown, pp. 2-9.
Cousin Biotech, Dispositif Intervertébral Amortissant, Jun. 1998, pp. 1-4.
Cousin Biotech, Technique Operatoire de la Prothese DIAM, date unknown, Annexe 1, pp. 1-8.
Dickman et al., “The Interspinous Method of Posterior Atlantoaxial Arthrodesis,” J. Neurosurg., Feb. 1991, pp. 190-198, vol. 74.
Dubois et al., “Dynamic Neutralization: A New Concept for Restabilization of the Spine,” Lumbar Segmental Insability, Szpalski et al., eds., 1999, pp. 233-240, Lippincott Williams & Wilkins, Philadelphia, Pennsylvania.
Ebara et al., “Inoperative Measurement of Lumbar Spinal Instability,” Spine, 1992, pp. S44-S50, vol. 17, No. 3S.
Fassio et al., “Treatment of Degenerative Lumbar Spinal Instability L4-L5 by Interspinous Ligamentoplasty,” Rachis, Dec. 1991, pp. 465-474, vol. 3, No. 6.
Fassio, “Mise au Point Sur la Ligamentoplastie Inter-Epineuse Lombaire Dans les Instabilites,” Maîtrise Orthopédique, Jul. 1993, pp. 18, No. 25.
Garner et al., “Development and Preclinical Testing of a New Tension-Band Device for the Spine: the Loop System,” Eur. Spine J., Aug. 7, 2002, pp. S186-S191, vol. 11, Suppl. 2.
Guang et al., “Interspinous Process Segmental Instrumentation with Bone-Button-Wire for Correction of Scoliosis,” Chinese Medical J., 1990, pp. 721-725, vol. 103.
Guizzardi et al., “The Use of DIAM (Interspinous Stress-Breaker Device) in the Prevention of Chronic Low Back Pain in Young Patients Operated on for Large Dimension Lumbar Disc Herniation,” 12th Eur. Cong. Neurosurg., Sep. 7-12, 2003, pp. 835-839, Port.
Hambly et al., “Tension Band Wiring-Bone Grafting for Spondylolysis and Spondylolisthesis,” Spine, 1989, pp. 455-460, vol. 14, No. 4.
Kiwerski, “Rehabilitation of Patients with Thoracic Spine Injury Treated by Spring Alloplasty,” Int. J. Rehab. Research, 1983, pp. 469-474, vol. 6, No. 4.
Kramer et al., “Intervetertebral Disk Diseases: Causes, Diagnosis, Treatment and Prophylaxis,” pp. 244-249, Medical, 1990.
Laudet et al., “Comportement Bio-Mécanique D'Un Ressort Inter-Apophysaire Verteébral Postérieur Analyse Expérimentale Due Comportement Discal En Compression Et En Flexion/Extension,” Rachis, 1993, vol. 5, No. 2.
Mah et al., “Threaded K-Wire Spinous Process Fixation of the Axis for Modified Gallie Fusion in Children and Adolescents,” J. Pediatric Othopaedics, 1989, pp. 675-679, vol. 9.
Mariottini et al., “Preliminary Results of a Soft Novel Lumbar Intervertebral Prothesis (DIAM) in the Degenerative Spinal Pathology,” Acta Neurochir., Adv. Peripheral Nerve Surg. and Minimal Invas. Spinal Surg., 2005, pp. 129-131, vol. 92, Suppl.
McDonnell et al., “Posterior Atlantoaxial Fusion: Indications and Techniques,” Techniques in Spinal Fusion and Stabilization, Hitchon et al., eds., 1995, pp. 92-106, Ch. 9, Thieme, New York.
Minns et al., “Preliminary Design and Experimental Studies of a Novel Soft Implant for Correcting Sagittal Plane Instability in the Lumbar Spine,” Spine, 1997, pp. 1819-1825, vol. 22, No. 16.
Müller, “Restauration Dynamique de la Stabilité Rachidienne,” Tiré de la Sulzer Technical Review, Jan. 1999, Sulzer Management Ltd, Winterthur, Switzerland.
Pennal et al., “Stenosis of the Lumbar Spinal Canal,” Clinical Neurosurgery: Proceedings of the Congress of Neurological Surgeons, St. Louis, Missouri, 1970, Tindall et al., eds., 1971, Ch. 6, pp. 86-105, vol. 18.
Petrini et al., “Analisi Di Un'Esperienza Clinica Con Un Implanto Posteriore Ammortizzante,” S.O.T.I.M.I. Societàdi Ortopedia e Traumatologia dell'Italia Meridionale e Insulare 90° Congresso, Jun. 21-23, 2001, Paestum.
Petrini et al., “Stabilizzazione Elastica,” Patologia Degenerativa del Rachide Lombare, Oct. 5-6, 2001, Rimini.
Phillips et al., “Biomechanics of Posterior Dynamic Stabiling Device (DIAM) After Facetectomy and Disectomy,” The Spine Journal, 2006, vol. 6, pp. 714-722.
Porter, “Spinal Stenosis and Neurogenic Claudication,” Spine, Sep. 1, 1996, pp. 2046-2052, vol. 21, No. 17.
Pupin et al., “Clinical Experience with a Posterior Shock-Absorbing Implant in Lumbar Spine,” World Spine 1: First Interdisciplinary World Congress on Spinal Surgery and Related Disciplines, Aug. 27-Sep. 1, 2000, Berlin, Germany.
Rengachary et al., “Cervical Spine Stabilization with Flexible, Multistrand Cable System,” Techniques in Spinal Fusion and Stabilization, Hitchon et al., eds., 1995, pp. 79-81, Ch. 7, Thieme, New York.
Richards et al., “The Treatment Mechanism of an Interspinous Process Implant for Lumbar Neurogenic Intermittent Claudication,” Spine, 2005, pp. 744-749, vol. 30, No. 7.
Scarfò, “Instability/Stenosis: Holistic Approach for Less Invasive Surgery,” date unknown, University of Siena, Siena, Italy.
Schiavone et al., “The Use of Disc Assistance Prosthesis (DIAM) in Degenerative Lumbar Pathology: Indications, Technique, Results,” Italian J. Spinal Disorders, 2003, pp. 213-220, vol. 3, No. 2.
Schlegel et al., “The Role of Distraction in Improving the Space Available in the Lumbar Stenotic Canal and Foramen,” Spine, 1994, pp. 2041-2047, vol. 19, No. 18.
Senegas et al., “Le Recalibrage du Canal Lombaire, Alternative à la Laminectomie dans le Traitement des Sténoses du Canal Lombaire,” Revue de Chirurgie Orthopédique, 1988, pp. 15-22.
Senegas et al., “Stabilisation Lombaire Souple,” Instabilité Vertébrales Lombaires, Gastambide, ed., 1995, pp. 122-132, Expansion Scientifique Française, Paris, France.
Senegas, “La Ligamentoplastie Inter Vertébrale Lombaire, Alternative a L'Arthrodèse,” La Revue de Médecine Orthopédique, Jun. 1990, pp. 33-35, No. 20.
Senegas, “La Ligamentoplastie Intervertébrale, Alternative à L'arthrodèse dans le Traitement des Instabilités Dégénératives,” Acta Othopaedica Belgica, 1991, pp. 221-226, vol. 57, Suppl. I.
Senegas, “Mechanical Supplementation by Non-Rigid Fixation in Degenerative Intervertebral Lumbar Segments: the Wallis System,” Eur. Spine J., 2002, p. S164-S169, vol. 11, Suppl. 2.
Senegas, “Rencontre,” Maîtrise Orthopédique, May 1995, pp. 1-3, No. 44.
Serhan, “Spinal Implants: Past, Present, and Future,” 19th International IEEE/EMBS Conference, Oct. 30-Nov. 2, 1997, pp. 2636-2639, Chicago, Illinois.
Spadea et al., “Interspinous Fusion for the Treatment of Herniated Intervertebral Discs: Utilizing a Lumbar Spinous Process as a Bone Graft,” Annals of Surgery, 1952, pp. 982-986, vol. 136, No. 6.
Sulzer Innotec, “DIAM—Modified CAD Geometry and Meshing,” date unknown.
Taylor et al., “Analyse d'une expérience clinique d'un implant postérieur amortissant,” Rachis Revue de Pathologie Vertébrale, Oct./Nov. 1999, vol. 11, No. 4-5, Gieda Inter Rachis.
Taylor et al., “Device for Intervertebral Assisted Motion: Technique and Intial Results,” 22 Neurosurg. Focus, Jan. 2007, vol. 22, No. 1, pp. 1-6.
Taylor et al., “Surgical Requirement for the Posterior Control of the Rotational Centers,” date unknown.
Taylor et al., “Technical and Anatomical Considerations for the Placement of a Posterior Interspinous Stabilizer,” 2004, pp. 1-10, Medtronic Sofamor Danek USA, Inc., Memphis, Tennessee.
Taylor, “Biomechanical Requirements for the Posterior Control of the Centers of Rotation,” Swiss Spine Institute International Symposium: Progress in Spinal Fixation, Jun. 21-22, 2002, pp. 1-2, Swiss Spine Institute, Bern, Switzerland.
Taylor, “Non-Fusion Technologies of the Posterior Column: A New Posterior Shock Absorber,” International Symposium on Intervertebral Disc Replacement and Non-Fusion-Technology, May 3-5, 2001, Spine Arthroplasty.
Taylor, “Posterior Dynamic Stabilization using the DIAM (Device for Intervertebral Assisted Motion),” date unknown, pp. 1-5.
Taylor, “Présentation à un an d'un dispositif amortissant d'assistance discale,” 5èmes journées Avances & Controverses en pathologie rachidienne, Oct. 1-2, 1998, Faculté Libre de Médecine de Lille.
Tsuji et al., “Ceramic Interspinous Block (CISB) Assisted Anterior Interbody Fusion,” J. Spinal Disorders, 1990, pp. 77-86, vol. 3, No. 1.
Vangilder, “Interspinous, Laminar, and Facet Posterior Cervical Bone Fusions,” Techniques in Spinal Fusion and Stabilization, Hitchon et al., eds., 1995, pp. 135-146, Ch. 13, Thieme, New York.
Voydeville et al., “Experimental Lumbar Instability and Artificial Ligament,” Eur. J. Orthop. Surg. Traumatol., Jul. 15, 2000, pp. 167-176, vol. 10.
Voydeville et al., “Lumbar Instability Treated by Intervertebral Ligamentoplasty with Smooth Wedges,” Orthopédie Traumatologie, 1992, pp. 259-264, vol. 2, No. 4.
Waldemar Link, “Spinal Surgery: Instrumentation and Implants for Spinal Surgery,” 1981, Link America Inc., New Jersey.
Wilke et al., “Biomedical Effect of Different Lumbar Interspinous Implants on Flexibilty and Intradiscal Pressure,” Eur Spine J., Vo. 17, published online Jun. 27, 2008, pp. 1049-1056.
Wiltse et al., “The Treatment of Spinal Stenosis,” Clinical Orthopaedics and Related Research, Urist, ed., Mar.-Apr. 1976, pp. 83-91, No. 115.
Wisneski et al., “Decompressive Surgery for Lumbar Spinal Stenosis,” Seminars in Spine Surgery, Wiesel, ed., Jun. 1994, pp. 116-123, vol. 6, No. 2.
Zdeblick et al., “Two-Point Fixation of the Lumbar Spine Differential Stability in Rotation,” Spine, 1991, pp. S298-S301, vol. 16, No. 6, Supplement.
Zhao et al., “Efficacy of the Dynamic Interspinous Assisted Motion System in Clinical Treatment of Degenerative Lumbar Disease,” Chin. Med. J., 2010, vol. 123, No. 21, pp. 2974-2977.
Zucherman et al., “Clinical Efficacy of Spinal Instrumentation in Lumbar Degenerative Disc Disease,” Spine, Jul. 1992, pp. 834-837, vol. 17, No. 7.
Related Publications (1)
Number Date Country
20120253393 A1 Oct 2012 US