Spinous process stabilization devices and methods

Information

  • Patent Grant
  • 8226653
  • Patent Number
    8,226,653
  • Date Filed
    Monday, May 3, 2010
    14 years ago
  • Date Issued
    Tuesday, July 24, 2012
    12 years ago
Abstract
Devices and methods for supporting adjacent spinous processes include opposing plates movable toward one another along a cross post to contact opposite sides of each of the spinous processes, and a spacer member about the cross post contacting the adjacent surfaces of the spinous processes to resist movement of the spinous processes toward one another under spinal extension motion.
Description
BACKGROUND

Spinal stabilization procedures are performed and include placement of devices between vertebral bodies in the disc space or along the spinal column. For example, varieties of inter-body fusion devices are widely used following partial or total discectomies to fuse adjacent vertebrae. Artificial disc devices can be placed in the disc space if motion preservation is desired. Still other stabilization devices contemplate the attachment of plates, rods or tethers extradiscally along the vertebrae. Still others are positioned between spinous processes. One example is shown in U.S. Patent Application Publication No. 2003/0216736, which is incorporated herein by reference. There remains a need for devices for spinal stabilization through attachment to the spinous processes along one or more vertebral levels.


SUMMARY

Devices and methods for supporting adjacent spinous processes include opposing plates movable toward one another along a cross post to contact opposite sides of each of the spinous processes, and a member about the cross post contacting the adjacent surfaces of the spinous processes to resist movement of the spinous processes toward one another under spinal extension motion.


According to one aspect, there is provided an implantable device for stabilization of spinous processes. The device includes first and second spaced plates, the first plate having a surface facing a surface of the second plate. A post connected to each of the plates extends from the facing surface of the first plate to the facing surface of the second plate. The connection of the post to the second plate can be adjustable to enable a change of spacing between the first plate and the second plate. A spacer member can be non-rotatably positioned about the post. The spacer member is sized to extend between and contact adjacent surfaces of the spinous processes.


In another aspect, an implantable device for stabilization of spinous processes includes first and second spaced plates each having clamping surfaces facing one another. A post is connected to each of the plates and extends from and is pivotal relative to the clamping surface of the first plate. The connection of the post to the second plate is adjustable to enable changing the spacing between the first plate and the second plate. A spacer member can be positioned about the post. The spacer member is sized to extend between and contact adjacent superior and inferior surfaces of the spinous processes with the clamping surfaces positioned against opposite sides of the spinous processes.


According to another aspect, a method for stabilizing spinous processes of a spinal column comprises: selecting a spacer member from a set of spacer members, the selected spacer member providing a desired fit between adjacent spinous processes; engaging a first plate along a first side of the adjacent spinous processes; positioning the spacer member along a post extending from the first plate and between the adjacent spinous processes, the spacer member extending between and limiting extension movement of the adjacent spinous processes; and engaging a second plate along a second side of the adjacent spinous process with the spacer member between the first and second plates.


These and other aspects will be discussed further below.





BRIEF DESCRIPTION OF THE DRAWINGS


FIG. 1 is a posterior view of a portion of the spine with a device positioned between adjacent spinous processes.



FIG. 2 is a laterally oriented view of the device and spine portion of FIG. 1.



FIG. 3 is a perspective view of the device of FIG. 1.



FIG. 4 is a perspective view of another embodiment device.



FIG. 5 is an elevation view of the device with the central spacer member removed.



FIG. 6 is a section view along line 6-6 of FIG. 5.



FIG. 7 is an elevation view of a first plate comprising a portion of the device.



FIG. 8 is a section view along line 8-8 of FIG. 7.



FIG. 9 is a section view along line 9-9 of FIG. 7.



FIG. 10 is an elevation view of a second plate comprising a portion of the device.



FIG. 11 is a section view along line 11-11 of FIG. 10.



FIG. 12 is a section view along line 12-12 of FIG. 10.



FIG. 13 is an elevation view of a cross post comprising a portion of the device.



FIG. 14 is an end view of the cross post of FIG. 13.



FIG. 15 is a perspective view of one embodiment spacer member.



FIG. 16 is a perspective view of another embodiment spacer member.



FIG. 17 is a perspective view of another embodiment spacer member.



FIG. 18 is a perspective view of another embodiment spacer member.



FIG. 19 is a perspective view of another embodiment spacer member.



FIG. 20 is a perspective view of another embodiment spacer member.



FIG. 21 is an elevation view of another embodiment spacer member.





DESCRIPTION OF THE ILLUSTRATED EMBODIMENTS

For the purposes of promoting an understanding of the principles of the invention, reference will now be made to the embodiments illustrated in the drawings and specific language will be used to describe the same. It will nevertheless be understood that no limitation of the scope of the invention is thereby intended, such alterations and further modifications in the illustrated devices, and such further applications of the principles of the invention as illustrated therein being contemplated as would normally occur to one skilled in the art to which the invention relates.


In FIGS. 1 and 2 there is shown a device 25 engaged to the spinal processes SP1 and SP2 of the L4 and L5 vertebrae. While vertebrae L4 and L5 are shown, it is contemplated that device 25 can be engaged to adjacent spinous processes at any vertebral level of the spinal column. The device may also be adapted to extend along multiple vertebral levels, and it is also contemplated that individual devices may be employed at multiple vertebral levels.


Device 25 includes a first plate 30, a second plate 50 and a spacer member 70 therebetween. First and second plates 30, 50 are movable toward one another along a cross post 80 into clamping engagement with spinous processes SP1, SP2. Locking member 90 can engage cross post 80 to maintain a desired relative positioning between first and second plates 30, 50. A spacer member 70 is positioned along cross post 80, and extends between adjacent super and inferior surfaces of the spinous processes SP1 and SP2.


Engagement of plates 30, 50 to the spinous processes SP1, SP2 resists movement of the spinous processes SP1, SP2 toward and away from one another as a result of spinal extension and flexion, respectively, or as a result of any other movement or condition. Spacer member 70 extends between plates 30, 50 and also between spinous processes SP1, SP2 to resist movement of the spinous processes toward one another as a result of spinal extension. Spacer member 70 can also provide support of the vertebrae to maintain or provide post-operative distraction between the spinous processes SP1 and SP2.


A perspective view of device 25 is shown in FIG. 3 with plates 30, 50 switched in positioning relative to their orientation in FIGS. 1 and 2, and also with cross post 80 extending in the opposite direction from its FIG. 1 direction. In addition, locking member 90 is removed. First plate 30 includes an elongated body 32 extending between a cephalad end 34 and a caudal end 36, and also between an anterior side 35 and a posterior side 37. Body 32 can be rounded about ends 34, 36 and also sides 35, 37 to remove any abrupt transitions between surfaces that may contact and cause irritation in adjacent tissue and/or neural elements.


First plate 30 further includes a clamping surface 38 and an opposite outer surface 40. Clamping surface 38 is positionable against the sides of the respective adjacent spinous processes SP1 and SP2 to provide frictional engagement therewith. As discussed further below, cross post 80 includes one end secured to first plate 30 and extends transversely thereto from clamping surface 38 toward second plate 50.


Second plate 50 is positioned about and movable along cross post 80 and securable in position thereto with locking member 90. Second plate 50 includes an elongated body 52 extending between a cephalad end 54 and a caudal end 56, and also between an anterior side 55 and a posterior side 57. Body 52 can be rounded about ends 54, 56 and also sides 55, 57 to remove any abrupt transitions between surfaces that may contact and irritate adjacent tissue and/or neural elements.


Second plate 50 further includes a clamping surface 58 and an opposite outer surface 60. Clamping surface 58 is positionable against the sides of the respective adjacent spinous processes SP1 and SP2 to provide frictional engagement therewith. In another embodiment, a substantially similar spinous process stabilization device 125 is shown in FIG. 4. In device 125, spikes 126 extend from a clamping surface of first plate 130 to embed in the bony structure of the spinous processes. In another embodiment device 125 shown in FIG. 4, spikes (not shown in second plate 150) extend from a clamping surface of second plate 150 to embed in the bony structure of the spinous processes. Other surface treatments are also contemplated, including ridges, knurlings, peaks and valleys, teeth, and etchings, for example.


Device 25 is further shown in FIGS. 5 and 6 without spacer member 70. First plate 30, shown in isolation in FIGS. 7-9, includes a central receiving portion 44 that defines a receptacle 46 that receives a head 82 of cross post 80 therein. A retaining member 92 is received in circumferential groove 47 and extends about receptacle 46 and the underside of head 82 to capture head 82 in receptacle 46. In one embodiment, head 82 is pivotal in receptacle 46, allowing various angular positions of an elongated shaft 84 extending through retaining member 92 from head 82 to a terminal end 88. The underside of head 82 can be seated upon retaining member 92 to prevent plates 30, 50 from moving away from one another. Retaining member 92 can be in the form of a C-shaped ring or any other form suitable to retain head 82 in receptacle 46.


As further shown in FIGS. 13-14, cross post 80 includes a keyway 86 extending therealong from head 82 to terminal end 88. Keyway 86 forms a channel at least in head 82 to receive pin 94 and resist cross post 80 from rotating about its longitudinal axis 81 in receptacle 46. Keyway 86 includes a flat surface portion 87 along shaft 84 that extends from head 82 to a terminal end 88. In another form, shaft 84 of cross post 80 includes a circular cross-section with no keyway therealong. Such an embodiment may be employed, for example, when it is desired to employ spacer members rotatable about cross post 80, as discussed further below.


Second plate 50, shown in isolation in FIGS. 10-12, includes a central receiving portion 64 that defines a receptacle 66 in communication with a through-bore 68. Through-bore 68 extends between and opens at clamping surface 58 and outer surface 60. Receptacle 66 is formed through central receiving portion 64 and is in communication with through-bore 68 and opens at posterior side 57. In the illustrated embodiment, receptacle 66 is threaded and threadingly engages an externally threaded locking member 90. Locking member 90 is movable along receptacle 66 into and out of engagement with keyway 86 of cross post 80 to secure second plate 50 in a desired position and relative spacing from first plate 30 along cross post 80.


Post 80 is positionable through through-bore 68 to allow securement of second plate 50 thereto. In the illustrated embodiment, through-bore 68 includes a keypath 67 that interacts with keyway 86 to prevent second plate 50 from rotating about cross post 80. The flats on the cross post 80 and through-bore 68 are interruptions in the circular form of the post and bore that interfit to prevent plate 50 from rotating. The post and bore could be of some other cross sectional shape providing a slip fit but avoiding rotation of the locking plate relative to the post. For example, polygonal or interdigitating key and key-way shapes could be used.


First and second plates 30, 50 can be curved between their respective upper and lower ends. For example, anterior sides 35, 55 are convexly curved to provide an anatomical fit between the spinous processes. Concavely curved posterior sides 37, 57 minimize posterior protrusion of plates 50, 70 in the region between the spinous process. Outer surfaces 40, 60 of first and second plates 30, 50 can further include reliefs 41, 61 to facilitate placement and retention of ends of a compression tool (not shown) that is operable to apply a compression force to move the plates into clamping engagement on the spinal processes.


The central receiving portions 44, 64 of plates 30, 50 provide an area of increased thickness of the plates to accommodate attachment of the respective portions of the cross post 80 and locking member 90. Other embodiments contemplate that the plates 30, 50 have a constant thickness along their respective lengths. In other embodiments, the plates 30, 50 may include longitudinal ribs to increase stiffness, or through holes to allow attachment of tethering or other supplemental spinal stabilization or attachment devices.


Various embodiments of spacer members are shown in FIGS. 15-21. In FIG. 15 spacer member 70 includes a cylindrical body extending along a longitudinal axis 73. The body includes an outer surface 71 defining a circular shape in cross-section when viewed orthogonally to axis 73. A passage 76 extends along axis 73 between opposite ends 72, 74 and is sized and shaped to slidably receive cross post 80 therethrough. A keyed portion 78 is provided along one side of passage 76 that is positionable in contact with keyway 86 of cross post 80. Keyed portion 78 interacts with keyway 86 to prevent spacer member 70 from rotating about cross post 80.


In FIG. 16 another embodiment spacer member 170 is provided that is similar to spacer member 70 and includes a cylindrical body extending along longitudinal axis 173 between opposite ends 172, 174. The body includes an outer surface 171 extending thereabout that defines an oval shape in cross-section orthogonally to longitudinal axis 173. A passage 176 extends along axis 173 and is sized and shaped to slidingly receive cross post 80 therein. The elongated or maximum height portions of the oval can be oriented toward the respective inferior and superior spinous process surfaces. This orients the reduced width portion of the oval shape in the anterior-posterior direction to minimize intrusion into the adjacent tissue while maximizing the height between the spinous processes.



FIG. 17 shows another embodiment spacer member 180 having a cylindrical body 182 extending along a longitudinal axis 183. The body includes a generally rectangular outer surface profile in cross-section viewed orthogonally to longitudinal axis 183. A passage 184 extends along axis 183 between opposite flat ends 191, 192. The outer surface profile includes convexly curved anterior and posterior walls 188 extending between planar upper and lower surfaces 186. Passage 184 can include a keyed portion 190 to prevent rotation of spacer member 180 about cross post 80 and to ensure proper alignment during assembly.



FIG. 18 shows another embodiment spacer member 200 having a cylindrical body extending along longitudinal axis 203. The body includes an outer shape in the form of an hourglass extending along longitudinal axis 203. A passage 204 extends along axis 203 between opposite flat ends 206, 212 to receive cross post 80. A concavely curved outer surface portion 208 extends between raised ends 210. The spinous processes are positionable in concavely curved outer surface portion 208 and received between raised ends 210. The nested arrangement provides increased surface area of contact between spacer member 200 and the spinous processes, distributing loading exerted on the spinous processes over correspondingly greater surface areas.



FIGS. 19 and 20 show spacer member 220, 230 that are similar to the spacer members 70, 170 of FIGS. 15 and 16, respectively. However, the passages do not include a keyed portion, allowing the spacer members 220, 230 to rotate about cross post 80. It is also contemplated that the spacer member embodiments 180 and 200 in FIGS. 17 and 18 can have passages with keyed portions or without keyed portions, depending whether or not it is desired to have the spacer member rotatable about the cross post 80. The rotatable spacer members facilitate the spacer member maintaining a bearing relationship with the adjacent spinous process surfaces without twisting or binding as the spinous processes move relative to the spacer member.



FIG. 21 shows a spacer member 240 having a cylindrical body 242 extending between a first end 244 and a second end 246. A passage (not shown) can be provided along spacer member 240 between ends 244, 246. End 244 can be angled relative to central axis 250 at an angle 248. Spacer member 240 with the angled end can be employed in procedures where one of the plates 30, 50 is angled relative to the other to accommodate the spinous process anatomy. The angled end or ends can conform to and maintain contact with the clamping surfaces or surfaces of the plate or plates. Such contact can prevent or resist longitudinal movement of the spacer member along cross post 80 and prevent the formation of gaps between the spacer member and the plates.


It is contemplated that a number of spacer members 240 can be provided in a set having various angles 248 at one or both ends. The surgeon can select the spacer member from the set providing the desired angulation and fit between plates 40, 50 based on pre-operative planning or conditions encountered during surgery.


It is contemplated that any of the spacer member embodiments can be provided in various sizes from which a desired spacer member size and/or shape can be selected by the surgeon. The spacer members can be provided in a kit or as a set, and the spacer member providing the desired outer surface profile and size is selected for placement between the spinous processes based on pre-operative planning or conditions encountered during surgery.


It is further contemplated that the spacer members can be made from a rigid material that positively prevents extension motion of the spinous processes. In another embodiment, the spacer member is made from a compressible material to allow at least limited spinal extension motion between the spinous processes. In still another embodiment, the spacer member is made from an expandable material or is an expandable device that positively directs distraction forces between the spinous processes. In a further embodiment, the spacer member is compressible to initially fit between the spinous processes, and resiliently expands to positively exert a distraction force while yielding under compression forces to allow at least limited spinal extension motion.


In use, the device can be implanted for posterior spinal stabilization as a stand-alone procedure or in conjunction with other procedures. The device can be positioned through a small posterior incision in the patient of sufficient size to admit the device and instrumentation. Following the incision, muscle is moved aside if and as needed for placement of the device into position between spinous processes. After the spacer member is positioned between the spinous processes, the locking member can be loosened if necessary and the plates pushed toward one another with a compression instrument or manually. If spikes are provided, compression is continued until the spikes are sufficiently engaged to the bony material of the spinous processes. The angulation of first plate 30 relative to cross post 80 can be sufficient to enable adaptation of the device to different thicknesses and shapes of the spinal processes of adjacent vertebrae.


Following engagement of plates 30, 50 on the spinal processes, locking member 90 is tightened onto cross post 80 using an appropriate instrument. Locking member 90 may be provided with a break-off portion that provides an indication when sufficient torque is applied. Plates 30, 50 are clamped into engagement with the spinous processes, maintaining the alignment and spacing of the spinous processes while also providing resistance to spinal extension and flexion. The spacer member between the spinous processes can contact and provide support of the adjacent inferior and support spinous process surfaces, resisting settling and compression of the space between the spinous processes. The spacer member can be rigid or stiff so that extension motion is prevented. In another form, the spacer member is resiliently compressible to allow at least limited extension motion. During the implantation procedure, the surgeon can select the shape and size of the spacer member that provides the desired contact or fit with the adjacent spinous processes based on the conditions learned of during pre-operative planning or encountered during surgery.


While the invention has been illustrated and described in detail in the drawings and foregoing description, the same is to be considered as illustrative and not restrictive in character. All changes and modifications that come within the spirit of the invention are desired to be protected.

Claims
  • 1. A spinal implant comprising: a first plate having a medial face configured to confront adjacent spinous processes;a second plate having a medial face configured to confront the adjacent spinous processes; said second plate disposed in spaced relation to said first plate;a post connecting the second plate to the first plate and extending along a longitudinal post axis oriented transverse to the medial face of the second plate;the second plate having a first bore passing through the medial face of the second plate generally normal thereto; the post extending from the medial face of the first plate such that the post longitudinal axis is aligned to extend through the first bore;wherein the medial faces of each of the plates extend from the post in opposite directions therefrom between a cephalad end of the respective plate that is positionable along a cephaladly located spinous process and a caudal end of the respective plate positionable along a caudally located spinous process;wherein the medial face of the first plate comprises a first plurality of inwardly projecting projections that extend generally toward the second plate in both a cephalad section thereof and a caudal section thereof;wherein the medial face of the second plate comprises a second plurality of inwardly projecting projections that extend generally toward the first plate in both a cephalad section thereof and a caudal section thereof;wherein the first plate is curvedly configured such that a first theoretical line connecting a first side-edge of the first plate in the cephalad end of the first plate and the first side-edge of the first plate in the caudal end is spaced outwardly from the first side-edge of the first plate proximate the post;wherein the second plate is curvedly configured such that a second theoretical line connecting a second side-edge of the second plate in the cephalad end of the second plate and the second side-edge of the second plate in the caudal end is spaced outwardly from the second side-edge of the second plate proximate the post;a resiliently deformable spacer having a longitudinal spacer axis and a passage extending along the longitudinal spacer axis; the spacer positioned about the post and disposed between the first and second plates with the post extending through the passage; the spacer distinct from both the first and second plates;a locking mechanism distinct from the spacer and operative to secure the second plate in position relative to the post;wherein the second plate is moveable along the post toward the first plate and lockable at an infinite number of positions relative thereto via engagement of the locking mechanism with the post.
  • 2. The spinal implant of claim 1 wherein the post is pivotable relative to the first plate about a pivot axis; the pivot axis located opposite the second plate with respect to the medial face of the first plate; the pivot axis oriented normal to a theoretical plane disposed generally perpendicular to the medial face of the first plate and containing the longitudinal post axis; the post pivotable about the pivot axis such that the first and second plates may thereby be displaced relative to each other in a direction lying in the theoretical plane and transverse to the post longitudinal axis.
  • 3. The spinal implant of claim 1 wherein the medial faces of the first and second plates are configured to be generally mirror images of each other with respect to a plane perpendicular to the post longitudinal axis and disposed midway between the medial faces of the first and second plates.
  • 4. The spinal implant of claim 1 wherein the spacer is rotatable about the post longitudinal axis.
  • 5. The spinal implant of claim 1 wherein the spacer is non-rotatably positioned about the post.
  • 6. The spinal implant of claim 1 wherein the first and second plates are unconnected to each other by other portions of the implant except through the post, spacer, and locking mechanism.
  • 7. The spinal implant of claim 1 wherein the spacer abuts the medial faces of both the first and second plates.
  • 8. The spinal implant of claim 1 wherein the first bore has a bore axis disposed generally normal to the medial face of the second plate; and wherein the post extends from the medial face of the first plate such that the post longitudinal axis is aligned to extend through the first bore coincident with the bore axis and generally perpendicular to the medial face of the first plate.
  • 9. The spinal implant of claim 1 wherein the spacer has a cross-section shape normal to post longitudinal axis with a generally flat section and outwardly convex sections disposed on opposing sides of the generally flat section.
  • 10. The spinal implant of claim 1 wherein the spacer extends along a central axis between opposite ends thereof, the opposite ends being located adjacent a respective one of the first and second plates, wherein at least one of the opposite ends is angled relative to the other of the opposite ends.
  • 11. The spinal implant of claim 1 wherein the first plate is configured such that a theoretical line connecting an anterior edge of the cephalad end of the first plate and an anterior edge of the caudal end of the first plate is spaced outwardly from an anterior edge of the first plate proximate the post.
  • 12. A spinal implant comprising: a first plate having a medial face configured to confront adjacent spinous processes;a second plate having a medial face configured to confront the adjacent spinous processes; said second plate disposed in spaced relation to said first plate;a post connecting the second plate to the first plate and extending along a longitudinal post axis oriented transverse to the medial face of the second plate;the second plate having a first bore passing through the medial face of the second plate generally normal thereto; the post extending from the medial face of the first plate such that the post longitudinal axis is aligned to extend through the first bore;wherein the medial faces of each of the plates extend from the post in opposite directions therefrom between a cephalad end of the respective plate that is positionable along a cephaladly located spinous process and a caudal end of the respective plate positionable along a caudally located spinous process;wherein the medial face of the first plate comprises a first plurality of inwardly projecting projections that extend generally toward the second plate in both a cephalad section thereof and a caudal section thereof;wherein the medial face of the second plate comprises a second plurality of inwardly projecting projections that extend generally toward the first plate in both a cephalad section thereof and a caudal section thereof;a spacer having a longitudinal spacer axis and a bore extending along the longitudinal spacer axis; the spacer rotatably positioned about the post and disposed between the first and second plates with the post extending through the bore; the spacer distinct from both the first and second plates; the spacer having an external surface;a locking mechanism distinct from the spacer and operative to secure the second plate in position relative to the post;wherein the second plate is moveable along the post toward the first plate and lockable at an infinite number of positions relative thereto via engagement of the locking mechanism with the post;wherein the spacer external surface is configured to abut the spinous processes when the implant is disposed between the spinous processes with the medial faces of the first and second plates confronting the spinous processes and the post extending through a sagittal plane defined by the spinous processes.
  • 13. The spinal implant of claim 12 wherein the spacer is resiliently deformable in a plane normal to the bore.
Parent Case Info

This application is a continuation of prior application Ser. No. 11/117,809, filed 29 Apr. 2005, the entirety of which is incorporated herein by reference.

US Referenced Citations (358)
Number Name Date Kind
624969 Peterson May 1899 A
1153797 Kegreisz Sep 1915 A
1516347 Pataky Nov 1924 A
1870942 Beatty Aug 1932 A
2077804 Morrison Apr 1937 A
2299308 Creighton Oct 1942 A
2485531 Dzus et al. Oct 1949 A
2607370 Anderson Aug 1952 A
2677369 Knowles May 1954 A
2685877 Dobelle Aug 1954 A
3065659 Eriksson et al. Nov 1962 A
3108595 Overment Oct 1963 A
3397699 Kohl Aug 1968 A
3426364 Lumb Feb 1969 A
3648691 Lumb et al. Mar 1972 A
3779239 Fischer et al. Dec 1973 A
4011602 Rybicki et al. Mar 1977 A
4237875 Termanini Dec 1980 A
4257409 Bacal et al. Mar 1981 A
4274324 Giannuzzi Jun 1981 A
4289123 Dunn Sep 1981 A
4327736 Inoue May 1982 A
4401112 Rezaian Aug 1983 A
4499636 Tanaka Feb 1985 A
4519100 Wills et al. May 1985 A
4553273 Wu Nov 1985 A
4554914 Kapp et al. Nov 1985 A
4573454 Hoffman Mar 1986 A
4592341 Omagari et al. Jun 1986 A
4599086 Doty Jul 1986 A
4604995 Stephens et al. Aug 1986 A
4611582 Duff Sep 1986 A
4632101 Freedland Dec 1986 A
4636217 Ogilvie et al. Jan 1987 A
4646998 Pate Mar 1987 A
4657550 Daher Apr 1987 A
4662808 Camilleri May 1987 A
4686970 Dove et al. Aug 1987 A
4704057 McSherry Nov 1987 A
4721103 Freedland Jan 1988 A
4759769 Hedman et al. Jul 1988 A
4787378 Sodhi Nov 1988 A
4822226 Kennedy Apr 1989 A
4827918 Olerud May 1989 A
4834600 Lemke May 1989 A
4863476 Shepperd Sep 1989 A
4886405 Blomberg Dec 1989 A
4892545 Day et al. Jan 1990 A
4913144 Del Medico Apr 1990 A
4931055 Bumpus et al. Jun 1990 A
4932975 Main et al. Jun 1990 A
4969887 Sodhi Nov 1990 A
5000166 Karpf Mar 1991 A
5011484 Breard Apr 1991 A
5047055 Bao et al. Sep 1991 A
5059193 Kuslich Oct 1991 A
5092866 Breard et al. Mar 1992 A
5098433 Freedland Mar 1992 A
5171278 Pisharodi Dec 1992 A
5201734 Cozad et al. Apr 1993 A
5267999 Olerud Dec 1993 A
5290312 Kojimoto et al. Mar 1994 A
5306275 Bryan Apr 1994 A
5306310 Siebels Apr 1994 A
5312405 Korotko et al. May 1994 A
5316422 Coffman May 1994 A
5356423 Tihon et al. Oct 1994 A
5360430 Lin Nov 1994 A
5366455 Dove Nov 1994 A
5370697 Baumgartner Dec 1994 A
5390683 Pisharodi Feb 1995 A
5395370 Muller et al. Mar 1995 A
5401269 Buttner-Janz et al. Mar 1995 A
5403316 Ashman Apr 1995 A
5415661 Holmes May 1995 A
5437672 Alleyne Aug 1995 A
5437674 Worcel et al. Aug 1995 A
5439463 Lin Aug 1995 A
5454812 Lin Oct 1995 A
5456689 Kresch et al. Oct 1995 A
5458641 Ramirez Jimenez Oct 1995 A
5480442 Bertagnoli Jan 1996 A
5496318 Howland et al. Mar 1996 A
5518498 Lindenberg et al. May 1996 A
5554191 Lahille et al. Sep 1996 A
5562662 Brumfield et al. Oct 1996 A
5562735 Margulies Oct 1996 A
5571192 Schonhoffer Nov 1996 A
5609634 Voydeville Mar 1997 A
5609635 Michelson Mar 1997 A
5628756 Barker, Jr. et al. May 1997 A
5630816 Kambin May 1997 A
5645599 Samani Jul 1997 A
5653762 Pisharodi Aug 1997 A
5653763 Errico et al. Aug 1997 A
5658335 Allen Aug 1997 A
5665122 Kambin Sep 1997 A
5674295 Ray et al. Oct 1997 A
5676702 Ratron Oct 1997 A
5685826 Bonutti Nov 1997 A
5690649 Li Nov 1997 A
5693100 Pisharodi Dec 1997 A
5702395 Hopf Dec 1997 A
5702452 Argenson et al. Dec 1997 A
5702455 Saggar Dec 1997 A
5707390 Bonutti Jan 1998 A
5716416 Lin Feb 1998 A
5723013 Jeanson et al. Mar 1998 A
5725341 Hofmeister Mar 1998 A
5746762 Bass May 1998 A
5755797 Baumgartner May 1998 A
5800547 Schafer et al. Sep 1998 A
5810815 Morales Sep 1998 A
5836948 Zucherman et al. Nov 1998 A
5849004 Bramlet Dec 1998 A
5860977 Zucherman et al. Jan 1999 A
5888196 Bonutti Mar 1999 A
5941881 Barnes Aug 1999 A
5976186 Bao et al. Nov 1999 A
5980523 Jackson Nov 1999 A
6022376 Assell et al. Feb 2000 A
6048342 Zucherman et al. Apr 2000 A
6068630 Zucherman et al. May 2000 A
6074390 Zucherman et al. Jun 2000 A
6102922 Jakobsson et al. Aug 2000 A
6126689 Brett Oct 2000 A
6126691 Kasra et al. Oct 2000 A
6127597 Beyar et al. Oct 2000 A
6132464 Martin Oct 2000 A
6190413 Sutcliffe Feb 2001 B1
6190414 Young Feb 2001 B1
6214037 Mitchell et al. Apr 2001 B1
6214050 Huene Apr 2001 B1
6245107 Ferree Jun 2001 B1
6293949 Justis et al. Sep 2001 B1
6336930 Stalcup et al. Jan 2002 B1
6348053 Cachia Feb 2002 B1
6352537 Strnad Mar 2002 B1
6364883 Santilli Apr 2002 B1
6371987 Weiland et al. Apr 2002 B1
6375682 Fleischmann et al. Apr 2002 B1
6402750 Atkinson et al. Jun 2002 B1
6402751 Hoeck et al. Jun 2002 B1
6419703 Fallin et al. Jul 2002 B1
6419704 Ferree Jul 2002 B1
6432130 Hanson Aug 2002 B1
6440169 Elberg et al. Aug 2002 B1
6447513 Griggs Sep 2002 B1
6451019 Zucherman et al. Sep 2002 B1
6500178 Zucherman et al. Dec 2002 B2
6511508 Shahinpoor et al. Jan 2003 B1
6514256 Zucherman et al. Feb 2003 B2
6520991 Huene Feb 2003 B2
6554833 Levy Apr 2003 B2
6582433 Yun Jun 2003 B2
6582467 Teitelbaum et al. Jun 2003 B1
6592585 Lee et al. Jul 2003 B2
6626944 Taylor Sep 2003 B1
6645207 Dixon et al. Nov 2003 B2
6669729 Chin Dec 2003 B2
6685742 Jackson Feb 2004 B1
6695842 Zucherman et al. Feb 2004 B2
6699246 Zucherman et al. Mar 2004 B2
6709435 Lin Mar 2004 B2
6723126 Berry Apr 2004 B1
6730126 Boehm, Jr. et al. May 2004 B2
6733531 Trieu May 2004 B1
6733534 Sherman May 2004 B2
6736818 Perren et al. May 2004 B2
6743257 Castro Jun 2004 B2
6758863 Estes et al. Jul 2004 B2
6761720 Senegas Jul 2004 B1
6770096 Bolger et al. Aug 2004 B2
6783530 Levy Aug 2004 B1
6835205 Atkinson et al. Dec 2004 B2
6902580 Fallin et al. Jun 2005 B2
6905512 Paes et al. Jun 2005 B2
6946000 Senegas et al. Sep 2005 B2
6981975 Michelson Jan 2006 B2
7011685 Arnin et al. Mar 2006 B2
7041136 Goble et al. May 2006 B2
7048736 Robinson et al. May 2006 B2
7070598 Lim et al. Jul 2006 B2
7081120 Li et al. Jul 2006 B2
7087055 Lim et al. Aug 2006 B2
7087083 Pasquet et al. Aug 2006 B2
7097648 Globerman et al. Aug 2006 B1
7097654 Freedland Aug 2006 B1
7101375 Zucherman et al. Sep 2006 B2
7163558 Senegas et al. Jan 2007 B2
7201751 Zucherman et al. Apr 2007 B2
7217293 Branch, Jr. May 2007 B2
7238204 Le Couedic et al. Jul 2007 B2
7306628 Zucherman et al. Dec 2007 B2
7335203 Winslow et al. Feb 2008 B2
7377942 Berry May 2008 B2
7431735 Liu et al. Oct 2008 B2
7442208 Mathieu et al. Oct 2008 B2
7445637 Taylor Nov 2008 B2
7458981 Fielding et al. Dec 2008 B2
7582106 Teitelbaum et al. Sep 2009 B2
7604652 Arnin et al. Oct 2009 B2
7611316 Panasik et al. Nov 2009 B2
7621950 Globerman et al. Nov 2009 B1
7658752 Labrom et al. Feb 2010 B2
7749252 Zucherman et al. Jul 2010 B2
7771456 Hartman et al. Aug 2010 B2
7862615 Carli et al. Jan 2011 B2
7901430 Matsuura et al. Mar 2011 B2
20010016743 Zucherman et al. Aug 2001 A1
20020143331 Zucherman et al. Oct 2002 A1
20030040746 Mitchell et al. Feb 2003 A1
20030045940 Eberlein et al. Mar 2003 A1
20030065330 Zucherman et al. Apr 2003 A1
20030153915 Nekozuka et al. Aug 2003 A1
20040010312 Enayati Jan 2004 A1
20040010316 William et al. Jan 2004 A1
20040087947 Lim et al. May 2004 A1
20040097931 Mitchell May 2004 A1
20040106995 LeCouedic et al. Jun 2004 A1
20040117017 Pasquet et al. Jun 2004 A1
20040133204 Davies Jul 2004 A1
20040133280 Trieu Jul 2004 A1
20040158248 Ginn Aug 2004 A1
20040167625 Beyar et al. Aug 2004 A1
20040199255 Mathieu et al. Oct 2004 A1
20040260397 Lambrecht et al. Dec 2004 A1
20050010293 Zucherman et al. Jan 2005 A1
20050033434 Berry Feb 2005 A1
20050049708 Atkinson et al. Mar 2005 A1
20050085814 Sherman et al. Apr 2005 A1
20050143827 Globerman et al. Jun 2005 A1
20050165398 Reiley Jul 2005 A1
20050203512 Hawkins et al. Sep 2005 A1
20050203519 Harms et al. Sep 2005 A1
20050203624 Serhan et al. Sep 2005 A1
20050228391 Levy et al. Oct 2005 A1
20050245937 Winslow Nov 2005 A1
20050261768 Trieu Nov 2005 A1
20050267579 Reiley et al. Dec 2005 A1
20050273166 Sweeney Dec 2005 A1
20050288672 Ferree Dec 2005 A1
20060004447 Mastrorio et al. Jan 2006 A1
20060004455 Leonard et al. Jan 2006 A1
20060015181 Elberg Jan 2006 A1
20060064165 Zucherman et al. Mar 2006 A1
20060084983 Kim Apr 2006 A1
20060084985 Kim Apr 2006 A1
20060084987 Kim Apr 2006 A1
20060084988 Kim Apr 2006 A1
20060085069 Kim Apr 2006 A1
20060085070 Kim Apr 2006 A1
20060085074 Raiszadeh Apr 2006 A1
20060089654 Lins et al. Apr 2006 A1
20060089719 Trieu Apr 2006 A1
20060095136 McLuen May 2006 A1
20060106381 Ferree et al. May 2006 A1
20060106397 Lins May 2006 A1
20060111728 Abdou May 2006 A1
20060116690 Pagano Jun 2006 A1
20060122620 Kim Jun 2006 A1
20060129239 Kwak Jun 2006 A1
20060136060 Taylor Jun 2006 A1
20060142858 Colleran et al. Jun 2006 A1
20060149242 Kraus et al. Jul 2006 A1
20060182515 Panasik et al. Aug 2006 A1
20060184247 Edidin et al. Aug 2006 A1
20060184248 Edidin et al. Aug 2006 A1
20060195102 Malandain Aug 2006 A1
20060217726 Maxy et al. Sep 2006 A1
20060224159 Anderson Oct 2006 A1
20060224241 Butler et al. Oct 2006 A1
20060235387 Peterman Oct 2006 A1
20060235532 Meunier et al. Oct 2006 A1
20060241601 Trautwein et al. Oct 2006 A1
20060241613 Bruneau et al. Oct 2006 A1
20060241643 Lim et al. Oct 2006 A1
20060241757 Anderson Oct 2006 A1
20060247623 Anderson et al. Nov 2006 A1
20060247640 Blackwell et al. Nov 2006 A1
20060264938 Zucherman et al. Nov 2006 A1
20060271044 Petrini et al. Nov 2006 A1
20060271049 Zucherman et al. Nov 2006 A1
20060271061 Beyer et al. Nov 2006 A1
20060282075 Labrom et al. Dec 2006 A1
20060282079 Labrom et al. Dec 2006 A1
20060293662 Boyer, II et al. Dec 2006 A1
20060293663 Walkenhorst et al. Dec 2006 A1
20070005064 Anderson et al. Jan 2007 A1
20070010813 Zucherman et al. Jan 2007 A1
20070032790 Aschmann et al. Feb 2007 A1
20070043362 Malandain et al. Feb 2007 A1
20070043363 Malandain et al. Feb 2007 A1
20070073289 Kwak et al. Mar 2007 A1
20070100340 Lange et al. May 2007 A1
20070123861 Dewey et al. May 2007 A1
20070142915 Altarac et al. Jun 2007 A1
20070151116 Malandain Jul 2007 A1
20070162000 Perkins Jul 2007 A1
20070167945 Lange et al. Jul 2007 A1
20070173822 Bruneau et al. Jul 2007 A1
20070173823 Dewey et al. Jul 2007 A1
20070191833 Bruneau et al. Aug 2007 A1
20070191834 Bruneau et al. Aug 2007 A1
20070191837 Trieu Aug 2007 A1
20070191838 Bruneau et al. Aug 2007 A1
20070198091 Boyer et al. Aug 2007 A1
20070225807 Phan et al. Sep 2007 A1
20070233068 Bruneau et al. Oct 2007 A1
20070233074 Anderson et al. Oct 2007 A1
20070233076 Trieu Oct 2007 A1
20070233081 Pasquet et al. Oct 2007 A1
20070233089 DiPoto et al. Oct 2007 A1
20070250060 Anderson et al. Oct 2007 A1
20070270823 Trieu et al. Nov 2007 A1
20070270824 Lim et al. Nov 2007 A1
20070270825 Carls et al. Nov 2007 A1
20070270826 Trieu et al. Nov 2007 A1
20070270827 Lim et al. Nov 2007 A1
20070270828 Bruneau et al. Nov 2007 A1
20070270829 Carls et al. Nov 2007 A1
20070270834 Bruneau et al. Nov 2007 A1
20070270874 Anderson Nov 2007 A1
20070272259 Allard et al. Nov 2007 A1
20070276368 Trieu et al. Nov 2007 A1
20070276369 Allard et al. Nov 2007 A1
20070276493 Malandain et al. Nov 2007 A1
20070276496 Lange et al. Nov 2007 A1
20070276497 Anderson Nov 2007 A1
20070282443 Globerman et al. Dec 2007 A1
20080021457 Anderson et al. Jan 2008 A1
20080021460 Bruneau et al. Jan 2008 A1
20080058934 Malandain et al. Mar 2008 A1
20080097446 Reiley et al. Apr 2008 A1
20080114357 Allard et al. May 2008 A1
20080114358 Anderson et al. May 2008 A1
20080114456 Dewey et al. May 2008 A1
20080147190 Dewey et al. Jun 2008 A1
20080161818 Kloss et al. Jul 2008 A1
20080167685 Allard et al. Jul 2008 A1
20080183209 Robinson et al. Jul 2008 A1
20080183211 Lamborne et al. Jul 2008 A1
20080183218 Mueller et al. Jul 2008 A1
20080195152 Altarac et al. Aug 2008 A1
20080215094 Taylor Sep 2008 A1
20080221685 Altarac et al. Sep 2008 A9
20080234824 Youssef et al. Sep 2008 A1
20080262617 Froehlich et al. Oct 2008 A1
20080281360 Vittur et al. Nov 2008 A1
20080281361 Vittur et al. Nov 2008 A1
20090062915 Kohm et al. Mar 2009 A1
20090105766 Thompson et al. Apr 2009 A1
20090105773 Lange et al. Apr 2009 A1
20090234389 Chuang et al. Sep 2009 A1
20090240283 Carls et al. Sep 2009 A1
20090270918 Attia et al. Oct 2009 A1
20100121379 Edmond May 2010 A1
20100204732 Aschmann et al. Aug 2010 A1
Foreign Referenced Citations (61)
Number Date Country
2821678 Nov 1979 DE
3922044 Feb 1991 DE
4012622 Jul 1991 DE
0322334 Feb 1992 EP
0767636 Jan 1999 EP
1004276 May 2000 EP
1011464 Jun 2000 EP
1138268 Oct 2001 EP
1148850 Oct 2001 EP
1148851 Oct 2001 EP
1302169 Apr 2003 EP
1330987 Jul 2003 EP
1552797 Jul 2005 EP
1854433 Nov 2007 EP
1905392 Apr 2008 EP
1982664 Oct 2008 EP
2623085 May 1989 FR
2625097 Jun 1989 FR
2681525 Mar 1993 FR
2700941 Aug 1994 FR
2703239 Oct 1994 FR
2707864 Jan 1995 FR
2717675 Sep 1995 FR
2722087 Jan 1996 FR
2722088 Jan 1996 FR
2724554 Mar 1996 FR
2725892 Apr 1996 FR
2730156 Aug 1996 FR
2731643 Sep 1996 FR
2775183 Aug 1999 FR
2799948 Apr 2001 FR
2816197 May 2002 FR
02-224660 Sep 1990 JP
09-075381 Mar 1997 JP
2003079649 Mar 2003 JP
988281 Jan 1983 SU
1484348 Jun 1989 SU
9426192 Nov 1994 WO
9426195 Nov 1994 WO
9718769 May 1997 WO
9820939 May 1998 WO
9926562 Jun 1999 WO
0044319 Aug 2000 WO
0154598 Aug 2001 WO
03057055 Jul 2003 WO
2004047689 Jun 2004 WO
2004047691 Jun 2004 WO
2004084743 Oct 2004 WO
2004084768 Oct 2004 WO
2004110300 Dec 2004 WO
2005009300 Feb 2005 WO
2005011507 Feb 2005 WO
2005044118 May 2005 WO
2005048856 Jun 2005 WO
2005110258 Nov 2005 WO
2006064356 Jun 2006 WO
2007034516 Mar 2007 WO
2007052975 May 2007 WO
2009083276 Jul 2009 WO
2009083583 Jul 2009 WO
2009098536 Aug 2009 WO
Related Publications (1)
Number Date Country
20100211101 A1 Aug 2010 US
Continuations (1)
Number Date Country
Parent 11117809 Apr 2005 US
Child 12772789 US