Spinous process stabilization devices and methods

Information

  • Patent Grant
  • 7727233
  • Patent Number
    7,727,233
  • Date Filed
    Friday, April 29, 2005
    18 years ago
  • Date Issued
    Tuesday, June 1, 2010
    13 years ago
Abstract
Devices and methods for supporting adjacent spinous processes include opposing plates movable toward one another along a cross post to contact opposite sides of each of the spinous processes, and a spacer member about the cross post contacting the adjacent surfaces of the spinous processes to resist movement of the spinous processes toward one another under spinal extension motion.
Description
BACKGROUND

Spinal stabilization procedures are performed and include placement of devices between vertebral bodies in the disc space or along the spinal column. For example, varieties of inter-body fusion devices are widely used following partial or total discectomies to fuse adjacent vertebrae. Artificial disc devices can be placed in the disc space if motion preservation is desired. Still other stabilization devices contemplate the attachment of plates, rods or tethers extradiscally along the vertebrae. Still others are positioned between spinous processes. One example is shown in U.S. Patent Application Publication No. 2003/0216736, which is incorporated herein by reference. There remains a need for devices for spinal stabilization through attachment to the spinous processes along one or more vertebral levels.


SUMMARY

Devices and methods for supporting adjacent spinous processes include opposing plates movable toward one another along a cross post to contact opposite sides of each of the spinous processes, and a member about the cross post contacting the adjacent surfaces of the spinous processes to resist movement of the spinous processes toward one another under spinal extension motion.


According to one aspect, there is provided an implantable device for stabilization of spinous processes. The device includes first and second spaced plates, the first plate having a surface facing a surface of the second plate. A post connected to each of the plates extends from the facing surface of the first plate to the facing surface of the second plate. The connection of the post to the second plate can be adjustable to enable a change of spacing between the first plate and the second plate. A spacer member can be non-rotatably positioned about the post. The spacer member is sized to extend between and contact adjacent surfaces of the spinous processes.


In another aspect, an implantable device for stabilization of spinous processes includes first and second spaced plates each having clamping surfaces facing one another. A post is connected to each of the plates and extends from and is pivotal relative to the clamping surface of the first plate. The connection of the post to the second plate is adjustable to enable changing the spacing between the first plate and the second plate. A spacer member can be positioned about the post. The spacer member is sized to extend between and contact adjacent superior and inferior surfaces of the spinous processes with the clamping surfaces positioned against opposite sides of the spinous processes.


According to another aspect, a method for stabilizing spinous processes of a spinal column comprises: selecting a spacer member from a set of spacer members, the selected spacer member providing a desired fit between adjacent spinous processes; engaging a first plate along a first side of the adjacent spinous processes; positioning the spacer member along a post extending from the first plate and between the adjacent spinous processes, the spacer member extending between and limiting extension movement of the adjacent spinous processes; and engaging a second plate along a second side of the adjacent spinous process with the spacer member between the first and second plates.


These and other aspects will be discussed further below.





BRIEF DESCRIPTION OF THE DRAWINGS


FIG. 1 is a posterior view of a portion of the spine with a device positioned between adjacent spinous processes.



FIG. 2 is a laterally oriented view of the device and spine portion of FIG. 1.



FIG. 3 is a perspective view of the device of FIG. 1.



FIG. 4 is a perspective view of another embodiment device.



FIG. 5 is an elevation view of the device with the central spacer member removed.



FIG. 6 is a section view along line 6-6 of FIG. 5.



FIG. 7 is an elevation view of a first plate comprising a portion of the device.



FIG. 8 is a section view along line 8-8 of FIG. 7.



FIG. 9 is a section view along line 9-9 of FIG. 7.



FIG. 10 is an elevation view of a second plate comprising a portion of the device.



FIG. 11 is a section view along line 11-11 of FIG. 10.



FIG. 12 is a section view along line 12-12 of FIG. 10.



FIG. 13 is an elevation view of a cross post comprising a portion of the device.



FIG. 14 is an end view of the cross post of FIG. 13.



FIG. 15 is a perspective view of one embodiment spacer member.



FIG. 16 is a perspective view of another embodiment spacer member.



FIG. 17 is a perspective view of another embodiment spacer member.



FIG. 18 is a perspective view of another embodiment spacer member.



FIG. 19 is a perspective view of another embodiment spacer member.



FIG. 20 is a perspective view of another embodiment spacer member.



FIG. 21 is an elevation view of another embodiment spacer member.





DESCRIPTION OF THE ILLUSTRATED EMBODIMENTS

For the purposes of promoting an understanding of the principles of the invention, reference will now be made to the embodiments illustrated in the drawings and specific language will be used to describe the same. It will nevertheless be understood that no limitation of the scope of the invention is thereby intended, such alterations and further modifications in the illustrated devices, and such further applications of the principles of the invention as illustrated therein being contemplated as would normally occur to one skilled in the art to which the invention relates.


In FIGS. 1 and 2 there is shown a device 25 engaged to the spinal processes SP1 and SP2 of the L4 and L5 vertebrae. While vertebrae L4 and L5 are shown, it is contemplated that device 25 can be engaged to adjacent spinous processes at any vertebral level of the spinal column. The device may also be adapted to extend along multiple vertebral levels, and it is also contemplated that individual devices may be employed at multiple vertebral levels.


Device 25 includes a first plate 30, a second plate 50 and a spacer member 70 therebetween. First and second plates 30, 50 are movable toward one another along a cross post 80 into clamping engagement with spinous processes SP1, SP2. Locking member 90 can engage cross post 80 to maintain a desired relative positioning between first and second plates 30, 50. A spacer member 70 is positioned along cross post 80, and extends between adjacent super and inferior surfaces of the spinous processes SP1 and SP2.


Engagement of plates 30, 50 to the spinous processes SP1, SP2 resists movement of the spinous processes SP1, SP2 toward and away from one another as a result of spinal extension and flexion, respectively, or as a result of any other movement or condition. Spacer member 70 extends between plates 30, 50 and also between spinous processes SP1, SP2 to resist movement of the spinous processes toward one another as a result of spinal extension. Spacer member 70 can also provide support of the vertebrae to maintain or provide post-operative distraction between the spinous processes SP1 and SP2.


A perspective view of device 25 is shown in FIG. 3 with plates 30, 50 switched in positioning relative to their orientation in FIGS. 1 and 2, and also with cross post 80 extending in the opposite direction from its FIG. 1 direction. In addition, locking member 90 is removed. First plate 30 includes an elongated body 32 extending between a cephalad end 34 and a caudal end 36, and also between an anterior side 35 and a posterior side 37. Body 32 can be rounded about ends 34, 36 and also sides 35, 37 to remove any abrupt transitions between surfaces that may contact and cause irritation in adjacent tissue and/or neural elements.


First plate 30 further includes a clamping surface 38 and an opposite outer surface 40. Clamping surface 38 is positionable against the sides of the respective adjacent spinous processes SP1 and SP2 to provide frictional engagement therewith. As discussed further below, cross post 80 includes one end secured to first plate 30 and extends transversely thereto from clamping surface 38 toward second plate 50.


Second plate 50 is positioned about and movable along cross post 80 and securable in position thereto with locking member 90. Second plate 50 includes an elongated body 52 extending between a cephalad end 54 and a caudal end 56, and also between an anterior side 55 and a posterior side 57. Body 52 can be rounded about ends 54, 56 and also sides 55, 57 to remove any abrupt transitions between surfaces that may contact and irritate adjacent tissue and/or neural elements.


Second plate 50 further includes a clamping surface 58 and an opposite outer surface 60. Clamping surface 58 is positionable against the sides of the respective adjacent spinous processes SP1 and SP2 to provide frictional engagement therewith. In another embodiment, a substantially similar spinous process stabilization device 125 is shown in FIG. 4. In device 125, spikes 126 extend from a clamping surface of first plate 130 to embed in the bony structure of the spinous processes. In another embodiment device 125 shown in FIG. 4, spikes (not shown in second plate 150) extend from a clamping surface of second plate 150 to embed in the bony structure of the spinous processes. Other surface treatments are also contemplated, including ridges, knurlings, peaks and valleys, teeth, and etchings, for example.


Device 25 is further shown in FIGS. 5 and 6 without spacer member 70. First plate 30, shown in isolation in FIGS. 7-9, includes a central receiving portion 44 that defines a receptacle 46 that receives a head 82 of cross post 80 therein. A retaining member 92 is received in circumferential groove 47 and extends about receptacle 46 and the underside of head 82 to capture head 82 in receptacle 46. In one embodiment, head 82 is pivotal in receptacle 46, allowing various angular positions of an elongated shaft 84 extending through retaining member 92 from head 82 to a terminal end 88. The underside of head 82 can be seated upon retaining member 92 to prevent plates 30, 50 from moving away from one another. Retaining member 92 can be in the form of a C-shaped ring or any other form suitable to retain head 82 in receptacle 46.


As further shown in FIGS. 13-14, cross post 80 includes a keyway 86 extending therealong from head 82 to terminal end 88. Keyway 86 forms a channel at least in head 82 to receive pin 94 and resist cross post 80 from rotating about its longitudinal axis 81 in receptacle 46. Keyway 86 includes a flat surface portion 87 along shaft 84 that extends from head 82 to a terminal end 88. In another form, shaft 84 of cross post 80 includes a circular cross-section with no keyway therealong. Such an embodiment may be employed, for example, when it is desired to employ spacer members rotatable about cross post 80, as discussed further below.


Second plate 50, shown in isolation in FIGS. 10-12, includes a central receiving portion 64 that defines a receptacle 66 in communication with a through-bore 68. Through-bore 68 extends between and opens at clamping surface 58 and outer surface 60. Receptacle 66 is formed through central receiving portion 64 and is in communication with through-bore 68 and opens at posterior side 57. In the illustrated embodiment, receptacle 66 is threaded and threadingly engages an externally threaded locking member 90. Locking member 90 is movable along receptacle 66 into and out of engagement with keyway 86 of cross post 80 to secure second plate 50 in a desired position and relative spacing from first plate 30 along cross post 80.


Post 80 is positionable through through-bore 68 to allow securement of second plate 50 thereto. In the illustrated embodiment, through-bore 68 includes a keypath 67 that interacts with keyway 86 to prevent second plate 50 from rotating about cross post 80. The flats on the cross post 80 and through-bore 68 are interruptions in the circular form of the post and bore that interfit to prevent plate 50 from rotating. The post and bore could be of some other cross sectional shape providing a slip fit but avoiding rotation of the locking plate relative to the post. For example, polygonal or interdigitating key and key-way shapes could be used.


First and second plates 30, 50 can be curved between their respective upper and lower ends. For example, anterior sides 35, 55 are convexly curved to provide an anatomical fit between the spinous processes. Concavely curved posterior sides 37, 57 minimize posterior protrusion of plates 50, 70 in the region between the spinous process. Outer surfaces 40, 60 of first and second plates 30, 50 can further include reliefs 41, 61 to facilitate placement and retention of ends of a compression tool (not shown) that is operable to apply a compression force to move the plates into clamping engagement on the spinal processes.


The central receiving portions 44, 64 of plates 30, 50 provide an area of increased thickness of the plates to accommodate attachment of the respective portions of the cross post 80 and locking member 90. Other embodiments contemplate that the plates 30, 50 have a constant thickness along their respective lengths. In other embodiments, the plates 30, 50 may include longitudinal ribs to increase stiffness, or through holes to allow attachment of tethering or other supplemental spinal stabilization or attachment devices.


Various embodiments of spacer members are shown in FIGS. 15-21. In FIG. 15 spacer member 70 includes a cylindrical body extending along a longitudinal axis 73. The body includes an outer surface 71 defining a circular shape in cross-section when viewed orthogonally to axis 73. A passage 76 extends along axis 73 between opposite ends 72, 74 and is sized and shaped to slidably receive cross post 80 therethrough. A keyed portion 78 is provided along one side of passage 76 that is positionable in contact with keyway 86 of cross post 80. Keyed portion 78 interacts with keyway 86 to prevent spacer member 70 from rotating about cross post 80.


In FIG. 16 another embodiment spacer member 170 is provided that is similar to spacer member 70 and includes a cylindrical body extending along longitudinal axis 173 between opposite ends 172, 174. The body includes an outer surface 171 extending thereabout that defines an oval shape in cross-section orthogonally to longitudinal axis 173. A passage 176 extends along axis 173 and is sized and shaped to slidingly receive cross post 80 therein. The elongated or maximum height portions of the oval can be oriented toward the respective inferior and superior spinous process surfaces. This orients the reduced width portion of the oval shape in the anterior-posterior direction to minimize intrusion into the adjacent tissue while maximizing the height between the spinous processes.



FIG. 17 shows another embodiment spacer member 180 having a cylindrical body 182 extending along a longitudinal axis 183. The body includes a generally rectangular outer surface profile in cross-section viewed orthogonally to longitudinal axis 183. A passage 184 extends along axis 183 between opposite flat ends 191, 192. The outer surface profile includes convexly curved anterior and posterior walls 188 extending between planar upper and, lower surfaces 186. Passage 184 can include a keyed portion 190 to prevent rotation of spacer member 180 about cross post 80 and to ensure proper alignment during assembly.



FIG. 18 shows another embodiment spacer member 200 having a cylindrical body extending along longitudinal axis 203. The body includes an outer shape in the form of an hourglass extending along longitudinal axis 203. A passage 204 extends along axis 203 between opposite flat ends 206, 212 to receive cross post 80. A concavely curved outer surface portion 208 extends between raised ends 210. The spinous processes are positionable in concavely curved outer surface portion 208 and received between raised ends 210. The nested arrangement provides increased surface area of contact between spacer member 200 and the spinous processes, distributing loading exerted on the spinous processes over correspondingly greater surface areas.



FIGS. 19 and 20 show spacer member 220, 230 that are similar to the spacer members 70, 170 of FIGS. 15 and 16, respectively. However, the passages do not include a keyed portion, allowing the spacer members 220, 230 to rotate about cross post 80. It is also contemplated that the spacer member embodiments 180 and 200 in FIGS. 17 and 18 can have passages with keyed portions or without keyed portions, depending whether or not it is desired to have the spacer member rotatable about the cross post 80. The rotatable spacer members facilitate the spacer member maintaining a bearing relationship with the adjacent spinous process surfaces without twisting or binding as the spinous processes move relative to the spacer member.



FIG. 21 shows a spacer member 240 having a cylindrical body 242 extending between a first end 244 and a second end 246. A passage (not shown) can be provided along spacer member 240 between ends 244, 246. End 244 can be angled relative to central axis 250 at an angle 248. Spacer member 240 with the angled end can be employed in procedures where one of the plates 30, 50 is angled relative to the other to accommodate the spinous process anatomy. The angled end or ends can conform to and maintain contact with the clamping surfaces or surfaces of the plate or plates. Such contact can prevent or resist longitudinal movement of the spacer member along cross post 80 and prevent the formation of gaps between the spacer member and the plates.


It is contemplated that a number of spacer members 240 can be provided in a set having various angles 248 at one or both ends. The surgeon can select the spacer member from the set providing the desired angulation and fit between plates 40, 50 based on pre-operative planning or conditions encountered during surgery.


It is contemplated that any of the spacer member embodiments can be provided in various sizes from which a desired spacer member size and/or shape can be selected by the surgeon. The spacer members can be provided in a kit or as a set, and the spacer member providing the desired outer surface profile and size is selected for placement between the spinous processes based on pre-operative planning or conditions encountered during surgery.


It is further contemplated that the spacer members can be made from a rigid material that positively prevents extension motion of the spinous processes. In another embodiment, the spacer member is made from a compressible material to allow at least limited spinal extension motion between the spinous processes. In still another embodiment, the spacer member is made from an expandable material or is an expandable device that positively directs distraction forces between the spinous processes. In a further embodiment, the spacer member is compressible to initially fit between the spinous processes, and resiliently expands to positively exert a distraction force while yielding under compression forces to allow at least limited spinal extension motion.


In use, the device can be implanted for posterior spinal stabilization as a stand-alone procedure or in conjunction with other procedures. The device can be positioned through a small posterior incision in the patient of sufficient size to admit the device and instrumentation. Following the incision, muscle is moved aside if and as needed for placement of the device into position between spinous processes. After the spacer member is positioned between the spinous processes, the locking member can be loosened if necessary and the plates pushed toward one another with a compression instrument or manually. If spikes are provided, compression is continued until the spikes are sufficiently engaged to the bony material of the spinous processes. The angulation of first plate 30 relative to cross post 80 can be sufficient to enable adaptation of the device to different thicknesses and shapes of the spinal processes of adjacent vertebrae.


Following engagement of plates 30, 50 on the spinal processes, locking member 90 is tightened onto cross post 80 using an appropriate instrument. Locking member 90 may be provided with a break-off portion that provides an indication when sufficient torque is applied. Plates 30, 50 are clamped into engagement with the spinous processes, maintaining the alignment and spacing of the spinous processes while also providing resistance to spinal extension and flexion. The spacer member between the spinous processes can contact and provide support of the adjacent inferior and support spinous process surfaces, resisting settling and compression of the space between the spinous processes. The spacer member can be rigid or stiff so that extension motion is prevented. In another form, the spacer member is resiliently compressible to allow at least limited extension motion. During the implantation procedure, the surgeon can select the shape and size of the spacer member that provides the desired contact or fit with the adjacent spinous processes based on the conditions learned of during pre-operative planning or encountered during surgery.


While the invention has been illustrated and described in detail in the drawings and foregoing description, the same is to be considered as illustrative and not restrictive in character. All changes and modifications that come within the spirit of the invention are desired to be protected.

Claims
  • 1. An interspinous implant device comprising: a first plate having a medial face configured to abut adjacent spinous processes;a second plate having a medial face configured to abut the adjacent spinous processes; said second plate disposed in spaced relation to said first plate and having a longitudinal plate axis;the medial face of at least one of the first plate and the second plate comprising a plurality of inwardly projecting projections;a post connecting the second plate to the first plate and extending along a longitudinal post axis oriented transverse to the medial face of the second plate;the post pivotable relative to the first plate about a pivot axis; the pivot axis located opposite the second plate with respect to the medial face of the first plate; the pivot axis oriented normal to a theoretical plane disposed generally perpendicular to the medial face of the first plate and containing the longitudinal post axis; the post pivotable about the pivot axis such that the first and second plates may thereby be displaced relative to each other in a direction lying in the theoretical plane and transverse to the post longitudinal axis;wherein the medial faces of each of the plates extend from the post in opposite directions therefrom between a cephalad end of the respective plate that is positionable along a cephaladly located spinous process and a caudal end of the respective plate positionable along a caudally located spinous process;the second plate having a first bore; the post extending from the medial face of the first plate through at least a portion of the first bore;a spacer positioned about the post and disposed between the first and second plates;a locking mechanism associated with the second plate;wherein the second plate is moveable along the post toward the first plate and lockable relative thereto via engagement of the locking mechanism with the post.
  • 2. The implant of claim 1 wherein the first plate is configured such that a theoretical line connecting an anterior edge of the cephalad end of the first plate and an anterior edge of the caudal end of the first plate is spaced outwardly from an anterior edge of the first plate proximate the post.
  • 3. The implant of claim 2 wherein the second plate is configured such that a theoretical line connecting an anterior edge of the cephalad end of the second plate and an anterior edge of the caudal end of the second plate is spaced outwardly from an anterior edge of the second plate proximate the first bore.
  • 4. The device of claim 1 wherein the second plate is both moveable along the post toward and away from the first plate and lockable relative thereto via engagement of the locking mechanism with the post at an infinite number of positions along the post.
  • 5. The device of claim 1 wherein the medial faces of at both of the first plate and the second plate comprise a plurality of inwardly projecting projections.
  • 6. The device of claim 5 wherein said plurality of inwardly projecting projections comprises a surface treatment selected from the group consisting of ridges, knurlings, peaks and valleys, teeth, etchings.
  • 7. The device of claim 5 wherein said plurality of inwardly projecting projections comprises an array of inwardly projecting spikes.
  • 8. The device of claim 1: wherein the cephalad end of the first plate is generally symmetric with the cephalad first end of the second plate and the caudal end of the first plate is generally symmetric with the caudal end of the second plate.
  • 9. The device of claim 1 wherein when the medial face of the first plate is positioned in abutment with a first lateral side of adjacent spinous processes, and the medial face of the second plate is positioned in abutment with a second lateral side of the adjacent spinous processes, the spacer extends between and contacts the adjacent spinous processes.
  • 10. The device of claim 1 wherein the spacer has a cross-section having a generally planar upper surface, a generally planar lower surface, and outwardly facing convex outer sidewalls connecting the upper and lower surfaces.
  • 11. The device of claim 10 wherein the spacer includes at least one outwardly facing concave outer surface for engaging one of the spinous processes.
  • 12. The implant device of claim 1 wherein the post and spacer have interfitting surfaces so that the post is slidably received in a longitudinal passage through the spacer.
  • 13. The device of claim 12 wherein the interfitting surface on the post is a flat surface and the interfitting surface on the spacer is a flat surface along the longitudinal passage.
  • 14. The device of claim 1 wherein: the first plate has a receptacle; andthe post has a head pivotally received in the receptacle so that the post is pivotal relative to the medial face of the first plate.
  • 15. The device of claim 1 wherein the spacer extends along a central axis between opposite ends thereof, the opposite ends being located adjacent a respective one of the first and second plates, wherein at least one of the opposite ends is angled relative to the other of the opposite ends.
  • 16. The device of claim 1 wherein the spacer includes an outer surface defining a generally rectangular outer surface profile.
  • 17. The device of claim 16 wherein the outer surface includes convexly curved sidewalls and planar upper and lower walls extending between the convexly curved sidewalls.
  • 18. The device of claim 1 wherein the spacer includes an outer surface profile between the plates having a concavely curved central portion between raised ends adjacent respective ones of the plates.
  • 19. The device of claim 1 wherein the spacer is non-rotatably positioned about the post.
  • 20. A method for stabilizing adjacent spinous processes, comprising: providing an assembly having a first plate, a second plate disposed in spaced relation to the first plate, a post movably connecting the second plate to the first plate and extending along a longitudinal post axis, and a spacer disposed between the first and second plates and about the post;positioning the first plate along a first side of the adjacent spinous processes such that a medial face of the first plate is oriented toward the spinous processes;disposing the post;between the spinous processes so as to extend through a sagittal plane defined therebypositioning a second plate along a second side of the adjacent spinous processes such that a medial face of the second plate is oriented toward the spinous processes; the second plate having a first bore oriented generally perpendicular to the second plate's medial face;inserting the post into the first bore in the second plate so that the post axis extends through the first bore;adjusting the distance between the first and second plates by moving the second plate along the post;pivoting the post relative to the first plate about a pivot axis to change the relative positions of the first and second plates; the pivot axis located opposite the second plate with respect to the medial face of the first plate; the pivot axis oriented normal to a theoretical plane disposed generally perpendicular to the medial face of the first plate and containing the longitudinal post axis; the pivoting comprising pivoting the post about the pivot axis such that the first and second plates are thereby displaced relative to each other in a direction lying in the theoretical plane and transverse to the post longitudinal axis;locking the second plate relative to the post so as to secure the second plate along the post in spaced relation to the first plate.
  • 21. The method of claim 20 further comprising selecting a spacer from a set of spacers, the selected spacer providing a desired fit between the spinous processes.
US Referenced Citations (134)
Number Name Date Kind
2677369 Knowles May 1954 A
2774350 Cleveland, Jr. Dec 1956 A
3648691 Lumb et al. Mar 1972 A
3693616 Roaf et al. Sep 1972 A
4011602 Rybicki et al. Mar 1977 A
4257409 Bacal et al. Mar 1981 A
4433677 Ulrich et al. Feb 1984 A
4554914 Kapp et al. Nov 1985 A
4573454 Hoffman Mar 1986 A
4604995 Stephens et al. Aug 1986 A
4686970 Dove et al. Aug 1987 A
4827918 Olerud May 1989 A
5011484 Breard Apr 1991 A
5047055 Bao et al. Sep 1991 A
5092866 Breard et al. Mar 1992 A
5201734 Cozad et al. Apr 1993 A
5306275 Bryan Apr 1994 A
5360430 Lin Nov 1994 A
5366455 Dove et al. Nov 1994 A
5415661 Holmes May 1995 A
5437672 Alleyne Aug 1995 A
5439463 Lin Aug 1995 A
5454812 Lin Oct 1995 A
5458641 Ramirez Jimenez Oct 1995 A
5496318 Howland et al. Mar 1996 A
5609634 Voydeville Mar 1997 A
5628756 Barker, Jr. et al. May 1997 A
5645599 Samani Jul 1997 A
5674295 Ray et al. Oct 1997 A
5676702 Ratron Oct 1997 A
5690649 Li Nov 1997 A
5702452 Argenson et al. Dec 1997 A
5725582 Bevan et al. Mar 1998 A
5810815 Morales Sep 1998 A
5836948 Zucherman et al. Nov 1998 A
5860977 Zucherman et al. Jan 1999 A
5888223 Bray, Jr. Mar 1999 A
5976186 Bao et al. Nov 1999 A
5980523 Jackson Nov 1999 A
6022376 Assell et al. Feb 2000 A
6048342 Zucherman et al. Apr 2000 A
6068630 Zucherman et al. May 2000 A
6132464 Martin Oct 2000 A
6139548 Errico Oct 2000 A
6235030 Zucherman et al. May 2001 B1
6261586 McKay Jul 2001 B1
6293949 Justis et al. Sep 2001 B1
6312431 Asfora Nov 2001 B1
6352537 Strnad Mar 2002 B1
6364883 Santilli Apr 2002 B1
6402750 Atkinson et al. Jun 2002 B1
6440169 Elberg et al. Aug 2002 B1
6451019 Zucherman et al. Sep 2002 B1
6500178 Zucherman et al. Dec 2002 B2
6582433 Yun Jun 2003 B2
6626944 Taylor Sep 2003 B1
6645207 Dixon et al. Nov 2003 B2
6695842 Zucherman et al. Feb 2004 B2
6709435 Lin Mar 2004 B2
6723126 Berry Apr 2004 B1
6733534 Sherman May 2004 B2
6761720 Senegas Jul 2004 B1
6835205 Atkinson et al. Dec 2004 B2
6946000 Senegas et al. Sep 2005 B2
7041136 Goble et al. May 2006 B2
7048736 Robinson et al. May 2006 B2
7087083 Pasquet et al. Aug 2006 B2
7163558 Senegas et al. Jan 2007 B2
7201751 Zucherman et al. Apr 2007 B2
7238204 Le Couedic et al. Jul 2007 B2
7306628 Zucherman et al. Dec 2007 B2
7335203 Winslow et al. Feb 2008 B2
7377942 Berry May 2008 B2
7442208 Mathieu et al. Oct 2008 B2
7445637 Taylor Nov 2008 B2
20020143331 Zucherman et al. Oct 2002 A1
20020183746 Zucherman et al. Dec 2002 A1
20030040746 Mitchell et al. Feb 2003 A1
20030065330 Zucherman et al. Apr 2003 A1
20030153914 Oribe et al. Aug 2003 A1
20030153915 Nekozuka et al. Aug 2003 A1
20030216736 Robinson et al. Nov 2003 A1
20040097931 Mitchell May 2004 A1
20040106995 Le Couedic et al. Jun 2004 A1
20040181282 Zucherman et al. Sep 2004 A1
20050010293 Zucherman et al. Jan 2005 A1
20050049708 Atkinson et al. Mar 2005 A1
20050143822 Paul Jun 2005 A1
20050165398 Reiley Jul 2005 A1
20050203512 Hawkins et al. Sep 2005 A1
20050203624 Serhan et al. Sep 2005 A1
20050216082 Wilson et al. Sep 2005 A1
20050228391 Levy et al. Oct 2005 A1
20050261768 Trieu Nov 2005 A1
20050288672 Ferree Dec 2005 A1
20060004447 Mastrorio et al. Jan 2006 A1
20060015181 Elberg Jan 2006 A1
20060064165 Zucherman et al. Mar 2006 A1
20060084983 Kim Apr 2006 A1
20060084985 Kim Apr 2006 A1
20060084987 Kim Apr 2006 A1
20060084988 Kim Apr 2006 A1
20060085069 Kim Apr 2006 A1
20060085070 Kim Apr 2006 A1
20060085074 Raiszadeh Apr 2006 A1
20060089654 Lins et al. Apr 2006 A1
20060089719 Trieu Apr 2006 A1
20060106381 Ferree et al. May 2006 A1
20060106397 Lins May 2006 A1
20060111728 Abdou May 2006 A1
20060122620 Kim Jun 2006 A1
20060136060 Taylor Jun 2006 A1
20060184247 Edidin et al. Aug 2006 A1
20060184248 Edidin et al. Aug 2006 A1
20060195102 Malandain Aug 2006 A1
20060217726 Maxy et al. Sep 2006 A1
20060235387 Peterman Oct 2006 A1
20060235532 Meunier et al. Oct 2006 A1
20060241613 Bruneau et al. Oct 2006 A1
20060247623 Anderson et al. Nov 2006 A1
20060247640 Blackwell et al. Nov 2006 A1
20060264938 Zucherman et al. Nov 2006 A1
20060271044 Petrini et al. Nov 2006 A1
20060271049 Zucherman et al. Nov 2006 A1
20060293662 Boyer, II et al. Dec 2006 A1
20060293663 Walkenhorst et al. Dec 2006 A1
20070043362 Malandain et al. Feb 2007 A1
20070162000 Perkins Jul 2007 A1
20070198091 Boyer et al. Aug 2007 A1
20070233068 Bruneau et al. Oct 2007 A1
20070233081 Pasquet et al. Oct 2007 A1
20070233089 DiPoto et al. Oct 2007 A1
20070270834 Bruneau et al. Nov 2007 A1
20080161818 Kloss et al. Jul 2008 A1
Foreign Referenced Citations (33)
Number Date Country
2821678 Nov 1979 DE
0322334 Feb 1992 EP
1138268 Oct 2001 EP
1330987 Jul 2003 EP
2623085 May 1989 FR
2625097 Jun 1989 FR
2681525 Mar 1993 FR
2700941 Aug 1994 FR
2703239 Oct 1994 FR
2707864 Jan 1995 FR
2717675 Sep 1995 FR
2722087 Jan 1996 FR
2722088 Jan 1996 FR
2724554 Mar 1996 FR
2725892 Apr 1996 FR
2730156 Aug 1996 FR
2775183 Aug 1999 FR
2799948 Apr 2001 FR
2816197 May 2002 FR
780652 Aug 1957 GB
02-224660 Sep 1990 JP
09-075381 Mar 1997 JP
988281 Jan 1983 SU
1484348 Jun 1989 SU
WO 9426192 Nov 1994 WO
WO 9426195 Nov 1994 WO
WO 9820939 May 1998 WO
WO 2004047691 Jun 2004 WO
WO 2005009300 Feb 2005 WO
WO 2005044118 May 2005 WO
WO 2005110258 Nov 2005 WO
WO 2006064356 Jun 2006 WO
WO 2007034516 Mar 2007 WO
Related Publications (1)
Number Date Country
20060247640 A1 Nov 2006 US