1. Field
The disclosed subject matter is in the field of semiconductor devices and fabrication and, more particularly, semiconductor devices employing split gate memory cells to form non volatile memory.
2. Related Art
Split gate non-volatile memories (NVMs) including, for example, split gate flash devices, provide advantages over stacked-gated devices, in which the control gate is positioned over the floating gate. Split gate flash cells exhibit reduced program disturb for memory cells that are unselected but are either on the selected row or in the alternative on the selected column. Normally cells on the selected row or the selected column are the most likely to exhibit disturb effects regardless of the operation that is being performed on a selected cell. While split gate flash cells have substantially reduced the program disturb problem for cells on the selected rows or columns, split gate flash cells may exhibit a disturb problem with cells on unselected rows and unselected columns. One of the reasons that unselected cells are susceptible in split gate designs is that the particular stress applied to unselected cells is applied for many more cycles than the stress that is applied to cells on a selected row or a selected column.
The present invention is illustrated by way of example and is not limited by the accompanying figures, in which like references indicate similar elements. Elements in the figures are illustrated with an emphasis on clarity and simplicity where possible and have not necessarily been drawn to scale.
In one aspect, a disclosed method of fabricating a split gate memory device includes forming a gate dielectric layer overlying an active region or a channel region of a semiconductor substrate and forming an electrically conductive select gate overlying the gate dielectric layer. The method further includes forming a counter doping impurity distribution in an upper region of the substrate. A proximal boundary of the counter doping impurity distribution is laterally displaced from a proximal sidewall of the select gate. The method further includes forming a charge storage layer comprising a vertical portion adjacent to the proximal sidewall of the select gate and a lateral portion overlying the counter doping impurity distribution and forming an electrically conductive control gate adjacent to the vertical portion of the charge storage layer and overlying the horizontal portion of the charge storage layer.
In another aspect, a disclosed semiconductor storage device includes a gate dielectric layer overlying an upper surface of a well in a semiconductor substrate, an electrically conductive select gate overlying the gate dielectric layer, and a counter doping impurity distribution occupying an upper region of the substrate, wherein a proximal boundary of the counter doping impurity distribution is laterally displaced with respect to a proximal sidewall of the select gate. The device includes a charge storage layer including a vertical portion adjacent to the proximal sidewall of the select gate and a lateral portion overlying the counter doping impurity distribution, an electrically conductive control gate overlying the charge storage layer.
In still another aspect a disclosed semiconductor fabrication process includes forming a gate dielectric overlying an upper surface of the substrate, forming an electrically conductive select gate overlying the gate dielectric, and forming a displacement structure on a sidewall of the select gate. The method may further include forming a counter doping impurity distribution in the semiconductor substrate laterally aligned to a sidewall of the displacement structure, forming a charge storage layer including a plurality of nanoclusters, and forming a control gate electrode overlying the charge storage layer.
Turning now to the drawings,
Each split gate cell 101 includes a control gate 104 and a select gate 106. Control gate 104 includes a charge storage element 105. Charge storage element 105 may represent nanoclusters or nanocrystals as described below. In other embodiments, not depicted, a traditional floating gate structure, e.g., an ONO structure or a floating polysilicon gate, may be used to implement charge storage elements 105.
A control gate signal 120 is connected to the control gate 104 of each of the split gate cells 101. Select gate signals 130-1 and 130-2 are connected to the select gates 106 of the split gate cells 101 in the applicable row 102. Thus, for example, select gate signal 130-1 is connected to the select gates 106 of the split gate cells 101 in first row 102-1 while select gate signal 130-2 is connected to the select gates 106 of the split gate cells 101 in second row 102-2.
Each split gate cell 101 further includes a source terminal 108 and a drain terminal 110. In the embodiment of array 100 as depicted in
The drain terminals 110 of each split gate cell 101 are connected to a bit line 150. In the embodiment of array 100 depicted in
While the configuration of split gate cells 101 in array 100 beneficially improves disturb immunity for rows and columns that are selected during programming, the disturb immunity for rows and columns that are not selected may be problematic due to high electric fields created across relatively narrow dielectric films. If, for example, split gate cell 101-4 is being programmed, second row 102-2 is the selected row and second column 103-2 is the selected column. Thus, first split gate cell 101-1 is on an unselected row, first row 102-1, and an unselected column, first column 103-1, during the programming of split gate cell 101-4. Although programming voltages for any flash memory device are implementation specific, programming voltages that might be suitable for split gate cells 101 in array 100 as shown in
At the same time, a cell 101 that is on an unselected row and an unselected column receives a 9 V control signal (120), a 0 V select gate signal (130), a 5 V source terminal signal (140), and a 1.2 V drain signal (150). Under these biasing conditions, the electric field in the channel can become so large in magnitude that inadvertent programming of the cell may occur due to carrier generation from band to band tunneling. Subject matter disclosed herein may reduce the magnitude of the maximum electric field by positioning a counter doping region of the substrate laterally displaced from a gap edge of the select gate so that the counter doping region does not significantly infringe upon a gap region of the substrate. The substrate gap region corresponds to a portion of the substrate between a gap edge of the selected gate and a gap edge of the control gate. By reducing the maximum electric field in the channel, band to band tunneling is reduced and program disturb tolerance increases.
Turning now to
Referring now to
Semiconductor wafers such as semiconductor wafer 201 are well known in the field of semiconductor fabrication and may include well known elements or features that are not depicted. For example, substrate 202 may include an insulating layer, sometimes referred to as a buried oxide layer, and, in these embodiments, wafer 201 may be referred to as a semiconductor on insulator (SOI) wafer. Similarly, substrate 202 may include one or more epitaxial layers formed overlying a semiconductor bulk region.
The bulk region of wafer 201 may be a conventional, monocrystalline silicon substrate and epitaxial layers may include homoepitaxial layers of p-type silicon and n-type silicon, or heteroepitaxial layers of another semiconductor or an insulating material. Semiconductor wafer 201 may further include isolation structures including, as examples, shallow trench isolation (not depicted) to provide physical and electrical isolation between adjacent devices.
As depicted in
With respect to implementations in which select gate 212 comprises polysilicon, select gate 212 may be p-type or n-type polysilicon. Similarly, well 204 may be an n-type or p-type well region and substrate 202 may be an n-type or p-type substrate. For purposes of simplifying the following description, the figures will be described with respect to a n-type transistor in which well 204 is a p-type region and select gate 212 is an n-type region. Of course, it will be appreciated that other implementations may employ the conductivity types that are the opposite of the conductivity types described herein.
The fabrication of select gate 212, gate dielectric 210, and hard mask 214 may all be achieved using conventional semiconductor fabrication processes including, as examples, the thermal growth of silicon dioxide to create gate dielectric 210, the chemical vapor deposition of polysilicon to create select gate 212, and the deposition of silicon nitride to create hard mask 214, as well as conventional photolithography and etch processes to pattern the deposited films into the structures depicted in
Referring now to
The oxidation of select gate 212 oxidizes sidewalls of select gate 212 and results in a reduction in the lateral dimension of select gate 212. The thickness of displacement structure 220, in turn, directly impacts the displacement between select gate sidewall 213, which may also referred to herein as gap-side sidewall 213 or proximal sidewall 213 and the counter doping impurity distribution described below. Although specific dimensions are implementation details, a thickness of displacement structure 220 may be in the range of approximately 10 to 50 nm.
Referring now to
In embodiments that include a p-type well 204, counter doping impurity distribution 230 may be an n-type impurity distribution. In these embodiments, the specific species used to implant counter doping impurity distribution 230 may be any of: phosphorus, arsenic, or antimony. Moreover, although different implementations may employ different configurations, a depth of counter doping impurity distribution 230 may be in the range of approximately 20 to 80 nm and a concentration of counter doping impurity distribution 230 may be in the range of approximately 10^16 to 10^19 cm−3.
By decreasing the impurity concentration in proximity to a sidewall of select gate 212, counter doping impurity distribution 230 may beneficially reduce band to band tunneling that occurs on unselected rows and columns during programming.
Referring now to
After bottom oxide 241 is formed, the formation of the depicted embodiment of storage layer 240 includes the formation of charge storage layer. In some embodiments, the charge storage layer may include a continuous sheet of silicon nitride or another suitable dielectric. In other embodiments, including the embodiment depicted in
After charge storage layer 240 is formed, the formation of control gate structure 251 may include the formation of an electrically conductive control gate electrode 250. In some embodiments, the formation of control gate electrode 250 may include a polysilicon deposition process. In other embodiments, control gate electrode 250 may include a metal, silicide, or other electrically conductive material.
Control gate structure 251 is preferably patterned as depicted in
Turning now to
After spacing structures 220 have been formed as described with respect to
Turning now to
Although disclosed subject matter is described herein with reference to specific embodiments, various modifications and changes can be made without departing from the scope of the subject matter as set forth in the claims below. Accordingly, the specification and figures are to be regarded as illustrative rather than restrictive and the modifications and changes referred to are intended to be included within the scope of the present invention. Unless expressly stated otherwise, any benefits, advantages, or solutions to problems that are described herein with regard to specific embodiments are not intended to be construed as critical, required, or essential features or elements of any or all the claims.
Similarly, unless expressly stated otherwise, terms such as “first” and “second” may be used solely to distinguish between different elements such terms describe. Thus, these terms are not necessarily intended to indicate temporal or other prioritization of such elements.
Number | Name | Date | Kind |
---|---|---|---|
5917214 | Sung | Jun 1999 | A |
6093608 | Lin et al. | Jul 2000 | A |
6573555 | Lin et al. | Jun 2003 | B1 |
20070001218 | Hong et al. | Jan 2007 | A1 |
20070018222 | Sadd et al. | Jan 2007 | A1 |
20070018229 | Yater et al. | Jan 2007 | A1 |
20070018232 | Chindalore et al. | Jan 2007 | A1 |
20070018240 | Chindalore et al. | Jan 2007 | A1 |
20070020820 | Chindalore et al. | Jan 2007 | A1 |
20070020831 | Chindalore et al. | Jan 2007 | A1 |
20070020849 | Hong et al. | Jan 2007 | A1 |
20070020851 | Hong et al. | Jan 2007 | A1 |
20070020856 | Sadd et al. | Jan 2007 | A1 |
20070054452 | Hong et al. | Mar 2007 | A1 |
20070134867 | Sadd et al. | Jun 2007 | A1 |
20070218669 | Li et al. | Sep 2007 | A1 |
20080173921 | Li et al. | Jul 2008 | A1 |
20080173922 | Hong et al. | Jul 2008 | A1 |
20080173923 | Li et al. | Jul 2008 | A1 |
20080199996 | Muralidhar et al. | Aug 2008 | A1 |
20090256186 | Kang et al. | Oct 2009 | A1 |
20090296491 | Hong et al. | Dec 2009 | A1 |
20100096686 | Li et al. | Apr 2010 | A1 |
20100155824 | Hong et al. | Jun 2010 | A1 |
20100244121 | Loiko et al. | Sep 2010 | A1 |
20110073936 | Hong et al. | Mar 2011 | A1 |
20110165749 | Winstead et al. | Jul 2011 | A1 |
20110207274 | Kang et al. | Aug 2011 | A1 |
20120261769 | Hong et al. | Oct 2012 | A1 |
Number | Date | Country | |
---|---|---|---|
20140091380 A1 | Apr 2014 | US |