The exemplary embodiments of the present invention relate to a spray attachment, in particular, a kitchen spray.
A hand-held spray of this type is disclosed in document DE 103 07 122 A1. It has a spray head arranged on a holding part in a manner such that it can rotate about an axis. A tubular pin is arranged in a sealing manner in a bushing piece as a rotary joint for the water guide, and a bearing flange formed coaxially with respect to the tubular pin and the bushing piece is provided for the axial securing, the bearing flange resting on an axial bearing on one side and on an annular flange of a hollow screw arranged coaxially with respect to the axial bearing on the other side. The claw of a latching lever mounted on the holding part interacts with latching depressions in the spray head in order to fix the latter in the desired rotational position.
The spray head is connected rotatably, but non separably to the holding part. The holding part and the spray head could only be separated by removal of the entire spray head.
In accordance with the exemplary embodiments, a spray has a holding part and spray head of which permits a greater range of use options.
For example, the spray head and the holding part are fastened to each other by a coupling. As a result of the use of a coupling, the holding part and spray head can be separated from each other without being destroyed; neither the holding part nor the spray head have to be removed for the separation.
Correspondingly designed holding parts and spray heads can therefore be combined as desired. In particular, it is possible to connect a spray head of one design to differently designed holding parts or to connect a holding part of one design to differently designed spray heads; the sole condition is that the coupling and therefore the corresponding connecting geometries of the holding part and of the spray head are matched to one another.
In a preferred manner, the coupling can be engaged and disengaged. The holding part and spray head can be separated only by changing over the coupling. When the coupling is not changed over, the connection is fixed.
The present invention is explained in more detail with reference to exemplary embodiments illustrated in the drawings, in which, purely diagrammatically:
The spray attachment 10 shown in
On the upper side of the holding part 12, the side facing away from the water outlet side 52 of the spray head 14, the holding part housing 18 is provided with a passage which is closed by a flexible membrane 40 in order to protect against the ingress of water into the interior of the holding part housing 18. The membrane and the passage serve to actuate a switch 42, which is described in more detail in conjunction with
The spray head 14 has an outer housing 44 with an outer, preferably circular cylindrical casing wall 46. The resultant determined axis 48 of the spray head 14 runs at right angles to the longitudinal axis 16 of the holding part 12 and intersects the axis. The holding part housing 18 bears with its front side 50, which faces the spray head 14, against the casing wall 46 and is consequently shaped in the bearing section in a manner corresponding to the casing wall 46. Other cylinder shapes of the casing wall 46, for example with a square cross section, are also conceivable. It is also possible for the axis 48 and the longitudinal axis 16 to intersect at an acute or obtuse angle.
The spray head 14 furthermore has the water outlet side 52, which is located at the bottom in relation to the upper side of the holding part, which side is mentioned further above. Furthermore, the spray head 14 is provided on the upper side opposite the water outlet side 52 with a head-like actuating element 54. The latter is both rotatable about the axis 48 and also is movable in a translatory manner in the direction of the axis 48 from a starting position 56, as shown in
In the center of its water outlet side 52, the spray head 14 has a first water outlet 68 with a generally known jet regulator 70. The latter produces a “gentle” spray jet.
A second water outlet 72 is formed by two rings 74, 74′ of nozzle openings 76, the rings running with respect to the axis 48 and around the central, first water outlet 68. The nozzle openings serve to produce a spray jet in the form of a “strainer jet”. Furthermore, the water outlet side 52 has a third water outlet 78 in the form of a row of further nozzle openings 80, the row being located on the side facing away from the holding part 12 and extending over an angular region of approximately 50° with respect to the axis 48. The row of further nozzle openings 80 arranged consecutively with little spacing serves to produce a spray jet in the form of a “smooth and even jet”.
In the interior of the holding part housing 18, the water guide 24 has, adjoining the feed water connecting piece 22, a central, tubular water guiding part 82 which is coaxial with respect to the longitudinal axis 16 and ends at a small distance from the front side 50 of the holding part housing 18, with respect to the length thereof. For the axial and radial support and fastening of the water guide 24 in the holding part housing 18, the feed water connecting piece 22 has a radially protruding stop rib 84 which bears, on the inner side of the holding part housing 18, against the front side 20 on the feed side. A supporting flange 86 protrudes from the water guiding part 82, at the end thereof which faces the front side 50, the supporting flange bearing circumferentially against the inner side of the holding part housing 18 and being connected to the latter, for example, by adhesive bonding or ultrasonic welding, in order at the same time to prevent dirt or water from penetrating the hollow space between the water guide 24 and the holding part housing 18.
An end region of the water guiding part 82, which end region faces the front side 50 and therefore the spray head 14, is designed as a joining region 88 for receiving a connecting piece 90 protruding in the radial direction from the outer housing 44 of the spray head 14. In the fitted state, the connecting piece 50 is joined to the water guide 24 in the direction of the longitudinal axis 16 by engaging in the joining region 88. In the vicinity of that end of the joining region 88 which is located upstream in the direction of flow S, the lower side of the water guiding part 82 has a pivot bearing 92 for the latching lever 62. The actuating head 60 is integrally formed at the end of one arm of the latching lever 62, and a latching claw 94 protruding radially inwards with respect to the longitudinal axis 16 is integrally formed at the end of the other arm. A compression spring 96 acts between the actuating head 60 and the water guiding part 82 in order to prestress the latching lever 62 into a latching position.
The lower side of the connecting piece 90 of the spray head 14 has a latching cheek 98 which is exposed to the outside in the radial direction and, in the fitted state, is engaged behind by the latching claw 94 in order to secure the spray head 14 on the holding part 12. In order to separate the spray head 14 from the holding part 12, the actuating head 60 therefore has to be pressed inward in the radial direction counter to the force of the compression spring 96, as a result of which the latching claw 94 releases the latching cheek 98 and the spray head 14 can be pulled away from the holding part 12 in the direction of the longitudinal axis 16. The latching cheek 98 engages in a groove-like expanded portion of the water guide 24 in the joining region 88, which expanded portion runs in the direction of the longitudinal axis 16, as a result of which the rotational position of the spray head 14 with respect to the holding part 12 is defined.
The joining region 88, the latching lever 62 and the connecting piece 90 with the latching cheek 98 form a coupling 100, for example, a switchable coupling, by means of which the holding part 12 and the spray head 14 are fastened releasably to each other. It should be mentioned at this juncture that different types of couplings can be used.
In the interior of the water guiding part 82 there is a hollow piston 102, on the upstream end of which a piston spring 104, which is designed as a compression spring, is supported, the other end of the piston spring being supported on an inner supporting shoulder 106 of the water guiding part 82. A sealing ring 108, which is designed as an O-ring and is arranged in a corresponding groove in the upstream end region of the hollow piston 102 acts between the water guiding part 82 and the hollow piston 102. The sealing ring prevents water from emerging between the water guiding part 82 and the hollow piston 102.
A guide cam 110 protrudes outward in the radial direction from the hollow piston 102 and engages in a guide groove 112 of the water guiding part 82, which guide groove is open in the radial direction toward the inside and runs in the direction of the longitudinal axis 16. As a result, the rotational position of the hollow piston 102 is defined, and the distance by which the hollow piston 102 can move in the direction of the longitudinal axis 16, is limited.
The downstream, free end region 114 of the hollow piston 102 is angled in the downward direction in order, when the spray head 114 has been removed, to direct any flowing feed water into the washbasin. For the sake of completeness, it should be mentioned that the hollow piston 102 has a filtering strainer 116 at the water outlet end. The filtering strainer forms a water outlet and prevents foreign bodies from penetrating the water guide 24 when the spray head 14 has been decoupled.
At a distance from its water outlet end, the hollow piston 102 has an encircling groove, which is open toward the outside in the radial direction and in which an O-ring 118 is arranged. Upstream of the O-ring 118, the hollow piston furthermore has an encircling stop shoulder 120. As can be gathered from
As seen in the direction of the longitudinal axis 16, a small turbine wheel 122 is mounted between the feed water connecting piece 22 and the supporting shoulder 106 in a manner such that it can rotate freely about the longitudinal axis 16. For the mounting of the small turbine wheel, the water guiding part 82 has a radially inwardly protruding bearing rib 124, and a cylindrical bearing body 125 having axial water passages is inserted and snap-fastened into the water guide 24, from the side of the feed water connecting piece 22.
When feed water is flowing, the small turbine wheel 122 rotates, which is detected by means of a sensor 126. The sensor is arranged in a radially outwardly open depression in the water guiding part 82, for example is fastened therein by means of casting or adhesive bonding, and, together with this small turbine wheel 122, forms a flow sensor 126′, the signal of which is supplied to an electronic control circuit 128. The latter is located on a printed circuit board 130, which is accommodated by an encircling collar 132 protruding upward from the water guiding part 82. The collar is shaped in a manner corresponding to the rectangular printed circuit board 130, as can be gathered from
Furthermore, a temperature sensor 136 for detecting the temperature of the feed water is inserted into the water guiding part 82, as seen in the direction of the longitudinal axis 16, between the supporting shoulder 106 and the hollow piston 102. The temperature sensor also emits its output signal to the electronic control circuit 128.
The electronic control circuit 128 feeds a light source 138, see
An outer housing 44 in conjunction with the spray head 14 is to be understood as meaning a housing which delimits the spray head 14 from the surroundings and is therefore not arranged in the interior of another housing, for example of the holding part 12.
The spray head 14 has a supporting body 142, including a hollow-cylindrical inner wall 144, which is coaxial with respect to the axis 48, and a likewise hollow-cylindrical outer wall 146 which is concentric with respect to the inner wall, an intermediate base 148 which connects the inner wall 144 to the outer wall 146 dividing the space between the inner wall 144 and the outer wall 146 into a lower first chamber 150 facing the water outlet side 52 and into an upper second chamber 152 facing the actuating element 54, also see
An inflow passage 162 is integrally formed on the inner wall 144 centrally with respect to the receiving sleeve 154, which is formed by the intermediate base 148.
An outflow element 164 which is shaped in the manner of a disk and the three passages of which, which are distributed in the circumferential direction, form a housing-mounted first outflow passage 166 is inserted in a rotationally fixed manner into the space bounded circumferentially by the inner wall 144, see
The intermediate base 148 has two continuous openings offset by, for example, 60° with respect to the longitudinal axis 16 in order to connect two diametrically opposite inflow channels 168 to the first chamber 150; see in particular
The second chamber 152 is closed by an annular disk-shaped cover 176 on the side facing the actuating element 54,
Furthermore, a substantially cylindrical control element 178 is inserted into the space bounded circumferentially by the inner wall 144, the control element being located with respect to the outflow element 164, in the direction of the axis 48, on the side facing the inflow passage 162. It is provided with a connecting channel 180, the inlet opening 182 of which is permanently connected to the inflow passage 162. For this purpose, the control element 178 has an encircling flow groove 184 which is open outward in the radial direction, communicates with the inflow passage 162 irrespective of the rotational position of the control element 178 and on the groove base of which the inlet opening 182 is located. As seen in the direction of the axis 48, the control element 178 has a respective encircling sealing groove 192 on either side of the flow groove 184, into each of which a quad ring 194, which interacts at the other end with the inner wall 144, is inserted in order to prevent water from leaking.
The connecting channel 180 has an inflow section 196 that runs in the radial direction with respect to the axis 48 and has the inlet opening 182. Branching off from the inflow section, coaxially with respect to the axis 48, in the direction of the water outlet side 52 is a first outflow section 198 leading to the first outflow passage 166 and, in the opposite direction, a second outflow section 202 leading to a control passage 200.
The passages forming the first outflow passage 166, for example three passages which are distributed in the circumferential direction and are separated by webs 204 running in the radial direction, also see
A control disk 214, on which continuous openings, which are distributed in the circumferential direction and form a further control passage 216 are formed, bears in a planar manner against the disk-like section of the outflow element 164. The number of the openings coincides with the number of openings forming the first outflow passage 166, and the openings are separated from one another by further webs 204′. The latter are preferably of narrower design than the webs 204. Three carry-along cams 218 which are distributed in the circumferential direction protrude radially on the outside from the control disk 214, in the upward direction on the side facing away from the outflow element 164—FIGS. 7 and 8—the carry-along cams engaging in a manner rotationally fixed in terms of being carried along in corresponding carry-along grooves of the control element 178, the carry-along grooves running in the axial direction. The control disk 214 is held in the axial position by the outflow element 164 and by a shoulder formed on the control element 178, see in particular
At its end located downstream and facing the actuating element 54, the second outflow section 202 is bounded by a transverse wall 220 of the control element 178, with in each case two passages which form the control passage 200 being formed diametrically opposite with respect to the axis 48 by that wall section of the control element 178 which circumferentially bounds the second outflow section 202. As seen in the direction of the axis 48, the passages are arranged at the same height as the second and third outflow passages 172, 174 and are placed next to each other, as seen in the circumferential direction, in such a manner that, in one rotational position of the control element 178, the are aligned with the openings of the second outflow passage 172 and, in the other rotational position of the control element 178, are aligned with those of the third outflow passage 174,
The transverse wall 220 is provided on the radially outer side thereof with an encircling groove into which a third quad ring 226 is inserted, the quad ring interacting radially on the outside with the inner wall 144, in the vicinity of the upper end thereof. The third quad ring 226 prevents any leakage water from emerging between the supporting body 142 and the control element 178 in the direction toward the actuating element 54 and preventing dirt particles from penetrating between the inner wall 144 and the control element 178.
In the region of the junction 227 of the connecting channel 180 from the inflow section 196 into the first and second outflow sections 198, 202, the control element 178 has a valve arrangement 228. The latter has two valve seats 230 arranged at a distance from each other in the direction of the axis 48, and a valve member 232 arranged between the valve seats. The valve seat 230 assigned to the first outflow section 198 is designed as an annular seat 230′ which is integrally formed on the control disk 214 and runs on the outside in the radial direction around the openings forming the control passage 216. The valve seat 230 assigned to the second outflow section 202 is designed as a further annular seat 230″ which is opposite the annular seat 230′ and is integrally formed directly on the control element 178. The valve member 232 arranged between the two annular seats 230′ and 230″ is designed as a valve disk 232′. The latter has a disk section 236 which is integrally formed on an actuating stem 234, which is central with respect to the axis 48, and with an annular seal 238 sitting radially on the outside of the disk section, the annular seal interacting in a sealing manner either with the annular seat 230′ or with the annular seat 230″, depending on the lifting position of the actuating stem 234.
On its side facing the control disk 214, the disk section 236 has a central recess which is in the manner of a blind hole and in which a resetting spring 240 designed as a compression spring is supported. The resetting spring engages in a central cup part 242 of the control disk 214 and is supported on this side on the base of the cup part 242. The cup part 242 engages with its open end region in the recess of the disk section 236 and reaches with its bottom-side end section through a central opening in the outflow element 164. The first outflow passage 166 and the further control passage 216 are arranged on the outside in the radial direction with respect to the cup part 242.
The actuating stem 234 reaches through the transverse wall 220 of the control element 178 and, at its free end facing away from the disk section 236, bears the actuating element 54. In order to prevent water from emerging from the second outflow section 202 along the actuating stem 234 to the surroundings, the actuating stem is engaged around by an annular lip seal 244, which is V-shaped in cross section, the radially inner lip interacting with the actuating stem 234 and the radially outer lip interacting with the transverse wall 220. The lip seal 244 is arranged in a hollow-cylindrical stub 245 of the transverse wall 220, the stub protruding in the direction toward the actuating element 54, and is held there by means of a snap ring. Centering tongues 246 protrude from the stub 245 parallel to the axis 48 in the direction of the actuating member 54 and bear circumferentially against a central centering stub 248 of the actuating member 54.
Radially on the outside with respect to the stub 245, the transverse wall 220 has a carry-along ring 250 that protrudes in the direction of the actuating element 54 and, on diametrically opposite sides at the free end thereof, a respective carry-along cam protrudes outward in the radial direction. The carry-along cams engage in corresponding recesses on a carry-along ring 250′ of the actuating element 54 in order to form a rotationally fixed connection between the actuating element 54 and the control element 178 and in order to secure the actuating element 54 in the axial direction, with the lifting movement of the actuating element 54 relative to the control element 178 remaining ensured.
Stop projections 252 protrude diametrically opposite each other and in the radial direction toward the outside from the carry-along ring 250, the stop projections engaging in guide grooves 253 which are integrally formed on the cover 176, form counter stops, which act in the circumferential direction, for the stop projections 252 and keep the control element 178 positioned in a manner fixed in terms of displacement in the direction of the axis 48. It should be mentioned for the sake of completeness that the guide grooves 253 permit a rotational movement of the control element 278 between the rotational positions corresponding to the second and third outflow passages 172, 174, but prevent further rotation therebeyond.
With its section located downstream with respect to the first outflow passage 166, the inner wall 144 surrounds the central first water outlet 68, which is connected in terms of flow to the first outflow passage 166 without any obstacles and is preferably equipped with the jet regulator 70. Jet regulators of this type are known in general, are sold, for example, by Neoperl under the trade name “Perlator” and have the task of mixing air with the water and thus of ensuring a uniform, gentle, expanded spray jet.
On the water outlet side 52, an annular water outlet cover 260 is placed onto the supporting body 142, the water outlet cover leaving the central first water outlet 68 free, but closing the first chamber 150. The two rings 74, 74′ of nozzle openings 76 of the second water outlet 72 are formed on the water outlet cover. In a preferred manner, the passages forming the nozzle openings and an exposed region around the passages are lined with a flexible material, for example rubber, in order in particular to counteract calcification.
Radially on the outside with respect to the nozzle openings 76, the water outlet cover 260 has a cylinder wall 262 which protrudes in the direction toward the interior of the first chamber 150 and has, radially, on the outside in the vicinity of the free end, a groove which is provided with an O-ring 264 in order to avoid the leakage of water out of the first chamber 150 between the water outlet cover 260 and the outer wall 146. Furthermore, the cylinder wall 262 has, between the O-ring 264 and the water outlet side 52, a further circumferential groove which is open to the outside in the radial direction and with which snap-in lugs 268 formed on the outer wall 146 enter into engagement when the water outlet cover 260 is installed by the cylinder wall 262 being introduced into the first chamber 150, in order to fasten the water outlet cover 260. Radially on the inside, the water outlet cover 260 has a further cylinder wall 262′ which engages in the space forming the first water outlet 68 and to which the jet regulator 70 is fastened by means of a threaded connection. Furthermore, a sealing ring 264′ interacts with the further cylinder wall 262′, the sealing ring being arranged in a corresponding sealing groove of the inner wall 144 and preventing water from passing from the first water outlet 68 into the first chamber 150 and vice versa.
On the side facing away from the connecting piece 90, the outer wall 146 has a recess 272 which is connected above the intermediate base 148 to the second chamber 152 and extends in the direction toward the water outlet side 52 as far as a bead 274 of the outer wall 146, the bead protruding outward in the radial direction. The further nozzle openings 80 forming the third water outlet 78 are formed on the bead, the nozzle openings also preferably being encased by a rubber-like material. The recess 272 is closed by a cover element 276 in such a manner that the latter bounds a flow gap 278 between itself and the outer wall 146, the flow gap leading from the second chamber 152 to the third water outlet 78.
A fiber optic element 280 is arranged on the radially outer side of the outer wall 146 of the supporting body 142, the fiber optic element, as seen in the direction of the axis 48, running approximately over half the height of the outer wall 146 and approximately symmetrically with respect to the connecting piece 90 and around the supporting body 142 in the circumferential direction to a point at a distance from the connecting piece 90, with those end sides 282 of the fiber optic element 280 which face each other and are opposite each other with respect to the longitudinal central plane of the spray attachment 10 forming light coupling-in surfaces; see
As can be gathered from
In the starting position 56, as shown in
If, starting from the first rotational position, the actuating element 54 is rotated, as seen in top view, counterclockwise into the second rotational position, see
For the sake of completeness, it should be mentioned that the difference between the pressure of the water in the spray head 14 and the surroundings is applied via the valve member 232 and therefore the valve member 232, assisted by the pressure, is pressed with greater force against the relevant valve seat 230.
If no feed water is flowing, and the actuating element 54, starting from the starting position 56 shown in
If, starting from this position, the actuating element 54 is brought 45° to the left, as seen in top view, into the rotational position shown in
Furthermore, by actuation of the pressure switch 42 covered by the membrane 40, the surroundings, in particular the object to be washed, can be illuminated.
Furthermore, flowing feed water causes the small turbine wheel 122 to rotate, which is detected by means of the sensor 126 and reported to the electronic control circuit 128. On the basis of this signal, the electronic control circuit 128 feeds the LEDs 290 of the light source 138 such that it can also be seen visually from the outside at the spray head 14 that feed water is flowing.
In the exemplary embodiments shown in the figures, the holding part 12 is equipped with a temperature sensor 136. The output signal thereof is supplied to the electronic control circuit 128 which activates the LEDs 290 of the light source 138 in a manner corresponding to the measured water temperature such that the LEDs change in color as a function of the water temperature, from, for example, blue for cold water into red for hot water. If the feed water inflow is switched off, the small turbine wheel 122 automatically ceases rotating, which is recognized by the electronic control circuit 128 via the sensor 126 such that the control circuit switches off the light source 138.
The embodiment of the spray attachment according to the invention that is depicted in
A sleeve-shaped holding-open element 302 is threaded into the free end region of the connecting piece 90. The holding-open element protrudes over the connecting piece 90, counter to the flow direction S and, when the spray head 14 is coupled to the holding part 12, keeps the closing valve 292 in the open position. In the direction toward the ball 298, the end region of the holding-open element 302 is designed such that it tapers conically and is provided with radial slots which are open toward the ball 298 in order to keep a sufficient flow cross section free between them and the sealing ring 296 and ball 298. For the sake of completeness, it should be mentioned that an O-ring is arranged for providing a seal between the holding-open element 302 and the connecting piece 90, downstream of the thread of the holding-open element 302. Furthermore, a further sealing ring between the connecting piece 90 and the water guiding part 82 acts in the joining region 88, upstream of the latching cheek 98, in order to prevent water from emerging between the two parts into the interior of the holding part housing 18 or into the surroundings.
If, by release of the coupling 100, the spray head 14 is removed from the holding part 12 and should an error mean that the feed water is not switched off, the closing valve 292 closes (
Of course, it is also possible to releasably connect a differently designed spray head 14 and a holding part 12 to each other via a coupling 100. The spray head could be a differently designed spray head of a kitchen spray or a spray head for a shower or a bath. In the exemplary embodiments shown, the holding part 12 forms a handle of a pull-out spray. However, it is also conceivable to form the holding part 12 as an outflow pipe, which is mounted, for example pivotably, on the base of a fitting and on which the spray head 14 is arranged in a manner such that it can be decoupled.
It is furthermore also possible to provide the spray head 14 with its switching options and/or its casing illumination in the case of a spray attachment in which the spray head 14 is not fastened by means of a coupling in a manner such that it can be removed from the holding part 12.
If the spray attachment is not equipped with illumination and sensors and is not equipped with an electronic control system, an electric feed line 36 is not required. In this case, the external thread 30 and the protective sleeve 32 can serve for the fastening of the feed water pipe 28.
Number | Date | Country | Kind |
---|---|---|---|
08017447 | Oct 2008 | EP | regional |
Number | Name | Date | Kind |
---|---|---|---|
1740015 | Hooper et al. | Dec 1929 | A |
4634052 | Grizzle et al. | Jan 1987 | A |
5213267 | Heimann et al. | May 1993 | A |
5344080 | Matsui | Sep 1994 | A |
5735467 | Lee | Apr 1998 | A |
6021960 | Kehat | Feb 2000 | A |
6116750 | Hentz | Sep 2000 | A |
6254016 | Chao | Jul 2001 | B1 |
6286158 | Lin | Sep 2001 | B1 |
6637676 | Zieger et al. | Oct 2003 | B2 |
6945474 | Chen | Sep 2005 | B1 |
7083120 | Gilpatrick et al. | Aug 2006 | B2 |
7191476 | Ko | Mar 2007 | B1 |
7284981 | Schmid et al. | Oct 2007 | B2 |
20040188549 | Habermacher et al. | Sep 2004 | A1 |
20050116065 | Yang | Jun 2005 | A1 |
20060175437 | Gross | Aug 2006 | A1 |
20070220670 | Woehrle et al. | Sep 2007 | A1 |
20080245897 | Nobili | Oct 2008 | A1 |
20090236444 | Kunkel et al. | Sep 2009 | A1 |
Number | Date | Country |
---|---|---|
29 09 298 | Sep 1980 | DE |
91 09 457 | Nov 1991 | DE |
41 18 540 | Dec 1992 | DE |
93 17 167 | Jan 1994 | DE |
201 01 460 | Aug 2001 | DE |
103 07122 | Sep 2004 | DE |
20 2004 016 297 | Jun 2005 | DE |
10 2005 002 424 | Jul 2006 | DE |
10 2005 002 426 | Jul 2006 | DE |
20 2006 005 031 | Nov 2006 | DE |
10 2006 020 766 | Nov 2007 | DE |
10 2006 020 769 | Nov 2007 | DE |
10 2006 021 701 | Nov 2007 | DE |
20 2007 015 029 | Feb 2008 | DE |
1 022 396 | Jul 2000 | EP |
1 449 591 | Aug 2004 | EP |
1462 051 | Sep 2004 | EP |
1 464 889 | Oct 2004 | EP |
1 531 204 | May 2005 | EP |
1 829 581 | Sep 2007 | EP |
2 288 974 | Nov 1995 | GB |
A-3-41918 | Feb 1991 | JP |
A-4-73024 | Mar 1992 | JP |
A-5-115813 | May 1993 | JP |
A-8-93018 | Apr 1996 | JP |
A-2006-83650 | Mar 2006 | JP |
A-2006-320600 | Nov 2006 | JP |
A-2007-258734 | Oct 2007 | JP |
1020020079505 | Oct 2002 | KR |
1020030030723 | Apr 2003 | KR |
100768965 | Oct 2007 | KR |
WO 2007051367 | May 2007 | WO |
WO 2007128448 | Nov 2007 | WO |
WO 2007128500 | Nov 2007 | WO |
WO 2008031431 | Mar 2008 | WO |
Entry |
---|
U.S. Appl. No. 12/585,658, filed Sep. 21, 2009 by Christian Gautschi and Michael Lehner. |
European Search Report issued in foreign Application No. EP 08 01 7447 issued Feb. 12, 2009. |
European Search Report issued in foreign Application No. EP 08 01 7448 issued Jan. 13, 2009. |
Gautschi et al., U.S. Appl. No. 12/585,658, filed Sep. 21, 2009. |
Nov. 26, 2012 Office Action issued in U.S. Appl. No. 12/585,658. |
Number | Date | Country | |
---|---|---|---|
20100084492 A1 | Apr 2010 | US |