This application claims priority to PCT Application No. PCT/JP2007/067953 entitled “SPRAY DEVICE AND METHOD OF MANUFACTURING THE SAME”, filed on Sep. 14, 2007, which is herein incorporated by reference in its entirety, and which claims priority to Japanese Patent Application No. 2006-249703, entitled “SPRAY DEVICE AND METHOD OF MANUFACTURING THE SAME”, filed on Sep. 14, 2006, which is herein incorporated by reference in its entirety.
The present invention relates to a spray device used to spray paint onto a target object and a method of manufacturing the same. More particularly, the present invention relates to a lightweight spray device easy to clean that is suitable for sprinkling liquid like not only paint but also water, adhesives, anti-corrosives, resists, coating liquids, chemicals, or the like, or that is suitable for spraying any of them onto a target object.
Some of the prior art spray devices will now be described in conjunction with the accompanying drawings, namely,
The handle 110 includes a grip 120 at the bottom of which there are provided an air pipe connector 124 coupling the handle with a high-pressure air pipe 122 conducting to a compressor (not shown), and an air-adjustor thumb screw 126 adjusting pressure of pressurized air supplied to the rotary atomizer 101. As depicted in
The adjusting unit 112 is provided, at its center, with a gun body 130, a trigger lever 134 of which rotary shaft links it to a cam lever 132, a hook 136, and a paint pipe connector 140 that is to couple a paint supply pipe 138 conducting to a paint tank (not shown). A spring member 133 urges the cam lever 132 to rotate in clockwise direction in
The trigger lever 134 is, as can be seen in
With the trigger lever 134 being pulled to at the least half of its full back stroke as depicted in
With the trigger lever 134 being pulled to its full back stroke as depicted in
In order to release the trigger lever 134, namely, to return it to its home position to bring the spraying to rest, an operator may simply use his or her thumb and press a projection 160 of the trigger lever 134 kept in its ½ back-stroke position as in
The adjusting unit 112 is provided, at its upper rear segment, with a sprayed-paint adjustor thumb screw 170 and a shaping-air adjustor thumb screw 172. As shown in
The shaping-air adjustor thumb screw 172 displaces a 4th-valve regulator 182 of a fourth valve 180 on the downstream side of the second valve 137 in the pressurized air duct 127, so as to regulate the opening/closing of the fourth valve 180.
The handle 110, generally consisting of the grip 120 and the gun body 130, is fabricated by means of the aluminum die casting, and alternatively, it may be made of die cast aluminum and rigid plastic (see Patent Documents 2 and 3 listed below). The gun body may be molded and/or machined of steels, steel alloys, and/or other substances of tough compositions (see Patent Document 4 listed below). Alternative embodiments have been disclosed like the gun body that is molded of composite resin, as a whole (see Patent Documents 5 and 6), or the one that is made of electrically insulating material suitable for a use of the rotary atomizing and electrostatic coating (see Patent Document 7).
A further alternative embodiment has been disclosed which has an aluminum die cast spray gun body coated with fluorocarbon resin (see Patent Document 8).
Patent Document 1:
Even if replaced with a die cast aluminum body, the aforementioned prior art handheld spray devices still have a considerable weight and are significantly heavy for the operator to have to bear so much burden, and there arises a problem that it is hard to continue precision spraying for a long time, which is why a more weight-reduced spray device has been wanted. On the other hand, although the spray device with the body of composite resin is advantageous because it is lightweight, its chemical and mechanical durability is degraded and unsatisfactory for a long-term use under severe conditions and/or as an industrial instrument that is to undergo repetitive washing/cleaning.
In addition, in the case where the spray device employs the prior art design of the aluminum spray body, a process such as the buffing after molded by the die casting, necessary to have its surface polishes the body. Such a polishing process is prone to cause the molded body to have its corners rounded, and this results in the finished surface of the molded body being undesirable in design; in other words, resulting in the reduced freedom of esthetical design.
The present invention is made to overcome the aforementioned disadvantages in the prior art spray devices, and accordingly, it is an object of the present invention to provide a lightweight spray device with a spray body that can be molded by means of precision casting without common problems during the casting procedures such as shrinkage and bubbling, and a method of manufacturing the same.
It is another object of the present invention to provide a spray device that has the enhanced chemical and mechanical durability and that facilitates washing/cleaning so as to enable the device to keep the optimum conditions for the extended-term use, and a method of manufacturing the same.
It is still another object of the present invention to provide a spray device and a method of manufacturing the same that permit the greater freedom of design from both the technological and esthetical viewpoints, that, unlike the prior art aluminum die cast spray bodies, eliminate the necessity of having the molding polished by a process such as the buffing, and that allow the molding to undergo processes such as the embossing, the finishing to provide sharpened corners, or the like.
The present invention is first directed to a spray device that has a magnesium spray body comprised of a spray nozzle and a handle, and the spray device is characterized in that a die used to cast the magnesium spray body has a first slide pin located at an intersection of the spray nozzle and the handle, and a die in-gate through which fused magnesium is injected is defined, surrounding the first slide pin.
In an aspect of the present invention, an embodiment of the spray device can be implemented as follows:
The magnesium spray body has its surface anodized to form anodic oxide coating and then covered with primer coating, and the resultant surface is further covered with fluorocarbon coating.
The die used to cast the magnesium spray body has a second slide pin, and a catch basin is defined, surrounding at least part of the second slide pin.
The magnesium spray body has at least a surface of its handle embossed.
The die used to cast the magnesium spray body has a vacuum chamber conducting to free ends of the spray nozzle and the handle.
The present invention is also directed to a method of manufacturing a spray device that has a magnesium spray body comprised of a spray nozzle and a handle. The method is characterized in that a die used to cast the magnesium spray body has a first slide pin located at an intersection of the spray nozzle and the handle, and a die in-gate through which fused magnesium is injected is defined, surrounding the first slide pin.
In another aspect of the present invention, an embodiment of the method of manufacturing a spray device can be implemented as follows:
The magnesium spray body has its surface anodized to form anodic oxide coating and then covered with primer coating, and the resultant surface is further covered with fluorocarbon coating.
The die used to cast the magnesium spray body has an additional slide pin, and a catch basin is defined, surrounding at least part of the additional slide pin.
The magnesium spray body has at least a surface of its handle embossed.
The die used to cast the magnesium spray body has a vacuum chamber conducting to free ends of the spray nozzle and the handle.
In accordance with the present invention, there can be obtained a lightweight spray device with a spray body that can be molded by means of precision casting without common problems during the casting procedures such as shrinkage and bubbling, and a method of manufacturing such a spray device can also be attained. It has been observed that for similar handheld spray devices of substantially the same arrangements where one has its body made of aluminum and the other of magnesium, the one with the aluminum body is 295 grams in weight while the other with the magnesium body is 245 grams.
The spray device of the present invention or such a spray device obtained by the manufacturing method of the present invention has the enhanced chemical and mechanical durability and facilitates washing/cleaning so as to enable the device to keep the optimum conditions for the extended-term use.
The present invention is furthermore advantageous in that it permits the greater freedom of design from both the technological and esthetical viewpoints, and, unlike the prior art aluminum die cast spray bodies, eliminate the necessity of having the molding polished by a process such as the buffing, and thus, it allow the molding to undergo processes such as the embossing, the finishing to provide sharpened corners, or the like.
Preferred embodiments of a paint spray device and a method of manufacturing the same according to the present invention will now be described with reference to the accompanying drawings.
An exemplary paint spray device according to the present invention is, as illustrated in
The head 12 is, when viewed facing the front as shown in
Pressurized air sent through the pressurized air supply aperture 22 has its flow rate appropriately adjusted by the pressurized air adjustor knob 20 and then jetted out through the atomized air blowing apertures 42, 43, 44, 45 and the divergent spray patterning air apertures 50, 51, 52, 53. The divergent spray pattern adjustor knob 16 regulates flow rate and pressure of the pressurized air supplied from the pressurized air supply aperture 22 and jetted out through the divergent spray patterning air apertures 50, 51, 52, 53 so as to control divergence of the spray pattern. The trigger lever 14 cooperative with the sprayed-paint adjustor knob 18 adjusts an amount of the paint sent through the paint supply aperture 24 and interrupts paint supply.
The spray body 10 is fabricated by means of the magnesium die casting or the magnesium alloy die casting. The spray body 10 is cast in a die (not shown) that fits the contours of a green spray body 10C associated with a die in-gate 60 into which fused magnesium is injected, a vacuum chamber 62 urging the fused magnesium to flow through minute clearances of the die, a catch basin 64 for the head 12 that compensates for “shrinkage” due to adverse debris and/or voids developed in the die, a catch basin 65 for the divergent spray pattern adjustor knob 16, a catch basin 66 for the pressurized air supply aperture 22, and a catch basin 67 for the hook 26.
The vacuum chamber 62 leads to a slide-pin hole 70 in the head, a slide-pin hole 73 in the pressurized air adjustor knob, a slide-pin hole 74 in the pressurized air supply aperture, and a projection 77 located at the bottom of the recess 30 in the grip, respectively.
In
The green spray body 10C cast in the die has the slide-pin hole 70 defined by using a slide pin (not shown) in an area that is to be the head 12. Similarly, the slide-pin hole 71 is defined in an area where the divergent spray pattern adjustor knob 16 is to be located. Also similarly, the slide-pin hole 72 is defined in an area where the sprayed-paint adjustor knob 18 is to be inserted. The slide-pin hole 73 is similarly defined in an area where the pressurized air adjustor knob 20 is inserted. The slide-pin hole 74 is also formed in an area that is to be the pressurized air supply aperture 22. The slide pins (not shown) used as part of the die to give shape to the slide-pin holes 70, 71, 72, 73, 74 in the pre-formation areas respectively corresponding to the head, the divergent spray pattern adjustor knob, the sprayed-paint adjustor knob, the pressurized air adjustor knob, and the pressurized air supply aperture are slid in parallel with the sheet dimensions of
As depicted in
The vacuum chamber 62 is in connection with the slide-pin holes 70, 71, and 73 at only the left half of their respective circumferences. These connection areas should not be precisely limited to the left half of the circumferences of the slide-pin holes, and alternatively, the vacuum chamber 62 may be conducting to any other arcuate extensions around the slide-pin holes, allowing for manufacturing costs for the die and/or other factors.
The catch basins 64, 65, 66 respectively shaped in pre-formation areas that are to be the head, the divergent spray pattern adjustor knob, and the pressurized air supply aperture are in connection with the slide-pin holes 70, 71, 74 at the left half of their respective circumferences. A catch basin 67 is in connection with a pre-formation point that is to be the top of the hook 26. The connection areas of the catch basins 64, 65, 66 to the corresponding slide-pin holes 70, 71, 74 respectively shaped in pre-formation areas that are to be the head, the divergent spray pattern adjustor knob, and the pressurized air supply aperture should not be precisely limited to the left half of their respective circumferences, and instead, they may be conducting to any other arcuate extensions around the slide-pin holes, depending on manufacturing costs for the die and/or other factors.
The grip 28, the hook 26, and the remaining approximately planar lateral portions of the device have their respective major surfaces embossed.
As illustrated in
Moreover, the spray body 10 further undergoes the anodizing treatment to form anodic oxide coating thereover, and after the primer coating to form undercoat substrate, it is further coated with fluorocarbon. The primer coating enhances bonding effects of the fluorocarbon coating applied thereon. Since magnesium is salt aversive and cannot be plated, the anodic oxidation treatment on the magnesium surface is useful to protect magnesium. One typical example of such an anodic oxidation treatment is non-chrome anode oxidation processing available from Hori Metal Finishing Ind., Ltd. under the trademark “ ” or ANOMAG. The ANOMAG non-chrome anode oxidation processing effectuates tight bonding with paint, enhances anti-corrosion and insulation properties, and enlarges the possibility to recycle magnesium because of heavy-metal free treatment. The above mentioned primer coating is 10 to 15 micrometers in thickness while the fluorocarbon coating is 30±5 micrometers.
The spray device according to the present invention is advantageous for a use as a lightweight and easy-to-clean spray device that is suitable for sprinkling liquid like not only paint but also water, adhesives, anti-corrosives, resists, coating liquids, chemicals, or the like, or that is suitable for spraying any of them onto a target object. The spray device of the present invention also has applications as a static nozzle paint atomizing/coating device and a rotary atomizing/coating device.
Number | Date | Country | Kind |
---|---|---|---|
2006-249703 | Sep 2006 | JP | national |
Filing Document | Filing Date | Country | Kind | 371c Date |
---|---|---|---|---|
PCT/JP2007/067953 | 9/14/2007 | WO | 00 | 8/6/2009 |
Publishing Document | Publishing Date | Country | Kind |
---|---|---|---|
WO2008/032825 | 3/20/2008 | WO | A |
Number | Name | Date | Kind |
---|---|---|---|
2119056 | Peterson | May 1938 | A |
2991945 | Rosenkranz | Jul 1961 | A |
3664888 | Oga et al. | May 1972 | A |
5169068 | Bertolini | Dec 1992 | A |
5803367 | Heard et al. | Sep 1998 | A |
6681610 | Yanagibashi et al. | Jan 2004 | B2 |
6949714 | Kontani et al. | Sep 2005 | B2 |
7104254 | Arai et al. | Sep 2006 | B2 |
7166552 | Fukuda et al. | Jan 2007 | B2 |
Number | Date | Country |
---|---|---|
657178 | Sep 1951 | GB |
50115316 | Sep 1975 | JP |
52095334 | Aug 1977 | JP |
1015442 | Jan 1989 | JP |
5253656 | Oct 1993 | JP |
6190310 | Jul 1994 | JP |
7070557 | Mar 1995 | JP |
7275747 | Oct 1995 | JP |
7275749 | Oct 1995 | JP |
9070557 | Mar 1997 | JP |
9511687 | Nov 1997 | JP |
10015442 | Jan 1998 | JP |
11346928 | Dec 1999 | JP |
2002523214 | Jul 2002 | JP |
2004321844 | Nov 2004 | JP |
2006043593 | Feb 2006 | JP |
200643593 | Sep 2007 | JP |
2007224078 | Sep 2007 | JP |
4834804 | Dec 2011 | JP |
Number | Date | Country | |
---|---|---|---|
20100032502 A1 | Feb 2010 | US |