The invention relates generally to systems and methods for spraying substances, such as coating fluids (e.g., paint).
A variety of spray devices may be used to apply a spray to a target object. For example, spray devices often employ a gas, such as pressurized air, to atomize a liquid (e.g., paint) to generate a spray, which is then directed toward the target object to create a coating. Unfortunately, these spray devices flow the gas (e.g., air) through a series of air passages, which abruptly change in direction before exiting a head of the spray device. For example, the air passages may include a plurality of straight passages (e.g., separately drilled bores) that intersect one another at abrupt angles, which may be 45 to 90 degrees. As a result of these abrupt angles, the spray devices experience significant pressure drop and turbulence in the air flow (e.g., generally degraded air flow), which negatively impacts the spray forming downstream of the head of the spray device. These abrupt angles also generate noise as the air flow must abruptly change in direction. Furthermore, the degraded air flow may cause irregularities, deformities, and general non-uniformity in the spray. As a result, the spray may not provide a uniform coating on a target object. Accordingly, a need exists for an improved spray device.
A system includes an air cap configured to mount to a head of a spray device, wherein the air cap comprises at least one air passage having a curved flow path. A system may include a spray head having a first curved air passage that turns inwardly toward a central axis of the spray head, and a second curved air passage that turns inwardly toward the central axis of the spray head, wherein the first and second curved air passage are configured to direct first and second air flows inwardly toward a spray to shape the spray. A system may include a spray device having a liquid passage leading to a liquid outlet, wherein the spray device is configured to atomize a liquid from the liquid outlet to form a spray. The spray device also may include a curved air passage that gradually curves toward an air outlet, wherein the spray device is configured to at least partially shape the spray with an air flow from the air outlet.
These and other features, aspects, and advantages of the present invention will become better understood when the following detailed description is read with reference to the accompanying drawings in which like characters represent like parts throughout the drawings, wherein:
One or more specific embodiments of the present invention will be described below. In an effort to provide a concise description of these embodiments, all features of an actual implementation may not be described in the specification. It should be appreciated that in the development of any such actual implementation, as in any engineering or design project, numerous implementation-specific decisions must be made to achieve the developers' specific goals, such as compliance with system-related and business-related constraints, which may vary from one implementation to another. Moreover, it should be appreciated that such a development effort might be complex and time consuming, but would nevertheless be a routine undertaking of design, fabrication, and manufacture for those of ordinary skill having the benefit of this disclosure.
In addition, the spray coating device 12 may include features to enable a non-conical spray shape and/or a spray shape characterized by a width that varies in a non-linear manner (e.g., curved manner) from an exit of the device 12 to the target object 14. In certain embodiments, the spray shape may be characterized by a cup-shaped or concave outer profile or periphery (e.g., outer edges), such that the width and/or cross-section of the spray shape is greater than a conical shape at a distance close to the exit of the spray coating device 12. In other embodiments, the spray shape may be characterized by a tulip shaped profile or periphery. As discussed below, the unique spray shaping features may enable a greater coverage area with a suitable velocity at a distance close to the exit of the spray coating device 12, thereby improving transfer efficiency and, thus, reducing waste and pollution. It should be noted that in the context of the present disclosure, the terms “conical” and “non-conical” when used to describe a spray shape are intended to refer to the general shape of the periphery of a cross-sectional view of the spray shape. These terms are not intended to suggest that spray particles travel only along the periphery of the spray shape. Rather, spray particles may indeed be transferred throughout the entire interior space of the spray shape.
The illustrated spray coating device 12 may comprise an air atomizer, a rotary atomizer, an electrostatic atomizer, or any other suitable spray formation mechanism. In certain embodiments, the spray coating device 12 may be described as a spray gun, which may include a gun-shape with a handle portion, a barrel or body portion coupled to the handle portion, and a trigger to engage and disengage one or more valves. However, the unique spray shaping features may be utilized on any type of spray device.
The spray coating device 12 may be coupled to a variety of supply and control systems, such as a fluid supply 16, an air supply 18, and a control system 20. The control system 20 facilitates control of the fluid and air supplies 16 and 18 and ensures that the spray coating device 12 provides an acceptable quality spray coating on the target object 14. For example, the control system 20 may include an automation controller 22, a positioning controller 24, a fluid supply controller 26, an air supply controller 28, a computer system 30, and a user interface 32.
The control system 20 also may be coupled to one or more positioning mechanisms 34 and 36. For example, the positioning mechanism 34 facilitates movement of the target object 14 relative to the spray coating device 12. The positioning mechanism 36 is coupled to the spray coating device 12, such that the spray coating device 12 can be moved relative to the target object 14. Also, the system 10 can include a plurality of the spray coating devices 12 coupled to positioning mechanisms 36, thereby providing improved coverage of the target object 14. Accordingly, the spray coating system 10 can provide a computer-controlled mixture of coating fluid, fluid and air flow rates, and spray pattern/coverage over the target object. Depending on the particular application, the positioning mechanisms 34 and 36 may include a robotic arm, conveyor belts, and other suitable positioning mechanisms.
As discussed in further detail below, the air cap 208 may include curved passages to improve the air flow, reduce turbulence, reduce noise, and improve the spray forming downstream of the spray coating device 12. In the illustrated embodiment of
The body 202 of the spray coating device 12 includes a variety of controls and supply mechanisms for the spray tip assembly 200. As illustrated, the body 202 includes a fluid delivery assembly 224 having a fluid passage 226 extending from a fluid inlet coupling 228 to the fluid delivery tip assembly 204. The fluid delivery assembly 224 also comprises a fluid valve assembly 230 to control fluid flow through the fluid passage 226 and to the fluid delivery tip assembly 204. The illustrated fluid valve assembly 230 has a needle valve 232 extending movably through the body 202 between the fluid delivery tip assembly 204 and a fluid valve adjuster 234. The fluid valve adjuster 234 is rotatably adjustable against a spring 236 disposed between a rear section 238 of the needle valve 232 and an internal portion 240 of the fluid valve adjuster 234. The needle valve 232 is also coupled to a trigger 242, such that the needle valve 232 may be moved inwardly away from the fluid delivery tip assembly 204 as the trigger 242 is rotated counter clockwise about a pivot joint 244. However, any suitable inwardly or outwardly openable valve assembly may be used with embodiments of the present invention. The fluid valve assembly 230 also may include a variety of packing and seal assemblies, such as packing assembly 246, disposed between the needle valve 232 and the body 202.
An air supply assembly 248 is also disposed in the body 202 to facilitate atomization at the spray formation assembly 206. The illustrated air supply assembly 248 extends from an air inlet coupling 250 to the air cap 208 via air passages 252 and 254. The air supply assembly 248 also includes a variety of seal assemblies, air valve assemblies, and air valve adjusters to maintain and regulate the air pressure and flow through the spray coating device 12. For example, the illustrated air supply assembly 248 includes an air valve assembly 256 coupled to the trigger 242, such that rotation of the trigger 242 about the pivot joint 244 opens the air valve assembly 256 to allow air flow from the air passage 252 to the air passage 254. The air supply assembly 248 also includes an air valve adjustor 258 coupled to a needle 260, such that the needle 260 is movable via rotation of the air valve adjustor 258 to regulate the air flow to the air cap 208. As illustrated, the trigger 242 is coupled to both the fluid valve assembly 230 and the air valve assembly 256, such that fluid and air simultaneously flow to the spray tip assembly 200 as the trigger 242 is pulled toward a handle 262 of the body 202. Once engaged, the spray coating device 12 produces an atomized spray with a desired spray pattern (e.g., non-conical) and droplet distribution. Again, the illustrated spray coating device 12 is only an exemplary embodiment of the present invention. Any suitable type or configuration of a spraying device may benefit from the unique air cap fluid atomization and air shaping aspects of the present invention.
These curved passages 302 are configured to improve the airflow to the spray 322, thereby improving the spray 322. In particular, the curved passages 302 may be configured to reduce turbulence, pressure, drop, and noise associated with air flow through the spray coating device 12. Furthermore, the curved passages 302 may be configured to improve the spray 322 formed by the spray coating device 12, e.g., by providing a more uniform air flow to shape the spray 322. In particular, the curved passages 302 may help uniformly distribute liquid droplets in the spray 322, thereby helping to increase the transfer efficiency of the spray 322 onto a target object while also providing a more uniform coating on the target object. In the illustrated embodiment, the curved passages 302 include four curved passages. In other embodiments, the curved passages 302 may include any number of curved passages, e.g., 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, or more, in any suitable symmetrical or non-symmetrical arrangement. Furthermore, the illustrated curved passages 302 gradually curve inwardly toward the axis 312 over an angle of approximately 45 degrees at some radius of curvature. In other embodiments, the curved passages 302 may gradually curve inwardly or outwardly relative to the axis 312 over an angle of approximately 1 to 150 degrees, 5 to 120 degrees, 10 to 100 degrees, 20 to 90 degrees, 30 to 60 degrees, 40 to 50 degrees, or any specific angle therebetween. Furthermore, the radius of curvature of each curved passage 302 may range between approximately 0.1 to 5, 0.2 to 4, 0.3 to 3, 0.4 to 2, or 0.5 to 1 inch, or any other suitable radius of curvature.
The curved passages 302 of the air cap 300 may be formed in a variety of ways. In the illustrated embodiment, the air cap 300 may be a one-piece structure having the curved passages 302 formed integrally with an entire body 336 of the air cap 300. For example, the entire body 336 may be molded from a plastic material or cast from a metal material to form the air cap 300 with integral curved passages 302. In other embodiments, the a plurality of separate pieces may define the air cap 300 with the curved passages 302. For example, the curved passages 302 may be separate pieces (e.g., curved tubing) from the body 336. By further example, the curved passages 302 may be formed with multiple segments or sections of the body 336. Regardless of the manufacturing technique, the curved passages 302 provide a gradual curvature devoid of any abrupt changes in angle. In other words, the curved passages 302 do not experience any abrupt angles attributed to multiple straight passages intersecting one another.
While only certain features of the invention have been illustrated and described herein, many modifications and changes will occur to those skilled in the art. It is, therefore, to be understood that the appended claims are intended to cover all such modifications and changes as fall within the true spirit of the invention.
This application claims priority to and benefit of U.S. Provisional Patent Application No. 61/542,019 entitled “SPRAY DEVICE HAVING CURVED PASSAGES”, filed Sep. 30, 2011, which is herein incorporated by reference in its entirety.
Number | Date | Country | |
---|---|---|---|
61542019 | Sep 2011 | US |