The present invention relates generally to an improved device, system, and method for the spraying and application of liquids and/or liquid-gas mixtures for a number of purposes such as: insect control/eradication, pesticide applications, medicinal or medical product spraying applications, including spraying antibiotics among livestock, chickens, pigs, etc. and antidotes for potential terrorist activities, herbicide applications, insecticide applications, paint applications, misting applications, cooling applications, water applications, fertilizer applications, horticultural applications, solid-stream applications, and application of cleaning/stripping/degreasing solutions for household and industrial uses. More particularly, the present invention relates to a cost effective, low-maintenance, and transportable liquid spraying system for the efficient application of liquid materials used to control insect populations, such as mosquito control products.
Traditional mosquito control methods and spraying systems utilized and found in the prior art generally consisted of thermal smoke generators. Typically, this device or process involves the creation of a gaseous smoke that serves as a carrier for the selected insecticide, pesticide, water, petroleum or synthetically formulated liquids. The use of thermal smoke generators, particularly when mounted on motorized vehicles, can often create visual obstructions and lead to dangerous spraying conditions, especially in residential areas. In addition, the application of the gaseous smoke can be inefficient, uneven, require a large amount of pesticide to be integrated with the gaseous smoke, and can be poorly targeted due to the influence of ambient environmental and weather conditions, such as wind, topography, etc.
More recently, spraying techniques have begun to utilize Cold Aerosol Ultra Low Volume (ULV) generators to disperse insect and mosquito control products. Ultra Low Volume technology provides a light cloud of spray comprising a very specific size of droplet. The use of Ultra Low Volume generators typically allow an efficient delivery of a very specific amount of liquid or chemical to the targeted areas inhabited by insects, such as the mosquito, thereby reducing the amount of liquid chemical required for spraying. Typically, the Ultra Low Volume spray clouds are generated through the use of either gas driven blowers or electrically driven rotary sleeves. The Ultra Low Volume blowing equipment can produce a significant amount of undesirable emissions and comprise a number of components which need to be maintained and/or calibrated, such as pumps, meters, flow controls, and filtering devices. In this regard, the expense of such equipment is often cost prohibitive to many smaller municipalities, commercial applicators, or homeowner/development groups that seek to provide mosquito control and insect spraying services to its citizens and residents.
While these prior art devices can perform well and do effectuate mosquito control in many circumstances, they often require a large capital investment to place the equipment into service, utilize a large amount of maintenance resources during operation as well as storage space during periods of non-use, and require additional labor demand to monitor and maintain the systems to ensure that they are in working order when needed. For instance, multi-component Ultra Low Volume spraying packages often require placement and mounting upon dedicated spraying vehicles. In turn, the entity or organization charged with responsibility for the spraying application process is required to devote both financial and technical resources to transportation the multi-component equipment during operation and justify the expenses to its respective constituency, residents, or other recipients of the spraying services.
Moreover, in recent years, state and federal health agencies and organizations in the United States have documented the introduction and spread of a number of viruses and diseases that have been traced to airborne-carrying insects, such as the mosquito. For example, the West Nile Virus and forms of malaria and encephalitis have been identified in both human and animal subjects. In some cases, these viruses have been fatal to humans with children and the elderly being particularly susceptible. At the same time, state and federal environmental legislation and environmental preservation causes have sought protection for “wetlands” areas to preserve the natural environment in designated areas which may be directly adjacent to areas inhabited by human residents. Although preservation of natural resources and the ecosystem are important objectives, a traditional “wetlands” area is generally conducive to the habitation and breeding of large numbers of mosquito populations. Given the airborne and mobile nature of a flying insect, such as the mosquito, the mosquito population often comes into contact with human inhabitants living nearby.
In response to these newly documented health dangers being carried by the mosquito and potential human transmission of life-threatening diseases through contact with the mosquito, both the public and governmental authorities have focused on the need to protect residential populations through cost-effective mosquito control management programs. In so doing, one of the clearest and basic needs is to provide physical equipment and infrastructure to facilitate the application of spraying techniques to control the mosquito population in residential areas.
Accordingly, there is need for a simple low cost system and spraying technique that provides an integrated and dependable application of selected liquid materials to designated geographic areas.
The present invention is directed to a spraying system and techniques/methods for the application of liquid materials to targeted portions of the ambient environment, and particularly one for the efficient spraying of selected liquid droplets, such as (without limitation) liquids employing chemical formulations for insect control/eradication, herbicide application, insecticide application, paint application, water application, fertilizer application, antibiotic application and application of cleaning, stripping, and degreasing solutions for household and industrial uses. Although it is contemplated that the present invention has particular application and utility in the field of spraying and disseminating formulations and agents to facilitate mosquito and insect control thereby protecting human populations from diseases and pathogens, such as the West Nile Virus, malaria, and various forms of encephalitis, it should be seen that the present invention may also be utilized to deliver formulations and agents to control mosquitos and various insects among animal and livestock populations, zoos, food production facilities that utilize live animals, and game preserves. Further, the present invention could be utilized to deliver airborne medical products, vaccines, and antidotes to both human and animal populations in response to a specific medical or epidemiological event. The system generally employs a kit or combination of spraying equipment which is lightweight, compact, and requires a relatively low level of maintenance on the part of the entity applying the materials. The system functions through the spraying of accurate and efficient droplets through the combination of fluid and air by means of a low emission engine or other power source and a compressor. It is contemplated that the present invention may further comprise a dual-use feature having functionality as an air compressor with regulated air take-off whereby a plurality of tools or devices could also be powered through the air compressor utilizing various forms of fittings, such as quick disconnect fittings known in the art.
In a particular preferred embodiment, the efficient liquid droplet size may have fixed or variable flow capabilities, which can be gravity or siphoned fed, and facilitated through the use of at least one nozzle (single or multiple). The nozzle utilized in the present invention may be fed by gravity, siphon, pressure feed, or other pressure fed internal or external mix design. For instance, the present invention may utilize a Venturi-type nozzle, a high-pressure nozzle, hydraulic nozzle, siphon or gravity fed air assisted nozzle, air atomizing nozzle, blow-off nozzle, ultrasonic nozzle, thermal nozzle applications and technology, and all other forms of atomizing or spray nozzles. Although it is contemplated that a preferred nozzle is a Venturi-type nozzle configuration, it should be seen that the present invention may also comprise any number of liquid pressure fed nozzles, having either an internal or external mix, as well as the use of a pressure fed pump configuration. Generally speaking, air assisted nozzles provide very fine droplets that are smaller in size than traditional nozzles. The nozzle of the present invention may or may not have drip characteristics and/or automatic self-cleaning features to reduce the maintenance and clean-up demand depending upon the selected application or spraying environment. Further, the nozzle design of the present invention may incorporate and utilize a variety of patterns such as flat, full cone, hollow cone, fan, etc.
The present invention further serves to provide a method or technique for the application of liquid materials, such as insecticides, pesticides, and herbicides, natural or synthetic, for the reduction and control of mosquito populations, through the use of spraying kit or set of components which can be mounted and/or transported in the bed of a vehicle or other transportation device. For example, such components could be mounted within a land transportation vehicle, attached to a backpack type configuration for mobile use, or be used as an attachment to conventional lawn and garden equipment, such as a leaf blower, tractor, lawnmower, or the like. The spraying of the droplet particles can be effectuated in accordance with the teachings of U.S. Pat. No. 5,873,530 (“Liquid Atomizing Spray Gun”), WO 99/43441 (“Sprayer For Liquids And Nozzle Insert”), and WO 99/39834 (“Spray Apparatus”), all of which are hereby expressly incorporated by reference. More particularly, the present invention and system may achieve atomization of a material selected for application in a wide variety of ways. For example, the liquid may be atomized through mechanical shearing, high-pressure air atomization, high-liquid pressure, or vibration. Further, the specific objects, specifications, features and improvements of the present invention can be briefly summarized as follows:
In a first preferred embodiment, the present invention is a regulated flow of a liquid material spraying machine that is composed of at least four major components: a direct drive engine and compressor assembly, a fluid formulation tank and attachments, an air tank frame assembly, and a nozzle assembly. The nozzle assembly is preferably a specialized nozzle that creates uniform droplet output and provides for an air-activated nozzle clean-out feature.
Other preferred embodiments of the invention include additional features such as a spraying device that includes two separate units formed of the above components that are easily combined or broken down for shipping, a spraying device that may be attached to a pre-existing portable air compressor and a spraying device providing a variable flow Ultra Low Volume liquid formulation spraying.
These and other objects of the present invention will become apparent upon reading the following detailed description in combination with the accompanying drawings, which depict systems and components that can be used alone or in combination with each other in accordance with the present invention.
A number of advantages are realized in accordance with the present invention, including, but not limited to, the ability to deliver and apply a liquid atomized spray to targeted portions of the ambient environment.
With reference to
Specifically, the spraying device 10 includes an engine driven direct drive compressor 12 that can be powered by electricity, gasoline, diesel fuel, ethanol, kerosene, hydraulic, air motor, electrical motor, fuel cell technology, or the like. In addition, the engine driven compressor 12 can utilize direct drive, belt drive, chain drive, or gear driven technology known in the art. Coupled to the compressor 12 is at least one, and more preferably two, air storage tank 14. These tanks 14 provide air pulsation reduction to the regulated air stream and also serve as a reservoir for excess airflow generation. Intermediate the compressor 12 and storage tanks 14 is an automatic engagement switch 16. The compressor 12 is engaged and disengaged from generating high-pressure air to the reservoir storage tanks 14 by means of the automatic engagement switch 16. A specialized Venturi nozzle 18 is connected to the compressor 12 via a manual switch 20. During operation, the regulated airflow is applied from the compressor 12 to the nozzle 18 via the manual switch 20. The nozzle 18 is also connected to a reservoir tank 22 by a liquid supply tube 24.
The Venturi design of the nozzle 18 causes a vacuum or low-pressure area to be generated in the liquid supply tube 24 extending from the nozzle 18 toward the reservoir tank 22 when the high-pressure air is exiting the nozzle 18. The liquid supply tube 24 may use a fixed 24A or variable restriction 24B (
When the switch 20 is in the off position (
To clean out the nozzle 18 (
An advantage of the device 10 is that the reservoir tank 22 with nozzle 18 may be located on an adjustable arm 53 as shown in
A second preferred embodiment is shown in
The frame assembly 110 includes a gasoline engine 122 mounted on a mounting plate 124 above at least one and more preferably two air tanks 130 forming an overall low profile and stable device 100. In a preferred embodiment, the engine 122 is a high efficiency Honda gas engine coupled to a high capacity direct drive compressor 128, thereby eliminating all belt/pulley, chain or gear drives making this a high efficiency energy source. At least one and preferably two twin air reservoir tanks 130 are located below the engine 122 and compressor 128 and provide storage for the high-pressure air as well as providing air pulsation dampening for the nozzle air feed lines 156. A switch 132, preferably an automatic switch, is located on top of one of the air reservoir tanks 130 (the right hand tank in
As described above, the reservoir/nozzle assembly 112 simply drops into position on one side of the compressor frame 120. A flexible air feed line 142 with swivel coupler 144 attaches to a manual valve 146 preferably located on the frame 120 at a point near or at the drop on cradle 114. At least one and preferably two Venturi nozzles 148 are mounted above a liquid formulation or reservoir tank 150 and air is directed to the Venturi nozzles 148 by moving the manual switch 152 mounted on the manual valve 146 to the ON position. Like the first preferred embodiment, the manual switch 152 is preferably a 4 way/3 position switch having an ON, OFF and CLEAN position. Additionally, the Venturi nozzles 148 are preferably similar to those shown in
By regulating the pressure of the air to the nozzles 148, varying degrees of droplet size generation may successfully be achieved. The high-pressure air bombards the liquid stream just as it exits the nozzle 148, shattering the liquid stream into uniform droplets. The size of these droplets is determined by the pressure and volume of air directed at the liquid stream. A separate air feed line 156 is attached to the back of each nozzle 148 and feeds air into the exhaust port 46 (See
Advantageously, the nozzles 148 are preferably made of corrosion resistant material such as stainless steel allowing the operator to use any formulation of liquid for spraying. Additionally, the reservoir tank 150 is preferably formed of ultraviolet resistant material such as plastic and preferably incorporates a wide mouth filler cap with gauge 158. Incorporated into the twin nozzle assembly 148 is a valve, preferably a simple ball valve 160 located between the two nozzles 148 in the air supply line 156 that allows the operator to spray with one or two nozzles 148 depending on how much material output is desired. Mounted above the nozzles is a shield 162 as described above. In addition to the advantages of the shield set forth above, the shield 162 protects the nozzles 148 in case the assembly tips over as well as doubling for a carrying handle for the reservoir/nozzle assembly 112. Overall, the device 100 allows for a preferable liquid formulation rate of up to 6 ounces of oil based liquid for atomization and higher flow rates of other products. The unit is compact, highly efficient and easily transportable.
Additional advantages of this device are that is may also be converted to a gas-powered portable compressor in seconds. The device is a self-contained unit requiring no outside power source and can is easily transported by hand or used in conjunction with a 4 wheeler, a utility vehicle, a snow mobile, a pick up truck or boat, for example, and may be provided with security straps for securing to a vehicle during transport to a remote location.
A third preferred embodiment of the spraying device 200 is shown in
The spraying device 200 receives all the air energy used for the liquid atomization process described above and illustrated in
Similarly, a separate air feed line 226 is attached to the back 228 of the nozzles 220 and directs air into the exhaust port 46 (
With reference to
With reference to
Although the nozzle assembly 318 is preferably a Venturi nozzle assembly and works similar to the first and second preferred embodiments described above and illustrated in
More specifically, the present invention utilizes a direct drive engine and compressor assembly 310, wherein the engine may be manufactured by Honda, which supplies high-pressure air to one and preferably two twin air storage tanks 324, which also comprise part of the frame assembly 314. This high-pressure air travels to the tanks 324 through a supply tube 326 that is in engagement, such as fluid engagement, with the engine's 320 automatic engagement/disengagement switch 328. In a preferred embodiment, the supply tube 326 is an armored supply tube. Output air is directed to at least one and preferably three separate adjustable air pressure regulators 329, 330, 336 creating three separate air supplies. In the embodiment comprising three separate air supplies, it should be seen that one air supply flows to the air driven liquid formulation pump 316 through line 334, one air supply going or flowing to the nozzle assembly 318 via line 362, and one air supply going or flowing to the damping cylinder 340 via line 332. Pressure to the liquid formulation pump 316 is regulated to optimize pump performance as well as changing output fluid pressure depending on the liquid flow rate desired to the nozzle 318. In a preferred embodiment, the pump 316 multiplies the liquid output pressure relative to air input pressure by a factor of up to four or more. The selected or chosen formulation fluid may be gravity fed to the liquid side of the air/fluid pump via line 331.
The fluid, when exiting pump 316 comprised of increased fluid pressure, is directed or displaced via line 333, 333A to the damping cylinder 340 and fluid pressure regulator while en route or moving toward the nozzle 318. The fluid output pressure may ultimately be regulated by fluid pressure regulator 338 located along line 333. It should be seen that incorporated within the air/fluid circuits is a pulsation or damping cylinder 340. The damping cylinder 340 dampens the liquid fluid pulsations to the nozzle 318 caused by the cycling of the air driven liquid formulation pump 316. The cylinder 340 is in fluid connection with the nozzle assembly 318 via lines 332 and 333A.
The nozzle assembly 318 is fixedly attached to a mast 342 that is pivotal from a vertical position to a fully horizontal position (shown in phantom in
The liquid formulation tank 312 utilizes a bottom feed supply line 331 to the pump 316 with preferably a filter screen in line or in tank to eliminate debris from entering the fluid supply line 331. A bypass valve 350 in fluid connection with the fluid pressure regulator 338 via fluid supply line 362 to the nozzle assembly 318 allows for nozzle bypass back to the fluid formulation tank 312 through a bypass line 356 when the pump 316 may need to be purged of air, typically if the liquid formulation tank 312 is inadvertently run dry. This feature is also used for chemical agitation prior to being sprayed. A fluid pressure gauge 358 is provided in line 333 to allow for a visual check of the desired pressure during operation.
A manual switch 360 is preferably a 3 way/2 position switch having an ON and OFF position. When the switch 360 is in the ON position, air is directed through fluid lines 332, 334, and 362 respectively as described above. In those embodiments of the present invention which comprise a switch 360 having a CLEAN position, it should be seen that when the switch 360 is in the CLEAN position, air is directed through fluid line 362 and one of the two fluid pressure regulators 330 to the nozzle assembly 318. The nozzle assembly 318 and nozzle tip 322 is cleaned in the manner described above and illustrated in
It is also envisioned that the twin air storage tanks 324 may be disengaged from the fluid formulation tank 312 and advantageously used to power air tools, such as a nail gun or other where the fluid and air pressure regulators 330,336,338 together with the pulsation dampening cylinder 340 provide a reservoir of high pressure air to the tool while reducing pulsation of air flow, eliminating spurts of air to the tool. Additionally, the nozzle assembly 318 may alternatively be a pressure fed nozzle implementing the fluid and air pressure regulators 330,336,338 with the pulsation damping cylinder 340 provided with the device 300. This pressure fed nozzle may include an internal mix pressure feed, similar to the Venturi nozzle described above, or an externally mixed pressure feed that is well known in the art. The pressure feed nozzle may also be visually monitored by the fluid pressure gauge 358 provided with the device 330 and described above.
The preferred embodiments of the present invention have been disclosed. A person of ordinary skill in the art would realize however, that certain modifications would come within the teachings of this invention. Therefore, the following claims should be studied to determine the true scope and content of the invention.
The present application is a divisional of U.S. patent application Ser. No. 10/318,927, filed on Dec. 13, 2002 now U.S. Pat. No. 6,805,307, which is also claims the benefit of Provisional Application No. 60/341,326, filed Dec. 13, 2001 and is incorporated herein by reference.
Number | Name | Date | Kind |
---|---|---|---|
2201995 | Erickson | May 1940 | A |
3239960 | Stevens | Mar 1966 | A |
3304011 | Paasche | Feb 1967 | A |
3735929 | Pleines | May 1973 | A |
3776459 | Bonvicini | Dec 1973 | A |
3900165 | Parke et al. | Aug 1975 | A |
3917168 | Tenney | Nov 1975 | A |
4116385 | Waldron | Sep 1978 | A |
4182491 | Parke et al. | Jan 1980 | A |
4474327 | Mattson et al. | Oct 1984 | A |
4781329 | Tenney et al. | Nov 1988 | A |
5299737 | McGinnis et al. | Apr 1994 | A |
5340026 | Woodruff | Aug 1994 | A |
5341644 | Nelson | Aug 1994 | A |
5392996 | Ussery | Feb 1995 | A |
5441297 | Krohn et al. | Aug 1995 | A |
5873530 | Chizinsky | Feb 1999 | A |
6003787 | Fisher | Dec 1999 | A |
6012647 | Ruta et al. | Jan 2000 | A |
6206300 | Roudebush et al. | Mar 2001 | B1 |
6272790 | Paganessi et al. | Aug 2001 | B1 |
6409097 | McCauley | Jun 2002 | B1 |
6446881 | You | Sep 2002 | B1 |
20020030117 | Bryan et al. | Mar 2002 | A1 |
20020030119 | Proharam | Mar 2002 | A1 |
Number | Date | Country |
---|---|---|
0131120 | May 1984 | EP |
WO9807525 | Feb 1998 | WO |
WO9857753 | Dec 1998 | WO |
WO9909291 | Feb 1999 | WO |
WO9915279 | Apr 1999 | WO |
WO9939834 | Aug 1999 | WO |
WO9943441 | Sep 1999 | WO |
WO0164352 | Sep 2001 | WO |
WO0172432 | Oct 2001 | WO |
Number | Date | Country | |
---|---|---|---|
20040222318 A1 | Nov 2004 | US |
Number | Date | Country | |
---|---|---|---|
60341326 | Dec 2001 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 10318927 | Dec 2002 | US |
Child | 10867135 | US |