The present inventions generally relate switching devices, and more specifically, to bi-stable switches.
Micro-Electro-Mechanical System (MEMS) devices find applications in a variety of fields, such as communications, sensing, optics, micro-fluidics, and measurements of material properties. In the field of communications, MEMS Radio Frequency (RF) switches offer several advantages over solid state switches, including a more linear response and a higher quality (Q) factor. Typical MEMS switches require the application of a constant electrostatic or magnetic force in order to maintain the switching assembly in at least one of the desired positions. This results in an inefficient use of power and can be disadvantageous in applications where the conservation of power is desirable, e.g., in mobile wireless phones.
Thus, there remains a need for a reliable bi-stable MEMS RF switch that has the ability to conserve power in any state that it is currently in.
The present inventions are directed to a switch assembly that comprises a stable structure, such as, e.g., a substrate, and a resilient switching member mounted to the stable structure. The resilient switching member comprises a transverse torsion member having a flexible portion, and a leaf spring(s) and cantilever that extend from the flexible portion of the torsion member. The switching assembly further comprises a first anchoring member mounting the torsion member to the stable structure, and a second anchoring member mounting the leaf spring to the stable structure. In this manner, the leaf spring has a flexible portion between the first and second anchors that can be alternately flexed in opposing directions to deflect the cantilever end in the respective opposing directions. In the preferred embodiment, the switch assembly is a micro-electro-mechanical system (MEMS) switch. The present inventions, however, are not limited to MEMS switches, and contemplate other types of mechanical switches as well.
By way of non-limiting example, the leaf spring can exhibit a first stable geometry when flexed in one of the opposite directions, and a second stable geometry when flexed in another of the opposite directions. In this case, the leaf spring can have a stress gradient that maintains the leaf spring in the stable geometries. The geometries can be any shape, but in the preferred embodiments, concave and convex geometries, which correspond to the first bending modes of the leaf springs, and advantageously provide good responsiveness to the switching member, are used. Thus, the switch can be switched between two stable states using a momentary force and can maintain these two stable states without further expenditure of energy. In the preferred embodiment, the free end of the cantilever deflects a greater distance than that of the maximum displacement of the leaf spring, e.g., more than twice as great. Thus, in this case, the unique geometry of the switching member acts as a mechanical amplifier and allows for a large travel distance of the cantilevered end, while maintaining reasonable actuation dimensions.
In the preferred embodiment, the switching member is formed of a planar membrane, which advantageously provides for a more easily manufacturable and responsive structure. The switching member may further comprise another leaf spring that extends from the flexible portion of the torsion member, so that the first and second leaf springs straddle a center cantilever. In this manner, the second leaf spring provides more responsiveness to the switching member. To minimize electrical interference that may otherwise be caused by the leaf spring (if electrically conductive), the cantilever extends from the flexible portion of the torsion member a greater distance than does the leaf spring, so that any electrical terminal that the free end of the cantilever comes in contact with is spaced a sufficient distance from the electrically active spring.
The switching assembly can be designed to achieve any one of a variety of switching methodologies. For example, the switching assembly can be arranged as a single pole double throw (SPDT) switch, in which case, the switching assembly comprises a common electrical terminal that is permanently electrically coupled to the cantilever (which is electrically conductive), a first electrical terminal that is electrically coupled to the cantilever only when the cantilever is deflected in one of the opposite directions, and a second electrical terminal that is electrically coupled to the cantilever only when the cantilever is deflected in another of the opposite directions. In this case, the first anchor can be electrically coupled and can be mounted to the common terminal to provide an electrical pathway to the cantilever. In this manner, the common terminal is electrically coupled to one of the selected first and second terminals via the anchor and cantilever.
As another example, the switching assembly can be arranged as a single pole single throw (SPST) switch. In this case, the switching assembly may comprise a first electrical terminal that is permanently electrically coupled to the cantilever (which is electrically conductive), and a second electrical terminal that is electrically coupled to the cantilever only when the cantilever is deflected in one of the opposite directions. In this case, the first anchor can be electrically coupled and can be mounted to the first terminal to provide an electrical pathway to the cantilever. In this manner, the first terminal is selectively electrically coupled to the second terminal. Using the SPST switching methodology, the switching assembly may alternatively comprise first and second electrical terminals that are both electrically coupled to the cantilever only when the cantilever is deflected in one of the opposite directions. In this case, the cantilever may comprise a shorting bar that shorts the first and second electrical terminals when the cantilever is deflected in the one opposite direction. In this case, the switching member, with the exception of the shorting bar, can be composed of an insulating material to minimize electrical interference.
In the preferred embodiment, the switching assembly comprises an actuator that is operatively coupled to the leaf spring to alternately flex the leaf spring in the opposing first and second directions. By way of non-limiting example, the leaf spring may be actuated magnetically, electrostatically, piezoelectrically, or thermally. In the preferred embodiment, a magnetic actuator is used because of the relatively large displacements involved. For example, the magnetic actuator may comprise a magnetic field coil and one or more ferrous elements. The magnetic field coil may be affixed to the leaf spring, in which case, the one or more ferrous elements may be placed a distance from the magnetic field coil, such that the leaf spring is flexed towards the one or more ferrous elements when electrical current with a first polarity flows through the magnetic field coil, and is flexed away from the one or more ferrous elements when electrical current with a second polarity flows through the magnetic field coil. Or the one or more ferrous elements may be affixed to the leaf spring, in which case, the magnetic field coil may be placed a distance from the magnetic field coil, such that the leaf spring is flexed towards the one or more ferrous elements when electrical current with a first polarity flows through the magnetic field coil, and is flexed away from the one or more ferrous elements when electrical current with a second polarity flows through the magnetic field coil.
The drawings illustrate the design and utility of preferred embodiments of the present invention, in which similar elements are referred to by common reference numerals. In order to better appreciate how the above-recited and other advantages and objects of the present inventions are obtained, a more particular description of the present inventions briefly described above will be rendered by reference to specific embodiments thereof, which are illustrated in the accompanying drawings. Understanding that these drawings depict only typical embodiments of the invention and are not therefore to be considered limiting of its scope, the invention will be described and explained with additional specificity and detail through the use of the accompanying drawings in which:
Referring generally to
The switching assembly 100 can be characterized as a single pole double throw (SPDT) switch in that it is configured as a mechanically latching two-chip switch capable of switching a common RF signal between electrically isolated circuits disposed on the respective chips. In this regard, the switching assembly 100 generally comprises a bottom chip 102, a top chip 104, a resilient planar switching member 106 anchored to the bottom chip 102, and an actuator 108 that is operatively coupled to the switching member 106 to place the switching assembly 100 into an “up” state (
The bottom chip 102 comprises a substrate 110, which in the illustrated embodiment, is composed of a suitable material, such as Aluminum Oxide (Al2O3). Other substrate material, such as silicon, ceramic, polymer, glass, or semiconductor material such as gallium arsenide, can be used. The bottom chip 102 further comprises electrical circuitry in the form of a coplanar waveguide (CPW) 112, which is disposed on the substrate 110 to provide the bottom chip 102 with RF power and signal conducting capability. The CPW 112 is composed of a suitably conductive material with good RF properties, such as gold or silver. Alternatively, the CPW 112 may be made of a thin-film High Temperature Superconductor (HTS) material on, e.g., a MgO substrate. Thin-film HTS materials are now routinely formed and are commercially available. See, e.g., U.S. Pat. Nos. 5,476,836, 5,508,255, 5,843,870, and 5,883,050. Also see, e.g., B. Roas, L. Schultz, and G. Endres, “Epitaxial growth of YBa2Cu3O7-x thin films by a laser evaporation process” Appl. Phys. Lett. 53, 1557 (1988) and H. Maeda, Y. Tanaka, M. Fukotomi, and T. Asano, “A New High-Tc Oxide Superconductor without a Rare Earth Element” Jpn. J. Appl. Phys. 27, L209 (1988). The bottom chip 102 further comprises a common RF input terminal 114 from which the RF signal is switched between the bottom and top chips 102 and 104, and a bottom RF output terminal 116 that is placed into electrical conduction with the common RF input terminal 114 when the switching assembly 100 is placed in the down state (see FIG. 2).
The top chip 104 comprises a substrate 118, which like the bottom substrate 110, is composed of a suitable material, such as Aluminum Oxide. The top chip 104 further comprises electrical circuitry in the form of a CPW 120, which is disposed on the substrate 118 to provide the top chip 104 with RF power and signal conducting capability. The CPW 120 is composed of a suitable conductive material, such as gold or silver, or alternatively a HTS material. The top chip 104 further comprises a top RF output terminal 122 that is placed into electrical conduction with the common input terminal 114 when the switching assembly 100 is placed in the up state (see FIG. 1).
The switching member 106 comprises a transverse torsion member 124, a center cantilever 126 extending from the end of the transverse torsion member 124, and a pair of leaf springs 128 extending from the end of the transverse torsion member 124 and straddling the cantilever 126. The center cantilever comprises a free end 130, which includes a pair of opposing contacts 132 and 134 that alternately couple to the bottom and top terminals 116 and 122, as will be discussed in further detail below. The switching member 106 is composed of a metal characterized by high electrical conductivity, low loss, ease of deposition, and excellent flexibility. Suitable metals for the metal layer include, but are not limited to, gold and silver. Thus, the center cantilever 126 acts as a reed that can be positioned in the “up-state” or “down-state” by flexing the springs. 128 either up or down respectively. Specifically, when the springs 128 are flexed up, a flexing portion 130 of the torsion member 124 at the base of the cantilever 126 tilts upward, which in turn, rotates the cantilever 126 upward (best shown in FIG. 3). When the springs 128 are flexed down, the flexing portion 130 of the torsion member 124 at the base of the cantilever 126 tilts downward, which in turn, rotates the cantilever 126 downward (best shown in FIG. 4).
The springs 128 lock the cantilever 126 into place once the transition has been made. Specifically, when viewed from the top chip 104, the springs 128 are capable of exhibiting a stable convex geometry (
As illustrated, the free end 130 of the cantilever 126 is advantageously deflected a greater vertical distance than are the springs 128. This effect can be accomplished by introducing an intrinsic stress gradient within springs 128 to cause them to exhibit a greater curvature than that exhibited by the cantilever 126. As result, the greater curvature of the springs 128 will prevent the ends of the springs 128 from achieving a large vertical deflection, while the lesser curvature of the cantilever 126 will allow the free end 130 of the cantilever 126 to achieve a large vertical deflection. Because the cantilever 126 should remain relatively flat (little or no residual stress), the stress gradient in the leaf springs 128 should be introduced selectively. As will be discussed in further detail below, the stress gradient can be introduced into the springs 128 by layering the springs 128, e.g., with two metals with different coefficients of thermal expansions (CTE's), or by using a single metal with an intrinsic stress gradient (e.g., soft gold and hard gold).
Preliminary calculations show that the vertical deflection of the cantilever 126 is more than twice (about six times) the vertical deflection of the springs 128. For example, given lengths for the cantilever 126 and springs 128 of 0.85 mm and 0.60 mm, an estimated crude deflection of the cantilever 126 in one direction was calculated to be 0.085 mm, whereas the estimated crude deflection of the springs 128 in one direction was calculated to only be 0.014 mm. Thus, the unique geometry of the switching member 106 acts as a mechanical amplifier and allows for a large travel distance of the cantilever end 130, while maintaining reasonable actuation dimensions.
To provide a stable platform, the switching member 106 is mounted to the bottom chip 102 via three anchors. Specifically, the torsion member 124 of the switching member 106 is mounted to a common anchor 136, which is in turn mounted to, and is in electrical contact with, the common input terminal 114 of the bottom chip 102. In this manner, the common anchor 136 acts as an electrical conduit between the common input terminal 114 and the cantilever 126. The ends of the springs 128 opposite the torsion member 124 of the switching member 106 are mounted to two respective anchors 138, which are in turn mounted to the bottom chip 102. Thus, the springs 128 have flexible portions 140 that extend between the common anchor 136 and the spring anchors 138. Unlike the common anchor 136, the spring anchors 138 merely function as support structures, and not as electrical conduits, and are thus not in direct electrical communication with the CPW 112 of the bottom chip 102.
Thus, it can be appreciated that when the switching assembly 100 is in the up-state, a closed circuit is created between the common input terminal 114 and the top output terminal 122. Specifically, the contact point 134 of the center cantilever 126 makes contact with the top output terminal 122 on the top chip 104, such that an RF signal at the common input terminal 114 of the bottom chip 102, travels up the common anchor 136, across the center cantilever 126, into the top output terminal 122, and through the top CPW 120, where it is routed to the relevant circuitry of the top chip 104. When the switching assembly 100 is in the down-state, a closed circuit is created between the common input terminal 114 and the bottom output terminal 116. Specifically, the contact point 132 of the center cantilever 126 makes contact with the bottom output terminal 116 on the bottom chip 102, such that an RF signal at the common input terminal 114 of the bottom chip 102, travels up the common anchor 136, across the center cantilever 126, into the bottom output terminal 116, and through the bottom CPW 112, where it is routed to the circuitry of the bottom chip 102. Notably, the center cantilever 126 extends further from the torsion member 124 than do the springs 128. As a result, the electrical contacts 132 and 134 on the center cantilever 126 extend past the ends of the springs 128, so that capacitive coupling between the electrically “hot” springs 128 and either of the bottom and top output terminals 116 and 122 is minimized.
It should be noted that the characterization of the terminals as input or output terminals will depend on how the circuit is designed. For example, the common terminal 114 can be an RF output terminal, whereas the bottom and top terminals 116 and 122 can be RF input terminals. In this case, the switching assembly 100 will function in the manner just described, with the exception that the RF signal will travel from one of the selected bottom and top input terminals 116 and 122 to the common output terminal 114.
The flexing of the switching member 106 can be actuated using a variety of means, including magnetic, electrostatic, piezoelectric, shaped memory, and thermal means to name a few. In the illustrated embodiment, magnetic means are used. Specifically, the actuator 108 comprises a magnetic field coil 142, which is affixed to the substrate 118 of the top chip 104, and a plurality of ferrous elements 144, which are affixed along the lengths of both springs 128. The magnetic field coil 142 is composed of a suitable electrically conductive material, such as copper. The top chip 104 further comprises a coil input terminal 146 and coil output terminal 148 (shown in
In an alternative embodiment, the magnetic field coil 142 is affixed to the substrate 110 of the bottom chip 102, as illustrated in FIG. 10. In this case, the actuator 108 is operated in a similar manner, with the exception that the polarities of the electrical current will be switched to provide the same up and down flexing of the springs 128. In a further alternative embodiment, the magnetic field coil can be printed on the backside of the top substrate 118 and bond wires can be connected to the ends of the coil. In this manner, the coil can be shielded from the CPW to prevent the coil from acting as a “pick-up” coil, which may otherwise cause interference to the RF signals within the CPW. In yet another embodiment, the magnetic field coil fabrication step could be eliminated and the coil could be hand wound around the entire two-chip device after assembly using ordinary copper wire.
In a still further alternative embodiment, ferrous elements 145 are affixed to either of the substrates 110 and 118 of the bottom and top chips 102 and 104, and magnetic field coils 143 are affixed along the lengths of the springs 128, as illustrated in FIG. 11. In this case, the magnetic field coils 143 will be isolated from the electrically conductive springs 128 via a passivation layer (not shown) and will be supplied with electrical current through an electrical path that is isolated from the RF electrical path. Again, flexing of the springs 128 will be actuated by energizing the magnetic field coils with electrical current of opposite polarities.
Turning now to
As a preliminary matter, the following lithographic fabrication processes utilize a plurality of patterning layers and masks to pattern and form the various elements of the switching assembly 100. In the illustrated method, photolithography is used to optically expose and polymerize portions of patterning layers through photographic masks. The patterning layers used by the following process can be composed of any suitable photo-sensitive material. In the illustrated process, the patterning layers are composed of photoresist unless otherwise stated. It should be noted, however, that the patterning layers can be patterned using any suitable process, such as selective laser etching, e-beam writing and the like. Photolithography, selective laser etching, and e-beam writing are well known processes in the art of lithography, and will thus not be discussed in further detail. It should also be noted that the following discussion describes the masks as having patterns without reference to positive patterns (i.e., exposed portion of the patterning layer is removed) or negative patterns (i.e., non-exposed portion of the patterning layer is removed). One of ordinary skill in the art, however, will understand that either positive or negative patterns can be used in the following process.
Referring first to
In
In
In
In
In
In
In
Referring now to
In
In
In
In
Once the bottom and top chips 102 and 104 are fabricated, the switching assembly 100 is assembled by mounting the chips 102 and 104 relative to each other, as illustrated in FIG. 9. The distance between the chips 102 and 104 is determined by the height of the standoffs, such that when the switching assembly 100 is in the up-state, the free end 130 of the cantilever 126 makes contact with the top output terminal 122 (FIG. 1), and when the switching assembly 100 is in the down-state, the free end 130 of the cantilever 126 makes contact with the bottom output terminal 116 (FIG. 2). Once the two chips are properly aligned, a low temperature eutectic bond is formed using the indium layer or other such soft solder-like material between the gold standoffs on the upper and lower chips.
Although the above-discussed switching assembly 100 has described as a SPDT switch, the switching member 106 can be advantageously used with other types of bi-stable switches. For example,
Functionally, rather than alternately switching an RF signal from a common input terminal to one of two output terminals, the switching assembly 200 alternately switches between an on-state, where an RF signal is conveyed from an input terminal to a single output terminal, or an off-state, where the RF signal is not conveyed from the input terminal at all.
Thus, it can be appreciated that when the switching assembly 200 is in the down-state (or “on-state”) (FIG. 13), a closed circuit is created between the input and output terminals 114 and 116. Specifically, the contact point 132 of the center cantilever 126 makes contact with the output terminal 116 on the bottom chip 102, such that an RF signal at the input terminal 114 of the bottom chip 102, travels up the common anchor 136, across the center cantilever 126, into the output terminal 116, and through the bottom CPW 112, where it is routed to the circuitry of the bottom chip 102. When the switching assembly 200 is in the up-state (or “off-state”) (FIG. 12), however, an open circuit is created between the input and output terminals 114 and 116. Specifically, the contact point 132 of the center cantilever 126 is taken out of contact with the output terminal 116, and thus, the RF signal from the input terminal 114 does not travel to the output terminal 116.
As previously mentioned, the characterization of the terminals as input or output terminals will depend on how the circuit is designed. For example, the terminal 114 can be an RF output terminal, whereas the terminal 116 can be a RF input terminal. In this case, the switching assembly 200 will function in the manner just described, with the exception that the RF signal will travel from the input terminal 116 to the output terminal 114 when the switching assembly 200 is placed in the on-state.
The switching assembly 200 can be fabricated in a similar manner as the switching assembly 100, with the exception that only the bottom chip 102 and its associated components, which now includes the magnetic field coil 142, will be monolithically fabricated onto the bottom chip 102.
Thus, it can be appreciated that when the switching assembly 300 is in the down-state (or “on-state”) (FIG. 15), a closed circuit is created between the input and output terminals 114 and 116. Specifically, the shorting bar 332 of the center cantilever 326 makes contact with the input and output terminals 114 and 116, such that an RF signal at the input terminal 114 travels across the shorting bar 332 and into the output terminal 116. When the switching assembly 200 is in the up-state (or “off-state”) (FIG. 14), however, an open circuit is created between the input and output terminals 114 and 116. Specifically, the shorting bar 332 of the center cantilever 126 is taken out of contact with the input and output terminals 114 and 116, and thus, the RF signal from the input terminal 114 does not travel to the output terminal 116.
As previously mentioned, the characterization of the terminals as input or output terminals will depend on how the circuit is designed. For example, the terminal 114 can be an RF output terminal, whereas the terminal 116 can be a RF input terminal. In this case, the switching assembly 300 will function in the manner just described, with the exception that the RF signal will travel from the input terminal 116 to the output terminal 114 when the switching assembly 300 is placed in the on-state.
The switching assembly 200 can be fabricated in a similar manner as the switching assembly 200, with the exception that input and output terminals 114 and 116 are fabricated adjacent each other. Also, because the common anchor 136 need not be electrically conductive, or at the least need not be connected to the CPW 112, the common anchor 136 can be formed directly onto the passivation layer with the spring anchors 138 (see FIG. 6K-1). Also, with the exception of the shorting bar 332, the switching member 106 can be composed of a non-electrically conductive material, or at least an electrically conductive material that is not as conductive as gold, e.g., a polymer. In this manner, the any RF interference that would otherwise be generated by an electrically conductive switching member will be eliminated.
Although particular embodiments of the present inventions have been shown and described, it will be understood that it is not intended to limit the present inventions to the preferred embodiments, and it will be obvious to those skilled in the art that various changes and modifications may be made without departing from the spirit and scope of the present inventions. Thus, the present inventions are intended to cover alternatives, modifications, and equivalents, which may be included within the spirit and scope of the present inventions as defined by the claims.
The U.S. Government may have a paid-up license in this invention and the right in limited circumstances to require the patent owner to license others on reasonable terms as provided for by the terms of contract no. MDA972-00-C-0010 awarded by DARPA.
Number | Name | Date | Kind |
---|---|---|---|
4492922 | Ohkubo | Jan 1985 | A |
4565972 | Kaegebein | Jan 1986 | A |
5020138 | Yasuda et al. | May 1991 | A |
5120705 | Davidson et al. | Jun 1992 | A |
5418490 | Kaegebein | May 1995 | A |
5604925 | O'Malley et al. | Feb 1997 | A |
5867302 | Fleming | Feb 1999 | A |
5999851 | White | Dec 1999 | A |
6016092 | Qiu et al. | Jan 2000 | A |
6069540 | Berenz et al. | May 2000 | A |
6104934 | Patton et al. | Aug 2000 | A |
6124650 | Bishop et al. | Sep 2000 | A |
6168395 | Quenzer et al. | Jan 2001 | B1 |
6205340 | Yandrofski et al. | Mar 2001 | B1 |
6212404 | Herstig | Apr 2001 | B1 |
6236300 | Minners | May 2001 | B1 |
6239685 | Albrecht et al. | May 2001 | B1 |
6263215 | Patton et al. | Jul 2001 | B1 |
6294847 | De Los Santos | Sep 2001 | B1 |
6303885 | Hichwa et al. | Oct 2001 | B1 |
6307169 | Sun et al. | Oct 2001 | B1 |
6384707 | Minners | May 2002 | B2 |
6426687 | Osborn | Jul 2002 | B1 |
6496612 | Ruan et al. | Dec 2002 | B1 |
6622028 | Abdelmonem | Sep 2003 | B1 |
6720851 | Hallbjorner et al. | Apr 2004 | B2 |
20010010488 | Minners | Aug 2001 | A1 |
20020050880 | Ruan et al. | May 2002 | A1 |
20020119805 | Smith | Aug 2002 | A1 |
20020121951 | Shen et al. | Sep 2002 | A1 |
20020149456 | Krimmer et al. | Oct 2002 | A1 |
20020151332 | Eddy | Oct 2002 | A1 |
20020173343 | Narahashi et al. | Nov 2002 | A1 |
20020196110 | Vailkus et al. | Dec 2002 | A1 |
20030025580 | Wheeler et al. | Feb 2003 | A1 |
20030029705 | Qiu et al. | Feb 2003 | A1 |
20030156006 | Hanke et al. | Aug 2003 | A1 |
Number | Date | Country |
---|---|---|
WO 9119348 | Dec 1991 | WO |
WO 9119349 | Dec 1991 | WO |
WO 0184211 | Nov 2001 | WO |
Number | Date | Country | |
---|---|---|---|
20030223174 A1 | Dec 2003 | US |