1. Field of the Invention
The invention relates to a sprinkler, more particularly to a sprinkler in which an inclined position and a spraying range of a spray head can be changed.
2. Description of the Related Art
Referring to
However, since the spraying unit 14 moves around the horizontal axis, the spraying area is relatively small and uneven.
Therefore, the object of the present invention is to provide a sprinkler in which a spray head can be adjusted relatively flexibly so as to spray water relatively evenly.
The sprinkler according to this invention includes a fixed unit, a rotary unit, an impeller, a connector, and a spray head. The fixed unit has a water inlet. The rotary unit is mounted rotatably on and is fluidly communicated with the fixed unit. The impeller rotates the rotary unit and is adapted to be driven by water from the water inlet. The connector is mounted on and is fluidly communicated with the rotary unit. The spray head is mounted on and is fluidly communicated with the connector. The spray head is rotatable relative to the rotary unit so as to change an inclined position of the spray head.
Other features and advantages of the present invention will become apparent in the following detailed description of the preferred embodiments with reference to the accompanying drawings, of which:
Before the present invention is described in greater detail, it should be noted that like elements are denoted by the same reference numerals throughout the disclosure.
Referring to
The fixed unit 3 includes a water inlet 314 adapted to be connected to a hose 20, a shaft 327 defining a first axis (X), a base housing 321, and a spike body 31 extending downward from the base housing 321. The spike body 31 has a spike pin 311, and a connection pipe 312 connected to the spike pin 311, the base housing 321 and the water inlet 314. The shaft 327 of the fixed unit 3 is tubular, and is connected fluidly to the connection pipe 312. The shaft 327 extends upward from the base housing 321. The spike pin 311 is used for fixing the sprinkler of this invention on a ground. Alternatively, other mechanisms suitable for fixing or mounting the sprinkler on the ground can be used.
The fixed unit 3 further includes an externally toothed tube 326 extending around the shaft 327, two stacked annular adjusting members 33 mounted on the base housing 321, and an inlet tube 325 protruding downward from the base housing 321 and connected fluidly to a top end 313 of the connecting pipe 312. Each of the annular adjusting members 33 has an inner ring 331 extending around the externally toothed tube 326, an outer ring 333 surrounding concentrically the inner ring 331, and an actuator 332 protruding radially from the inner ring 331 to the outer ring 333. The inner ring 331 of each of the annular adjusting members 33 is sleeved around the externally toothed tube 326 and has an internally toothed surface 334 engaging the gear teeth 324 of the externally toothed tube 326 so that the annular adjusting members 33 are engageble and are rotatable about the externally toothed tube 326 so as to adjust an angle defined between the actuators 332 of the annular adjusting members 33.
Referring to
The rotary unit 4 further includes an impeller mounting plate 421 mounted inside the rotary housing 411 so as to divide the rotary housing 411 into an upper receiving space 48 and a lower receiving space 47, a planet gear set 43 mounted inside the rotary housing 411, and a sun gear 34 mounted on the shaft 327 and meshing with the planet gear set 43.
The impeller 45 rotates the rotary unit 4, and is adapted to be driven by water from the water inlet 314. The impeller 45 includes a waterwheel 452 mounted rotatably on the impeller mounting plate 421 in the upper receiving space 48 of the rotary housing 411, and a drive gear 451 connected coaxially with the waterwheel 452 and connected to the planet gear set 43. The planet gear set 43 is mounted in the lower receiving space 47 of the rotary housing 411, and is turnable around the sun gear 34 to rotate the rotary housing 411. One planet gear 431 of the planet gear set 43 is disposed in the gear hole 414 of the rotary housing 411 so that the rotary housing 411 rotates along with the planet gear set 43 when the planet gear set 43 rotate around the sun gear 34. The rotating velocity of the rotary housing 411 is determined by the gear ratio of the planet gear set 43.
Furthermore, the impeller mounting plate 421 has a clockwise rotation water passage 422 and a counterclockwise rotation water passage 423, both of which penetrate through the impeller mounting plate 421 and are connected fluidly to the impeller 45. The rotary unit 4 further includes a deflector 44 mounted on the impeller mounting plate 421 and extending downwardly. The deflector 44 has a deflector plate 441 to selectively block one of the clockwise and counterclockwise rotation water passages 422,423, a deflector rod 442 penetrating through the rotary housing 411 and extending between the actuators 332 of the annular adjusting members 33, and a spring 443 interconnecting the deflector plate 441 and the deflector rod 442. Additionally, the impeller mounting plate 421 has a rounded guide rib 424 protruding from the impeller mounting plate 421 and surrounding the waterwheel 452 to define a waterwheel operation region 425. The clockwise and counterclockwise rotation water passages 422, 423 are connected fluidly to the waterwheel operation region 425.
Referring to
When the rotary housing 411 rotates clockwise relative to fixed unit 3 until the deflector rod 442 of the deflector 44 abuts against one of the actuators 332 of the annular adjusting members 33, the deflector plate 441 is switched to block the counterclockwise rotation water passage 423. Water enters through the clockwise rotation water passage 422 into the upper receiving space 48 of the rotary housing 411. The waterwheel 452 of the impeller 45 is driven by water to rotate clockwise. Therefore, the rotary housing 411 can rotate counterclockwise relative to the fixed unit 3. Accordingly, the rotary housing 411 can rotate relative to the fixed unit 3 to-and-fro within an angle defined between the actuators 332 of the annular adjusting members 33.
Referring to
Each of the first and second connector parts 514, 513 has an outer shell 5141, 5131 and a central joint member 5142, 5132 disposed inside the outer shell 5141, 5131. The central joint members 5142, 5132 of the first and second connector parts 514, 513 are aligned along the second axis (Y), and are interconnected rotatably. The outer shells 5141, 5131 of the first and second connector parts 514, 513 respectively have open ends which are interconnected hermetically. The connector 51 further includes a water space 510 that is formed inside the outer shells 5141, 5131 and around the central joint members 5142, 5132 and that is connected fluidly to the rotary unit 4 and the spray head 52. The central joint member 5142, 5132 and the outer shell 5141, 5131 of each of the first and second connector parts 514, 513 are formed as one piece. The central joint member 5132 of the second connector part 513 has a socket 5133. The central joint member 5142 of the first connector part 514 has resilient hooked members 5143 engaged movably in the socket 5133. Moreover, the central joint member 5132 of the second connector part 513 has a plurality of annularly spaced apart recesses 5136. The central joint member 5142 of the first connector part 514 has a resilient detent 5146 engageable releaseably with one of the recesses 5136 so that the outer shell 5141 of the first connector part 514 can be locked against and move rotationally and relatively to the outer shell 5131 of the second connector part 513.
Referring again to
The spray head 52 includes a first shell 521 that has a plurality of spray regions 522, each of which has a plurality of spray nozzles 523. The spray nozzles 523 in each of the spray regions 522 have a configuration different from that of the other one of the spray regions 522. The first shell 521 further has a plurality of compartments 529 connected fluidly and respectively to the spray regions 522, and a plurality of water inlet holes 526 connected fluidly and respectively to the compartments 529. The first shell 521 further has a barrier plate 525 disposed inside the first shell 521 and cooperating with the first shell 521 to confine a space 528 therebetween, and a plurality of partition plates 524 extending transversely of the barrier plate 525 and dividing the space 528 into the compartments 529. The inlet holes 526 are formed in the barrier plate 525.
The spray head 52 further includes a second shell 515 connected fluidly to the first shell 521. The second shell 515 is connected to and is rotatable along with the first connector part 514. The second shell 515 has a guide passage 516 connected fluidly to the first shell 521 and the first connector part 514. The first shell 521 is rotatable relative to the second shell 515 to selectively align one of the inlet holes 526 with the guide passage 516 so as to select one of the spray regions 522 having a desirable configuration of the spray nozzles 523 for communicating fluidly with the guide passage 516.
Furthermore, the first and second shells 521,515 respectively have open ends which overlap. The open end of the second shell 515 has an annular groove 517. The open end of the first shell 521 has annularly spaced apart projections 527, which engage slidably the annular groove 517 to interconnect rotatably the first and second shells 521, 515.
The water from the rotary unit 4 flows through the through hole 461 of the partition 462, the coupler 511, the water space 510 of the connector 51, the guide passage 516 into a corresponding one of the compartments 529, and then sprays from the spray nozzles 523 of a corresponding one of the spray regions 522. The spray head 52 is actuated by the rotary unit 4 to move to-and-fro within the angle defined between the actuators 332 of the annular adjusting members 33. Moreover, the inclined position of the spray head 52 can be changed by rotating the first connector part 514 relative to the second connector part 513 so as to control the spraying area.
Referring to
While the present invention has been described in connection with what is considered the most practical and preferred embodiments, it is understood that this invention is not limited to the disclosed embodiments but is intended to cover various arrangements included within the spirit and scope of the broadest interpretation so as to encompass all such modifications and equivalent arrangements.
Number | Name | Date | Kind |
---|---|---|---|
4986476 | Hour | Jan 1991 | A |
6164562 | Wu | Dec 2000 | A |
6808129 | Wang | Oct 2004 | B1 |
6834814 | Beckman | Dec 2004 | B1 |
7191958 | Wang | Mar 2007 | B1 |
Number | Date | Country | |
---|---|---|---|
20070235560 A1 | Oct 2007 | US |