Sputtering target of Li3PO4 and method for producing same

Information

  • Patent Grant
  • 8197781
  • Patent Number
    8,197,781
  • Date Filed
    Monday, November 5, 2007
    16 years ago
  • Date Issued
    Tuesday, June 12, 2012
    11 years ago
Abstract
A method of forming a lithium orthophosphate sputter target or tile and resulting target material is presented. The target is fabricated from a pure lithium orthophosphate powder refined to a fine powder grain size. After steps of consolidation into a ceramic body, packaging and degassing, the ceramic body is densified to high density, and transformed into a stable single phase of pure lithium orthophosphate under sealed atmosphere. The lithium orthophosphate target is comprised of a single phase, and can preferably have a phase purity greater than 95% and a density of greater than 95%.
Description
FIELD OF THE INVENTION

The present invention is related to the fabrication and manufacture of thin-film solid-state batteries and, in particular, for example, the formation of a dense, single phase sputter target of lithium orthophosphate, Li3PO4, for reactive sputter deposition of a film or layer of lithium phosphorus oxynitride, known in the literature as LIPON, that may be utilized as an electrolyte, separator, or dielectric layer inside a thin-film battery or any other charge storage device structure, such as capacitors.


BACKGROUND OF THE INVENTION

Solid-state thin-film batteries are typically formed by stacking thin films on a substrate in such a way that the films cooperate to generate a voltage. The thin films typically include current collectors, a positive cathode, a negative anode, and an electrolyte film. The cathode and the electrolyte can be deposited utilizing a number of vacuum deposition processes, including physical vapor deposition, which includes evaporation and sputtering. Other methods of deposition include chemical vapor deposition and electroplating.


In a thin-film battery configuration, the cathode layer is separated from the anode layer by the insulating layer of solid electrolyte material. This electrolyte layer provides two functions. The first function is to conduct the electrochemically active ions between the cathode and the anode. The second function is to prevent the direct exchange of electrons between the cathode and the anode so that the electronic current becomes available only in the external circuit. In the case of a lithium based battery which comprises, for example, lithium (metal anode) batteries, lithium ion (anode) batteries, and lithium-free (anode) batteries, the electrochemically active ion that is exchanged is the Lithium+1 ion or the Li+ ion. In U.S. Pat. No. 5,597,660 to John B. Bates, Jan. 28, 1997, it is reported, “Most critical to battery performance is the choice of electrolyte. It is known that the principal limitation on recharge ability of prior batteries is failure of the electrolyte. Battery failure after a number of charge-discharge cycles and the loss of charge on standing is caused by reaction between the anode and the electrolyte, e.g. attack of the lithium anode on the lithium electrolyte in lithium batteries.” (Bates, column 2, lines 10-16).


The use of lithium phosphorus oxynitride is well known in the literature as LIPON and suitable for the formation of the solid thin film electrolyte layer in such devices. See, for instance, U.S. Pat. No. 5,569,520, Apr. 30, 1996 and U.S. Pat. No. 5,597,660, Jan. 28, 1997, issued to John B. Bates and N. J. Dudney. The resulting LIPON film was found to be stable in contact with the lithium anode. Perhaps as important, Bates et al. reported that incorporation of nitrogen into lithium orthophosphate films increased their Li+ ion conductivity up to 2.5 orders of magnitude.


Both U.S. Pat. Nos. 5,569,520 and 5,597,660 disclose the formation of amorphous lithium phosphorus oxynitride electrolyte films deposited over the cathode by sputtering Li3PO4, lithium orthophosphate, in a nitrogen atmosphere. Both patents teach that the targets were prepared by cold pressing of lithium orthophosphate powder followed by sintering of the pressed disc in air at 900° C. In each patent, deposition of a 1 micron thick film was carried out over a period of 16-21 hours at an average rate of 8-10 Angstroms per minute. The resulting film composition was LixPOyNz where x has approximate value 2.8, while 2y+3z equals about 7.8, and z has an approximate value of 0.16 to 0.46.


There were two shortcomings with regard to the sputter target disclosed by Bates, et al. One was the low rate of deposition. In part, the low deposition rate is a result of an inherent low sputter rate of a low density target material. In addition, high sputter rates also require high sputter power, which was not, or could not be applied. The other shortcoming is the presence of impurity phases in the lithium orthophosphate target material. These impurity phases can cause plasma instability, as reported by other workers for other sputter target materials. Also, the impurity phases that were likely present in the method taught by Bates could have weakened the sputter target and caused target cracking at higher sputter powers. Hence, high power and high rate deposition were not often possible with sputter targets having these impurities in the target material.


High density ceramic bodies or tiles of the lithium orthophosphate material suitable as sputtering target have been demonstrated by at least two methods: sintering and hot pressing. However, due to the large number of known oxides of phosphorus, targets that are commercially available have been shown by the present research and investigation to be rich in at least one or more impurity phases, such as Li4P2O7, which is deficient in lithium oxide (Li2O) as informally described by L4P2O7=Li3PO4●LiPO3 where LiPO3=Li3PO4−Li2O. Such compound and concentration variations of the impurity phases inside the parent material Li3PO4 due to presently available commercial manufacturing methods cause undesirable variations in the properties of the sputter target. These impurities cause plasma instability and target damage. For instance, they weaken the mechanical integrity of the sputter target, which is then prone to flaking and cracks. A weakened target can lead to particle generation, which, in turn, is built into the deposited film as defects. Impurities also weaken the sputter target through the formation of separated or agglomerated regions of higher or lower physical properties, such as density, elastic modulus, or color. At a given sputter power level these regions exhibit different sputter rates and sputtered composition compared with the surrounding sputter target areas. This scenario results in off-stoichiometric and non-uniform films. In particular, the impurity Li4P2O7 is deficient in lithium (oxide), which causes the deposited lithium phosphorus oxynitride film to be deficient in lithium. In that case, the Bates patent describes x of LixPOyNz equal to 2.8, and this patent is not specific regarding the actual ratio of lithium to phosphorus. Due to these process variations and defects caused by multi phase sputter targets, the deposited films display particle defects that typically result in electrical shorting of the thin-film battery. The same holds true if LIPON was used as the dielectric in a capacitor. The deposited films also show variation in chemical composition and poor uniformity. As a result, solid state batteries containing the subject LIPON electrolyte sputtered from multi phase lithium orthophosphate targets have poor yields and very low manufacturing rates. Furthermore, such films have not been practically manufacturable and therefore have remained only a scientific and engineering curiosity. Hence, mass produced batteries, typical of other vacuum thin film manufactured products such as semiconductor chips or LCD display panels, have not been made available for use with solid state batteries that first require generally defect free, uniform LIPON electrolyte films.


Lithium phosphorus oxynitride films must be chemically inert to the other layers present in thin film solid state batteries, capacitors and memory devices. Thin film batteries equipped with such an electrolyte are known to offer many benefits of high recharge cycle life, low impedance for fast charging and discharging, and high temperature operation such as 150° C. or even higher. Thin film batteries using lithium phosphorus oxynitride electrolytes can be made very small and thin, while providing high energy storage density when configured with thin film lithium cobalt oxide cathode layers.


Although, experimental batteries fabricated with lithium phosphorus oxynitride electrolyte layer have been reported, no commercial devices are generally available today due to the difficulty in sputtering from a lithium orthophosphate ceramic sputter target material formed by prior art methods. The industry has difficulty producing commercial thin film batteries with a lithium phosphorus oxynitride thin-film electrolyte for two major reasons. The first reason is that efficient sputtering of pure materials to form films or layers on a substrate cannot be accomplished economically from low density targets. The second reason is that sputter targets including more than one phase possess physical properties such as strength, elastic modulus, hardness, chemical composition, thermal conductivity, dielectric strength and even color that vary widely over the target surface. At a given power level the different phases of the target material will sputter at different rates, leading to non uniform erosion of the sputter target and non-uniform properties of the sputtered film. Moreover, commercial lithium orthophosphate targets evaluated were found to contain one or more impurity phases as discussed further below.


U.S. Pat. No. 5,435,826 by M. Sakakibara and H. Kikuchi discloses a method of forming a dense, single phase sputtering target of indium-tin oxide for sputtering an indium tin oxide layer or film by a particular method of sintering under particular high temperature and time conditions. In the '826 patent, a single phase sputter target having a density of 93% or more while containing a second impurity phase with a concentration of less than 10% is discussed. Sakakibara et. al. discloses the plasma instabilities that arise with multiphase targets as well as the high quality oxide film that can be made from the sputter target having both high density and high single phase composition.


Accordingly, there remains is a need for uniform high density commercial lithium orthophosphate targets. Therefore, there is also a need for a method of forming a dense, single phase sputter target of lithium orthophosphate that allows for deposition of a high quality LIPON layer at high rates of deposition.


SUMMARY OF THE INVENTION

Various aspects and embodiments of the present invention, as described in more detail and by example below, address certain of the shortfalls of the background technology and emerging needs in the relevant industries. Accordingly, the present invention is directed, for example, to a sputter target and a method of forming a sputter target that substantially obviate one or more of the shortcomings or problems due to the limitations and disadvantages of the related art.


In one aspect of an embodiment of the invention, a sputter target may be formed from single phase lithium orthophosphate material into a high density, uniform ceramic body comprised of pure lithium orthophosphate without the formation of impurity phases. The sputter target fabricated from such body is suitable for the deposition of LIPON films. Some exemplary embodiments of the invention address the need for a sputter target to deposit LIPON films utilized as the electrolyte layer in a solid state rechargeable lithium based battery or other charge storage or charge transfer device.


In another aspect of an embodiment of the invention, a method of forming a high density, single phase sputter target of Li3PO4 includes a first step of refining a powder of pure Li3PO4, a second step of densifying the powder by cold isostatic pressing (CIP) to form the powder into an initial consolidated lithium orthophosphate material body (green body), degassing the consolidated material, and hot isostatic pressing (HIP) the degassed ceramic body into an initial lithium orthophosphate material body to form a dense ceramic body or material of single phase lithium orthophosphate.


In yet another aspect of an embodiment of the invention, an HIP process is performed for about 2 hours above 10 kpsi at a temperature less than about less than about 850° C. to form a 95% to 99% dense ceramic body or material of single phase lithium orthophosphate.


In another aspect of an embodiment of the invention, a dense ceramic body or material of single phase lithium orthophosphate is formed into a sputter target used to deposit a layer of LIPON onto a substrate.


Another aspect of an embodiment of the invention involves fabricating single phase lithium orthophosphate sputter targets by adding appropriate small amounts of pure Li2O powder to powder of pure Li3PO4 to thermodynamically prevent the formation of the predominant impurity phase Li4P2O7 during a heating step. This approach is to be understood from the point that Li4P2O7 is a lithium orthophosphate derivative, which is deficient in lithium oxide (Li2O), as informally described by Li4P2O7=Li3PO4●LiPO3 wherein LiPO3=Li3PO4−Li2O. The appropriate small amounts of Li2O powder will further counteract the loss of any Li2O during the sputter target fabrication process described above through pushing the thermodynamic equilibrium of the following chemical reaction to the side of the pure Li3PO4:Li4P2O7+Li2O=2 Li3PO4.


Another aspect of an embodiment of the invention, a battery structure may be formed inside a vacuum deposition system using the lithium orthophosphate sputter target to form the thin-film electrolyte layer of said battery structure.


Another aspect of an embodiment of the invention is a method of producing a battery inside a vacuum deposition system. It includes: 1) loading a substrate into the vacuum deposition system; 2) depositing an optional barrier layer onto the substrate in one vacuum chamber; 3) depositing an optional conducting layer over the substrate or over the optional barrier layer inside the vacuum chamber or inside a different vacuum chamber of the vacuum deposition system; 4) depositing a LiCoO2 layer over the optional barrier layer or the optional conducting layer inside the vacuum chamber or inside a different vacuum chamber of the vacuum deposition system; 5) depositing a LIPON electrolyte layer over the LiCoO2 layer inside the vacuum chamber or inside a different vacuum chamber of the vacuum deposition system; 6) depositing an anode layer over the LIPON electrolyte layer inside the vacuum chamber or inside a different vacuum chamber of the vacuum deposition system; and 7) depositing an optional, second conducting layer over the anode layer inside vacuum chamber or inside a different vacuum chamber of the vacuum deposition system.


In another aspect of an embodiment of the invention, a step of refining a powder of pure Li3PO4 refines the powder to a mesh size of 250 mesh.


In still another aspect of an embodiment of the invention, densification of the pure lithium orthophosphate powder may be carried out in a CIP process resulting in a consolidated material body (green body) that exhibits approximately 50% of the theoretical density of lithium orthophosphate.


In yet another aspect of an embodiment of the invention, degasification of the consolidated material may be carried out at a temperature between 400° C. to 550° C. in a suitable steel vessel.


Another aspect of an embodiment of the invention includes performing an HIP process in a lined and scaled steel vessel at pressures of well above 10 kpsi and at a temperature less than about 850° C. for about 2 hours to form a 95% to 99% dense ceramic body or material of single phase lithium orthophosphate.


These and further embodiments are further discussed below with respect to the following figures.





BRIEF DESCRIPTION OF THE DRAWINGS

Some features and advantages of the invention are described with reference to the drawings of certain preferred embodiments, which are intended to illustrate and not to limit the invention.


The accompanying drawings, which are included to provide a further understanding of the invention and are incorporated in and constitute a part of this specification, illustrate exemplary embodiments of the invention that together with the description serve to explain the principles of the invention. In the drawings:



FIG. 1 illustrates a sequence of processing steps that can be used to form a sputter target of lithium orthophosphate according to an embodiment of the present invention.



FIG. 2 shows the Differential Scanning Calorimetry (DSC) data, thermo-gravimetric (TG) data, and mass spectrometer curve for evolved water for a sample of lithium orthophosphate powder as the temperature is increased.



FIG. 3A illustrates the x-ray diffraction (XRD) analysis of two commercial target samples of lithium orthophosphate and a hot isostatically pressed (“HIPed”) sample.



FIG. 3B is an enlarged region of the XRD analysis of three samples showing the presence of the impurity phase Li4P2O7 in the two commercial samples and the absence of the impurity phase in a sample HIP.



FIG. 4 is an XRD pattern of the starting powder.





DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS

These and other aspects of the invention will now be described in greater detail in connection with exemplary embodiments that are illustrated in the accompanying drawings.


It is to be understood that the present invention is not limited to the particular methodology, compounds, materials, manufacturing techniques, uses, and applications described herein, as these may vary. It is also to be understood that the terminology used herein is used for the purpose of describing particular embodiments only, and is not intended to limit the scope of the present invention. It must be noted that as used herein and in the appended claims, the singular forms “a,” “an,” and “the” include the plural reference unless the context clearly dictates otherwise. Thus, for example, a reference to “an element” is a reference to one or more elements and includes equivalents thereof known to those skilled in the art. Similarly, for another example, a reference to “a step” or “a means” is a reference to one or more steps or means and may include sub-steps and subservient means. All conjunctions used are to be understood in the most inclusive sense possible. Thus, the word “or” should be understood as having the definition of a logical “or” rather than that of a logical “exclusive or” unless the context clearly necessitates otherwise. Structures described herein are to be understood also to refer to functional equivalents of such structures. Language that may be construed to express approximation should be so understood unless the context clearly dictates otherwise.


Unless defined otherwise, all technical and scientific terms used herein have the same meanings as commonly understood by one of ordinary skill in the art to which this invention belongs. Preferred methods, techniques, devices, and materials are described, although any methods, techniques, devices, or materials similar or equivalent to those described herein may be used in the practice or testing of the present invention. Structures described herein are to be understood also to refer to functional equivalents of such structures. Unless the context of the disclosure or claims dictate otherwise, for example, the terms “target” and “target title” maybe used interchangeably.


All patents and other publications identified are incorporated herein by reference for the purpose of describing and disclosing, for example, the methodologies described in such publications that might be used in connection with the present invention. These publications are provided solely for their disclosure prior to the filing date of the present application. Nothing in this regard should be construed as an admission that the inventors are not entitled to antedate such disclosure by virtue of prior invention or for any other reason.


According to embodiments of the present invention, it can be seen that process conditions similar to those described by Sakakibara et al. (U.S. Pat. No. 5,435,826, discussed above) and other methods currently researched and disclosed for formation of the predominantly single phase indium tin oxide target are not useful and do not lead to acceptable single phase, high density targets of lithium orthophosphate. Indeed, it is not clear, for a given material, that even a pure powder of a pure composition can be densified suitably for the purpose of sputtering without forming secondary or impurity phases. In some cases, pressure causes the formation of new chemical phases or the loss of a portion of the starting material as it transforms into another compound or chemical phase. In some other cases, temperature will result in similar transformations or degeneration of phase purity. Additionally, phase diagrams for ternary compounds of lithium, oxygen and phosphorus are known for only a few conditions of constant temperature or pressure. In addition to the under-oxidized phosphite anion (PO3)3−, wherein the phosphorus adopts the +3 oxidation state, there are more anionic species known in which the phosphorus assumes other well known states such as +5 (phosphates; (PO4)3−) and +1 (hypo-phosphites; (PO2)3−) or −3 (phosphonium compounds; (PH4)+).


In accordance with some embodiments of the present invention, a sputter target of Li3PO4 having a density very close to the theoretical density of 2.48 g/cm3 can be formed. Sputter targets that are currently available, particularly those of a densified ceramic or vitreous material, are often of low density because of the incorporation of voids and porosity during the fabrication process from power feedstock or other low density starting material. As a dense target is sputtered, the surface of the target may remain continuous and display a surface of constant roughness or even become smoother under the influence of the sputter process, which is a process for the direct atomization or vaporization of the sputter target directly from the solid state. In this process, the material of the target is deposited on a substrate by the condensation of the vapor on the substrate to be coated. Less dense targets may become rougher as the porosity is exposed by continuous removal of the surface during the sputtering process, which in turn can increase the porosity thereby fueling the surface roughening. This situation can create a vicious cycle of a runaway degradation of the target surface. Plasma instability may result at the asperities of the rough surface. Roughening leads to flaking-off of particulate material from the rough target surface. These particles produced from the rough surface may contribute to defects or particle occlusions in the deposited film. For example, electrolyte films infected with a particle occlusion may exhibit a film discontinuity or pinhole defect under, above or around the occlusion. This occlusion can lead to undesirable results, such as short-circuiting a battery through reaction of the cathode material with the anode material, which may come into contact with each other at the discontinuity or pinhole defect in the electrolyte film. Analogous effects also may occur in other device films, such as capacitor dielectrics.


Some embodiments of the present invention may result in lithium orthophosphate sputter targets with a single phase purity achieved simultaneously with high density. In order to evaluate the phase composition of available commercial lithium orthophosphate target materials, two samples were obtained. One sample was hot pressed and had a density of 95%, the other was sintered and had a density of 81%. The X-ray diffraction (XRD) analyses of these two samples, shown in FIGS. 3A and 3B, illustrate that these two samples contain substantial amounts of an impurity phase, which was identified as the lithium oxide deficient impurity compound, Li4P2O7.



FIG. 1 illustrates an embodiment of an exemplary process 100 for forming a dense, single phase lithium orthophosphate target according to some embodiments of the present invention. Process 100 can be utilized to manufacture a dense target with a single phase of lithium orthophosphate. Process 100 includes refining pure lithium orthophosphate powder 101 of the typical mesh size 80 to a refined powder 103 of mesh size 250, packaging the refined powder so as to provide the powder to a cold isostatic pressure (CIP) vessel suitable for ambient temperature processing 105, which pre-densifies the fine powder. Process 100 further comprises the steps of packaging the powder in a suitable steel container, step 107, and degassing the consolidated powder, step 109. In step 109, the steel package is evacuated and heated at a constant rate to a temperature of about 400° C. to 550° C. In step 111 the steel container is sealed and undergoes a hot isostatic pressure (HIP) process where the packaged material is heated at a constant rate to a temperature of no more than 800 to 850° C. and held at that temperature for a period of at least 2 hours at a pressure of at least 15 kpsi, and then cooled at a constant rate. The process 100 is continued with step 113 in which the can is removed by surface grinding of the steel container or can, and the ceramic body is saw cut and finished into the sputter target or sputter target tile of specific dimensions. In some embodiments, the target part is bonded in step 115 to a plate or fixture to form a cathode sputter target assembly.


According to some embodiments of process 100, a pure powder 101 of lithium orthophosphate of mesh size 80 may be prepared. A powder 103 of refined size having a mesh of 250 (average 250 mesh screen grain size is about 75 microns while average 80 mesh screen is about 180 microns) can be formed by means such as jet milling or other powder size reduction process. After de-agglomeration of the mesh 250 powder, a mean grain size of about 25 microns can be obtained. The powder can be refined to a fine grain size condition so that it will undergo high density densification in the subsequent steps 105 and 111 at temperatures lower than is used by conventional sintering, hot pressing, or HIP processes so as to avoid the formation of the impurity phase shown in FIG. 2 and FIGS. 3A and 3B (described below in detail). An X-ray diffraction pattern of the starting powder is shown in FIG. 4. The figure demonstrates that the starting powder is a single phase as the only phase present in this example is the low temperature Li3PO4. Preferably, no impurity phase is present in the starting material.


In step 105, the refined powder is packaged in a rubber mold of an appropriate size and pressed at room temperature at a pressure sufficient to densify the material to about 50-60% of the theoretical density of 2.48 g/cm3 to form a green billet. In some embodiments a pressure of about 12 kpsi can be applied to form a green billet of ˜50% density. The green billet can be considered a ceramic body.


According to some embodiments of the present invention, in step 107 the ceramic body formed in step 105 is packaged in a closed steel container that has a liner of, for example, molybdenum, graphite paper or graphite foil with a thickness of about 80/1000 of an inch. The container may be equipped with a means for gas evacuation.


Process 100 may further include the step 109 of degassing the 50% dense ceramic body by evacuation of the atmosphere down to 10−6 Torr of the container formed in step 107 while heating the container at a constant rate to a temperature between 400-550° C. for a period of time to reach the appropriate vacuum level. For example, small billets can be degassed successfully at only 400° C. within a few hours but larger billets of ˜10 kg may require higher temperatures of up to 550° C. to ensure degassing within 2 days.



FIG. 2 shows the Differential Scanning Calorimetry (DSC) data, thermo-gravimetric (TG) data, and mass spectrometer curve for evolved water for a sample of lithium orthophosphate powder as the temperature is increased. The sample was heated in argon at a temperature rate of 10 K/min. Two small mass loss steps of 0.64 wt % and 0.69 wt % were detected between RT to about 200° C. and 200° C. to about 700° C., respectively. The mass spectrometer results verified that in that temperature range small amounts of H2O are evolved. In the DSC curve, exothermic peaks were detected at 193° C., 262° C., 523° C., 660° C. and 881° C. The first two exothermic peaks may be related to the release of water. The remaining peaks may represent solid-state reactions discussed further below.


The DSC data shown in FIG. 2 for a sample of lithium orthophosphate powder as the temperature is increased illustrate the thermodynamic effects of heating the material in step 109. The exothermic transition at 522.5° C. was determined to be the gamma to alpha phase transition of the parent lithium orthophosphate phase Li3PO4, which was found to have an enthalpy of 19.6 Joules per grain. In some embodiments, an alpha phase lithium orthophosphate powder can be formed during the degas process 109 into a so-called green ceramic body, comprised of an open porosity. The data in FIG. 2 were collected in argon atmosphere, in which the partial pressures of H2O and O2 are much smaller than in air. The environment may affect the onset of reactions shown in FIG. 2. The heating rate may also affect the onset of reactions as well. The baking-out of the billet may occur in air, argon atmosphere or vacuum.


In step 109, the powder can be degassed and water removed. FIG. 2 suggests that substantially all of the water, H2O, may be removed by about 400° C. It was discovered that a phase change took place in the pure lithium orthophosphate material at 522.5° C., which was accompanied by an enthalpy of 19.6 Joules/gram and attributed to the gamma to alpha crystal dimorphism. Because this phase transition can be associated with a change in the unit cell volume of the lithium orthophosphate crystallites, and the higher-temperature alpha phase crystals may be the more stable ones due to their exothermic enthalpy of formation, step 109 may be carried out at a temperature of 550° C. in order to increase the formation of the pure alpha phase, rather than around or below the gamma to alpha transition temperature of 522.5° C. In this way, process 100 forms the green body in a pure phase and a pure crystalline morphology that will survive the thermal cycle between processes 109 as well as the higher temperature process 111. The single phase and single crystalline morphology of the pure lithium orthophosphate achieved in the degas step 109 provides a ceramic body of uniform thermo-elastic condition, modulus, coefficient of thermal expansion (CTE), fracture toughness, etc. for the HIP process 111.



FIG. 3A illustrates the x-ray diffraction (XRD) analysis of two commercial target samples of lithium orthophosphate and a HIPed sample pressed with the method described here. It displays the comparison of sintered, and hot pressed (HP) to hot isostatically pressed (HIP) target. The sintered and the hot pressed samples both display a strong peak at 20.4 degrees, which is identified as the impurity phase Li4P2O7, and is the main contaminating phase found in commercial target samples. In contrast, the powder sample formed in accordance with an embodiment of the present invention, which was HIP processed at 850° C., shows an x-ray diffraction intensity of almost zero at the same diffraction angle. FIG. 3B is an enlarged region of the XRD analysis of the three samples showing the presence of the impurity phase Li4P2O7 in the two commercial samples and the absence of this impurity phase in the sample HIP processed at 850° C. according to an embodiment of the present invention.


The formation of the impurity phase Li4P2O7 occurs at a temperature of approximately 880° C., which is shown to have an enthalpy of formation of 21.8 Joules per gram. FIGS. 3A through 3B illustrate the XRD analysis that can be used to evaluate the absence of the crystalline impurity or contaminating phase when a sputter target is formed according to some embodiments of the present invention. FIGS. 3A and 3B illustrate the presence of the impurity phase Li4P2O7 in the commercial hot pressed and sintered sputter target materials. In contrast, the HIPed target according to embodiments of the present invention has the impurity phase at levels lower than 5%.


In order to further improve the phase purity of a lithium orthophosphate sputter target described by an embodiment of the present invention, one may add appropriate small amounts of pure Li2O powder to the powder of pure Li3PO4 prior to the powder refinement process using a mesh screen of 250. These small amounts of Li2O thermodynamically prevent the formation of the predominant impurity phase Li4P2O7 during any of the heating steps described in the previous paragraphs. This approach is to be understood from the point that Li4P2O7 is a lithium orthophosphate derivative, which is deficient in lithium oxide (Li2O), as informally described by Li4P2O7=Li3PO4●LiPO3, wherein LiPO3=Li3PO4−Li2O. It has been found that appropriate small amounts of Li2O powder will thermodynamically counteract the loss of any Li2O during the sputter target fabrication process described above, thereby favoring the formation of more, pure Li3PO4 at the expense of the impurity phase Li4P2O7.


According to some embodiments of the present invention and consistent with the conditions discovered for the degas step 109, the pre-densified ceramic body formed in step 107 is sealed in the steel container package 107. In step 111, the pre-densified ceramic body is subjected to a hot isostatic pressure (HIP) process at a heating rate of about ½° C. per minute to a temperature of below 850° C. and maintained for about 2 hours. It is thereafter cooled at a rate of ½° C. per minute. Process 111 takes about 2 days. Although the HIP process 111 can be carried out at 850° C. without the formation of an impurity phase, it was determined that stress related brittle cracking during step 113 could be reduced or eliminated by reducing the maximum temperature of step 109 to 800° C. The resulting ceramic body of pure lithium orthophosphate in step 111 may be polycrystalline, single crystalline, or glassy.


According to embodiments of process 100, the HIP can and ceramic body provided in process step 111 is removed of the steel can by surface grinding to reveal the ceramic body in step 113. The body of densified, single phase lithium orthophosphate material is then sliced, for example, by means of a diamond saw or wheel and surface ground or lapped under dry conditions to form “tiles” or plate parts suitable for sputter target fabrication, either for single tile arrangement or for multi-tile assembly, which is part of step 113.


The embodiments described above are exemplary only. One skilled in the art may recognize variations from the embodiments specifically described here, which are intended to be within the scope of this disclosure. As such, the invention is limited only by the following claims. Thus, it is intended that the present invention cover the modifications of this invention provided they come within the scope of the appended claims and their equivalents. Further, specific explanations or theories regarding the formation or performance of lithium orthophosphate target material or films formed from such target material according to embodiments of the present invention are presented for explanation only and are not to be considered limiting with respect to the scope of the present disclosure or the claims.

Claims
  • 1. A method of forming a target, comprising: providing a lithium orthophosphate powder; refining the powder to a grain size of equal to or less than 75 microns;applying cold isostatic pressure processing to form a body;degassing said body;applying hot isostatic pressure processing to said body to form a dense body of single-phase lithium orthophosphate; andfinishing said dense body to form a sputter target comprising a single phase comprising a phase purity greater than 90% and a density of greater than 90%.
  • 2. The method of claim 1, wherein said sputter target comprises a polycrystalline Li3PO4 phase.
  • 3. The method of claim 1, wherein said sputter target comprises a single crystal morphology of Li3PO4.
  • 4. The method of claim 1, wherein said sputter target comprises a glassy Li3PO4 phase.
  • 5. The method of claim 1, wherein said sputter target comprises a phase purity of greater than 95%.
  • 6. The method of claim 1, wherein said sputter target comprises a density greater than 95%.
  • 7. The method of claim 1, wherein said sputter target comprises a density between 95% and 99%.
  • 8. The method of claim 1, further comprising using said target inside a vacuum sputter deposition tool.
  • 9. The method of claim 1, further comprising mixing small amounts of lithium oxide powder with said lithium orthophosphate powder prior to said refining the powder step.
  • 10. The method of claim 1, further comprising refining said lithium orthophosphate powder to a mesh size of 250 mesh.
  • 11. The method of claim 1, further comprising densifying the refined powder to approximately 50% density using the cold isostatic pressure process.
  • 12. The method of claim 1, further comprising degasifying said body at a temperature between 400° C. to 550° C.
  • 13. The method of claim 1, further comprising applying said hot isostatic pressure processing at pressures above 10 kpsi.
  • 14. The method of claim 13, further comprising performing said hot isostatic pressure processing at a temperature less than about 850° C. for about 2 hours.
  • 15. A lithium orthophosphate sputter target comprising a single phase comprising a phase purity greater than 90% and a density greater than 90%.
  • 16. The target of claim 15, wherein said phase purity is greater than 95%.
  • 17. The target of claim 15, wherein said density is greater than 95%.
  • 18. The target of claim 15, wherein said density is between 95% and 99%.
  • 19. The target of claim 15, wherein said phase purity is between 95% and 99%.
  • 20. The target of claim 15, wherein said phase purity is greater than 99%.
  • 21. The target of claim 15, comprising a polycrystalline Li3PO4 phase.
  • 22. The target of claim 15, comprising a single crystal morphology of Li3PO4.
  • 23. The target of claim 15, comprising a glassy Li3PO4 phase.
RELATED APPLICATIONS

This application is related to and claims the benefit under 35 U.S.C. §119 of U.S. provisional application Ser. No. 60/864,755, entitled “SPUTTERING TARGET OF Li3PO4 AND METHOD FOR PRODUCING SAME,” filed on Nov. 7, 2006, which is incorporated herein by reference in its entirety.

US Referenced Citations (772)
Number Name Date Kind
712316 Loppe et al. Oct 1902 A
2970180 Urry Jan 1961 A
3309302 Heil Mar 1967 A
3616403 Collins et al. Oct 1971 A
3790432 Fletcher et al. Feb 1974 A
3797091 Gavin Mar 1974 A
3850604 Klein Nov 1974 A
3939008 Longo et al. Feb 1976 A
4082569 Evans, Jr. Apr 1978 A
4111523 Kaminow et al. Sep 1978 A
4127424 Ullery, Jr. Nov 1978 A
4226924 Kimura et al. Oct 1980 A
4283216 Brereton Aug 1981 A
4318938 Barnett et al. Mar 1982 A
4328297 Bilhorn May 1982 A
4437966 Hope et al. Mar 1984 A
4442144 Pipkin Apr 1984 A
4467236 Kolm et al. Aug 1984 A
4481265 Ezawa et al. Nov 1984 A
4518661 Rippere May 1985 A
4555456 Kanehori et al. Nov 1985 A
4572873 Kanehori et al. Feb 1986 A
4587225 Tsukuma et al. May 1986 A
4619680 Nourshargh et al. Oct 1986 A
4645726 Hiratani et al. Feb 1987 A
4664993 Sturgis et al. May 1987 A
4668593 Sammells May 1987 A
RE32449 Claussen Jun 1987 E
4672586 Shimohigashi et al. Jun 1987 A
4710940 Sipes, Jr. Dec 1987 A
4728588 Noding et al. Mar 1988 A
4740431 Little Apr 1988 A
4756717 Sturgis et al. Jul 1988 A
4785459 Baer Nov 1988 A
4826743 Nazri May 1989 A
4865428 Corrigan Sep 1989 A
4878094 Balkanski Oct 1989 A
4903326 Zakman et al. Feb 1990 A
4915810 Kestigian et al. Apr 1990 A
4964877 Keister et al. Oct 1990 A
4977007 Kondo et al. Dec 1990 A
4978437 Wirz Dec 1990 A
5006737 Fay Apr 1991 A
5019467 Fujiwara May 1991 A
5030331 Sato Jul 1991 A
5035965 Sangyoji et al. Jul 1991 A
5055704 Link et al. Oct 1991 A
5057385 Hope et al. Oct 1991 A
5085904 Deak et al. Feb 1992 A
5096852 Hobson Mar 1992 A
5100821 Fay Mar 1992 A
5107538 Benton et al. Apr 1992 A
5110694 Nagasubramanian et al. May 1992 A
5110696 Shokoohi et al. May 1992 A
5119269 Nakayama Jun 1992 A
5119460 Bruce et al. Jun 1992 A
5124782 Hundt et al. Jun 1992 A
5147985 DuBrucq Sep 1992 A
5153710 McCain Oct 1992 A
5169408 Biggerstaff et al. Dec 1992 A
5171413 Arntz et al. Dec 1992 A
5173271 Chen et al. Dec 1992 A
5174876 Buchal et al. Dec 1992 A
5180645 Moré Jan 1993 A
5187564 McCain Feb 1993 A
5196041 Tumminelli et al. Mar 1993 A
5196374 Hundt et al. Mar 1993 A
5200029 Bruce et al. Apr 1993 A
5202201 Meunier et al. Apr 1993 A
5206925 Nakazawa et al. Apr 1993 A
5208121 Yahnke et al. May 1993 A
5217828 Sangyoji et al. Jun 1993 A
5221891 Janda et al. Jun 1993 A
5225288 Beeson et al. Jul 1993 A
5227264 Duval et al. Jul 1993 A
5237439 Misono et al. Aug 1993 A
5252194 Demaray et al. Oct 1993 A
5262254 Koksbang et al. Nov 1993 A
5273608 Nath Dec 1993 A
5287427 Atkins et al. Feb 1994 A
5296089 Chen et al. Mar 1994 A
5300461 Ting Apr 1994 A
5303319 Ford et al. Apr 1994 A
5306569 Hiraki Apr 1994 A
5307240 McMahon Apr 1994 A
5309302 Vollmann May 1994 A
5314765 Bates May 1994 A
5326652 Lake Jul 1994 A
5326653 Chang Jul 1994 A
5338624 Gruenstern et al. Aug 1994 A
5338625 Bates et al. Aug 1994 A
5342709 Yahnke et al. Aug 1994 A
5355089 Treger Oct 1994 A
5360686 Peled et al. Nov 1994 A
5362579 Rossoll et al. Nov 1994 A
5381262 Arima et al. Jan 1995 A
5387482 Anani Feb 1995 A
5401595 Kagawa et al. Mar 1995 A
5403680 Otagawa et al. Apr 1995 A
5411537 Munshi et al. May 1995 A
5411592 Ovshinsky et al. May 1995 A
5419982 Tura et al. May 1995 A
5427669 Drummond Jun 1995 A
5435826 Sakakibara et al. Jul 1995 A
5437692 Dasgupta et al. Aug 1995 A
5445856 Chaloner-Gill Aug 1995 A
5445906 Hobson et al. Aug 1995 A
5448110 Tuttle et al. Sep 1995 A
5449576 Anani Sep 1995 A
5455126 Bates et al. Oct 1995 A
5457569 Liou et al. Oct 1995 A
5458995 Behl et al. Oct 1995 A
5464692 Huber Nov 1995 A
5464706 Dasgupta et al. Nov 1995 A
5470396 Mongon et al. Nov 1995 A
5472795 Atita Dec 1995 A
5475528 LaBorde Dec 1995 A
5478456 Humpal et al. Dec 1995 A
5483613 Bruce et al. Jan 1996 A
5493177 Muller et al. Feb 1996 A
5498489 Dasgupta et al. Mar 1996 A
5499207 Miki et al. Mar 1996 A
5501918 Gruenstern et al. Mar 1996 A
5504041 Summerfelt Apr 1996 A
5512147 Bates et al. Apr 1996 A
5512387 Ovshinsky Apr 1996 A
5512389 Dasgupta et al. Apr 1996 A
5538796 Schaffer et al. Jul 1996 A
5540742 Sangyoji et al. Jul 1996 A
5547780 Kagawa et al. Aug 1996 A
5547782 Dasgupta et al. Aug 1996 A
5552242 Ovshinsky et al. Sep 1996 A
5555127 Abdelkader et al. Sep 1996 A
5561004 Bates et al. Oct 1996 A
5563979 Bruce et al. Oct 1996 A
5565071 Demaray et al. Oct 1996 A
5567210 Bates et al. Oct 1996 A
5569520 Bates Oct 1996 A
5582935 Dasgupta et al. Dec 1996 A
5591520 Migliorini et al. Jan 1997 A
5597660 Bates et al. Jan 1997 A
5597661 Takeuchi et al. Jan 1997 A
5599355 Nagasubramanian et al. Feb 1997 A
5601952 Dasgupta et al. Feb 1997 A
5603816 Demaray et al. Feb 1997 A
5607560 Hirabayashi et al. Mar 1997 A
5607789 Treger et al. Mar 1997 A
5612152 Bates Mar 1997 A
5612153 Moulton et al. Mar 1997 A
5613995 Bhandarkar et al. Mar 1997 A
5616933 Li Apr 1997 A
5618382 Mintz et al. Apr 1997 A
5625202 Chai Apr 1997 A
5637418 Brown et al. Jun 1997 A
5643480 Gustavsson et al. Jul 1997 A
5644207 Lew et al. Jul 1997 A
5645626 Edlund et al. Jul 1997 A
5645960 Scrosati et al. Jul 1997 A
5654054 Tropsha et al. Aug 1997 A
5654984 Hershbarger et al. Aug 1997 A
5658652 Sellergren Aug 1997 A
5660700 Shimizu et al. Aug 1997 A
5665490 Takeuchi et al. Sep 1997 A
5667538 Bailey Sep 1997 A
5677784 Harris Oct 1997 A
5679980 Summerfelt Oct 1997 A
5681666 Treger et al. Oct 1997 A
5686360 Harvey, III et al. Nov 1997 A
5689522 Beach Nov 1997 A
5693956 Shi et al. Dec 1997 A
5702829 Paidassi et al. Dec 1997 A
5705293 Hobson Jan 1998 A
5718813 Drummond Feb 1998 A
5719976 Henry et al. Feb 1998 A
5721067 Jacobs et al. Feb 1998 A
RE35746 Lake Mar 1998 E
5731661 So et al. Mar 1998 A
5738731 Shindo et al. Apr 1998 A
5742094 Ting Apr 1998 A
5755938 Fukui et al. May 1998 A
5755940 Shindo May 1998 A
5757126 Harvey, III et al. May 1998 A
5762768 Goy et al. Jun 1998 A
5763058 Isen et al. Jun 1998 A
5771562 Harvey, III et al. Jun 1998 A
5776278 Tuttle et al. Jul 1998 A
5779839 Tuttle et al. Jul 1998 A
5790489 O'Connor Aug 1998 A
5792550 Phillips et al. Aug 1998 A
5805223 Shikakura et al. Sep 1998 A
5811177 Shi et al. Sep 1998 A
5814195 Lehan et al. Sep 1998 A
5830330 Lantsman Nov 1998 A
5831262 Greywall et al. Nov 1998 A
5834137 Zhang et al. Nov 1998 A
5841931 Foresi et al. Nov 1998 A
5842118 Wood, Jr. Nov 1998 A
5845990 Hymer Dec 1998 A
5847865 Gopinath et al. Dec 1998 A
5849163 Ichikawa et al. Dec 1998 A
5851896 Summerfelt Dec 1998 A
5853830 McCaulley et al. Dec 1998 A
5855744 Halsey et al. Jan 1999 A
5856705 Ting Jan 1999 A
5864182 Matsuzaki Jan 1999 A
5865860 Delnick Feb 1999 A
5870273 Sogabe et al. Feb 1999 A
5874184 Takeuchi et al. Feb 1999 A
5882721 Delnick Mar 1999 A
5882946 Otani Mar 1999 A
5889383 Teich Mar 1999 A
5895731 Clingempeel Apr 1999 A
5897522 Nitzan Apr 1999 A
5900057 Buchal et al. May 1999 A
5909346 Malhotra et al. Jun 1999 A
5916704 Lewin et al. Jun 1999 A
5923964 Li Jul 1999 A
5930046 Solberg et al. Jul 1999 A
5930584 Sun et al. Jul 1999 A
5942089 Sproul et al. Aug 1999 A
5948215 Lantsman Sep 1999 A
5948464 Delnick Sep 1999 A
5948562 Fulcher et al. Sep 1999 A
5952778 Haskal et al. Sep 1999 A
5955217 Lerberghe Sep 1999 A
5961672 Skotheim et al. Oct 1999 A
5961682 Lee et al. Oct 1999 A
5966491 DiGiovanni Oct 1999 A
5970393 Khorrami et al. Oct 1999 A
5973913 McEwen et al. Oct 1999 A
5977582 Fleming et al. Nov 1999 A
5982144 Johnson et al. Nov 1999 A
5985484 Young et al. Nov 1999 A
5985485 Ovshinsky et al. Nov 1999 A
6000603 Koskenmaki et al. Dec 1999 A
6001224 Drummond et al. Dec 1999 A
6004660 Topolski et al. Dec 1999 A
6007945 Jacobs et al. Dec 1999 A
6013949 Tuttle Jan 2000 A
6019284 Freeman et al. Feb 2000 A
6023610 Wood, Jr. Feb 2000 A
6024844 Drummond et al. Feb 2000 A
6025094 Visco et al. Feb 2000 A
6028990 Shahani et al. Feb 2000 A
6030421 Gauthier et al. Feb 2000 A
6033768 Muenz et al. Mar 2000 A
6042965 Nestler et al. Mar 2000 A
6045626 Yano et al. Apr 2000 A
6045652 Tuttle et al. Apr 2000 A
6045942 Miekka et al. Apr 2000 A
6046081 Kuo Apr 2000 A
6048372 Mangahara et al. Apr 2000 A
6051114 Yao et al. Apr 2000 A
6051296 McCaulley et al. Apr 2000 A
6052397 Jeon et al. Apr 2000 A
6057557 Ichikawa May 2000 A
6058233 Dragone May 2000 A
6071323 Kawaguchi Jun 2000 A
6075973 Greeff et al. Jun 2000 A
6077106 Mish Jun 2000 A
6077642 Ogata et al. Jun 2000 A
6078791 Tuttle et al. Jun 2000 A
6080508 Dasgupta et al. Jun 2000 A
6080643 Noguchi et al. Jun 2000 A
6093944 VanDover Jul 2000 A
6094292 Goldner et al. Jul 2000 A
6096569 Matsuno et al. Aug 2000 A
6100108 Mizuno et al. Aug 2000 A
6106933 Nagai et al. Aug 2000 A
6110531 Paz De Araujo Aug 2000 A
6115616 Halperin et al. Sep 2000 A
6117279 Smolanoff et al. Sep 2000 A
6118426 Albert et al. Sep 2000 A
6120890 Chen et al. Sep 2000 A
6129277 Grant et al. Oct 2000 A
6133670 Rodgers et al. Oct 2000 A
6137671 Staffiere Oct 2000 A
6144916 Wood, Jr. et al. Nov 2000 A
6146225 Sheats et al. Nov 2000 A
6148503 Delnick et al. Nov 2000 A
6156452 Kozuki et al. Dec 2000 A
6157765 Bruce et al. Dec 2000 A
6159635 Dasgupta et al. Dec 2000 A
6160373 Dunn et al. Dec 2000 A
6162709 Raoux et al. Dec 2000 A
6165566 Tropsha Dec 2000 A
6168884 Neudecker et al. Jan 2001 B1
6169474 Greeff et al. Jan 2001 B1
6175075 Shiotsuka et al. Jan 2001 B1
6176986 Watanabe et al. Jan 2001 B1
6181283 Johnson et al. Jan 2001 B1
6192222 Greeff et al. Feb 2001 B1
6197167 Tanaka Mar 2001 B1
6198217 Suzuki et al. Mar 2001 B1
6204111 Uemoto et al. Mar 2001 B1
6210544 Sasaki Apr 2001 B1
6210832 Visco et al. Apr 2001 B1
6214061 Visco et al. Apr 2001 B1
6214660 Uemoto et al. Apr 2001 B1
6218049 Bates et al. Apr 2001 B1
6220516 Tuttle et al. Apr 2001 B1
6223317 Pax et al. Apr 2001 B1
6228532 Tsuji et al. May 2001 B1
6229987 Greeff et al. May 2001 B1
6232242 Hata et al. May 2001 B1
6235432 Kono et al. May 2001 B1
6236793 Lawrence et al. May 2001 B1
6242128 Tura et al. Jun 2001 B1
6242129 Johnson Jun 2001 B1
6242132 Neudecker et al. Jun 2001 B1
6248291 Nakagama et al. Jun 2001 B1
6248481 Visco et al. Jun 2001 B1
6248640 Nam Jun 2001 B1
6249222 Gehlot Jun 2001 B1
6252564 Albert et al. Jun 2001 B1
6258252 Miyasaka et al. Jul 2001 B1
6261917 Quek et al. Jul 2001 B1
6264709 Yoon et al. Jul 2001 B1
6265652 Kurata et al. Jul 2001 B1
6268695 Affinito Jul 2001 B1
6271053 Kondo Aug 2001 B1
6271793 Brady et al. Aug 2001 B1
6271801 Tuttle et al. Aug 2001 B2
6280585 Obinata et al. Aug 2001 B1
6280875 Kwak et al. Aug 2001 B1
6281142 Basceri et al. Aug 2001 B1
6284406 Xing et al. Sep 2001 B1
6287986 Mihara Sep 2001 B1
6289209 Wood, Jr. Sep 2001 B1
6290821 McLeod Sep 2001 B1
6290822 Fleming et al. Sep 2001 B1
6291098 Shibuya et al. Sep 2001 B1
6294722 Kondo et al. Sep 2001 B1
6296949 Bergstresser et al. Oct 2001 B1
6296967 Jacobs et al. Oct 2001 B1
6296971 Hara Oct 2001 B1
6300215 Shin Oct 2001 B1
6302939 Rabin et al. Oct 2001 B1
6306265 Fu et al. Oct 2001 B1
6316563 Naijo et al. Nov 2001 B2
6323416 Komori et al. Nov 2001 B1
6324211 Ovard et al. Nov 2001 B1
6325294 Tuttle et al. Dec 2001 B2
6329213 Tuttle et al. Dec 2001 B1
6339236 Tomii et al. Jan 2002 B1
6344366 Bates Feb 2002 B1
6344419 Forster et al. Feb 2002 B1
6344795 Gehlot Feb 2002 B1
6350353 Gopalraja et al. Feb 2002 B2
6351630 Wood, Jr. Feb 2002 B2
6356230 Greef et al. Mar 2002 B1
6356694 Weber Mar 2002 B1
6356764 Ovard et al. Mar 2002 B1
6358810 Dornfest et al. Mar 2002 B1
6360954 Barnardo Mar 2002 B1
6361662 Chiba et al. Mar 2002 B1
6365300 Ota et al. Apr 2002 B1
6365319 Heath et al. Apr 2002 B1
6368275 Sliwa et al. Apr 2002 B1
6369316 Plessing et al. Apr 2002 B1
6372383 Lee et al. Apr 2002 B1
6372386 Cho et al. Apr 2002 B1
6373224 Goto et al. Apr 2002 B1
6375780 Tuttle et al. Apr 2002 B1
6376027 Lee et al. Apr 2002 B1
6379835 Kucherovsky et al. Apr 2002 B1
6379842 Mayer Apr 2002 B1
6379846 Terahara et al. Apr 2002 B1
6380477 Curtin Apr 2002 B1
6384573 Dunn May 2002 B1
6387563 Bates May 2002 B1
6391166 Wang May 2002 B1
6392565 Brown May 2002 B1
6394598 Kaiser May 2002 B1
6395430 Cho et al. May 2002 B1
6396001 Nakamura May 2002 B1
6398824 Johnson Jun 2002 B1
6399241 Hara et al. Jun 2002 B1
6402039 Freeman et al. Jun 2002 B1
6402795 Chu et al. Jun 2002 B1
6402796 Johnson Jun 2002 B1
6409965 Nagata et al. Jun 2002 B1
6413284 Chu et al. Jul 2002 B1
6413285 Chu et al. Jul 2002 B1
6413382 Wang et al. Jul 2002 B1
6413645 Graff et al. Jul 2002 B1
6413676 Munshi Jul 2002 B1
6414626 Greef et al. Jul 2002 B1
6416598 Sircar Jul 2002 B1
6420961 Bates et al. Jul 2002 B1
6422698 Kaiser Jul 2002 B2
6423106 Bates Jul 2002 B1
6423776 Akkapeddi et al. Jul 2002 B1
6426163 Pasquier et al. Jul 2002 B1
6432577 Shul et al. Aug 2002 B1
6432584 Visco et al. Aug 2002 B1
6433380 Shin Aug 2002 B2
6433465 McKnight et al. Aug 2002 B1
6436156 Wandeloski et al. Aug 2002 B1
6437231 Kurata et al. Aug 2002 B2
6444336 Jia et al. Sep 2002 B1
6444355 Murai et al. Sep 2002 B1
6444368 Hikmet et al. Sep 2002 B1
6444750 Touhsaent Sep 2002 B1
6459418 Comiskey et al. Oct 2002 B1
6459726 Ovard et al. Oct 2002 B1
6466771 Wood, Jr. Oct 2002 B2
6475668 Hosokawa et al. Nov 2002 B1
6481623 Grant et al. Nov 2002 B1
6488822 Moslehi Dec 2002 B1
6494999 Herrera et al. Dec 2002 B1
6495283 Yoon et al. Dec 2002 B1
6497598 Affinito Dec 2002 B2
6500287 Azens et al. Dec 2002 B1
6503661 Park et al. Jan 2003 B1
6503831 Speakman Jan 2003 B2
6506289 Demaray et al. Jan 2003 B2
6511516 Johnson et al. Jan 2003 B1
6511615 Dawes et al. Jan 2003 B1
6517968 Johnson et al. Feb 2003 B2
6522067 Graff et al. Feb 2003 B1
6524466 Bonaventura et al. Feb 2003 B1
6524750 Mansuetto Feb 2003 B1
6525976 Johnson Feb 2003 B1
6528212 Kusumoto et al. Mar 2003 B1
6533907 Demaray et al. Mar 2003 B2
6537428 Xiong et al. Mar 2003 B1
6538211 St. Lawrence et al. Mar 2003 B2
6541147 McLean et al. Apr 2003 B1
6548912 Graff et al. Apr 2003 B1
6551745 Moutsios et al. Apr 2003 B2
6558836 Whitacre et al. May 2003 B1
6562513 Takeuchi et al. May 2003 B1
6563998 Farah et al. May 2003 B1
6569564 Lane May 2003 B1
6569570 Sonobe et al. May 2003 B2
6570325 Graff et al. May 2003 B2
6572173 Muller Jun 2003 B2
6573652 Graff et al. Jun 2003 B1
6576546 Gilbert et al. Jun 2003 B2
6579728 Grant et al. Jun 2003 B2
6582480 Pasquier et al. Jun 2003 B2
6582481 Erbil Jun 2003 B1
6582852 Gao et al. Jun 2003 B1
6589299 Missling et al. Jul 2003 B2
6593150 Ramberg et al. Jul 2003 B2
6599662 Chiang et al. Jul 2003 B1
6600905 Greeff et al. Jul 2003 B2
6602338 Chen et al. Aug 2003 B2
6603139 Tessler et al. Aug 2003 B1
6603391 Greeff et al. Aug 2003 B1
6605228 Kawaguchi et al. Aug 2003 B1
6608464 Lew et al. Aug 2003 B1
6610440 LaFollette et al. Aug 2003 B1
6615614 Makikawa et al. Sep 2003 B1
6616035 Ehrensvard et al. Sep 2003 B2
6618829 Pax et al. Sep 2003 B2
6620545 Goenka et al. Sep 2003 B2
6622049 Penner et al. Sep 2003 B2
6632563 Krasnov et al. Oct 2003 B1
6637906 Knoerzer et al. Oct 2003 B2
6637916 Mullner Oct 2003 B2
6639578 Comiskey et al. Oct 2003 B1
6645675 Munshi Nov 2003 B1
6650000 Ballantine et al. Nov 2003 B2
6650942 Howard et al. Nov 2003 B2
6662430 Brady et al. Dec 2003 B2
6664006 Munshi Dec 2003 B1
6673484 Matsuura Jan 2004 B2
6673716 D'Couto et al. Jan 2004 B1
6674159 Peterson et al. Jan 2004 B1
6677070 Kearl Jan 2004 B2
6683244 Fujimori et al. Jan 2004 B2
6683749 Daby et al. Jan 2004 B2
6686096 Chung Feb 2004 B1
6693840 Shimada et al. Feb 2004 B2
6700491 Shafer Mar 2004 B2
6706449 Mikhaylik et al. Mar 2004 B2
6709778 Johnson Mar 2004 B2
6713216 Kugai et al. Mar 2004 B2
6713389 Speakman Mar 2004 B2
6713987 Krasnov et al. Mar 2004 B2
6723140 Chu et al. Apr 2004 B2
6730423 Einhart et al. May 2004 B2
6733924 Skotheim et al. May 2004 B1
6737197 Chu et al. May 2004 B2
6737789 Radziemski et al. May 2004 B2
6741178 Tuttle May 2004 B1
6750156 Le et al. Jun 2004 B2
6752842 Luski et al. Jun 2004 B2
6753108 Hampden-Smith et al. Jun 2004 B1
6753114 Jacobs et al. Jun 2004 B2
6760520 Medin et al. Jul 2004 B1
6764525 Whitacre et al. Jul 2004 B1
6768246 Pelrine et al. Jul 2004 B2
6768855 Bakke et al. Jul 2004 B1
6770176 Benson et al. Aug 2004 B2
6773848 Nortoft et al. Aug 2004 B1
6780208 Hopkins et al. Aug 2004 B2
6797428 Skotheim et al. Sep 2004 B1
6797429 Komatsu Sep 2004 B1
6805998 Jenson et al. Oct 2004 B2
6805999 Lee et al. Oct 2004 B2
6818356 Bates Nov 2004 B1
6822157 Fujioka Nov 2004 B2
6824922 Park et al. Nov 2004 B2
6827826 Demaray et al. Dec 2004 B2
6828063 Park et al. Dec 2004 B2
6828065 Munshi Dec 2004 B2
6830846 Kramlich et al. Dec 2004 B2
6835493 Zhang et al. Dec 2004 B2
6838209 Langan et al. Jan 2005 B2
6846765 Imamura et al. Jan 2005 B2
6852139 Zhang et al. Feb 2005 B2
6855441 Levanon Feb 2005 B1
6861821 Masumoto et al. Mar 2005 B2
6863699 Krasnov et al. Mar 2005 B1
6866901 Burrows et al. Mar 2005 B2
6866963 Seung et al. Mar 2005 B2
6869722 Kearl Mar 2005 B2
6884327 Pan et al. Apr 2005 B2
6886240 Zhang et al. May 2005 B2
6890385 Tsuchiya et al. May 2005 B2
6896992 Kearl May 2005 B2
6899975 Watanabe et al. May 2005 B2
6902660 Lee et al. Jun 2005 B2
6905578 Moslehi et al. Jun 2005 B1
6906436 Jenson et al. Jun 2005 B2
6911667 Pichler et al. Jun 2005 B2
6916679 Snyder et al. Jul 2005 B2
6921464 Krasnov et al. Jul 2005 B2
6923702 Graff et al. Aug 2005 B2
6924164 Jensen Aug 2005 B2
6929879 Yamazaki Aug 2005 B2
6936377 Wensley et al. Aug 2005 B2
6936381 Skotheim et al. Aug 2005 B2
6936407 Pichler Aug 2005 B2
6949389 Pichler et al. Sep 2005 B2
6955986 Li Oct 2005 B2
6962613 Jenson Nov 2005 B2
6962671 Martin et al. Nov 2005 B2
6964829 Utsugi et al. Nov 2005 B2
6982132 Goldner et al. Jan 2006 B1
6986965 Jenson et al. Jan 2006 B2
6994933 Bates Feb 2006 B1
7022431 Shchori et al. Apr 2006 B2
7033406 Weir et al. Apr 2006 B2
7045246 Simburger et al. May 2006 B2
7045372 Ballantine et al. May 2006 B2
7056620 Krasnov et al. Jun 2006 B2
7073723 Fürst et al. Jul 2006 B2
7095372 Soler Castany et al. Aug 2006 B2
7129166 Speakman Oct 2006 B2
7131189 Jenson Nov 2006 B2
7144654 LaFollette et al. Dec 2006 B2
7144655 Jenson et al. Dec 2006 B2
7157187 Jenson Jan 2007 B2
7158031 Tuttle Jan 2007 B2
7162392 Vock et al. Jan 2007 B2
7183693 Brantner et al. Feb 2007 B2
7186479 Krasnov et al. Mar 2007 B2
7194801 Jenson et al. Mar 2007 B2
7198832 Burrows et al. Apr 2007 B2
7202825 Leizerovich et al. Apr 2007 B2
7220517 Park et al. May 2007 B2
7230321 McCain Jun 2007 B2
7247408 Skotheim et al. Jul 2007 B2
7253494 Mino et al. Aug 2007 B2
7265674 Tuttle Sep 2007 B2
7267904 Komatsu et al. Sep 2007 B2
7267906 Mizuta et al. Sep 2007 B2
7273682 Park et al. Sep 2007 B2
7274118 Jenson et al. Sep 2007 B2
7288340 Iwamoto Oct 2007 B2
7316867 Park et al. Jan 2008 B2
7323634 Speakman Jan 2008 B2
7332363 Edwards Feb 2008 B2
7335441 Luski et al. Feb 2008 B2
RE40137 Tuttle et al. Mar 2008 E
7345647 Rodenbeck Mar 2008 B1
7348099 Mukai et al. Mar 2008 B2
7389580 Jenson et al. Jun 2008 B2
7400253 Cohen Jul 2008 B2
7410730 Bates Aug 2008 B2
RE40531 Graff et al. Oct 2008 E
7468221 LaFollette et al. Dec 2008 B2
7494742 Tarnowski et al. Feb 2009 B2
7670724 Chan et al. Mar 2010 B1
20010005561 Yamada et al. Jun 2001 A1
20010027159 Kaneyoshi Oct 2001 A1
20010031122 Lackritz et al. Oct 2001 A1
20010032666 Jenson et al. Oct 2001 A1
20010033952 Jenson et al. Oct 2001 A1
20010034106 Moise et al. Oct 2001 A1
20010041294 Chu et al. Nov 2001 A1
20010041460 Wiggins Nov 2001 A1
20010052752 Ghosh et al. Dec 2001 A1
20010054437 Komori et al. Dec 2001 A1
20010055719 Akashi et al. Dec 2001 A1
20020000034 Jenson Jan 2002 A1
20020001746 Jenson Jan 2002 A1
20020001747 Jenson Jan 2002 A1
20020004167 Jenson et al. Jan 2002 A1
20020009630 Gao et al. Jan 2002 A1
20020019296 Freeman et al. Feb 2002 A1
20020028377 Gross Mar 2002 A1
20020033330 Demaray et al. Mar 2002 A1
20020037756 Jacobs et al. Mar 2002 A1
20020066539 Muller Jun 2002 A1
20020067615 Muller Jun 2002 A1
20020071989 Verma et al. Jun 2002 A1
20020076133 Li et al. Jun 2002 A1
20020091929 Ehrensvard Jul 2002 A1
20020093029 Ballantine et al. Jul 2002 A1
20020106297 Ueno et al. Aug 2002 A1
20020110733 Johnson Aug 2002 A1
20020115252 Haukka et al. Aug 2002 A1
20020134671 Demaray et al. Sep 2002 A1
20020139662 Lee Oct 2002 A1
20020140103 Kloster et al. Oct 2002 A1
20020159245 Murasko et al. Oct 2002 A1
20020161404 Schmidt Oct 2002 A1
20020164441 Amine et al. Nov 2002 A1
20020170821 Sandlin et al. Nov 2002 A1
20020170960 Ehrensvard et al. Nov 2002 A1
20030019326 Han et al. Jan 2003 A1
20030022487 Yoon et al. Jan 2003 A1
20030024994 Ladyansky Feb 2003 A1
20030029493 Plessing Feb 2003 A1
20030035906 Memarian et al. Feb 2003 A1
20030036003 Shchori et al. Feb 2003 A1
20030042131 Johnson Mar 2003 A1
20030044665 Rastegar et al. Mar 2003 A1
20030048635 Knoerzer et al. Mar 2003 A1
20030063883 Demaray et al. Apr 2003 A1
20030064292 Neudecker et al. Apr 2003 A1
20030068559 Armstrong et al. Apr 2003 A1
20030077914 Le et al. Apr 2003 A1
20030079838 Brcka May 2003 A1
20030091904 Munshi May 2003 A1
20030095463 Shimada et al. May 2003 A1
20030097858 Strohhofer et al. May 2003 A1
20030109903 Berrang et al. Jun 2003 A1
20030127319 Demaray et al. Jul 2003 A1
20030134054 Demaray et al. Jul 2003 A1
20030141186 Wang et al. Jul 2003 A1
20030143853 Celii et al. Jul 2003 A1
20030146877 Mueller Aug 2003 A1
20030152829 Zhang et al. Aug 2003 A1
20030162094 Lee et al. Aug 2003 A1
20030173207 Zhang et al. Sep 2003 A1
20030173208 Pan et al. Sep 2003 A1
20030174391 Pan et al. Sep 2003 A1
20030175142 Milonopoulou et al. Sep 2003 A1
20030178623 Nishiki et al. Sep 2003 A1
20030178637 Chen et al. Sep 2003 A1
20030180610 Felde et al. Sep 2003 A1
20030185266 Henrichs Oct 2003 A1
20030231106 Shafer Dec 2003 A1
20030232248 Iwamoto et al. Dec 2003 A1
20040008587 Siebott et al. Jan 2004 A1
20040015735 Norman Jan 2004 A1
20040023106 Benson et al. Feb 2004 A1
20040028875 Van Rijn et al. Feb 2004 A1
20040029311 Snyder et al. Feb 2004 A1
20040038050 Saijo et al. Feb 2004 A1
20040043557 Haukka et al. Mar 2004 A1
20040048157 Neudecker et al. Mar 2004 A1
20040058237 Higuchi et al. Mar 2004 A1
20040077161 Chen et al. Apr 2004 A1
20040078662 Hamel et al. Apr 2004 A1
20040081415 Demaray et al. Apr 2004 A1
20040081860 Hundt et al. Apr 2004 A1
20040085002 Pearce May 2004 A1
20040101761 Park et al. May 2004 A1
20040105644 Dawes Jun 2004 A1
20040106038 Shimamura et al. Jun 2004 A1
20040106045 Ugaji et al. Jun 2004 A1
20040106046 Inda Jun 2004 A1
20040118700 Schierle-Arndt et al. Jun 2004 A1
20040126305 Chen et al. Jul 2004 A1
20040151986 Park et al. Aug 2004 A1
20040161640 Salot Aug 2004 A1
20040175624 Luski et al. Sep 2004 A1
20040188239 Robison et al. Sep 2004 A1
20040209159 Lee et al. Oct 2004 A1
20040214079 Simburger et al. Oct 2004 A1
20040219434 Benson et al. Nov 2004 A1
20040245561 Sakashita et al. Dec 2004 A1
20040258984 Ariel et al. Dec 2004 A1
20040259305 Demaray et al. Dec 2004 A1
20050000794 Demaray et al. Jan 2005 A1
20050006768 Narasimhan et al. Jan 2005 A1
20050048802 Zhang et al. Mar 2005 A1
20050070097 Barmak et al. Mar 2005 A1
20050072458 Goldstein Apr 2005 A1
20050079418 Kelley et al. Apr 2005 A1
20050095506 Klaassen May 2005 A1
20050105231 Hamel et al. May 2005 A1
20050110457 LaFollette et al. May 2005 A1
20050112461 Amine et al. May 2005 A1
20050118464 Levanon Jun 2005 A1
20050130032 Krasnov et al. Jun 2005 A1
20050133361 Ding et al. Jun 2005 A1
20050141170 Honda et al. Jun 2005 A1
20050142447 Nakai et al. Jun 2005 A1
20050147877 Tarnowski et al. Jul 2005 A1
20050158622 Mizuta et al. Jul 2005 A1
20050170736 Cok Aug 2005 A1
20050175891 Kameyama et al. Aug 2005 A1
20050176181 Burrows et al. Aug 2005 A1
20050181280 Ceder et al. Aug 2005 A1
20050183946 Pan et al. Aug 2005 A1
20050189139 Stole Sep 2005 A1
20050208371 Kim et al. Sep 2005 A1
20050239917 Nelson et al. Oct 2005 A1
20050266161 Medeiros et al. Dec 2005 A1
20060019504 Taussig Jan 2006 A1
20060021214 Jenson et al. Feb 2006 A1
20060040177 Onodera et al. Feb 2006 A1
20060046907 Rastegar et al. Mar 2006 A1
20060054496 Zhang et al. Mar 2006 A1
20060057283 Zhang et al. Mar 2006 A1
20060057304 Zhang et al. Mar 2006 A1
20060063074 Jenson et al. Mar 2006 A1
20060071592 Narasimhan et al. Apr 2006 A1
20060155545 Jayne Jul 2006 A1
20060201583 Michaluk et al. Sep 2006 A1
20060210779 Weir et al. Sep 2006 A1
20060222954 Skotheim et al. Oct 2006 A1
20060234130 Inda Oct 2006 A1
20060237543 Goto et al. Oct 2006 A1
20060255435 Fuergut et al. Nov 2006 A1
20060286448 Snyder et al. Dec 2006 A1
20070009802 Lee et al. Jan 2007 A1
20070023275 Tanase et al. Feb 2007 A1
20070037058 Visco et al. Feb 2007 A1
20070053139 Zhang et al. Mar 2007 A1
20070087230 Jenson et al. Apr 2007 A1
20070091543 Gasse et al. Apr 2007 A1
20070125638 Zhang et al. Jun 2007 A1
20070141468 Barker Jun 2007 A1
20070148065 Weir et al. Jun 2007 A1
20070148553 Weppner Jun 2007 A1
20070151661 Mao et al. Jul 2007 A1
20070164376 Burrows et al. Jul 2007 A1
20070166612 Krasnov et al. Jul 2007 A1
20070184345 Neudecker et al. Aug 2007 A1
20070196682 Visser et al. Aug 2007 A1
20070202395 Snyder et al. Aug 2007 A1
20070205513 Brunnbauer et al. Sep 2007 A1
20070210459 Burrows et al. Sep 2007 A1
20070222681 Greene et al. Sep 2007 A1
20070224951 Gilb et al. Sep 2007 A1
20070235320 White et al. Oct 2007 A1
20070264564 Johnson et al. Nov 2007 A1
20070278653 Brunnbauer et al. Dec 2007 A1
20070298326 Angell et al. Dec 2007 A1
20080003496 Neudecker et al. Jan 2008 A1
20080008936 Mizuta et al. Jan 2008 A1
20080014501 Skotheim et al. Jan 2008 A1
20080057397 Skotheim et al. Mar 2008 A1
20080213672 Skotheim et al. Sep 2008 A1
20080233708 Hisamatsu Sep 2008 A1
20080254575 Fuergut et al. Oct 2008 A1
20080261107 Snyder et al. Oct 2008 A1
20080263855 Li et al. Oct 2008 A1
20080286651 Neudecker et al. Nov 2008 A1
20090181303 Neudecker et al. Jul 2009 A1
20090302226 Schieber et al. Dec 2009 A1
20100032001 Brantner Feb 2010 A1
20100086853 Venkatachalam et al. Apr 2010 A1
Foreign Referenced Citations (128)
Number Date Country
1415124 Apr 2003 CN
1532984 Sep 2004 CN
19824145 Dec 1999 DE
10 2005 014 427 Sep 2006 DE
10 2006 054 309 Nov 2006 DE
10 2008 016 665 Oct 2008 DE
102007030604 Jan 2009 DE
0 510 883 Oct 1992 EP
0 639 655 Feb 1995 EP
0 652 308 May 1995 EP
0 820 088 Jan 1998 EP
1 068 899 Jan 2001 EP
0 0867 985 Feb 2001 EP
1 092 689 Apr 2001 EP
1 189 080 Mar 2002 EP
1 713 024 Oct 2006 EP
2806198 Sep 2001 FR
2 861 218 Apr 2005 FR
55-009305 Jan 1980 JP
56-076060 Jun 1981 JP
56-156675 Dec 1981 JP
60-068558 Apr 1985 JP
61-269072 Nov 1986 JP
62-267944 Nov 1987 JP
63-290922 Nov 1988 JP
2000-162234 Nov 1988 JP
2-054764 Feb 1990 JP
2-230662 Sep 1990 JP
03-036962 Feb 1991 JP
4-058456 Feb 1992 JP
4-072049 Mar 1992 JP
6-010127 Jan 1994 JP
6-100333 Apr 1994 JP
7-233469 May 1995 JP
7-224379 Aug 1995 JP
08-114408 May 1996 JP
10-026571 Jan 1998 JP
10-239187 Sep 1998 JP
11-204088 Jul 1999 JP
2000-144435 May 2000 JP
2000-188099 Jul 2000 JP
2000-268867 Sep 2000 JP
2001-171812 Jun 2001 JP
2001-259494 Sep 2001 JP
2001-297764 Oct 2001 JP
2001-328198 Nov 2001 JP
2002-140776 May 2002 JP
2002-344115 Nov 2002 JP
2003-17040 Jan 2003 JP
2003-347045 Dec 2003 JP
2004-071305 Mar 2004 JP
2004-149849 May 2004 JP
2004-158268 Jun 2004 JP
2004-273436 Sep 2004 JP
2005-256101 Sep 2005 JP
2002-026412 Feb 2007 JP
7-107752 Apr 2007 JP
20020007881 Jan 2002 KR
20020017790 Mar 2002 KR
20020029813 Apr 2002 KR
20020038917 May 2002 KR
20030033913 May 2003 KR
20030042288 May 2003 KR
20030085252 Nov 2003 KR
2241281 Nov 2004 RU
WO 9513629 May 1995 WO
WO 9623085 Aug 1996 WO
WO 9623217 Aug 1996 WO
WO 9727344 Jul 1997 WO
WO 9735044 Sep 1997 WO
WO 9847196 Oct 1998 WO
WO 9943034 Aug 1999 WO
WO 9957770 Nov 1999 WO
WO 0021898 Apr 2000 WO
WO 0022742 Apr 2000 WO
WO 0028607 May 2000 WO
WO 0036665 Jun 2000 WO
WO 0060682 Oct 2000 WO
WO 0060689 Oct 2000 WO
WO 0062365 Oct 2000 WO
WO 0101507 Jan 2001 WO
WO 0117052 Mar 2001 WO
WO 0124303 Apr 2001 WO
WO 0133651 May 2001 WO
WO 0139305 May 2001 WO
WO 0173864 Oct 2001 WO
WO 0173865 Oct 2001 WO
WO 0173866 Oct 2001 WO
WO 0173868 Oct 2001 WO
WO 0173870 Oct 2001 WO
WO 0173883 Oct 2001 WO
WO 0173957 Oct 2001 WO
WO 0182390 Nov 2001 WO
WO 0212932 Feb 2002 WO
WO 0242516 May 2002 WO
WO 0247187 Jun 2002 WO
WO 02071506 Sep 2002 WO
WO 02101857 Dec 2002 WO
WO 03003485 Jan 2003 WO
WO 03005477 Jan 2003 WO
WO 03026039 Mar 2003 WO
WO 03036670 May 2003 WO
WO 03069714 Aug 2003 WO
WO 03080325 Oct 2003 WO
WO 03083166 Oct 2003 WO
WO 2004012283 Feb 2004 WO
WO 2004021532 Mar 2004 WO
WO 2004061887 Jul 2004 WO
WO 2004077519 Sep 2004 WO
WO 2004086550 Oct 2004 WO
WO 2004093223 Oct 2004 WO
WO 2004106581 Dec 2004 WO
WO 2004106582 Dec 2004 WO
WO 2005008828 Jan 2005 WO
WO 2005013394 Feb 2005 WO
WO 2005038957 Apr 2005 WO
WO 2005067645 Jul 2005 WO
WO 2005085138 Sep 2005 WO
WO 2005091405 Sep 2005 WO
WO 2006063308 Jun 2006 WO
2006085307 Aug 2006 WO
WO 2006085307 Aug 2006 WO
WO 2007016781 Feb 2007 WO
WO 2007019855 Feb 2007 WO
WO 2007027535 Mar 2007 WO
WO 2009027535 Mar 2007 WO
WO 2007095604 Aug 2007 WO
WO 2008036731 Mar 2008 WO
Related Publications (1)
Number Date Country
20080173542 A1 Jul 2008 US
Provisional Applications (1)
Number Date Country
60864755 Nov 2006 US