The invention relates generally to sputtering of materials. In particular, the invention relates to the magnetron creating a magnetic field to enhance sputtering and the resultant sputtering methods.
Sputtering, alternatively called physical vapor deposition (PVD), is the most prevalent method of depositing layers of metals and related materials in the fabrication of semiconductor integrated circuits. A conventional PVD reactor 10 is illustrated schematically in cross section in
A gas source 24 supplies a sputtering working gas, typically the chemically inactive gas argon, to the chamber 12 through a mass flow controller 26. In reactive metallic nitride sputtering, for example, of titanium nitride, nitrogen is supplied from another gas source 27 through its own mass flow controller 26. Oxygen can also be supplied to produce oxides such as Al2O3. The gases can be admitted to the top of the chamber, as illustrated, or at its bottom, either with one or more inlet pipes penetrating the bottom of the shield or through the gap between the shield 20 and the pedestal 18. A vacuum system 28 maintains the chamber at a low pressure. Although the base pressure can be held to about 10−7 Torr or even lower, the pressure of the working gas is typically maintained at between about 1 and 1000 mTorr. A computer-based controller 30 controls the reactor including the DC power supply 22 and the mass flow controllers 26.
When the argon is admitted into the chamber, the DC voltage between the target 14 and the shield 20 ignites the argon into a plasma, and the positively charged argon ions are attracted to the negatively charged target 14. The ions strike the target 14 at a substantial energy and cause target atoms or atomic clusters to be sputtered from the target 14. Some of the target particles strike the wafer 16 and are thereby deposited on it, thereby forming a film of the target material. In reactive sputtering of a metallic nitride, nitrogen is additionally admitted into the chamber 12, and it reacts with the sputtered metallic atoms to form a metallic nitride on the wafer 16.
To provide efficient sputtering, a magnetron 32 is positioned in back of the target 14. It has opposed magnets 34, 36 creating a magnetic field within the chamber in the neighborhood of the magnets 34, 36. The magnetic field traps electrons and, for charge neutrality, the ion density also increases to form a high-density plasma region 38 within the chamber adjacent to the magnetron 32. The magnetron 32 is usually rotated about the center of the target 14 to achieve full coverage in sputtering of the target 14. The form of the magnetron is a subject of this patent application, and the illustrated form is intended to be only suggestive.
The advancing level of integration in semiconductor integrated circuits has placed increasing demands upon sputtering equipment and processes. Many of the problems are associated with contact and via holes. As illustrated in the cross-sectional view of
Such high aspect ratios present a problem for sputtering because most forms of sputtering are not strongly anisotropic, a cosine dependence off the vertical being typical, so that the initially sputtered material preferentially deposits at the top of the hole and may bridge it, thus preventing the filling of the bottom of the hole and creating a void in the via metal.
It has become known, however, that deep hole filling can be facilitated by causing a significant fraction of the sputtered particles to be ionized in the plasma between the target 14 and the pedestal 18. The pedestal 18 of
One method of increasing the ionization fraction is to create a high-density plasma (HDP), such as by adding an RF coil around the sides of the chamber 12 of
Another method for increasing the ionization ratio is to use a hollow-cathode magnetron in which the target has the shape of a top hat. This type of reactor, though, runs very hot and the complexly shaped targets are very expensive.
It has been observed that copper sputtered with either an inductively coupled HDP sputter reactor or a hollow-cathode reactor tends to form an undulatory copper film on the via sidewall, and further the deposited metal tends to dewet. The variable thickness is particularly serious when the sputtered copper layer is being used as a seed layer of a predetermined minimum thickness for a subsequent deposition process such as electroplating to complete the copper hole filling.
A further problem in the prior art is that the sidewall coverage tends to be asymmetric with the side facing the center of the target being more heavily coated than the more shielded side facing a larger solid angle outside the target. Not only does the asymmetry require excessive deposition to achieve a seed layer of predetermined minimum thickness, it causes cross-shaped trenches used as alignment indicia in the photolithography to appear to move as the trenches are asymmetrically narrowed.
Another operational control that promotes deep hole filling is chamber pressure. It is generally believed that lower chamber pressures promote hole filling. At higher pressures, there is a higher probability that sputtered particles, whether neutral or ionized, will collide with atoms of the argon carrier gas. Collisions tend to neutralize ions and to randomize velocities, both effects degrading hole filling. However, as described before, the sputtering relies upon the existence of a plasma at least adjacent to the target. If the pressure is reduced too much, the plasma collapses, although the minimum pressure is dependent upon several factors.
The extreme of low-pressure plasma sputtering is sustained self-sputtering (SSS), as disclosed by Fu et al. in U.S. patent application, Ser. No. 08/854,008, filed May 8, 1997 and now issued as U.S. Pat. No. 6,692,617. In SSS, the density of positively ionized sputtered atoms is so high that a sufficient number are attracted back to the negatively biased target to resputter more ionized atoms. Under the right conditions for a limited number of target metals, the self-sputtering sustains the plasma, and no argon working gas is required. Copper is the metal most prone to SSS, but only under conditions of high power and high magnetic field. Copper sputtering is being seriously developed because of copper's low resistivity and low susceptibility to electromigration. However, for copper SSS to become commercially feasible, a full-coverage, high-field magnetron needs to be developed.
Increased power applied to the target allows reduced pressure, perhaps to the point of sustained self-sputtering. The increased power also increases the ionization density. However, excessive power requires expensive power supplies and increased cooling. Power levels in excess of 30 kW are expensive and should be avoided if possible. In fact, the pertinent factor is not power but the power density in the area below the magnetron since that is the area of the high-density plasma promoting effective sputtering. Hence, a small, high-field magnet would most easily produce a high ionization density. For this reason, some prior art discloses a small circularly shaped magnet. However, such a magnetron requires not only rotation about the center of the target to provide uniformity, but it also requires radial scanning to assure full and fairly uniform coverage of the target. If full magnetron coverage is not achieved, not only is the target not efficiently used, but more importantly the uniformity of sputter deposition is degraded, and some of the sputtered material redeposits on the target in areas that are not being sputtered. Furthermore, the material redeposited on unsputtered areas may build up to such a thickness that it is prone to flake off, producing severe particle problems. While radial scanning can potentially avoid these problems, the required scanning mechanisms are complex and generally considered infeasible in a production environment.
One type of commercially available magnetron is kidney-shaped, as exemplified by Tepman in U.S. Pat. No. 5,320,728. Parker discloses more exaggerated forms of this shape in U.S. Pat. No. 5,242,566. As illustrated in plan view in
For these reasons, it is desirable to develop a small, high-field magnetron providing full coverage so as to promote deep hole filling and sustained copper self-sputtering.
The invention includes a sputtering magnetron having an oval or related shape of smaller area than a circle of equal diameter where the two diameters extend along the target radius with respect to the typical rotation axis of the magnetron. The shapes include racetracks, ellipses, egg shapes, triangles, and arced triangles asymmetrically positioned about the target center.
The magnetron is rotated on the backside of the target about a point preferably near the magnetron's thin end, and the thicker end is positioned more closely to the target periphery. Preferably, the total magnetic flux is greater outside than inside the half radius of the target.
The magnetic intensity away from the target can be increased for a triangular magnetron having a relatively small apex angle by using bar magnets.
The small area allows an electrical power density of at least 600 W/cm2 to be applied from an 18 kW power supply to a fully covered sputtering target used to sputter deposit a 200 mm wafer.
The high power density and the magnetic field extending far away from the target are two means possible to produce a plasma wave which can further drive the plasma to a higher density and ionization. Advantageously, a primary plasma wave is generated at a higher frequency in the range of hundreds of megahertz, which is parametrically converted to another wave at a much lower frequency, for example, 5 to 75 MHz, corresponding to the thermal velocity of electrons in the plasma produced by capacitively coupling DC power to the target.
The magnetron is configured to produce less magnetic flux in its inner pole than in its surrounding outer pole. Thereby, the magnetic field reaches further into the sputtering chamber to promote low-pressure sputtering and sustained self-sputtering.
The invention also includes sputtering methods achievable with such a magnetron. The high magnetic field extending over a small closed area facilitates sustained self-sputtering. Many metals not subject to sustained self-sputtering can be sputtered at chamber pressures of less than 0.5 milliTorr, often less than 0.2 milliTorr, and even at 0.1 milliTorr. The bottom coverage can be further improved by applying an RF bias of less than 250 W to a pedestal electrode sized to support a 200 mm wafer. Copper can be sputtered with 18 kW of DC power for a 330 mm target and 200 mm wafer either in a fully self-sustained mode or with a minimal chamber pressure of 0.3 milliTorr or less.
The invention provides for high-power density sputtering with power supplies of reduced capacity.
The invention also includes sputtering under conditions, such as a sufficiently high target power and high magnetic field away from the target, that a non-linear wave-beam interaction occurs that pumps energy into plasma electrons, thereby increasing the plasma density.
One embodiment of the invention is a racetrack magnetron 60, illustrated in plan view in
Although the two pole faces 62, 68 are illustrated with specific magnetic polarities producing magnetic fields extending generally perpendicularly to the plane of illustration, it is of course appreciated that the opposite set of magnetic polarities will produce the same general magnetic effects as far as the invention is concerned. The illustrated assembly produces a generally semi-toroidal magnetic field having parallel arcs extending perpendicularly to a closed path with a minimal field-free region in the center. There results a closed tunnel of magnetic field lines forming struts of the tunnel.
The pole assembly of
As illustrated in the plan view of
The two types of magnets 90, 92 may be of similar construction and composition producing an axially extending magnetic flux on each vertically facing end. If they are of different, magnetic composition, diameter, or length, the flux produced by different magnets may be different. A cross-sectional view of a magnet 90, 92 is shown in
As illustrated in the cross-sectional view of
The inner magnets 90 and inner pole face 62 constitute an inner pole of one magnetic polarity while the outer magnets 92 and the outer pole face 68 constitute a surrounding outer pole of the other magnetic polarity. The magnetic yoke 98 magnetically couples the inner and outer poles and substantially confines the magnetic field on the back or top side of the magnetron to the yoke 98. A semi-toroidal magnetic field 100 is thereby produced, which extends through the non-magnetic target 14 into the vacuum chamber 12 to define the high-density plasma region 38. The field 100 extends through the non-magnetic target 14 into the vacuum chamber 12 to define the extent of the high-density plasma region 38. The magnets 90, 92 may be of different magnetic strength. However, it is desired for reasons to be explained later that the total magnetic flux produced by the outer magnets 92 be substantially greater than that produced by the inner magnets 90. As illustrated, the magnetron 60 extends horizontally from approximately the center of the target 14 to the edge of the usable area of the target 14. The magnetic yoke 90 and the two pole faces 62, 68 are preferably plates formed of a soft magnetic material such as SS416 stainless steel.
The inner prolate end 80 of the magnetron 60 is connected to a shaft 104 extending along the rotation axis 78 and rotated by a motor 105. As illustrated, the magnetron 60 extends horizontally from approximately the center of the target 14 to the right hand side of the usable area of the target 14. Demaray et al. in U.S. Pat. No. 5,252,194 disclose exemplary details of the connections between the motor 105, the magnetron 60, and the vacuum chamber 12. The magnetron assembly 60 should include counter-weighting to avoid flexing of the shaft 104. Although the center of rotation 78 is preferably disposed within the inner prolate end 74 of the outer pole face 72, its position may be optimized to a slightly different position, but one preferably not deviating more than 20%, more preferably 10%, from the inner prolate end 80 as normalized to the prolate length of the magnetron 60. Most preferably, the inner end of the outer pole face 68 near the prolate end 80 overlies the rotation center 78.
The racetrack configuration of
The racetrack configuration of
Another oval shape is represented by an egg-shaped magnetron 106, illustrated in plan view in
A related shape is represented by a triangular magnetron 126, illustrated in plan view in
A modified triangular shape is represented by an arced triangular magnetron 140 of
The magnetic field is produced by an arrangement of magnets shown in plan view in
The triangular magnetrons 126, 140 of
The ratio of the magnetic flux outside to inside the target half radius for the arced triangular magnetron 172 can be approximated by the lengths of the sides 170 in the two regions by (1+θ), which is 1.79 for an apex angle θ of 45°, 2.05 for 60°, 2.31 for 75°, and 2.57 for 90°.
A variation of the arced triangular arrangement of
The experimental work producing the process results presented below has demonstrated the advantage of a small magnetron area. If the triangular magnetron configuration of
A bottom plan view of such a magnetron 190 is illustrated in
The illustrated triangular magnetron 190 has an apex angle of 23°. Other angles may be chosen, but the bar magnets seem particularly applicable when the apex angle is between 10° and 35° although apex angles of between 20° and 30° are more realistic. Also, the advantages of the bar magnets are mostly achieved by the side magnets being bar magnets. The end magnet 194 may be replaced by a magnet or magnetic pole of more complex shape. In the original implementation of the bar magnetron 190, the button magnet has a diameter of 0.625 inch (16 mm), and the bar magnets 192, 194, 196 have widths of 1 inch (25 mm), all magnets producing the same magnetic field per unit area. In a newer version, the width of the bar magnets is being increased to 1.5 inch (38 mm).
In an alternative embodiment of a magnetron 190′ illustrated in the bottom plan view of
It is understood that the shapes described above refer to pole faces having band-like widths of area not significantly larger than the button magnets being used. The widths, particularly of the outer pole face, can be increased, perhaps even non-uniformly, but the additional width is of less effectiveness in generating the desired high magnetic field.
The shapes presented above have all been symmetric about the target radius. However, the magnetron of the invention includes asymmetric shapes, for example one radially extending side being in the form of the racetrack of
All the magnetrons described above have asymmetric areas for the inner and outer poles and, assuming similar packing of similar button magnets 90, 92 or bar magnets of similar magnetic intensities, they produce asymmetric magnetic flux. In particular, the total or integrated magnetic flux ∫B·dS produced by the inner pole 200, illustrated schematically in
The inventive magnet also achieves a relatively high magnetic field. However, magnetic field intensity of itself is insufficient. Some conventional magnetrons, such as Demaray et al. disclose in the aforecited patent, use a line of horseshoe magnets arranged in a kidney-shaped linear path with only a small gap between the poles of the horseshoes. As a result, a relatively high magnetic field intensity can be achieved in the area at the periphery of the kidney shape. However, the linear shape of the high magnetic field surrounds an area of substantially no magnetic field. As a result, electrons can escape to not only the exterior but also the interior of the high-field region. In contrast, the inner pole of the triangular magnetron of the invention produces a magnetic cusp of minimal area. If electrons are lost from the magnetic field on one side of the inner pole, they are likely to be captured on the other side, thus increasing the plasma density for a given power level. Furthermore, the inner pole includes a single magnetizable pole face producing a generally uniform magnetic flux. If multiple inner poles faces were used for multiple inner magnets, magnetic field lines would extend to between the inner magnets.
A further advantage of the inventive design is that one pole is formed in a closed line and surrounds the other pole. It would be possible to form a very small linearly extending magnetron with high magnetic field intensity by arranging horseshoe magnets or the like in an open ended line with the two sets of poles being closely spaced. However, the electrons could then easily escape from the open ends and decrease the density of the plasma.
It is believed that the beneficial results of the invention are achieved in large part because the oval magnetrons and magnetrons of related shapes produce a higher plasma ionization density without requiring excessive power. Nonetheless, full target coverage is achieved. In one aspect, the inventive magnetron has a relatively small area, but has a shape that allows full target coverage without radial scanning. The triangular magnetron 160 of
The combination of small area and full coverage is achieved by an outer magnetron shape extending from the target center to its usable periphery (±15%) and having a transverse dimension at half the target radius of less substantially less than the target radius, that is, prolate along the target radius. The transverse dimension should be measured circumferentially along the rotation path.
The uniformity is enhanced by an oval shape that is transversely wider, with respect to the target radius, at its outer end near the target periphery than at its inner end near the center of rotation. That is, the minor axis is displaced towards the target circumference.
The small area of the magnetron, but nonetheless providing full target coverage, allows a very high power density to be applied to the target with a reasonably sized power supply. The small area, unlike the Tepman design, has no substantial field-free region included in its interior. Some of the examples below use an 18 kW power source. For a 200 mm wafer, the magnetron extends out to a usable target diameter of about 300 mm. The effective area of the arced triangular magnetron is about one-sixth of the area associated with this larger diameter, that is, about 117 cm2. Thus, the average power density of the area being sputtered at any given location of the magnetron is about 150 W/cm2. Such a high power density achieved without inductive coils can support a plasma at lower argon pressure or permit sustained self-sputtering for selected metals such as copper. Even with 300 mm wafers, a 27 kW power supply in conjunction with the small magnetron of the invention scaled to the larger dimension will produce a target power density of 103 W/cm2. As shown below, a power density of 76 W/cm2 is sufficient for sustained self-sputtering of copper.
The magnetrons of the type described above produce an unexpectedly high metal ionization fraction, on the order of 10 to 20%. While this is below the 50 to 70% metal ionization fraction experienced in inductively coupled IMP reactors, it is still substantially higher than the less than 5% metal ionization fraction usually experienced in DC magnetron reactors. Experiments have shown that the above described magnetrons can excite several plasma waves, and it is believed that these waves increase the energy of the plasma electrons and the increased electron energy significantly increases the ionization of the sputtered metal atoms. It is known that relatively small increases in the electron energy (temperature) significantly increases plasma densities.
A series of experiments were performed using a triangular magnetron 210 illustrated in the plan view of
A spectrum analyzer having a floating cylindrical Langmuir probe as the probe reveals a double-peaked feature at about 240 MHz and 262 MHz and a broad feature at about 22 MHz. It is our interpretation, although the invention is not limited to our understanding of the invention, that the 262 MHz peak is a lower-hybrid peak ωLH and that the other two peaks are produced by a non-linear parametric conversion in which the 22 MHz peak has an energy ωB and the 240 MHz sideband peak has an energy ωLH-ωB. In a parametric conversion, the wave vector is also conserved so that wave vectors for the 22 and 240 MHz peak should be related as kB and kLH-kB.
A further discussion of this interpretation requires some definitions. A plasma has two plasma frequencies associated with the electrons and the ions. In each case, the plasma frequency ωP can be expressed as
where e is the charge which is of unit value for both electrons and most plasma ions, nP is the plasma density, and m is the mass of the electron or ion. The plasma also has two cyclotron frequencies ωC, which can be expressed as
where B is the magnetic field and c is the speed of light. We estimate that the electron plasma frequency is about 3 GHz; the electron cyclotron frequency, about 1 GHz; and the ion plasma frequency, about 11 MHz.
Matsuoka et al. have disclosed observing a plasma wave in “Dense plasma production and film deposition by new high-rate sputtering using an electric mirror,” Journal of Vacuum Science and Technology A, vol. 7, no. 4, July/August 1989, pp. 2652–57. However, they attributed the primary plasma wave to the upper hybrid mode ωUH, which can be represented by
ωUH=√{square root over (ωP,e2+ωC,e2.)}
This would be too high a frequency to match the observed spectrum. Instead, we believe the 262 MHz peak is associated with the lower hybrid mode ωLH which is defined as
Lower hybrid modes can exist with frequencies in the range of ωC,i<ω<ωC,e, ωP,e.
We believe that the peak at 22 MHz is associated with a lower hybrid ion quasi mode that is associated with the plasma being over driven with the large amounts of power being applied to it.
The plasma waves at 240 MHz and 262 MHz, whatever their source, do not provide much heating of the electrons. As illustrated in the graph of
An advantage of the parametric power conversion believed responsible for generating the 22 MHz mode is that the higher-frequency modes, such as the 240 MHz one, are more typical in plasma reactors, but its power is converted to a lower-frequency mode at less than 20% of the original frequency which is more suitable to interact with the thermalized bulk electrons.
The wave vectors k of the upper two peaks were measured using a digital oscilloscope having two probes 208 separated by Δx=0.6 cm in the respective r, θ, z directions illustrated in
{right arrow over (k)}=3.9{circumflex over (r)}+6.3{circumflex over (θ)}+0.5{circumflex over (z)},
which has a magnitude k of about 7.4 cm−1. The difference in wave vectors between the 240 MHz and the 262 MHz peak has been measured to have a magnitude |Δk| of approximately 2 cm−1. The error bars on most of these measured values are large, but no more than 50%.
The magnetic field vector B has been measured at a point between the probes can be expressed in units of gauss as
{right arrow over (B)}=150{circumflex over (r)}+450{circumflex over (θ)}+35{circumflex over (z)},
which has a magnitude of 475 gauss. The angle between the wave vector k and the magnetic field B is equal to the ratio between the perpendicular and parallel wave vectors k⊥/k∥, which is measured to be in the range of 0.5 to 0.75.
The phase velocity vp for a wave is given by
For the 262 MHz peak, the phase velocity is thus calculated from the measured wave vector as 2×108 cm/s based on the above measurement of its wave vector. This is to be compared with a velocity of 1×109 cm−1 for the 455 eV injected secondary electrons. That is, the freshly injected secondary electrons could easily drive the measured 262 MHz plasma wave. However, the phase velocity of the 262 MHz peak is entirely too high to effectively interact with the bulk of the thermalized electrons.
The wave vector for the 22 MHz radiation could not be adequately measured directly. However, assuming a parametric process, the wave vector difference between the 262 MHz and the 240 MHz modes (measured as 2 cm−1) should equal the wave vector of the 22 MHz mode. If this is true, the phase velocity of the 22 MHz mode is approximately 6×107 cm/s, which corresponds to a 10 eV electron. That is, the 22 MHz mode is well matched to couple energy into the thermalized plasma electrons, thereby increasing the average electron energy. We believe the coupling from the plasma wave to the electrons is through Landau damping.
The conditions permitting the launching of the lower hybrid mode and its parametric conversion to another mode capable of coupling to the thermalized electrons depend greatly on the magnetic configuration and strength associated with the magnetrons. The magnetrons and planar target described for this invention appear to satisfy the conditions. Other magnetrons have been tested with planar targets, but no plasma waves are observed. Apparently, the electron mirror configuration of the complexly shaped target of Matsuoka et al. fails to launch the lower hybrid mode, and they fail to report any wave lower than about 100 MHz. In view of our experience and the apparent phase velocity of the 22 MHz mode, it seems necessary that a plasma mode be excited between 5 and 75 MHz, preferably between 10 and 50 MHz, in order to pump the 1 to 20 eV plasma electrons. The launching of any plasma waves seems to depend upon a magnetic field projecting far away from the target. Matsuoka et al. accomplish this by a complex hollow cathode design. The present invention accomplishes this by the unbalanced magnetic field strengths of the two poles of the magnetron, which produces a vertical magnetic field far away from the target, as well as by driving the reactor at a high power level.
Another condition for launching a plasma wave is that the beam density of the secondary electrons emitted from the target needs to exceed a threshold. That is, the power density applied to the target must be high. The inventive magnetron reduces the magnetron area and hence allows an increased power density achievable by a given power supply while still maintaining sputtering uniformity. Nonetheless, high target power is required for a commercially sized sputter readctor.
A racetrack magnetron of
An arced triangular magnetron of
Copper
For copper sputtering, uniformity is improved by using ten strong magnets 160 in the inner pole, strong magnets 162 along the arc portion 150 of the outer pole, and weaker magnets 164 for the remainder of the outer pole. The stronger magnets have a diameter 30% larger than the diameter of the weaker magnets, but are otherwise of similar composition and structure, thereby creating an integrated magnetic flux that is 70% larger.
Sustained self-sputtering of copper is achieved, after striking the plasma in an argon ambient, with 9 kW of DC power applied to the target having a usable diameter of about 30 cm, which results in a power density of 76 W/cm2 with the arced triangular magnetron. However, it is considered desirable to operate with 18 kW of DC power and with a minimal argon pressure of about 0.1 milliTorr arising at least in part from leakage of the gas providing backside cooling of the wafer to the liquid-chilled pedestal. The increased background pressure of 0.1 to 0.3 milliTorr enhances effective wafer cooling without significant increase in the scattering and deionization of the sputtered ions. These relatively low DC powers are important in view of the ongoing development of equipment for 300 mm wafers, for which these numbers scale to 20 kW and 40 kW. A power supply of greater than 40 kW is considered expensive if not infeasible.
One application of ionized copper sputtering is to deposit a thin conformal seed layer of copper in a deep and narrow via hole. Thereafter, electro or electroless plating can be used to quickly and economically fill the remainder of the hole with copper.
In one experiment, a via hole having a top width of 0.30 μm and extending through 1.2 μm of silica was first coated with a Ta/TaN barrier layer. Using the arced triangular magnetron, copper was deposited over the barrier layer at 18 kW of target power and a pressure of 0.2 milliTorr. The deposition was carried out to a blanket thickness of about 0.15 μm. The sides of the via hole was smoothly covered. The experiments show that the sidewall thickness of the copper is about 7 nm on one side and 11.4 nm on the other side (5% and 8%) for a via located at the wafer edge. The bottom coverage is about 24 nm (16%). Sidewall symmetry is improved for a via hole at the wafer center. The smoothness promotes the use of the deposited layer as a seed layer and as an electrode for subsequent electroplating of copper. The relatively good symmetry between the two sidewalls relieves the problem in the prior art of apparently moving photolithographic indicia.
Aluminum
Using the arced triangular magnetron, sputtering of an aluminum target was achieved at both 12 kW and 18 kW of applied power with a minimum pressure of about 0.1 milliTorr, a significant improvement. For aluminum sputtering, sidewall coverage and particularly bottom coverage is significantly improved. The better uniformity is also believed to be related in part to the increased ionization fraction since the self-biased pedestal supporting the wafer attracts the ionized sputtered particles across its entire area. It is estimated that the magnetron of the invention increases the ionization fraction from 2% to at least 20% and probably 25%.
The arced triangular magnetron was compared under similar operating conditions to the operation of a conventional magnetron resembling the Tepman magnetron of
The coverage results were obtained for via holes having a width of 0.25 μm and a depth of 1.2 μm, that is, an aspect ratio of about 5. The bottom coverage is significantly improved with the inventive triangular magnetron compared to the conventional magnetron. The sidewall coverage is also increased, and further the coverage is smooth and uniform from top to bottom. These two characteristics promote the use of the deposited metal layer as a seed layer for a subsequent deposition step. This is particularly important for copper in which the second deposition is performed by a different process such as electroplating. The increased bottom and sidewall coverages are believed to be due to the higher ionization fraction of sputtered aluminum atoms achieved with the inventive triangular magnetron. This ionization fraction is believed to be 25% or greater. The uniformity of blanket (planar) deposition was determined both for a separation of 190 mm between the target and the wafer and, in a long-throw implementation, for a separation of 290 mm. The inventive triangular magnetron produces better uniformity, especially for long throw. The better uniformity is also believed to be related to the increased ionization fraction since the self-biased pedestal supporting the wafer attracts the ionized sputtered particles across its entire area. Similarly, the inventive triangular magnetron produces less asymmetry between the coverages of the two opposed sidewalls. The increased ionization density is due in part to the relatively small inner yoke having an area substantially less than that of the outer yoke. As a result, electrons lost from one side of the inner yoke are likely to be captured by the other side.
The bar magnetron of
All of these advantages are obtainable in a conventional capacitively coupled DC sputter reactor using a magnetron of fairly simple design. Of course, the magnetron of the invention can also be advantageously used in other types of sputter reactors, such as an HDP reactor relying upon inductively coupled RF power.
Titanium
The arced triangular magnetron was also used to sputter titanium. Titanium, sometimes in conjunction with titanium nitride, is useful in aluminum metallization for providing a silicided contact to silicon at the bottom of a contact hole and to act as wetting layer and in conjunction with a titanium nitride layer as a barrier both to the silicon in a contact hole and between the aluminum and the silica dielectric on the via or contact sidewalls. Conformal and relatively thick coatings are thus required.
A series of experiments were performed using a titanium target with 18 kW of DC target power and with only six magnets 160 in the inner pole. At a chamber pressure of 0.35 milliTorr, the bottom coverage and uniformity are observed to be good.
The titanium experiments were continued to measure bottom coverage as a function of the aspect ratio (AR) of the via hole being coated. With no wafer bias applied and the pedestal heater 18 left electrically floating, the 18 kW of target power nonetheless self-biases the target to about 30 to 45V. The bottom coverage under these conditions is shown by line 230 in the graph of
In a continuation of these experiments, an RF power source 232, illustrated in
The experiments were continued for holes with aspect ratios of 4.5 using 300 W of RF wafer bias at a frequency of 13.56 MHz. At a pressure of 0.7 milliTorr, the blanket deposition rate is 128 nm/min, and the bottom coverage varies between 31% and 52%. At a pressure of 1.4 milliTorr, the deposition rate is 142 nm/min, and the bottom coverage varies between 42% and 62%. At the higher pressure, the sidewall coverage varies between 10.4% and 11.5%, and no appreciable sidewall asymmetry is observed. Contrary to expectations, pressures above 0.7 milliTorr produce higher titanium deposition rates and better bottom coverage. The higher bias frequency permits a higher bias power to be applied.
Titanium Nitride
The magnetron of the invention can also be used for reactive sputtering, such as for TiN, in which nitrogen is additionally admitted into the chamber to react with the sputtered metal, for example, with titanium to produce TiN or with tantalum to produce TaN. Reactive sputtering presents a more complex and varied chemistry. Reactive sputtering to produce TiN is known to operate in two modes, metallic mode and poison mode. Metallic mode produces a high-density, gold-colored film on the wafer. Poison mode, which is often associated with a high nitrogen flow, produces a purple/brown film which advantageously has low stress. However, the poison-mode film has many grain boundaries, and film defects severely reduce chip yield. Furthermore, the deposition rate in poison mode is typically only one-quarter of the rate in metallic mode. It is generally believed that in poison mode the nitrogen reacts with the target to form a TiN surface on the Ti target while in metallic mode the target surface remains clean and TiN forms only on the wafer.
The arced triangular magnetron was tested for reactive sputtering of titanium nitride in the same chamber used for sputter depositing titanium.
The initialization conditions for sputter depositing titanium nitride are found to be very important to obtain operation in the metallic mode. In a series of initial experiments, argon alone is first admitted to the chamber. After the plasma is struck at an argon pressure of about 0.5 milliTorr, the argon flow is reduced to 5 sccm producing a pressure of 0.3 milliTorr. When the nitrogen flow is then step wise ramped up to 100 sccm and then is gradually reduced, the dependence of the chamber pressure upon the flow assumes a hysteretic form illustrated in
These results show that, for higher operational deposition rates in the generally preferred metallic mode, it is important to not exceed the intermediate ramp-up pressures 240, that is, not to exceed the maximum metallic-mode flow, which in these experiments is 70 sccm or slightly higher but definitely below 80 sccm. The argon and nitrogen can be simultaneously and quickly turned on, but preferably the DC power is also quickly turned on.
There are some applications, however, where operation in poison mode is preferred. This can be achieved by first going to the higher pressures 246 and then decreasing to the ramp-down intermediate pressures 242. Alternatively, poison mode can be achieved by immediately turning on the desired gas flow, but only gradually turning on the DC sputtering power supply at a rate of no more than 5 kW/s.
Titanium nitride was sputtered into high aspect-ratio via holes in both metallic and poison modes at a N2 flow of 50 sccm and an Ar flow of 5 sccm after the plasma had been struck in argon. These flows produce a pressure of 1.7 milliTorr in metallic mode and 2.1 milliTorr in poison mode. The deposition rates are 100 nm/min in metallic mode and 30 nm/min in poison mode. On one hand, the TiN film stress is higher when it is deposited in metallic mode, but on the other hand poison mode suffers from overhang and undulatory sidewall thicknesses near the top of the via hole. A series of experiments deposited TiN into via holes of differing aspect ratios. The resulting measured bottom coverage, illustrated in the graph of
The success of depositing TiN in the same chamber used for depositing Ti demonstrates that the Ti/TiN barrier can be deposited according to the invention in one continuous operation.
Integrated Tungsten Plug Process
Two series of tests were performed to demonstrate an integrated process combining the Ti/TiN barrier deposited with the arced magnetron of the invention and a tungsten plug deposited by chemical vapor deposition (CVD) into the barrier-coated hole. This combination has presented some problems in the past because tungsten CVD typically uses tungsten hexafluoride (WF6) as the gaseous precursor. WF6 tends to attack Ti and to result in structures formed in the W plug resembling volcanoes, which produces voids in the plug.
In the first series of tests, the barrier layer consisted of 30 nm of Ti covered by 30 nm of TiN deposited with the arced magnetron of the invention in an otherwise conventional non-inductive sputter reactor. Following the Ti/TiN deposition, the chip was subjected to rapid thermal processing (RTP) in which intense radiant lamps quickly heat the wafer surface for a short period. In the second series of tests, the barrier layer consisted of 30 nm of Ti covered by 10 nm of TiN deposited as in the first series. However, in the second test, before the Ti/TiN deposition the wafer was subjected to a plasma preclean, but there was no RTP afterwards. In either case, tungsten was then CVD deposited over the Ti/TiN.
These experiments show that neither process produces volcanoes. Furthermore, thickness and resistivity of the TiN show good uniformity. The TiN resistivity is measured to be less than 45 μΩ-cm. Bottom coverage of 20% for the TiN/Ti bilayer is observed in holes having aspect ratios of 5:1 without the use of wafer biasing. Wafer biasing produces the same bottom coverage in holes having aspect ratios of 10:1. Thus, the Ti/TiN process performed with the magnetron of the invention can be successfully integrated into a tungsten plug process. The inventive magnetron can also be used to sputter deposit other materials, for example, W, using a tungsten target, or TaN, using a tantalum target and nitrogen gas in the plasma. Reactive sputtering of WN is also contemplated.
The magnetron of the invention is thus efficient in producing a high ionization fraction because of the high-density plasma it can create without excessive power being required. Nonetheless, its full coverage allows for uniform deposition and full target utilization. Its sputtering uniformity is good. Nonetheless, no complex mechanisms are required.
The effectiveness of the magnetron of the invention in providing high-performance full-coverage sputtering is based on three interrelated synergetic effects. The magnetron has a small magnetic area. Thereby, the average magnetic field can be made high, and the plasma losses reduced. The small magnetron also allows a high average power density to be applied to the area of the target beneath the magnetron. That is, although the electrical power applied to the target as a whole is relatively modest, the electrical power density and resulting plasma density in the area actually being sputtered at any instant is high. The asymmetry of the inner and outer magnetic poles of the magnetron produces portions of the magnetic field extending vertically surrounding the periphery of the magnetron and extending far into the chamber. This magnetic field distribution reduces plasma losses and guides ionized sputtered particles to the substrate. All of these advantages are enjoyed in a magnetron providing full coverage sputtering of the target with only circumferential scanning, and in a magnetron that can be optimally shaped to produce uniform target sputtering and uniform substrate deposition.
Such a small, high-field magnet enables sustained self-sputtering with relatively modest target power and also enables sputtering of materials such as aluminum and titanium at reduced pressures below 0.5 milliTorr, preferably below 0.2 milliTorr, and even at 0.1 milliTorr. At these pressures, deep hole filling can be facilitated by the reduced scattering of sputtered particles, whether neutral or ionized, and by the reduced neutralization of ionized particles. However, at least for titanium, it has been found that with the use of the magnetron of the invention, deposition rate and bottom coverage are improved with working gas pressures above 0.7 milliTorr. The high-field magnet further promotes a high ionization fraction, which can be drawn into a deep, narrow hole by biasing of the wafer within proper ranges.
This application is a division of Ser. No. 09/918,136, filed Jul. 30, 2001, now issued on Sep. 14, 2004 as U.S. Pat. No. 6,790,323, which is a division of Ser. No. 09/546,798, filed Apr. 11, 2001, now issued as U.S. Pat. No. 6,306,265, which is a continuation in part of Ser. No. 09/373,097, filed Aug. 12, 1999, now issued as U.S. Pat. No. 6,183,614, which is a continuation in part of Ser. No. 09/249,468, filed Feb. 12, 1999, now issued as U.S. Pat. No. 6,290,825, all of which are incorporated herein by reference in their entireties.
Number | Name | Date | Kind |
---|---|---|---|
4239611 | Morrison, Jr. | Dec 1980 | A |
4312731 | Morrison, Jr. | Jan 1982 | A |
4444643 | Garrett | Apr 1984 | A |
4601806 | Wirz | Jul 1986 | A |
4652358 | Deppisch et al. | Mar 1987 | A |
4717462 | Homma et al. | Jan 1988 | A |
4746417 | Ferenbach et al. | May 1988 | A |
4810346 | Wolf et al. | Mar 1989 | A |
4818561 | Strahl | Apr 1989 | A |
4872964 | Suzuki et al. | Oct 1989 | A |
4943361 | Kakehi et al. | Jul 1990 | A |
4963239 | Shimamura et al. | Oct 1990 | A |
5026471 | Latz et al. | Jun 1991 | A |
5047130 | Akao et al. | Sep 1991 | A |
5108570 | Wang | Apr 1992 | A |
5120417 | Takahashi et al. | Jun 1992 | A |
5242566 | Parker | Sep 1993 | A |
5248402 | Ballentine et al. | Sep 1993 | A |
5252194 | Demaray et al. | Oct 1993 | A |
5262028 | Manley | Nov 1993 | A |
5284564 | Maass | Feb 1994 | A |
5320728 | Tepman | Jun 1994 | A |
5322605 | Yamanishi | Jun 1994 | A |
5334302 | Kubo et al. | Aug 1994 | A |
5415754 | Manley | May 1995 | A |
5514259 | Shiota et al. | May 1996 | A |
5536362 | Love et al. | Jul 1996 | A |
5556519 | Teer | Sep 1996 | A |
5584971 | Komino | Dec 1996 | A |
5593551 | Lai | Jan 1997 | A |
5599739 | Merchant et al. | Feb 1997 | A |
5650052 | Edelstein et al. | Jul 1997 | A |
5693203 | Ohhashi et al. | Dec 1997 | A |
5746897 | Heimanson et al. | May 1998 | A |
5770025 | Kiyota | Jun 1998 | A |
5795451 | Tan et al. | Aug 1998 | A |
5824197 | Tanaka | Oct 1998 | A |
5833817 | Tsai et al. | Nov 1998 | A |
5879523 | Wang et al. | Mar 1999 | A |
5897752 | Hong et al. | Apr 1999 | A |
5944968 | Kobayashi et al. | Aug 1999 | A |
5966607 | Chee et al. | Oct 1999 | A |
5976327 | Tanaka | Nov 1999 | A |
6153315 | Yamakoshi et al. | Nov 2000 | A |
6176983 | Bothra et al. | Jan 2001 | B1 |
6183614 | Fu | Feb 2001 | B1 |
6290825 | Fu | Sep 2001 | B1 |
6440282 | Wada et al. | Aug 2002 | B1 |
6582569 | Chiang et al. | Jun 2003 | B1 |
6610184 | Ding et al. | Aug 2003 | B2 |
6663754 | Gung | Dec 2003 | B2 |
6790323 | Fu et al. | Sep 2004 | B2 |
6852202 | Miller et al. | Feb 2005 | B2 |
20010052456 | Fu | Dec 2001 | A1 |
Number | Date | Country |
---|---|---|
27 07 144 | Aug 1977 | DE |
0-620-583A 1 | Oct 1994 | EP |
0 691 419 | Jan 1996 | EP |
62-89864 | Apr 1987 | JP |
63-282263 | Nov 1988 | JP |
64-28921 | Jan 1989 | JP |
5-1373 | Jan 1993 | JP |
7-126844 | May 1995 | JP |
7-252651 | Oct 1995 | JP |
10-88336 | Jul 1996 | JP |
9-41135 | Feb 1997 | JP |
10-088339 | Apr 1998 | JP |
10-152774 | Jun 1998 | JP |
11-74225 | Mar 1999 | JP |
WO 0048226 | Aug 2000 | WO |
Number | Date | Country | |
---|---|---|---|
20050051424 A1 | Mar 2005 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 09918136 | Jul 2001 | US |
Child | 10939832 | US | |
Parent | 09546798 | Apr 2001 | US |
Child | 09918136 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 09373097 | Aug 1999 | US |
Child | 09546798 | US | |
Parent | 09249468 | Feb 1999 | US |
Child | 09373097 | US |