This application claims priority of German patent application no. 10 2009 012 784.4, filed Mar. 13, 2009, the entire content of which is incorporated herein by reference.
Heat exchangers are utilized in various technical applications for transferring heat from one fluid to another fluid. Heat exchangers are especially used in motor vehicles as charge-air coolers to cool the air, which is compressed by a compressor, ahead of being supplied to the engine. Here, the charge air, which is to be cooled, and a cooling liquid are passed through the heat exchanger. The cooling liquid or coolant takes up heat from the charge air and thereby cools the charge air. Heat exchangers of this kind are subjected to high loads as a consequence of temperature changes because, during operation of the motor vehicle, temperature fluctuations occur and, furthermore, for each start of the engine, the heat exchanger is at first cold.
Heat exchangers in a plate configuration are often used for charge-air coolers. Many plates are stacked one atop the other. Because of the geometry of the plates, channels, that is, fluid channels, for the charge air and the coolant are formed between the plates. End plates are mounted at the respective ends of the stack. The intermediate plates and the end plates are, in general, firmly bonded to each other by soldering. The thickness of the end plates is significantly greater than the thickness of the intermediate plates.
Distortions within the heat exchanger occur because of thermal cycling and/or because of an inhomogeneous temperature distribution within the heat exchanger. The distortions result especially from the larger thermal inertia of the end plates compared to the intermediate plates. The end plates have a greater thickness and therefore a larger mass so that the end plates heat up significantly slower or cool down slower than the intermediate plates. Furthermore, the stiffness of the end plates parallel to a plate plane is greater than the stiffness of the intermediate plates parallel to an intermediate plate plane. This difference in stiffness between the end plates and the intermediate plates can lead to damage that becomes manifest by a limited service life for the heat exchanger. Changes in size of the end plate because of temperature changes parallel to the plate plane differ from the change in size for temperature changes at the intermediate plate next to the end plate parallel to the intermediate plate plane.
In view of the above, it is an object of the invention to provide a heat exchanger and an internal combustion engine having the heat exchanger of simple construction which has a long service life even for high thermal cycling. The heat exchanger is cost effective to manufacture and is reliable during operation.
The heat exchanger of the invention includes: a plurality of intermediate plates arranged one atop the other to form a stack of the intermediate plates and the stack having first and second ends; at least one first fluid channel for through conducting a first fluid; at least one second fluid channel for through conducting a second fluid; the intermediate plates being geometrically configured to define at least a portion of each of the first and second fluid channels; an end plate arranged on one of the ends of the stack; a first inlet opening communicating with the first fluid channel for introducing the first fluid; a first outlet opening communicating with the first fluid channel for conducting the first fluid out of the heat exchanger; a second inlet opening communicating with the second fluid channel for introducing the second fluid; a second outlet opening communicating with the second fluid channel for conducting the second fluid away from the heat exchanger; and, the end plate having at least one expansion zone for reducing the stiffness thereof.
The stiffness relates to the entire at least one end plate and not only to the material of the at least one end plate from which the end plate is manufactured. For the same force which acts on the one end plate, preferably, parallel to the plate plane, a larger expansion occurs in the heat exchanger of the invention at the end plate.
The expansion zone can be defined by a recess in the at least one end plate which reduces the stiffness of the at least one end plate advantageously parallel or in the direction of the plate plane of the end plate. In this way, the difference in stiffness between the intermediate plates and the end plate is less (or there is no difference present any longer) so that, in this way, significantly less distortion and stress occur between the end plate and the intermediate plates so that the service life of the heat exchanger is significantly lengthened. The at least one recess has only the function to reduce the stiffness of the at least one end plate and/or to reduce the mass of the at least one end plate. The recess has no further function such as the function of an inlet opening or an outlet opening for introducing or discharging a fluid or as a device for fixing the heat exchanger.
In a further embodiment, the intermediate plates have openings for configuring the at least one first fluid channel and/or the at least one second fluid channel. The intermediate plates are arranged in a stack one atop the other so that the openings form a fluid channel perpendicular to the plate plane or the intermediate plate plane. The fluid channels, which are formed between the plates, are aligned parallel to the plane of the intermediate plates or the plane of the end plates.
In a further embodiment, a reinforcing plate is arranged between the end plate and the intermediate plate. The reinforcing plate reduces the jump in stiffness between the end plate and the intermediate plate. Preferably, the reinforcing plate has a thickness which lies between the thickness of the end plate and the thickness of the intermediate plate. The reinforcing plate can also be considered as an end plate and can be configured with at least one recess for reducing the stiffness of the at least one reinforcing plate, in the same manner as the at least one end plate.
The at least one recess is especially configured as a longitudinal slot and/or as a transverse slot and/or the at least one recess functions exclusively to reduce the stiffness of the at least one end plate, especially parallel to the plate plane of the at least one end plate and/or the at least one recess functions exclusively to reduce the mass and therefore the thermal inertia of the at least one end plate.
In a further embodiment, two regions, which are divided by the recess, of the end plate are connected to each other by at least one expansion rib or strut.
In an expanded embodiment, an end plate is configured as a connecting plate or a cover plate having at least one inlet opening for the first and/or second fluid and at least one outlet opening for the first and/or second fluid.
Preferably, the expansion of the connecting plate parallel to the plate plane is greater than the expansion of the intermediate plates parallel to an intermediate plate plane so that the connecting plate has an overhang relative to the intermediate plates and, on the overhang, at least one device is provided for fixing the heat exchanger.
In a variation, the at least one device is at least one bore and/or at least a threaded fastener.
The at least one recess for reducing the stiffness of the end plate is configured in addition to the at least one bore and/or the at least one inlet opening and/or the at least one outlet opening in the at least one end plate.
In a further embodiment, the thickness of the end plate is greater than the thickness of the intermediate plates. The thickness of the intermediate plate is the material thickness of the intermediate plate so that geometric formations of the configuration of the fluid channels are not considered for the expansion of the intermediate plate perpendicular to the intermediate plate plane.
The thickness of the one end plate is especially greater than the thickness of the intermediate plate by at least 1.5 or 2.0, preferably 3.0 or 4.0 times greater than the thickness of an intermediate plate.
In a further embodiment, the material thicknesses of the intermediate plates are essentially the same, especially, the thicknesses of the intermediate plates exhibit a difference of less than 30% or 20% or 10%.
In an expanded variation, the end plates and/or the intermediate plates are, at least in part, made of metal such as steel or aluminum.
In a further variation, the at least one recess of an end plate is configured perpendicular to the plate plane of the at least one end plate and the at least one recess completely passes through the at least one end plate.
In a further variation, the at least one recess of the at least one end plate is configured perpendicularly to the plate plane of the at least one end plate and the at least one recess extends only partially through the at least one end plate.
In a further embodiment, the intermediate plates are firmly bonded to each other especially via soldering and/or the at least one end plate is firmly bonded to the intermediate plate especially by soldering.
A turbulence insert is arranged especially in the at least first fluid channel and/or the at least one second fluid channel and, especially, the turbulence insert is attached, preferably via soldering to two intermediate plates. The turbulence insert generates a turbulent flow in the at least one first fluid channel and in the at least one second fluid channel to improve the heat transfer from the first fluid to the second fluid or vice versa.
In a further embodiment, the intermediate plates have impressions so that the at least one first fluid channel and the at least one second fluid channel (which form between two intermediate plates) have either nobs or embossments at the boundaries of the fluid channels so that, in this way, the surface for heat transfer is increased and, furthermore, a turbulent flow can be facilitated.
Advantageously, an internal combustion engine 900 is provided with a compressor, for example, a turbocharger 700 or a compressor 910 for compressing the charge air supplied to the engine and a heat exchanger 1 for cooling the charge air compressed by the compressor. With the heat exchanger, the compressed charge air and a coolant can be conducted through for transfer of heat from the compressed charge air to the coolant. The heat exchanger is configured in the manner described herein.
The invention will now be described with reference to the drawings wherein:
In
A right-angled coordinate system having (X, Y, Z) axes of the heat exchanger 1 is aligned to the connecting plate 6 so that the X-axis and the Y-axis lie on the surface of the planar connecting plate 6 and the Z-axis is aligned perpendicular to the surface of the connecting plate 6 (
At a second end of the stack, an end plate 5 is present (
In
In
The plate plane of the intermediate plates 2 is parallel to the plate plane of the end plate 5 in the arrangement of stacked intermediate plates 2 and the end plate 5 in the stack lying one atop the other. The end plates 5 have a significantly greater expansion in the X-axis and Y-axis than in the Z-axis. The plate plane is defined because of this greater expansion in the X-axis and Y-axis. The X-axis and Y-axis lie within the plate plane. In the same manner, the expansion of the intermediate plates 2 in the X-axis and Y-axis is significantly greater than in the Z-axis. The X-axis and Y-axis define the intermediate plate plane of the intermediate plates 2.
The intermediate plates 2 and the end plates 5 are soldered to each other. This applies also for the turbulence inserts 18. In addition, one of the two end plates 5 is provided with a drain plug or threaded plug 21 (
According to another embodiment (not shown), the two end plates are connected to each other by means of threaded fasteners so that the cover plate also has a threaded fastener bore for passing through a bolt or threaded rod.
A first embodiment of the heat exchanger 1 of the invention is shown in
In addition, the stresses can be reduced by the provision of a support plate or reinforcement plate between the cover plate and the intermediate plate. Especially advantageous is such a support plate or reinforcement plate thicker than one of the intermediate plates but thinner than the cover plate.
In the second embodiment shown in
The intermediate plates 2 and the end plates 5 of the heat exchanger 1 comprise at least partially aluminum and are firmly bonded to each other by soldering.
Viewed overall, significant advantages are associated with the heat exchanger 1 of the invention. The stiffness of the end plates 5 parallel to the plate plane is reduced essentially because of the configuration of the recesses 23 so that the stresses between the end plates 5 and the intermediate plates 2 become less and damage can thereby be avoided. In this way, the service life of the heat exchanger 1 is increased in an advantageous manner with a minimum of technical complexity. The recesses 23 can be cut out in a simple manner, for example, by a stamping operation or milling operation, a water jet or laser cutting from the blank for manufacturing the end plates 5. In this way, the cost to manufacture the heat exchanger is increased only very slightly and, in exchange, the service life of the heat exchanger 1 is significantly increased.
It is understood that the foregoing description is that of the preferred embodiments of the invention and that various changes and modifications may be made thereto without departing from the spirit and scope of the invention as defined in the appended claims.
Number | Date | Country | Kind |
---|---|---|---|
10 2009 012 784 | Mar 2009 | DE | national |
Number | Name | Date | Kind |
---|---|---|---|
6474408 | Yeh et al. | Nov 2002 | B1 |
6843311 | Evans et al. | Jan 2005 | B2 |
7121331 | Yoshida et al. | Oct 2006 | B2 |
7377308 | Ware | May 2008 | B2 |
20040182547 | Birkert et al. | Sep 2004 | A1 |
20050034843 | Schindler et al. | Feb 2005 | A1 |
20050155749 | Memory et al. | Jul 2005 | A1 |
20070199680 | Helms et al. | Aug 2007 | A1 |
20080041556 | Braun et al. | Feb 2008 | A1 |
20080245507 | Agee | Oct 2008 | A1 |
Number | Date | Country |
---|---|---|
694 04 108 | Oct 1997 | DE |
1 001 241 | May 2000 | EP |
58-221391 | Dec 1983 | JP |
61-223496 | Oct 1986 | JP |
WO 2009062739 | May 2009 | WO |
Entry |
---|
English Machine Translation of EP-0647824. |
Number | Date | Country | |
---|---|---|---|
20100258095 A1 | Oct 2010 | US |