Fast growth of the pervasive computing and handheld/communication industry generates exploding demand for high capacity nonvolatile solid-state data storage devices. It is believed that nonvolatile memories, especially flash memory, will replace DRAM to occupy the biggest share of memory market. However, flash memory has several drawbacks such as slow access speed (˜ms write and ˜50-100 ns read), limited endurance (˜103-104 programming cycles), and the integration difficulty in system-on-chip (SoC). Flash memory (NAND or NOR) also faces significant scaling problems at 32 nm node and beyond.
Magneto-resistive Random Access Memory (MRAM) is another promising candidate for future nonvolatile and universal memory. MRAM features non-volatility, fast writing/reading speed (<10 ns), almost unlimited programming endurance (>1015 cycles) and zero standby power. The basic component of MRAM is a magnetic tunneling junction (MTJ). Data storage is realized by switching the resistance of MTJ between a high-resistance state and a low-resistance state. MRAM switches the MTJ resistance by using a current induced magnetic field to switch the magnetization of MTJ. As the MTJ size shrinks, the switching magnetic field amplitude increases and the switching variation becomes more severe. Hence, the incurred high power consumption limits the scaling of conventional MRAM.
Recently, a new write mechanism, which is based upon spin polarization current induced magnetization switching, was introduced to the MRAM design. This new MRAM design, called Spin-Transfer Torque RAM (STRAM), uses a (bidirectional) current through the MTJ to realize the resistance switching. Therefore, the switching mechanism of STRAM is constrained locally and STRAM is believed to have a better scaling property than the conventional MRAM.
However, a number of yield-limiting factors must be overcome before STRAM enters the production stage. One concern in STRAM design is tradeoff between the size and thermal stability of the STRAM cell. As the STRAM cell decreases in size, the switching current decreases also, however, the thermal stability of the device can deteriorate since it is also proportional to the STRAM cell size.
The present disclosure relates to a magnetic tunnel junction or spin-transfer torque memory unit with a staggered cell element design. In particular, the present disclosure relates to a magnetic tunnel junction or spin-transfer torque memory unit that provides a lateral spin torque write to at least a portion of the free magnetic layer of the spin-transfer torque memory unit.
In an embodiment, a spin-transfer torque memory unit includes a free magnetic layer having a thickness extending in an out-of-plane direction and extending in a lateral direction in an in-plane direction between a first end portion and an opposing second end portion. A tunneling barrier separates a reference magnetic layer from the first end portion and forms a magnetic tunnel junction. A first electrode is in electrical communication with the reference magnetic layer and a second electrode is in electrical communication with the free magnetic layer second end portion such that current flows from the first electrode to the second electrode and passes through the free magnetic layer in the lateral direction to switch the magnetic tunnel junction between a high resistance state and a low resistance state.
These and various other features and advantages will be apparent from a reading of the following detailed description.
The disclosure may be more completely understood in consideration of the following detailed description of various embodiments of the disclosure in connection with the accompanying drawings, in which:
The figures are not necessarily to scale. Like numbers used in the figures refer to like components. However, it will be understood that the use of a number to refer to a component in a given figure is not intended to limit the component in another figure labeled with the same number.
In the following description, reference is made to the accompanying set of drawings that form a part hereof and in which are shown by way of illustration several specific embodiments. It is to be understood that other embodiments are contemplated and may be made without departing from the scope or spirit of the present disclosure. The following detailed description, therefore, is not to be taken in a limiting sense. The definitions provided herein are to facilitate understanding of certain terms used frequently herein and are not meant to limit the scope of the present disclosure.
Unless otherwise indicated, all numbers expressing feature sizes, amounts, and physical properties used in the specification and claims are to be understood as being modified in all instances by the term “about.” Accordingly, unless indicated to the contrary, the numerical parameters set forth in the foregoing specification and attached claims are approximations that can vary depending upon the desired properties sought to be obtained by those skilled in the art utilizing the teachings disclosed herein.
The recitation of numerical ranges by endpoints includes all numbers subsumed within that range (e.g. 1 to 5 includes 1, 1.5, 2, 2.75, 3, 3.80, 4, and 5) and any range within that range.
As used in this specification and the appended claims, the singular forms “a”, “an”, and “the” encompass embodiments having plural referents, unless the content clearly dictates otherwise. As used in this specification and the appended claims, the term “or” is generally employed in its sense including “and/or” unless the content clearly dictates otherwise.
The present disclosure relates to a spin-transfer torque memory unit with a staggered cell element design. In particular, the present disclosure relates to a spin-transfer torque memory unit that provides a lateral spin torque write to at least a portion of the free magnetic layer of the spin-transfer torque memory unit.
While the present disclosure is not so limited, an appreciation of various aspects of the disclosure will be gained through a discussion of the examples provided below.
The MTJ cell 10 includes a ferromagnetic free layer 12 and a ferromagnetic reference (i.e., pinned) layer 14. The ferromagnetic free layer 12 and a ferromagnetic reference layer 14 are separated by an oxide barrier layer 13 or tunneling barrier layer. A first electrode 15 is in electrical contact with the ferromagnetic free layer 12 and a second electrode 16 is in electrical contact with the ferromagnetic reference layer 14. The ferromagnetic layers 12, 14 may be made of any useful ferromagnetic (FM) alloys such as, for example, Fe, Co, Ni and the insulating tunneling barrier layer 13 may be made of an electrically insulating material such as, for example an oxide material (e.g., Al2O3 or MgO). Other suitable materials may also be used.
The electrodes 15, 16 electrically connect the ferromagnetic layers 12, 14 to a control circuit providing read and write currents through the ferromagnetic layers 12, 14. The resistance across the MTJ cell 10 is determined by the relative orientation of the magnetization vectors or magnetization orientations of the ferromagnetic layers 12, 14. The magnetization direction of the ferromagnetic reference layer 14 is pinned in a predetermined direction while the magnetization direction of the ferromagnetic free layer 12 is free to rotate under the influence of a spin torque. Pinning of the ferromagnetic reference layer 14 may be achieved through, e.g., the use of exchange bias with an antiferromagnetically ordered material such as PtMn, IrMn and others.
Switching the resistance state and hence the data state of the MTJ cell 10 via spin-transfer occurs when a current, passing through a magnetic layer of the MTJ cell 10, becomes spin polarized and imparts a spin torque on the free layer 12 of the MTJ cell 10. When a sufficient spin torque is applied to the free layer 12, the magnetization orientation of the free layer 12 can be switched between two opposite directions and accordingly the MTJ cell 10 can be switched between the parallel state (i.e., low resistance state or “0” data state) and anti-parallel state (i.e., high resistance state or “1” data state) depending on the direction of the current.
The illustrative spin-transfer torque MTJ cell 10 (and the STRAM cells described below) may be used to construct a memory device that includes multiple variable resistive memory cells where a data bit is stored in magnetic tunnel junction cell by changing the relative magnetization state of the free magnetic layer 12 with respect to the pinned magnetic layer 14. The stored data bit can be read out by measuring the resistance of the cell which changes with the magnetization direction of the free layer relative to the pinned magnetic layer. In order for the spin-transfer torque MTJ cell 10 to have the characteristics of a non-volatile random access memory, the free layer exhibits thermal stability against random fluctuations so that the orientation of the free layer is changed only when it is controlled to make such a change. This thermal stability can be achieved via the magnetic anisotropy using different methods, e.g., varying the bit size, shape, and crystalline anisotropy. Additional anisotropy can be obtained through magnetic coupling to other magnetic layers either through exchange or magnetic fields. Generally, the anisotropy causes a soft and hard axis to form in thin magnetic layers. The hard and soft axes are defined by the magnitude of the external energy, usually in the form of a magnetic field, needed to fully rotate (saturate) the direction of the magnetization in that direction, with the hard axis requiring a higher saturation magnetic field.
A tunneling barrier 22 separates a reference magnetic (e.g., ferromagnetic) layer 23 from the first end portion 26 of the free magnetic layer 21 and forming a magnetic tunnel junction. The thickness of the tunneling barrier 22 can be any useful thickness such as, for example, from 0.5 to 2 nm or from 0.7 to 1.5 nm. The tunneling barrier 22 can be formed of any useful electrically insulating materials, as described above.
The thickness of the reference magnetic layer 23 can be any useful thickness such as, for example, from 1 to 10 nm or from 1 to 5 nm. The reference magnetic layer 23 is formed of any useful ferromagnetic (FM) alloy, as described above. The reference magnetic layer 23 can have any useful cross-sectional shape along an in-plane direction such as, for example, a rectangular shape, a circular shape, or elliptical shape. The reference magnetic layer 23 can be a single ferromagnetic layer, or may include multiple layers, for example, a pair of ferromagnetically coupled ferromagnetic layers, an antiferromagnetic (AFM) pinning layer and a ferromagnetic pinned layer, a synthetic antiferromagnetic (SAF), or an SAF with an antiferromagnetic layer.
The reference magnetic layer 23 and the free magnetic layer 21 form a first overlap portion OL1 where the free magnetic layer 21 overlaps the reference magnetic layer 23 in the out-of-plane direction. The first overlap portion OL1 extends along only a portion of the length LT of the free magnetic layer 21. In many embodiments, the first overlap portion OL1 is in a range from 1 to 35%, or from 5 to 25%, or from 10 to 25% of the length LT of the free magnetic layer 21.
A first electrode 24 is in electrical communication with the reference magnetic layer 23. A second electrode 25 is in electrical communication with the free magnetic layer 21 second end portion 27 such that current flows from the first electrode 24 to the second electrode 25 and passes through the free magnetic layer 21 in the lateral direction (i.e., in-plane direction) to switch the magnetic tunnel junction between a high resistance state and a low resistance state (depending on the current direction).
The free magnetic layer 21 and the second electrode 25 form a second overlap portion OL2 where the free magnetic layer 21 overlaps the second electrode 25 in the out-of-plane direction. The second overlap portion OL2 extends along only a portion of the length LT of the free magnetic layer 21. In many embodiments, the second overlap portion OL2 is in a range from 5 to 35%, or from 5 to 25%, or from 10 to 25% of the length LT of the free magnetic layer 21. The first overlap portion OL1 and the second overlap portion OL1 are mutually exclusive.
A portion of the free magnetic layer 21 length may not form either the first overlap portion OL1 or the second overlap portion OL2. In many embodiments, the free magnetic layer 21 length that does not form either the first overlap portion OL1 or the second overlap portion OL2 is in a range from 90% to 30%, or from 90% to 50%, or from 80% to 50%.
The resulting spin-transfer torque memory cell 20 forms a staggered structure where at least selected layers of the spin-transfer torque memory cell 20 are not aligned in an out-of-plane direction. In contrast, the MTJ (e.g., spin-transfer torque memory) cell 10 illustrated in
A write current passing between the first electrode 24 and the second electrode 25 provides spin current tunneling from the reference magnetic layer 23 to re-orient the magnetization orientation of the first overlap portion OL1 of the free magnetic layer 21. Since the first overlap portion OL1 is a fraction of the total free magnetic layer 21 length LT the required switching current magnitude is also a fraction of what is required if the spin-transfer torque memory cell 20 was not staggered or was aligned as illustrated in
Once the first overlap portion OL1 magnetization orientation has switched due to the spin torque transfer of the switching current, a thin domain wall 28 forms between the first overlap portion OL1 and the remaining portion of the free magnetic layer 21. Due to the lateral, in-plane current path along the length of the free magnetic layer 21, the domain wall 28 moves along the remaining length of the free magnetic layer 21 and switches the magnetization orientation of the remaining length of the free magnetic layer 21. This type of domain wall movement is an effect of spin transfer torque. Completion of this switching is illustrated in
A first tunneling barrier 32 separates a first reference magnetic (e.g., ferromagnetic) layer 33 from the first end portion 38 of the free magnetic layer 31 and forming a magnetic tunnel junction. The thickness of the first tunneling barrier 32 can be any useful thickness such as, for example, from 0.5 to 2 nm or from 0.7 to 1.5 nm. The first tunneling barrier 32 can be formed of any useful electrically insulating materials, as described above.
The thickness of the first reference magnetic layer 33 can be any useful thickness such as, for example, from 1 to 10 nm or from 1 to 5 nm. The first reference magnetic layer 33 is formed of any useful ferromagnetic (FM) alloy, as described above. The first reference magnetic layer 33 can have any useful cross-sectional shape along an in-plane direction such as, for example, a rectangular shape, a circular shape, or elliptical shape. The first reference magnetic layer 33 can be a single ferromagnetic layer, or may include multiple layers, for example, a pair of ferromagnetically coupled ferromagnetic layers, an antiferromagnetic (AFM) pinning layer and a ferromagnetic pinned layer, a synthetic antiferromagnetic (SAF), or an SAF with an antiferromagnetic layer.
A second tunneling barrier 37 separates a second reference magnetic (e.g., ferromagnetic) layer 36 from the second end portion 39 of the free magnetic layer 31 and forming a magnetic tunnel junction. The thickness of the second tunneling barrier 37 can be any useful thickness such as, for example, from 0.5 to 2 nm or from 0.7 to 1.5 nm. The second tunneling barrier 37 can be formed of any useful electrically insulating materials, as described above.
While the second tunneling barrier 37 is illustrated as being aligned or co-extensive with the second reference magnetic layer 36 and the first tunneling barrier 32 is illustrated as being aligned or co-extensive with the free magnetic layer 31, the tunneling barriers 32 and 37 can be independently aligned with either or both the free magnetic layer 31 or the reference magnetic layer 36 or 33.
The thickness of the second reference magnetic layer 36 can be any useful thickness such as, for example, from 1 to 10 nm or from 1 to 5 nm. The second reference magnetic layer 36 is formed of any useful ferromagnetic (FM) alloy, as described above. The second reference magnetic layer 36 can have any useful cross-sectional shape along an in-plane direction such as, for example, a rectangular shape, a circular shape, or elliptical shape. The second reference magnetic layer 36 can be a single ferromagnetic layer, or may include multiple layers, for example, a pair of ferromagnetically coupled ferromagnetic layers, an antiferromagnetic (AFM) pinning layer and a ferromagnetic pinned layer, a synthetic antiferromagnetic (SAF), or an SAF with an antiferromagnetic layer. The second reference magnetic layer 36 can have a magnetization orientation that opposes the magnetization orientation of the first reference magnetic layer 33, as illustrated.
The first reference magnetic layer 33 and the free magnetic layer 31 form a first overlap portion OL1 where the free magnetic layer 31 overlaps the first reference magnetic layer 33 in the out-of-plane direction. The first overlap portion OL1 extends along only a portion of the length LT of the free magnetic layer 31. In many embodiments, the first overlap portion OL1 is in a range from 1 to 35%, or from 5 to 25%, or from 10 to 25% of the length LT of the free magnetic layer 31.
The second reference magnetic layer 36 and the free magnetic layer 31 form a second overlap portion OL2 where the free magnetic layer 31 overlaps the second reference magnetic layer 36 in the out-of-plane direction. The second overlap portion OL2 extends along only a portion of the length LT of the free magnetic layer 31. In many embodiments, the second overlap portion OL2 is in a range from 1 to 35%, or from 5 to 25%, or from 10 to 25% of the length LT of the free magnetic layer 31. The first overlap portion OL1 and the second overlap portion OL1 are mutually exclusive.
A portion of the free magnetic layer 31 length may not form either the first overlap portion OL1 or the second overlap portion OL2. In many embodiments, the free magnetic layer 31 length that does not form either the first overlap portion OL1 or the second overlap portion OL2 is in a range from 90% to 30%, or from 90% to 50%, or from 80% to 50%.
A first electrode 34 is in electrical communication with the first reference magnetic layer 33. A second electrode 35 is in electrical communication with the second reference magnetic layer 33 such that current flows from the first electrode 34 to the second electrode 35 and passes through the free magnetic layer 31 in the lateral direction (i.e., in-plane direction) to switch the magnetic tunnel junction between a high resistance state and a low resistance state (depending on the current direction).
The resulting spin-transfer torque memory cell 30 forms a staggered structure where at least selected layers of the spin-transfer torque memory cell 30 are not aligned in an out-of-plane direction. In contrast, the MTJ (e.g., spin-transfer torque memory) cell 10 illustrated in
A write current passing between the first electrode 34 and the second electrode 35 provides spin current tunneling from the first reference magnetic layer 33 to re-orient the magnetization orientation of the first overlap portion OL1 of the free magnetic layer 31 and provides spin current tunneling from the second reference magnetic layer 36 to re-orient the magnetization orientation of the second overlap portion OL2 of the free magnetic layer 31. Since the first overlap portion OL1 and the second overlap portion OL1 is a fraction of the total free magnetic layer 31 length LT the required switching current magnitude is also a fraction of what is required if the spin-transfer torque memory cell 30 was not staggered or was aligned as illustrated in
Once the first overlap portion OL1 magnetization orientation has switched due to the spin torque transfer of the switching current, a first thin domain wall 41 forms between the first overlap portion OL1 and the remaining portion of the free magnetic layer 31. Likewise, once the second overlap portion OL2 magnetization orientation has switched due to the spin torque transfer of the switching current, a second thin domain wall 42 forms between the second overlap portion OL2 and the remaining portion of the free magnetic layer 31. Due to the lateral, in-plane current path along the length of the free magnetic layer 31, the domain walls 41 and 42 moves along the remaining length of the free magnetic layer 31 and towards each other to switch the magnetization orientation of the remaining length of the free magnetic layer 31. This type of domain wall movement is an effect of spin transfer torque. Completion of this switching is illustrated in
One illustrative advantage of utilizing the dual reference magnetic layers as illustrated in
The layers of the STRAM cell described above can be deposited utilizing known semiconductor fabrication techniques. The areas around the described layers of the STRAM cell can include electrically insulating materials such as oxides and can also be deposited utilizing known semiconductor fabrication techniques. Electrical connection to memory array circuitry is not illustrated, but it is understood that the described staggered STRAM cells can be incorporated into a memory array utilizing known memory array fabrication techniques.
Thus, embodiments of the STAGGERED MAGNETIC TUNNEL JUNCTION are disclosed. The implementations described above and other implementations are within the scope of the following claims. One skilled in the art will appreciate that the present disclosure can be practiced with embodiments other than those disclosed. The disclosed embodiments are presented for purposes of illustration and not limitation, and the present invention is limited only by the claims that follow.
This application is a continuation application and claims priority to U.S. patent application Ser. No. 12/361,866, filed on Jan. 29, 2009. The entire disclosure of application Ser. No. 12/361,866 is incorporated herein by reference.
Number | Name | Date | Kind |
---|---|---|---|
4733371 | Terada | Mar 1988 | A |
5191223 | Munekata | Mar 1993 | A |
5646419 | McCaldin | Jul 1997 | A |
5673225 | Jeong | Sep 1997 | A |
5761115 | Kozocki | Jun 1998 | A |
5920446 | Gill | Jul 1999 | A |
5982670 | Yamashita | Nov 1999 | A |
6072718 | Abraham | Jun 2000 | A |
6178136 | Lin | Jan 2001 | B1 |
6226197 | Nishimura | May 2001 | B1 |
6252796 | Lenssen | Jun 2001 | B1 |
6381106 | Pinarbasi | Apr 2002 | B1 |
6469926 | Chen | Oct 2002 | B1 |
6532164 | Redon | Mar 2003 | B2 |
6542000 | Black | Apr 2003 | B1 |
6569745 | Hsu | May 2003 | B2 |
6584016 | Park | Jun 2003 | B2 |
6602677 | Wood | Aug 2003 | B1 |
6633498 | Engel | Oct 2003 | B1 |
6639830 | Heide | Oct 2003 | B1 |
6700753 | Singleton | Mar 2004 | B2 |
6703645 | Ohno | Mar 2004 | B2 |
6711051 | Poplevine | Mar 2004 | B1 |
6711067 | Kablanian | Mar 2004 | B1 |
6714444 | Huai | Mar 2004 | B2 |
6741492 | Nii | May 2004 | B2 |
6744086 | Daughton | Jun 2004 | B2 |
6759263 | Ying et al. | Jul 2004 | B2 |
6765819 | Bhatacharyya | Jul 2004 | B1 |
6774391 | Cowburn | Aug 2004 | B1 |
6781867 | Kurth | Aug 2004 | B2 |
6781871 | Park | Aug 2004 | B2 |
6801415 | Slaughter | Oct 2004 | B2 |
6818961 | Rizzo | Nov 2004 | B1 |
6829161 | Huai | Dec 2004 | B2 |
6831312 | Slaughter | Dec 2004 | B2 |
6834005 | Parkin | Dec 2004 | B1 |
6835423 | Chen | Dec 2004 | B2 |
6838740 | Huai | Jan 2005 | B2 |
6842368 | Hayakawa | Jan 2005 | B2 |
6845038 | Shukh | Jan 2005 | B1 |
6847547 | Albert | Jan 2005 | B2 |
6850433 | Sharma | Feb 2005 | B2 |
6864551 | Tsang | Mar 2005 | B2 |
6888709 | Princinsky et al. | May 2005 | B2 |
6888742 | Nguyen | May 2005 | B1 |
6909633 | Tsang | Jun 2005 | B2 |
6914807 | Nakamura | Jul 2005 | B2 |
6920063 | Huai | Jul 2005 | B2 |
6930910 | Oh | Aug 2005 | B2 |
6933155 | Albert | Aug 2005 | B2 |
6943040 | Min | Sep 2005 | B2 |
6958927 | Nguyen | Oct 2005 | B1 |
6963500 | Tsang | Nov 2005 | B2 |
6965522 | Lung | Nov 2005 | B2 |
6967863 | Huai | Nov 2005 | B2 |
6979586 | Guo | Dec 2005 | B2 |
6985378 | Kozicki | Jan 2006 | B2 |
6985385 | Nguyen | Jan 2006 | B2 |
6992359 | Nguyen | Jan 2006 | B2 |
6998150 | Li | Feb 2006 | B2 |
7009877 | Huai | Mar 2006 | B1 |
7020024 | Sim | Mar 2006 | B2 |
7057921 | Valet | Jun 2006 | B2 |
7067330 | Min | Jun 2006 | B2 |
7067866 | Shi | Jun 2006 | B2 |
7088609 | Valet | Aug 2006 | B2 |
7088624 | Daniel | Aug 2006 | B2 |
7092279 | Sheppard | Aug 2006 | B1 |
7093347 | Nowak | Aug 2006 | B2 |
7098494 | Pakala | Aug 2006 | B2 |
7098495 | Sun | Aug 2006 | B2 |
7099186 | Braun | Aug 2006 | B1 |
7105372 | Min | Sep 2006 | B2 |
7110284 | Hayakawa | Sep 2006 | B2 |
7110287 | Huai | Sep 2006 | B2 |
7126202 | Huai | Oct 2006 | B2 |
7138648 | Kneissel | Nov 2006 | B2 |
7161829 | Huai | Jan 2007 | B2 |
7187577 | Wang | Mar 2007 | B1 |
7189435 | Tuominen | Mar 2007 | B2 |
7190611 | Nguyen | Mar 2007 | B2 |
7196882 | Deak | Mar 2007 | B2 |
7224601 | Pancula | May 2007 | B2 |
7230265 | Kaiser | Jun 2007 | B2 |
7230845 | Wang | Jun 2007 | B1 |
7233039 | Huai | Jun 2007 | B2 |
7241631 | Huai | Jul 2007 | B2 |
7241632 | Yang | Jul 2007 | B2 |
7242045 | Nguyen et al. | Jul 2007 | B2 |
7242048 | Huai | Jul 2007 | B2 |
7245462 | Huai | Jul 2007 | B2 |
7272034 | Chen | Sep 2007 | B1 |
7272035 | Chen | Sep 2007 | B1 |
7274057 | Worledge | Sep 2007 | B2 |
7282755 | Pakala | Oct 2007 | B2 |
7285836 | Ju | Oct 2007 | B2 |
7286395 | Chen | Oct 2007 | B2 |
7289356 | Diao | Oct 2007 | B2 |
7345912 | Luo | Mar 2008 | B2 |
7369427 | Diao | May 2008 | B2 |
7379327 | Chen | May 2008 | B2 |
7385842 | Deak | Jun 2008 | B2 |
7403418 | Lin | Jul 2008 | B2 |
7408806 | Park | Aug 2008 | B2 |
7411815 | Gogl | Aug 2008 | B2 |
7423898 | Tanizaki | Sep 2008 | B2 |
7430135 | Hua | Sep 2008 | B2 |
7477491 | Li | Jan 2009 | B2 |
7480173 | Guo | Jan 2009 | B2 |
7485503 | Brask | Feb 2009 | B2 |
7486551 | Li | Feb 2009 | B1 |
7486552 | Apalkov | Feb 2009 | B2 |
7489541 | Pakala | Feb 2009 | B2 |
7495867 | Sbiaa | Feb 2009 | B2 |
7502249 | Ding | Mar 2009 | B1 |
7515457 | Chen | Apr 2009 | B2 |
7518835 | Huai | Apr 2009 | B2 |
7539047 | Katti | May 2009 | B2 |
7572645 | Sun | Aug 2009 | B2 |
7576956 | Huai | Aug 2009 | B2 |
7728622 | Chua-Eoan et al. | Jun 2010 | B2 |
7764537 | Jung et al. | Jul 2010 | B2 |
7782661 | Yang | Aug 2010 | B2 |
7826259 | Lou | Nov 2010 | B2 |
7852663 | Xi | Dec 2010 | B2 |
7881095 | Lu | Feb 2011 | B2 |
20030011945 | Yuasa | Jan 2003 | A1 |
20030137864 | Holden | Jul 2003 | A1 |
20040008537 | Sharma | Jan 2004 | A1 |
20040084702 | Jeong | May 2004 | A1 |
20040090809 | Tran | May 2004 | A1 |
20040170055 | Albert | Sep 2004 | A1 |
20040179311 | Li | Sep 2004 | A1 |
20040197579 | Chen | Oct 2004 | A1 |
20050048674 | Shi | Mar 2005 | A1 |
20050068684 | Gill | Mar 2005 | A1 |
20050117391 | Yoda | Jun 2005 | A1 |
20050139883 | Sharma | Jun 2005 | A1 |
20050150535 | Samavedam | Jul 2005 | A1 |
20050150537 | Ghoshal | Jul 2005 | A1 |
20050184839 | Nguyen | Aug 2005 | A1 |
20050185459 | Fukuzumi | Aug 2005 | A1 |
20050237787 | Huai | Oct 2005 | A1 |
20050254286 | Valet | Nov 2005 | A1 |
20050269612 | Torok | Dec 2005 | A1 |
20050275003 | Shinmura | Dec 2005 | A1 |
20050282379 | Saito | Dec 2005 | A1 |
20060049472 | Diao | Mar 2006 | A1 |
20060060832 | Symanczyk | Mar 2006 | A1 |
20060061919 | Li | Mar 2006 | A1 |
20060083047 | Fujita | Apr 2006 | A1 |
20060141640 | Huai | Jun 2006 | A1 |
20060171199 | Ju | Aug 2006 | A1 |
20060233017 | Hosotami | Oct 2006 | A1 |
20060245117 | Nowak | Nov 2006 | A1 |
20070002504 | Huai et al. | Jan 2007 | A1 |
20070007609 | Saito | Jan 2007 | A1 |
20070008661 | Min | Jan 2007 | A1 |
20070025164 | Kim | Feb 2007 | A1 |
20070029630 | Seyyedy | Feb 2007 | A1 |
20070035890 | Sbiaa | Feb 2007 | A1 |
20070047294 | Panchula | Mar 2007 | A1 |
20070054450 | Hong | Mar 2007 | A1 |
20070063237 | Huai | Mar 2007 | A1 |
20070064352 | Gill | Mar 2007 | A1 |
20070069314 | Wilson | Mar 2007 | A1 |
20070085068 | Apakov | Apr 2007 | A1 |
20070096229 | Yoshikawa | May 2007 | A1 |
20070097730 | Chen | May 2007 | A1 |
20070120210 | Yuan | May 2007 | A1 |
20070132049 | Stipe | Jun 2007 | A1 |
20070164380 | Min | Jul 2007 | A1 |
20070171694 | Huai | Jul 2007 | A1 |
20070230233 | Takahashi | Oct 2007 | A1 |
20070241392 | Lin | Oct 2007 | A1 |
20070246787 | Wang | Oct 2007 | A1 |
20070279968 | Luo | Dec 2007 | A1 |
20070297220 | Yoshikawa | Dec 2007 | A1 |
20070297223 | Chen | Dec 2007 | A1 |
20080026253 | Yuasa | Jan 2008 | A1 |
20080061388 | Diao | Mar 2008 | A1 |
20080130354 | Ho | Jun 2008 | A1 |
20080179699 | Horng | Jul 2008 | A1 |
20080180991 | Wang | Jul 2008 | A1 |
20080191251 | Ranjan | Aug 2008 | A1 |
20080205121 | Chen | Aug 2008 | A1 |
20080258247 | Mancoff | Oct 2008 | A1 |
20080265347 | Iwayama | Oct 2008 | A1 |
20080273380 | Diao | Nov 2008 | A1 |
20080277703 | Iwayama | Nov 2008 | A1 |
20080291721 | Apalkov | Nov 2008 | A1 |
20080310213 | Chen | Dec 2008 | A1 |
20080310219 | Chen | Dec 2008 | A1 |
20090027810 | Horng | Jan 2009 | A1 |
20090040855 | Luo | Feb 2009 | A1 |
20090050991 | Nagai | Feb 2009 | A1 |
20090073756 | Yang | Mar 2009 | A1 |
20090185410 | Huai | Jul 2009 | A1 |
20090218645 | Ranjan | Sep 2009 | A1 |
20090257154 | Carey | Oct 2009 | A1 |
20090296454 | Honda | Dec 2009 | A1 |
20090302403 | Nguyen | Dec 2009 | A1 |
20090323397 | Kinoshita | Dec 2009 | A1 |
20100034009 | Lu | Feb 2010 | A1 |
20100118600 | Nagasi | May 2010 | A1 |
20100176471 | Zhu | Jul 2010 | A1 |
20100177558 | Sakimura | Jul 2010 | A1 |
Number | Date | Country |
---|---|---|
2 422 735 | Aug 2006 | GB |
WO 2008100868 | Aug 2008 | WO |
Number | Date | Country | |
---|---|---|---|
20110026320 A1 | Feb 2011 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 12361866 | Jan 2009 | US |
Child | 12898831 | US |