This invention relates to a static eliminator for parts feeder for removing static or static charge generated in the parts feeder.
In the conventional invention described in the Japanese Patent Publication 2010-168215, the bowl of the parts feeder is provided with fine air suction openings or introduction openings at its bottom portion and the air is sucked or introduced through suction openings from below to remove the static from the works. In another conventional invention, a vacuum suction nozzle is positioned near or in contact with the bottom portion of the parts feeder, and air ions above the bowl is sucked through the vacuum suction nozzle among the piled up works to remove the static from the works so as to make a smooth movement of works.
[Patent reference 1] Japanese Patent Publication 2010-168215
Since, in the conventional inventions, the bowl of the parts feeder is provided with fine air suction openings at its bottom portion and the air is sucked through suction openings from below, or a vacuum suction nozzle is positioned near or in contact with the bottom portion of the parts feeder, and air ions above the bowl is sucked through the vacuum suction nozzle within the works, if the vacuum suction is intensified to enhance the efficiency of static elimination, not only ions but also the works are sucked, and as a result, the movement of the works is prevented. Furthermore, the parts feeder would vibrate and repeat the contacts with the works, as a result the chaff or crud would be generated to contaminate the works.
Therefore, it is an object of the invention is to provide a static eliminator for parts feeder which can enhance the efficiency of static removal without hindering the movement of works.
To accomplish the object, there is provided a static eliminator for parts feeder which comprises a hollow cylindrical or truncated conical cup into which air is injected from the upper portion thereof to generate an air stream of negative pressure circling within the cup so as to lift the works up in the cup, and an ionized air introduced into said cup to remove the static from the works thus lifted. The dust is removed by blow of the air stream circling in the air toward the works
According to the invention, by disposing the static eliminator above the parts feeder, the static can be removed from the rear side of works and thus the movement of works can be made smoothly, at the same time, the dust can be removed from the works.
Other objects, features, and advantages of the present invention will be explained in the following detailed description of the invention having references to the appended drawings:
The static eliminator for parts feeder according to the present invention comprises a hollow cylindrical or truncated conical cup into which air is injected from the upper portion thereof to generate an air stream of negative pressure circling within the cup so as to lift the works up in the air, and an ionized air sucked or introduced into the cup to remove the static from the works thus lifted. The static eliminator is disposed above the upper portion of the parts feeder in a space more than the height of the work, and it is preferable that the static eliminator is positioned just in front of the place in which the works stop moving due to the static charge.
Now, the embodiments will be explained with reference to
In the first embodiment, the works are piled up high on the bowl of the parts feeder. Although the bowl is caused to vibrate so as to move the works, the works and bowl are electrostatically charged and as a result the works come to stop by electrostatic attraction.
In the present invention, the static eliminator is positioned above the bowl just in front of the place in which the works 12 stop moving due to the static. The works are sucked upwardly and lifted high and are caused to dance widely in the static eliminator by the cyclone and tornado generated by the static eliminator 10. At the same time, the air ion is introduced in the cyclone and tornado. The introduced air ion eliminates the static of works. As a result, the static of the works is neutralized to eliminate the electrostatic attraction between the bowl and the works. Thus, the works can be moved.
Now, cyclone, tornado, and other air streams generated within the static eliminator 10 will be explained with reference to
The static eliminator as a whole will be explained with reference to
1) The bowl 50 is disposed at lowermost place, and the works 50 is moved on the surface of the bowl by vibration of bowl.
2) The static eliminator 10 is disposed above the bowl higher than the height of the works.
3) The cup 20 is provided at its upper portion with an ion chamber for generating ions 26. Discharge needles 24 are disposed within the ion chamber 28. The discharge needles are applied with high voltage to discharge corona so as to make air ions, that is, ionized air.
4) A filer 30 is disposed above the ion chamber 28 and prevents the dust from coming in when air is sucked from outside.
5) The air ions thus made in the ion chamber 28 is sucked into the cup 20 by the negative pressure within the cup.
6) An earth electrode 32 is provided at the exit of the ion chamber so that the electric field emitted from the discharge needles will not enter the cup and will not electrostatically destroy the works.
7) The buffer material 34 is provided at the inner wall of the cup 20 so that the works which dance widely will not come into collision with the inner wall.
The movement of works will be explained with reference to
1) The work which comes just in front of the cup 20 catches air stream from the cup in a horizontal direction. The horizontal air stream including ions comes in between the work and the bowl to weaken the static charge that the work has at its under portion. As a result, the tornado will cause the work to easily lift up.
2) The work which moves in the cup 20 is sucked up and lifted up by tornado and the negative pressure.
3) Since the tornado is an ionized air stream, the static is completely removed from the entire surface of the work.
4) The work moves upward while rotating and revolving together with the tornado.
5) As the upward moving work revolves faster, the work is caused to move toward the inner wall by centrifugal force.
6) Since the intensive cyclone flows along the inner wall, the work moves downward together with the cyclone.
7) The work which has reached the bottom portion of the cup is discharged outside of the cup in a horizontal and tangential direction.
8) If the cup is provided with a notch at its side wall, the work is discharged through the notch in a certain direction.
The second embodiment will be explained with reference to
1) The work which moves on the bowl arrives at a place that the work is below the static eliminator.
2) At first, the static is eliminated by injecting the ionized ions into the space between the work and bowl by the cyclone.
3) The work which has moved within the cup is lifted up by the tornado and the negative pressure.
4) The work moves upward while rotating and revolving.
5) As the work revolves faster, the work is caused to move toward the inner wall.
6) The work which has arrived at the inner wall moves downward while circling along the inner wall.
7) If the cup is provided with a notch at its side wall, the work is discharged through the notch 20c. If not, the work reaches the bottom portion of the cup.
8) If the notch is formed or provided in a desired direction, such as in the direction as the work move, the work can be discharged out in its moving direction.
The third embodiment will be explained with reference to
It is understood that many modifications and variations may be devised given the above description of the principles of the invention. It is intended that all such modifications and variations be considered as within the spirit and scope of this invention, as it is defined in the following claims.
Number | Date | Country | Kind |
---|---|---|---|
2013-130105 | Jun 2013 | JP | national |
2012-208499 | Sep 2013 | JP | national |