Stent and stent delivery assembly and method of use

Information

  • Patent Grant
  • 6599315
  • Patent Number
    6,599,315
  • Date Filed
    Tuesday, November 20, 2001
    23 years ago
  • Date Issued
    Tuesday, July 29, 2003
    21 years ago
Abstract
A stent delivery catheter assembly for delivering and implanting a stent at or near an area of septal perforators includes a torquing member which, in cooperation with a tracking guide wire and a positioning guide wire, facilitates torquing and rotation of the catheter and hence the position of the stent mounted thereon to accurately position and implant the stent at or near the area of septal perforators. The stent of the present invention has an elongated side aperture which is designed to be implanted next to the area of septal perforators to prevent covering of the orifices of the septal perforators.
Description




BACKGROUND OF THE INVENTION




The invention relates to stent deployment assemblies for use at a bifurcation and, more particularly, a catheter assembly for implanting one or more stents for treating septal perforation, and a method and apparatus for delivery and implantation.




Stents conventionally repair blood vessels that are diseased and are generally hollow and cylindrical in shape and have terminal ends that are generally perpendicular to their longitudinal axes. In use, the conventional stent is positioned at the diseased area of a vessel and, after placement, the stent provides an unobstructed pathway for blood flow.




Repair of vessels that are diseased at a bifurcation is particularly challenging since the stent must overlay the entire diseased area at the bifurcation, yet not itself compromise blood flow. Therefore, the stent must, without compromising blood flow, overlay the entire circumference of the ostium to a diseased portion and extend to a point within and beyond the diseased portion. Where the stent does not overlay the entire circumference of the ostium to the diseased portion, the stent fails to completely repair the bifurcated vessel. Where the stent overlays the entire circumference of the ostium to the diseased portion, yet extends into the junction comprising the bifurcation, the diseased area is repaired, but blood flow may be compromised in other portions of the bifurcation. Unopposed stent elements may promote lumen compromise during neointimalization and healing, producing restenosis and requiring further procedures. Moreover, by extending into the junction comprising the bifurcation, the stent may block access to portions of the bifurcated vessel that require performance of further interventional procedures. Similar problems are encountered when vessels are diseased at their angled origin from the aorta as in the ostium of a right coronary or a vein graft. In this circumstance, a stent overlying the entire circumference of the ostium extends back into the aorta, creating problems, including those for repeat catheter access to the vessel involved in further interventional procedures.




Conventional stents are designed to repair areas of blood vessels that are removed from bifurcations and, since a conventional stent generally terminates at right angles to its longitudinal axis, the use of conventional stents in the region of a vessel bifurcation may result in blocking blood flow of a side branch or fail to repair the bifurcation to the fullest extent necessary. The conventional stent might be placed so that a portion of the stent extends into the pathway of blood flow to a side branch of the bifurcation or extend so far as to completely cover the path of blood flow in a side branch. The conventional stent might alternatively be placed proximal to, but not entirely overlaying, the circumference of the ostium to the diseased portion. Such a position of the conventional stent results in a bifurcation that is not completely repaired. The only conceivable situation that the conventional stent, having right-angled terminal ends, could be placed where the entire circumference of the ostium is repaired without compromising blood flow, is where the bifurcation is formed of right angles. In such scenarios, extremely precise positioning of the conventional stent is required. This extremely precise positioning of the conventional stent may result with the right-angled terminal ends of the conventional stent overlying the entire circumference of the ostium to the diseased portion without extending into a side branch, thereby completely repairing the right-angled bifurcation.




To circumvent or overcome the problems and limitations associated with conventional stents in the context of repairing diseased bifurcated vessels, a stent that consistently overlays the entire circumference of the ostium to a diseased portion, yet does not extend into the junction comprising the bifurcation, may be employed. Such a stent would have the advantage of completely repairing the vessel at the bifurcation without obstructing blood flow in other portions of the bifurcation. In addition, such a stent would allow access to all portions of the bifurcated vessel should further interventional treatment be necessary. In a situation involving disease in the origin of an angulated aorto-ostial vessel, such a stent would have the advantage of completely repairing the vessel origin without protruding into the aorta or complicating repeat access.




In addition to the problems encountered by using the prior art stents to treat bifurcations, the delivery platform for implanting such stents has presented numerous problems. For example, a conventional stent is implanted in the main vessel so that a portion of the stent is across the side branch, so that stenting of the side branch must occur through the main-vessel stent struts. In this method, commonly referred to in the art as the “monoclonal antibody” approach, the main-vessel stent struts must be spread apart to form an opening to the side-branch vessel and then a catheter with a stent is delivered through the opening. The cell to be spread apart must be randomly and blindly selected by recrossing the deployed stent with a wire. The drawback with this approach is there is no way to determine or guarantee that the main-vessel stent struts are properly oriented with respect to the side branch or that the appropriate cell has been selected by the wire for dilatation. The aperture created often does not provide a clear opening and creates a major distortion in the surrounding stent struts. The drawback with this approach is that there is no way to tell if the main-vessel stent struts have been properly oriented and spread apart to provide a clear opening for stenting the side-branch vessel.




In another prior art method for treating bifurcated vessels, commonly referred to as the “Culotte technique,” the side-branch vessel is first stented so that the stent protrudes into the main vessel. A dilatation is then performed in the main vessel to open and stretch the stent struts extending across the lumen from the side-branch vessel. Thereafter, the main-vessel stent is implanted so that its proximal end overlaps with the side-branch vessel. One of the drawbacks of this approach is that the orientation of the stent elements protruding from the side-branch vessel into the main vessel is completely random. Furthermore, the deployed stent must be recrossed with a wire blindly and arbitrarily selecting a particular stent cell. When dilating the main vessel stretching the stent struts is therefore random, leaving the possibility of restricted access, incomplete lumen dilatation, and major stent distortion.




In another prior art device and method of implanting stents, a “T” stern procedure includes implanting a stent in the side-branch ostium of the bifurcation followed by stenting the main vessel across the side-branch ostium. In another prior art procedure, known as “kissing” stents, a stent is implanted in the main vessel with a side-branch stent partially extending into the main vessel creating a double-barreled lumen of the two stents in the main vessel distal to the bifurcation. Another prior art approach includes a so-called “trouser legs and seat” approach, which includes implanting three stents, one stent in the side-branch vessel, a second stent in a distal portion of the main vessel, and a third stent, or a proximal stent, in the main vessel just proximal to the bifurcation.




All of the foregoing stent deployment assemblies suffer from the same problems and limitations. Typically, there is uncovered intimal surface segments on the main vessel and side-branch vessels between the stented segments. An uncovered flap or fold in the intima or plaque will invite a “snowplow” effect, representing a substantial risk for subacute thrombosis, and the increased risk of the development of restenosis. Further, where portions of the stent are left unopposed within the lumen, the risk for subacute thrombosis or the development of restenosis again is increased. The prior art stents and delivery assemblies for treating bifurcations are difficult to use, making successful placement nearly impossible. Further, even where placement has been successful, the side-branch vessel can be “jailed” or covered so that there is impaired access to the stented area for subsequent intervention.




In addition to problems encountered in treating disease involving bifurcations for vessel origins, difficulty is also encountered in treating disease confined to a vessel segment but extending very close to a distal branch point or bifurcation which is not diseased and does not require treatment. In such circumstances, very precise placement of a stent covering the distal segment, but not extending into the ostium of the distal side-branch, may be difficult or impossible.




Problems analogous to the problems described above occur when attempting to treat an area in a vessel surrounding septal perforators. Septal perforators are branch vessels “perforating” into the interventricular septum as branch vessels of either the left anterior descending or posterior descending coronary arteries. Septal perforators are usually multiple and exit in linear fashion from the septal surface of these main vessels as multiple bifurcations. Using a conventional stent in these epicardial vessels often results in plaque shifting and “snowplow” obstruction of multiple septal perforators within the stented segment. This compromises blood flow through the septal perforators. The present invention solves these problems related to treating an area surrounding septal perforators as will be shown.




As used herein, the terms “proximal,” “proximally,” and “proximal direction” when used with respect to the invention are intended to mean moving away from or out of the patient, and the terms “distal,” “distally,” and “distal direction” when used with respect to the invention are intended to mean moving toward or into the patient. These definitions will apply with reference to apparatus, such as catheters, guide wires, stents, the like.




SUMMARY OF THE INVENTION




The invention provides for an improved stent design and stent delivery assembly for repairing an area in an artery having septal perforations, without compromising blood flow in other portions of the vessels, thereby allowing access to all portions of the vessels should further interventional treatment be necessary. The stent delivery assembly of the invention has the novel feature of containing, in addition to a tracking guide wire, a positioning guide wire and torquing member that affect rotation and precise positioning of the assembly for deployment of the stent.




In one aspect of the invention, there is provided a longitudinally flexible stent for implanting in a body lumen and expandable from a contracted condition to an expanded condition. The stent includes a cylindrical member having an elongated side aperture. The stent can be used to treat areas proximate to septal perforators without occluding the septal perforators.




In another aspect of the invention, there is provided a stent delivery catheter assembly that includes an elongated catheter. The catheter has an inflation lumen, a tracking guide wire lumen, and a positioning guide wire lumen. An expandable member is positioned at a distal end of the catheter and is in fluid communication with the inflation lumen. A stent is mounted on the expandable member, the stent being longitudinally flexible and for implanting in a body lumen and expandable from a contracted condition to an expanded condition. The stent includes an elongated side aperture such that the stent can be used to treat areas proximate septal perforators without occluding the septal perforators. A torquing member is attached to the tracking guide wire lumen and positioning guide wire lumen so that as the catheter is positioned in a body lumen, the torquing member assists in properly orienting the stent in the lumen.




In another aspect, there is provided a method of stenting a vessel having septal perforation. The method includes the steps of providing a tracking guide wire and tracking guide wire lumen; providing a positioning guide wire and positioning guide wire lumen; providing a torquing member; torquing the positioning guide wire relative to the tracking guide wire with the assistance of the torquing member; and rotating a stent into a desired position within the vessel.




Other features and advantages of the present invention will become apparent from the following detailed description, taken in conjunction with the accompanying drawings, which illustrate, by way of example, the principles of the invention.











BRIEF DESCRIPTION OF THE DRAWINGS





FIG. 1

is an elevational view of a bifurcation in which a prior art “T” stent is in a side-branch ostium followed by the stenting of the main vessel across the branch ostium.





FIG. 2

is an elevational view of a bifurcation in which “touching” prior art stents are depicted in which one stent is implanted in the side branch, a second stent implanted in a proximal portion of the main vessel next to the branch stent, with interrupted placement of a third stent implanted more distally in the main vessel.





FIG. 3

is an elevational view of a bifurcation depicting “kissing” stents where a portion of one stent is implanted in both the side-branch and the main vessel and adjacent to a second stent implanted in the main vessel creating a double-barreled lumen in the main vessel proximal to the bifurcation.





FIG. 4

is an elevational view of a prior art “trouser legs and seat” stenting approach depicting one stent implanted in the side-branch vessel, a second stent implanted in a proximal portion of the main vessel, and a close deployment of a third stent distal to the bifurcation leaving a small gap between the three stents of an uncovered lumenal area.





FIG. 5A

is an elevational view of a bifurcation in which a prior art stent is implanted in the side-branch vessel.





FIG. 5B

is an elevational view of a bifurcation in which a prior art stent is implanted in the side-branch vessel, with the proximal end of the stent extending into the main vessel.





FIG. 6

is an elevational view of an area of a vessel having septal perforators, in which a prior art stent is implanted in the vessel with the stent occluding some of the septal perforators.





FIG. 7A

is a perspective view of a stent of the present invention depicting the elongated side aperture.





FIG. 7B

is a plan view of the stent of FIG.


7


A.





FIG. 8

is an elevational view of the stent of

FIG. 7

depicting the elongated side aperture.





FIG. 9

is an elevational view of the catheter distal section depicting the two guide wire delivery system.





FIG. 10

is a longitudinal cross-sectional view of the catheter distal section of

FIG. 9

depicting aspects of the invention.





FIG. 11

is a transverse cross-sectional view of the catheter depicting the guide wire lumens and the inflation lumen.





FIG. 12

is a transverse cross-sectional view of the catheter distal section depicting the torquing member and expandable member.





FIG. 13

is a partial elevational view depicting the torquing member in phantom lines.





FIG. 14

is a partial elevational view depicting the exit port for the positioning guide wire.





FIG. 15

is a partial elevational view depicting a slit associated with the exit port shown in FIG.


14


.





FIG. 16

is a longitudinal cross-sectional view of the catheter distal section and torquing member.





FIG. 17

is a longitudinal cross-sectional view of the catheter distal section and the torquing member.





FIG. 18

is an elevational view of the catheter of

FIG. 9

at a target site before implantation of a stent.











DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS




As shown in the exemplary drawings wherein like reference numerals indicate like or corresponding elements among the figures, the present invention includes an assembly and method for treating septal perforators.




Prior art attempts at implanting intravascular stents in a bifurcation have proved less than satisfactory. For example,

FIGS. 1-4

depict prior art devices which include multiple stents being implanted in both the main vessel and a side-branch vessel. In

FIG. 1

, a prior art “T” stent is implanted such that a first stent is implanted in the side branch near the ostium of the bifurcation, and a second stent is implanted in the main vessel, across the side-branch ostium. With this approach, portions of the side-branch vessel are left uncovered, and blood flow to the side-branch vessel must necessarily pass through the main-vessel stent, causing possible obstructions or thrombosis.




Referring to

FIG. 2

, three prior art stents are required to stent the bifurcation. In

FIG. 3

, the prior art method includes implanting two stents side by side, such that one stent extends into the side-branch vessel and the main vessel, and the second stent is implanted in the main vessel. This results in a double-barreled lumen which can present problems such as thrombosis, and turbulence in blood flow. Referring to the

FIG. 4

prior art device, a first stent is implanted in the side-branch vessel, a second stent is implanted in a proximal portion of the main vessel, and a third stent is implanted distal to the bifurcation, thereby leaving a small gap between the stents and an uncovered lumenal area.




Referring to

FIGS. 5A and 5B

, a prior art stent is configured for deployment in side-branch vessel


5


. In treating side-branch vessel


5


, if a prior art stent is used, a condition as depicted will occur. That is, a stent deployed in side-branch vessel


5


will leave a portion of the side-branch vessel exposed, or as depicted in


5


B, a portion of the stent will extend into main vessel


6


.




Turning to

FIG. 6

, as mentioned above, similar problems occur when using conventional methods to treat an area in vessel


6


proximate to septal perforators


7


. A segment of left anterior descending (or posterior descending) often contains ostia of a sequence of several septal perforators arranged in a linear configuration. Deployment of a conventional stent in this commonly diseased location frequently results in snowplow compromise of the origins, or orifices


8


, of these septal perforators. Additionally, a conventional stent can jail orifices


8


leading from main vessel branch


6


to the septal perforators. Furthermore, disease can be snowplowed into the orifices and healthy portions of the vessels. Thus, snowplow obstructions


4


are created in orifices


8


, compromising blood flow. While a side aperture stent could be selected to prevent snowplowing in a single septal, it may be more optimal to utilize another stent of a specific design. The present invention solves the problems associated with treating septal perforation.




In keeping with the invention, as depicted in

FIGS. 7A-8

, “septal saving” stent


20


is configured for deployment in main vessel


6


. Main vessel stent


20


includes cylindrical member


21


having distal end


22


and proximal end


23


. Main vessel stent


20


includes outer wall surface


24


which extends between distal end


22


and proximal end


23


and incorporates elongated side aperture


25


on outer wall surface


24


. Aperture


25


is configured so that, upon expansion, it is wide enough to cover orifices


8


and long enough to accommodate a desired number of septal perforators. In one embodiment, the elongated side aperture can encompass about 60 degrees of the 360 degrees radius, in which only very limited stent elements, if any, are present to permit radial continuity. However, it is contemplated that greater or lesser ranges of radius can be encompassed. When main vessel stent


20


is implanted and expanded into contact with main vessel


6


, aperture


25


is aligned with orifices


8


, thereby providing an unrestricted blood flow path from the main vessel through the septal perforators.




Stent


20


can be formed from any of a number of materials including, but not limited to, stainless steel alloys, nickel-titanium alloys (the NiTi can be either shape memory or pseudoelastic), tantalum, tungsten, or any number of polymer materials. Such materials of manufacture are known in the art. Further, the stent can have virtually any pattern known to prior art stents. In one configuration, the stent is formed from a stainless steel material and has a plurality of cylindrical elements connected by connecting members, wherein the cylindrical elements have an undulating or serpentine pattern. Such a stent is disclosed in U.S. Pat. No. 5,514,154 and is manufactured and sold by Advanced Cardiovascular Systems, Inc., Santa Clara, Calif. The stent is sold under the trade name MultiLink® Stent. Such stents can be modified to include the novel features of stent


20


.




Stent


20


preferably is a balloon-expandable stent that is mounted on a balloon portion of a catheter and crimped tightly onto the balloon to provide a low profile delivery diameter. After the catheter is positioned so that the stent and the balloon portion of the catheter are positioned in the main vessel, the balloon is expanded, thereby expanding the stent into contact with the vessel. Thereafter, the balloon is deflated and the balloon and catheter are withdrawn from the vessel, leaving the stent implanted. The stent


20


could be made to be either balloon expandable or self-expanding.




In keeping with the invention, as shown in

FIGS. 9-17

, a two guide wire delivery catheter assembly


120


is configured to provide maximum torque so that the catheter can be properly positioned in a bifurcated vessel to deliver and implant stent


20


. Referring now to

FIGS. 9 and 10

, elongated catheter


121


is adapted to deliver and implant a stent and it includes proximal end


121




a


and distal end


121




b


. The catheter further is defined by distal section


123


which has an inflation lumen


124


, a tracking guide wire lumen


125


and a positioning guide wire lumen


126


extending therethrough. An expandable member


128


is positioned at distal section


123


and is in fluid communication with inflation lumen


124


. It is contemplated that the tracking guide wire lumen and positioning guide wire lumen could extend along an outer surface of the expandable member. The expandable member preferably extends from proximal end


128




a


to distal end


128




b


, however it is preferred that the inflation lumen not run all the way through the expandable member so that the expandable member is lumenless. A lumenless expandable member provides for a smaller profile.




The lumenless expandable member


128


is positioned at a distal end of the catheter


121


and is in fluid communication with the inflation lumen


124


. The expandable member distal end


128




b


is attached to the outer surface of catheter tracking wire lumen distal end


125




b


. The expandable member is generally a balloon similar to that used in angioplasty procedures. The expandable member is typically non-distensible, having a first compressed diameter for delivery through a vascular system and a second expanded diameter for implanting a stent.




The present invention provides for a torquing member to assist in torquing the catheter to optimally position the guide wires and properly orient the stent in the vasculature. A torquing member


140


, as shown in

FIG. 17

, is attached to and aligned with tracking wire lumen


125


and positioning guide wire lumen


126


. The torquing member is comprised of first port


140




a


and second port


140




b


. As depicted in

FIG. 17

, the torquing member comprises tracking wire lumen


141


and positioning guide wire lumen


142


. The torquing member positioning guide wire lumen


142


has a proximal end


142




a


and a distal end


142




b


while torquing member tracking guide wire lumen


141


has a proximal end


141




a


and a distal end


141




b


. The torquing member tracking guide wire lumen proximal end


141




a


is aligned with the catheter tracking guide wire lumen


125


. The torquing member positioning guide wire lumen proximal end


142




a


is aligned with the catheter positioning guide wire lumen


126


. Thus, there is a substantially continuous guide wire lumen for each of the tracking and positioning guide wire lumens that extend through at least a portion of the catheter, through the torquing member, and the tracking guide wire lumen extends distally of the torquing member. The tracking guide wire lumen


125


slidably receives tracking guide wire


150


and positioning guide wire lumen


126


slidably receives positioning guide wire


151


. The tracking guide wire slidably extends through the catheter guide wire tracking lumen and through the torquing member guide wire lumen. The positioning guide wire slidably extends through the catheter positioning guide wire lumen and through the torquing member positioning guide wire lumen where it exits into a vessel. The guide wires


150


,


151


preferably are stiff wires each having a diameter of 0.014 inch, but can have different diameters and degrees of stiffness as required for a particular application. A particularly suitable guide wire can include those manufactured and sold under the tradenames Sport® and Ironman®, manufactured by Advanced Cardiovascular Systems, Inc., Santa Clara, Calif.




In keeping with the invention, torquing member


140


further comprises ramp


143


positioned in the positioning guide wire lumen


142


. The ramp is positioned in the torquing member and assists the positioning guide wire in advancing through and exiting the catheter. The ramp


143


is sloped and begins a gradual upward slope at the torquing member first port


140




a


and ends slightly proximal to the torquing member second port


140




b


. The ramp is distal to the torquing member first port


140




a


and proximal to the torquing member second port


140




b


. The ramp ends at opening (or exit port)


145


just proximal to the torquing member second port


140




b


. The gradual upward slope of the ramp will facilitate the advancement of positioning guide wire


151


so that the guide wire slides up the ramp as it is advanced and it exits the catheter through opening


145


at second port


140




b.






As shown in

FIG. 15

, the torquing member positioning guide wire lumen


142


preferably has slit


144


in catheter wall


146


located on the side of catheter


121


opposite of opening


145


, and is positioned proximal to opening


145


. As the positioning guide wire advances through positioning guide wire lumen


126


and slides along ramp


143


, it may have a tendency to bend slightly as it encounters frictional resistance along the gradual slope of the ramp. In order to relieve the bending moments in the wire, slit


144


allows the wire to flex into the slit thereby providing a more gradual bend in the positioning guide wire.




The torquing member


140


preferably is formed from a rigid material made from plastic or metal. As shown in

FIG. 10

, catheter tracking guide wire lumen


125


extends from the torquing member forming a continuous lumen proximal to the torquing member and through it to the catheter distal end.




A stent


20


, as shown in

FIG. 9

, is mounted on the stent delivery catheter assembly


120


. The stent has aperture


25


so that the stent does not cover septal perforators in a patient or opening


145


where the positioning guide wire exits. Preferably the stent is mounted on expandable member


128


so that the torquing member is exposed.




The catheter distal section


123


extends from proximal end


123




a


to distal end


123




b


. The torquing member


140


can be positioned at any point along the catheter distal section as long as torquing member


140


corresponds with aperture


25


of stent


20


.




While the torquing member


140


embodiment has been described in connection with delivery of a stent at septal perforators, its application is broader and can be used to position other devices such as drug delivery means, atherectomy devices, radioactive materials, and the like.




In further keeping with the invention, as depicted in

FIG. 18

, stent


20


is mounted on assembly


120


and implanted in vessel


6


. The method of achieving stent implantation is as follows.




In keeping with one method of the invention, stent


20


is tightly crimped onto catheter assembly


120


including expandable member


128


for low-profile delivery through the vasculature system. It is particularly critical that aperture


25


of the stent be aligned with opening


145


. The distal end of tracking guide wire


150


is advanced into main vessel


6


and distal to the target area, with the proximal end of the tracking guide wire remaining outside the patient. The distal section


123


of the catheter is then advanced, preferably with the use of a guiding catheter (not shown), along the tracking wire until the stent is properly longitudinally positioned at the target area. Up to this point, positioning guide wire


151


resides in positioning guide wire lumen


126


so that the distal end of the positioning wire preferably is near opening


145


. This method of delivery prevents the two guide wires from wrapping around each other, the positioning wire being protected by the catheter assembly during delivery.




The distal end of positioning guide wire


151


is then advanced by having the physician push the proximal end from outside the body. The distal end of the integrated positioning guide wire travels through positioning guide wire lumen


126


, up ramp


143


whereby the wire is forced to move radially outwardly, and out of opening


145


. Preferably, opening


145


is already somewhat aligned with orifice


8


of a septal perforator


7


. If not, then some rotation and longitudinal displacement of assembly


120


may be needed in order to advance the positioning guide wire into an orifice of a septal perforator.




After positioning guide wire


151


is advanced into a septal perforator


7


, the physician further advances assembly


120


in the distal direction. Due to the assistance of torquing member


140


, this action causes the positioning guide wire to push against a wall of the septal perforator, thus creating a torquing force in the positioning guide wire relative to tracking guide wire


150


. This torquing force acts to rotate stent


20


such that aperture


25


comes into alignment with orifice


8


.




Now expandable member


128


is expanded by known methods, thereby expanding stent


20


into apposition with vessel


6


, and thereby implanting the stent in the vessel. As shown in

FIG. 18

, support struts


129


can be included as part of the stent on each side of opening


145


. Thereafter, the expandable member is deflated and catheter assembly


120


is withdrawn from the patient's vasculature. The catheter assembly can be designed so that both tracking guide wire


150


and positioning guide wire


151


can be left in their respective vessels should sequential or simultaneous high pressure balloon inflation be required in vessel


6


in order to complete the stenting procedure. In other words, the wires can be unzipped through slits (not shown) from the catheter thereby allowing the wires to act as a rapid exchange wires.




While the invention herein has been illustrated and described in terms of an apparatus and method for treating septal perforation, it will be apparent to those skilled in the art that the stents and delivery systems herein can be used in the coronary arteries, veins, and other arteries throughout the patient's vascular system. Certain dimensions and materials of manufacture have been described herein, and can be modified without departing from the spirit and scope of the invention.



Claims
  • 1. A method for treating a vessel with septal perforators, comprising:providing an elongated catheter having an expandable member positioned thereon, tracking guide wire disposed within a tracking guide wire lumen and a positioning guide wire disposed within a positioning guide wire lumen, said positioning guide wire lumen having a distal opening formed in said catheter adjacent said expandable member; providing a torquing member attached to both said tracking guide wire lumen and said positioning guide wire lumen; positioning an expandable stent having a side aperture on said catheter so as envelop said expandable member and such that said distal opening of said positioning guide wire is aligned with a portion of said aperture; advancing said catheter through a vessel having septal perforators along said tracking guide wire to a position wherein said stent is substantially longitudinally aligned and wherein said positioning guide wire lumen opening is generally radially aligned with said septal perforators; advancing said positioning guide wire so as to emerge from said distal opening in said positioning guide wire and enter one of said septal perforators; further advancing said catheter in a distal direction so as to cause said catheter and stent to rotate into substantial alignment with said septal perforators by torque created by the positioning guide wire and tracking guide wire which is transferred to the catheter by said torquing member; and expanding said expandable member to expand said stent.
  • 2. The method of claim 1, wherein said expandable stent has multiple side apertures formed therein.
  • 3. The method of claim 2, wherein each of said apertures is aligned with one of said septal perforators.
  • 4. The method of claim 1, wherein said side aperture is elongated.
  • 5. The method of claim 4, wherein said aperture is aligned with a plurality of said septal perforators.
  • 6. The method of claim 1, wherein said aperture encompasses about 60 degrees of said stent's circumference.
Parent Case Info

This application is a divisional of U.S. application Ser. No. 09/461,946 filed Dec. 15, 1999, which is now U.S. Pat. No. 6,361,555.

US Referenced Citations (146)
Number Name Date Kind
2845959 Sidebotham Aug 1958 A
2978787 Liebig Apr 1961 A
2990605 Demsyk Jul 1961 A
3029819 Starks Apr 1962 A
3096560 Liebig Jul 1963 A
3142067 Liebig Jul 1964 A
3657744 Ersek Apr 1972 A
3908662 Razgulov et al. Sep 1975 A
3945052 Liebig Mar 1976 A
4041931 Elliott et al. Aug 1977 A
4047252 Liebig et al. Sep 1977 A
4061134 Samuels et al. Dec 1977 A
4108161 Samuels et al. Aug 1978 A
4140126 Choudhury Feb 1979 A
4193137 Heck Mar 1980 A
4202349 Jones May 1980 A
4214587 Sakura, Jr. Jul 1980 A
4517687 Liebig et al. May 1985 A
4560374 Hammerslag Dec 1985 A
4562596 Kornberg Jan 1986 A
4577631 Kreamer Mar 1986 A
4617932 Kornberg Oct 1986 A
4652263 Herweck et al. Mar 1987 A
4693249 Schenck et al. Sep 1987 A
4728328 Hughes et al. Mar 1988 A
4732152 Wallsten et al. Mar 1988 A
4739762 Palmaz Apr 1988 A
4774949 Fogarty Oct 1988 A
4787899 Lazarus Nov 1988 A
4793348 Palmaz Dec 1988 A
4795458 Regan Jan 1989 A
4795465 Marten Jan 1989 A
4817624 Newbower Apr 1989 A
4830003 Wolff et al. May 1989 A
4872874 Taheri Oct 1989 A
4878906 Lindemann et al. Nov 1989 A
4892539 Koch Jan 1990 A
4969890 Sugita et al. Nov 1990 A
4969896 Shors Nov 1990 A
4994071 MacGregor Feb 1991 A
5026377 Burton et al. Jun 1991 A
5047050 Arpesani Sep 1991 A
5104399 Lazarus Apr 1992 A
5108424 Hoffman, Jr. et al. Apr 1992 A
5127919 Ibrahim et al. Jul 1992 A
5156619 Ehrenfeld Oct 1992 A
5178630 Schmitt Jan 1993 A
5178634 Ramos-Martinez Jan 1993 A
5197976 Herweck et al. Mar 1993 A
5197977 Hoffman, Jr. et al. Mar 1993 A
5304220 Maginot Apr 1994 A
5316023 Palmaz et al. May 1994 A
5360443 Barone et al. Nov 1994 A
5413560 Solar May 1995 A
5443497 Venbrux Aug 1995 A
5443498 Fontaine Aug 1995 A
5456712 Maginot Oct 1995 A
5522880 Barone et al. Jun 1996 A
5527355 Ahn Jun 1996 A
5562724 Chuter Oct 1996 A
D376011 Nunokawa Nov 1996 S
5571170 Palmaz et al. Nov 1996 A
5571171 Palmaz et al. Nov 1996 A
5571173 Parodi Nov 1996 A
5575817 Martin Nov 1996 A
5578072 Barone et al. Nov 1996 A
5591228 Edoga Jan 1997 A
5591229 Parodi Jan 1997 A
5603721 Lau et al. Feb 1997 A
5609627 Goiocoechea et al. Mar 1997 A
5613980 Chauhan Mar 1997 A
5617878 Taheri Apr 1997 A
5632763 Glastra May 1997 A
5639278 Dereume et al. Jun 1997 A
5643340 Nunokawa Jul 1997 A
5669924 Shaknovich Sep 1997 A
5676696 Marcade Oct 1997 A
5676697 McDonald Oct 1997 A
5683450 Goicoechea et al. Nov 1997 A
5683452 Barone et al. Nov 1997 A
5683453 Palmaz Nov 1997 A
5693084 Chuter Dec 1997 A
5693086 Goicoechea et al. Dec 1997 A
5693087 Parodi Dec 1997 A
5693088 Lazarus Dec 1997 A
5695517 Marin et al. Dec 1997 A
5709713 Evans et al. Jan 1998 A
5713363 Seward et al. Feb 1998 A
5713917 Leonhardt et al. Feb 1998 A
5718724 Goicoechea et al. Feb 1998 A
5720735 Dorros Feb 1998 A
5749825 Fischell et al. May 1998 A
5755734 Richter et al. May 1998 A
5755735 Richter et al. May 1998 A
5755771 Penn et al. May 1998 A
5776180 Goicoechea et al. Jul 1998 A
5782906 Marshall et al. Jul 1998 A
5800508 Goicoechea et al. Sep 1998 A
5800520 Fogarty et al. Sep 1998 A
5827320 Richter et al. Oct 1998 A
5893887 Jayaraman Apr 1999 A
5895407 Jayaraman Apr 1999 A
5916234 Lam Jun 1999 A
5916263 Goicoechea et al. Jun 1999 A
5919225 Lau et al. Jul 1999 A
5921995 Kleshinski Jul 1999 A
5938696 Goicoechea et al. Aug 1999 A
5947977 Slepian et al. Sep 1999 A
5954693 Barry Sep 1999 A
5972017 Berg et al. Oct 1999 A
5976155 Foreman et al. Nov 1999 A
6030413 Lazarus Feb 2000 A
6030414 Taheri Feb 2000 A
6030415 Chuter Feb 2000 A
6033434 Borghi Mar 2000 A
6033435 Penn et al. Mar 2000 A
6039754 Caro Mar 2000 A
6048361 Von Oepen Apr 2000 A
6051020 Goicoechea et al. Apr 2000 A
6096073 Webster et al. Aug 2000 A
6106548 Roubin et al. Aug 2000 A
6123682 Knudson et al. Sep 2000 A
6129754 Kanesaka et al. Oct 2000 A
6159237 Alt et al. Dec 2000 A
6165195 Wilson et al. Dec 2000 A
6183509 Dibie Feb 2001 B1
6210429 Vardi et al. Apr 2001 B1
6214041 Tweden et al. Apr 2001 B1
6221080 Power Apr 2001 B1
6221098 Wilson et al. Apr 2001 B1
6231597 Deem et al. May 2001 B1
6238430 Klumb et al. May 2001 B1
6254593 Wilson Jul 2001 B1
6258116 Hojeibane Jul 2001 B1
6261305 Marotta et al. Jul 2001 B1
6264682 Wilson et al. Jul 2001 B1
6346089 Dibie Feb 2002 B1
6361555 Wilson Mar 2002 B1
6371978 Wilson Apr 2002 B1
6383213 Wilson et al. May 2002 B2
6387120 Wilson et al. May 2002 B2
6428567 Wilson et al. Aug 2002 B2
6436104 Hojeibane Aug 2002 B2
20010037137 Vardi et al. Nov 2001 A1
20010049548 Vardi et al. Dec 2001 A1
20010056297 Hojeibane Dec 2001 A1
Foreign Referenced Citations (22)
Number Date Country
0 461 791 Dec 1991 EP
0 466 518 Jan 1992 EP
0 747 020 Dec 1996 EP
0 804 907 Nov 1997 EP
2 737 969 Feb 1997 FR
1318235 Jun 1987 SU
1389778 Apr 1988 SU
1457921 Feb 1989 SU
1482714 May 1989 SU
WO 9516406 Jun 1995 WO
WO 9521592 Aug 1995 WO
WO 9623455 Aug 1996 WO
WO 9624306 Aug 1996 WO
WO 9624308 Aug 1996 WO
WO 9634580 Nov 1996 WO
WO 9707752 Mar 1997 WO
WO 9715345 May 1997 WO
WO 9819628 Oct 1997 WO
WO 9741803 Nov 1997 WO
WO 9745073 Dec 1997 WO
WO 9836709 Feb 1998 WO
WO 9934749 Jul 1999 WO
Non-Patent Literature Citations (6)
Entry
Lawrence, David D., Jr., M.D., et al., Percutaneous Endovascular Graft: Experimental Evaluation, Radiology, vol. 163, No. 2, pp. 357-360 (1987).
Yoshioka, Tetsuya, et a., Self-Expanding Endovascular Graft: An Experimental Study in Dogs, Radiology, vol. 170, pp. 1033-1037 (1989).
Parodi, J.C., M.D., et al., Transfemoral Intraluminal Graft Implantation for Abdominal Aortic Aneuyrsms, Annals of Vascular Surgery, vol. 5, No. 6, pp. 491-499 (1991).
Mirich, David, M.D., Percutaneously Placed Endovascular Grafts for Aortic Aneurysms: Feasibility Study, Radiology, vol. 170, No. 3, Part 2, pp. 1033-1037 (1989).
Chuter, Timothy A.M., BM, BS, et al., Transfemoral Endovascular Aortic Graft Placement, Journal of Vascular Surgery, pp. 185-196 (Aug., 1993).
Bard XT Catina Bifurcate Stent (Brochure) (Undated).