Stent and stent delivery system with improved deliverability

Information

  • Patent Grant
  • 11369498
  • Patent Number
    11,369,498
  • Date Filed
    Wednesday, January 26, 2011
    13 years ago
  • Date Issued
    Tuesday, June 28, 2022
    a year ago
Abstract
Stent delivery systems having improved deliverability comprising an elongate member having an inflation lumen and a guidewire lumen therein; a balloon having an interior that is in fluid communication with the inflation lumen; and a stent comprising a coating mounted on the balloon. Methods for making stent delivery systems having improved deliverability. Methods for delivering two stent delivery systems concurrently through a guiding catheter, each stent delivery system comprising elongate member having an inflation lumen and a guidewire lumen therein, a balloon having an interior that is in fluid communication with the inflation lumen, and a stent comprising a coating mounted on the balloon. Stent coatings may comprise a pharmaceutical agent at least a portion of which is in crystalline form.
Description
BACKGROUND OF THE INVENTION

Drug-eluting stents are used to address the drawbacks of bare stents, namely to treat restenosis and to promote healing of the vessel after opening the blockage by PCI/stenting. Drug eluting stents are delivered by delivery systems, much like those that deliver bare stents. Some current drug eluting stents can have physical, chemical and therapeutic legacy in the vessel over time. Others may have less legacy, but are not optimized for thickness, deployment flexibility, access to difficult lesions, and minimization of vessel wall intrusion.


SUMMARY OF THE INVENTION

Provided herein are devices and systems having improved stent and/or stent delivery system deliverability and methods related thereto. Some devices and systems herein comprise stents comprising a bioabsorbable polymer and a pharmaceutical or biological agent deposited in powder form.


It is desirable to have a drug-eluting stent with minimal physical, chemical and therapeutic legacy in the vessel after a proscribed period of time. This period of time is based on the effective healing of the vessel after opening the blockage by PCI/stenting (currently believed by leading clinicians to be 6-18 months).


It is also desirable to have drug-eluting stents of minimal cross-sectional thickness for (a) flexibility of deployment (b) access to small vessels (c) minimized intrusion into the vessel wall and blood.


It is also desirable to have drug-eluting stents configured for improved deliverability through the vasculature and to the vessel wall.


It is also desirable to have drug-eluting stent delivery systems configured for improved deliverability through the vasculature and to the vessel wall


Provided herein is a stent delivery system comprising: an elongate member having an inflation lumen and a guidewire lumen therein; a balloon having an interior that is in fluid communication with the inflation lumen; and a stent comprising a coating mounted on the balloon, in which for a stent of about 2.25 mm in diameter to about 4.0 mm in diameter by about 9 mm to about 30 mm in length in an expanded state, a stent system trackability expressed as peak force over the track length is at most 1.5 Newtons.


Provided herein is a stent delivery system comprising: an elongate member having an inflation lumen and a guidewire lumen therein; a balloon having an interior that is in fluid communication with the inflation lumen; and a stent comprising a coating mounted on the balloon, in which for a stent of about 2.25 mm in diameter to about 4.0 mm in diameter by about 9 mm to about 30 mm in length in an expanded state, a stent system trackability expressed as mean force over the track length is at most 0.5 Newtons.


In some embodiments, stent system trackability is tested according to Tortuosity test 1. In some embodiments, stent system trackability is tested according to Tortuosity test 2.


In some embodiments, the balloon comprises a polymer, and the stent mounted on the balloon has a crossing profile of at most 1.12 mm.


In some embodiments, the polymer of the balloon comprises polyamide. In some embodiments, the polymer of the balloon comprises at least one of: polyethylene, polyethylene terephthalate (PET), high density polyethylene (HDPE), Arnitel, Hyrtrel, polyetherether ketone (PEEK), urethane, polyurethane, urethane elastomer, nylon, polyamide, polyether block amide (PEBAX), a block copolymer of any polymer listed herein, Teflon, polyolefin, and a thermoplastic elastomer.


In some embodiments, the coating is at most 20 micrometers in thickness and comprises a polymer. In some embodiments, the polymer of the coating is hydrophilic. In some embodiments, the hydrophilic polymer of the coating comprises PLGA. In some embodiments, the polymer of the coating is bioaborbable. In some embodiments, the polymer of the coating comprises at least one of PLGA, a copolymer comprising PLGA (i.e. a PLGA copolymer), a PLGA copolymer with a ratio of about 40:60 to about 60:40, a PLGA copolymer with a ratio of about 70:30 to about 90:10, a PLGA copolymer having a molecular weight of about 10 kD, a PLGA copolymer having a molecular weight of about 19 kD, PGA poly(glycolide), LPLA poly(l-lactide), DLPLA poly(dl-lactide), PCL poly(e-caprolactone) PDO, poly(dioxolane) PGA-TMC, 85/15 DLPLG p(dl-lactide-co-glycolide), 75/25 DLPL, 65/35 DLPLG, 50/50 DLPLG, TMC poly(trimethylcarbonate), p(CPP:SA) poly(1,3-bis-p-(carboxyphenoxy)propane-co-sebacic acid), and a combination thereof.


In some embodiments, the coating comprises a pharmaceutical agent. In some embodiments, the pharmaceutical agent comprises at least one of rapamycin, a prodrug, a derivative, an analog, a hydrate, an ester, and a salt thereof; wherein at least a portion of the pharmaceutical agent is in crystalline form. In some embodiments, the pharmaceutical agent comprises one or more of rapamycin, biolimus (biolimus A9), 40-O-(2-Hydroxyethyl)rapamycin (everolimus), 40-O-Benzyl-rapamycin, 40-O-(4′-Hydroxymethyl)benzyl-rapamycin, 40-O-[4′-(1,2-Dihydroxyethyl)]benzyl-rapamycin, 40-O-Allyl-rapamycin, 40-O-[3′-(2,2-Dimethyl-1,3-dioxolan-4(S)-yl)-prop-2′-en-1′-yl]-rapamycin, (2′:E,4′S)-40-O-(4′,5′-Dihydroxypent-2′-en-1′-yl)-rapamycin 40-O-(2-Hydroxy)ethoxycar-bonylmethyl-rapamycin, 40-O-(3-Hydroxy)propyl-rapamycin 4O—O-(6-Hydroxy)hexyl-rapamycin 40-O-[2-(2-Hydroxy)ethoxy]ethyl-rapamycin 4O—O-[(3S)-2,2-Dimethyldioxolan-3-yl]methyl-rapamycin, 40-O-[(2S)-2,3-Dihydroxyprop-1-yl]-rapamycin, 4O—O-(2-Acetoxy)ethyl-rapamycin 4O—O-(2-Nicotinoyloxy)ethyl-rapamycin, 4O—O-[2-(N-Morpholino)acetoxy]ethyl-rapamycin 4O—O-(2-N-Imidazolylacetoxy)ethyl-rapamycin, 40-O-[2-(N-Methyl-N′-piperazinyl)acetoxy]ethyl-rapamycin, 39-O-Desmethyl-39,40-O,O-ethylene-rapamycin, (26R)-26-Dihydro-40-O-(2-hydroxy)ethyl-rapamycin, 28-O-Methyl-rapamycin, 4O—O-(2-Aminoethyl)-rapamycin, 4O—O-(2-Acetaminoethyl)-rapamycin 4O—O-(2-Nicotinamidoethyl)-rapamycin, 4O—O-(2-(N-Methyl-imidazo-2′-ylcarbethoxamido)ethyl)-rapamycin, 4O—O-(2-Ethoxycarbonylaminoethyl)-rapamycin, 40-O-(2-Tolylsulfonamidoethyl)-rapamycin, 40-O-[2-(4′,5′-Dicarboethoxy-1′,2′,3′-triazol-1′-yl)-ethyl]-rapamycin, 42-Epi-(tetrazolyl)rapamycin (tacrolimus), 42-[3-hydroxy-2-(hydroxymethyl)-2-methylpropanoate]rapamycin (temsirolimus), (42S)-42-Deoxy-42-(1H-tetrazol-1-yl)-rapamycin (zotarolimus), picrolimus, novolimus, myolimus, and salts, derivatives, isomers, racemates, diastereoisomers, prodrugs, hydrate, ester, or analogs thereof.


In some embodiments, an uncoated stent strut thickness is at most 64 micrometers.


In some embodiments, stent system trackability expressed as peak force over the track length is at most 1 Newton. In some embodiments, stent system trackability expressed as mean force over the track length is at most 0.3 Newtons.


In some embodiments, the stent has a closed cell design. In some embodiments, the stent has an open cell design. In some embodiments, the stent has a hybrid of an open and a closed cell design.


In some embodiments, the elongate member has a useable length of about 140 centimeters.


In some embodiments, the stent system trackability is achieved with at least one of: at most 5% coating delamination, at most 10% coating delamination, at most 15% coating delamination, and at most 20% coating delamination. In some embodiments, the coating delamination is tested by visual inspection.


In some embodiments, the stent system trackability is achieved with at least one of: at most 5% coating cracking, at most 10% coating cracking, at most 15% coating cracking, and at most 20% coating cracking. In some embodiments, the coating cracking is tested by visual inspection.


Provided herein is a stent delivery system comprising: an elongate member having an inflation lumen and a guidewire lumen therein; a balloon having an interior that is in fluid communication with the inflation lumen; and a stent comprising a coating mounted on the balloon, in which a stent of about 2.25 mm in diameter to about 4.0 mm in diameter by about 9 mm to about 30 mm in length in an expanded state has a stent system pushability ((Fdist/Fprox)×100%) of at most 18%.


In some embodiments, the stent system pushability is measured according to Tortuosity Test 2.


In some embodiments, the balloon comprises a polymer, and the stent mounted on the balloon has a crossing profile of at most 1.06 mm for a 2.25 diameter balloon, at most 1.09 mm for a 2.5 diameter balloon, at most 1.11 mm for a 2.75 diameter balloon, at most 1.12 mm for a 3.0 diameter balloon, at most 1.18 mm for a 3.5 diameter balloon, and at most 1.35 mm for a 4.0 diameter balloon.


In some embodiments, the polymer of the balloon comprises polyamide. In some embodiments, the polymer of the balloon comprises at least one of: polyethylene, polyethylene terephthalate (PET), high density polyethylene (HDPE), Arnitel, Hyrtrel, polyetherether ketone (PEEK), urethane, polyurethane, urethane elastomer, nylon, polyamide, polyether block amide (PEBAX), a block copolymer of any polymer listed herein, Teflon, polyolefin, and a thermoplastic elastomer.


In some embodiments, the coating is at most 20 micrometers in thickness and comprises a polymer. In some embodiments, the polymer of the coating is hydrophilic. In some embodiments, the hydrophilic polymer of the coating comprises PLGA. In some embodiments, the polymer of the coating is bioabsorbable. In some embodiments, the polymer of the coating comprises at least one of PLGA, a copolymer comprising PLGA (i.e. a PLGA copolymer), a PLGA copolymer with a ratio of about 40:60 to about 60:40, a PLGA copolymer with a ratio of about 70:30 to about 90:10, a PLGA copolymer having a molecular weight of about 10 kD, a PLGA copolymer having a molecular weight of about 19 kD, PGA poly(glycolide), LPLA poly(l-lactide), DLPLA poly(dl-lactide), PCL poly(e-caprolactone) PDO, poly(dioxolane) PGA-TMC, 85/15 DLPLG p(dl-lactide-co-glycolide), 75/25 DLPL, 65/35 DLPLG, 50/50 DLPLG, TMC poly(trimethylcarbonate), p(CPP:SA) poly(1,3-bis-p-(carboxyphenoxy)propane-co-sebacic acid), and a combination thereof.


In some embodiments, the coating comprises a pharmaceutical agent. In some embodiments, the pharmaceutical agent comprises at least one of rapamycin, a prodrug, a derivative, an analog, a hydrate, an ester, and a salt thereof; wherein at least a portion of the pharmaceutical agent is in crystalline form. In some embodiments, the pharmaceutical agent comprises one or more of rapamycin, biolimus (biolimus A9), 40-O-(2-Hydroxyethyl)rapamycin (everolimus), 40-O-Benzyl-rapamycin, 40-O-(4′-Hydroxymethyl)benzyl-rapamycin, 40-O-[4′-(1,2-Dihydroxyethyl)]benzyl-rapamycin, 40-O-Allyl-rapamycin, 40-O-[3′-(2,2-Dimethyl-1,3-dioxolan-4(S)-yl)-prop-2′-en-1′-yl]-rapamycin, (2′:E,4′S)-40-O-(4′,5′-Dihydroxypent-2′-en-1′-yl)-rapamycin 40-O-(2-Hydroxy)ethoxycar-bonylmethyl-rapamycin, 40-O-(3-Hydroxy)propyl-rapamycin 4O—O-(6-Hydroxy)hexyl-rapamycin 40-O-[2-(2-Hydroxy)ethoxy]ethyl-rapamycin 4O—O-[(3S)-2,2-Dimethyldioxolan-3-yl]methyl-rapamycin, 40-O-[(2S)-2,3-Dihydroxyprop-1-yl]-rapamycin, 4O—O-(2-Acetoxy)ethyl-rapamycin 4O—O-(2-Nicotinoyloxy)ethyl-rapamycin, 4O—O-[2-(N-Morpholino)acetoxy]ethyl-rapamycin 4O—O-(2-N-Imidazolylacetoxy)ethyl-rapamycin, 40-O-[2-(N-Methyl-N-piperazinyl)acetoxy]ethyl-rapamycin, 39-O-Desmethyl-39,40-O,O-ethylene-rapamycin, (26R)-26-Dihydro-40-O-(2-hydroxy)ethyl-rapamycin, 28-O-Methyl-rapamycin, 4O—O-(2-Aminoethyl)-rapamycin, 4O—O-(2-Acetaminoethyl)-rapamycin 4O—O-(2-Nicotinamidoethyl)-rapamycin, 4O—O-(2-(N-Methyl-imidazo-2′-ylcarbethoxamido)ethyl)-rapamycin, 4O—O-(2-Ethoxycarbonylaminoethyl)-rapamycin, 40-O-(2-Tolylsulfonamidoethyl)-rapamycin, 40-O-[2-(4′,5′-Dicarboethoxy-1′,2′,3′-triazol-1′-yl)-ethyl]-rapamycin, 42-Epi-(tetrazolyl)rapamycin (tacrolimus), 42-[3-hydroxy-2-(hydroxymethyl)-2-methylpropanoate]rapamycin (temsirolimus), (42S)-42-Deoxy-42-(1H-tetrazol-1-yl)-rapamycin (zotarolimus), picrolimus, novolimus, myolimus, and salts, derivatives, isomers, racemates, diastereoisomers, prodrugs, hydrate, ester, or analogs thereof.


In some embodiments, an uncoated stent strut thickness of the stent is at most 64 micrometers.


In some embodiments, the stent has a closed cell design. In some embodiments, the stent has an open cell design. In some embodiments, the stent has a hybrid of an open and a closed cell design.


In some embodiments, the elongate member has a useable length of about 140 centimeters.


In some embodiments, the stent system pushability is achieved with at least one of: at most 5% coating delamination, at most 10% coating delamination, at most 15% coating delamination, and at most 20% coating delamination. In some embodiments, the coating delamination is tested by visual inspection.


In some embodiments, the stent system pushability is achieved with at least one of: at most 5% coating cracking, at most 10% coating cracking, at most 15% coating cracking, and at most 20% coating cracking. In some embodiments, the coating delamination is tested by visual inspection.


Provided herein is a stent delivery system comprising: an elongate member having an inflation lumen and a guidewire lumen therein; a balloon having an interior that is in fluid communication with the inflation lumen; and a stent comprising a coating mounted on the balloon, in which a stent of about 2.25 mm in diameter to about 4.0 mm in diameter by about 9 mm to about 30 mm in length in an expanded state has a stent system crossability measured as peak cross force of at most 0.15 Newtons.


Provided herein is a stent delivery system comprising: an elongate member having an inflation lumen and a guidewire lumen therein; a balloon having an interior that is in fluid communication with the inflation lumen; and a stent comprising a coating mounted on the balloon, in which a stent of about 2.25 mm in diameter to about 4.0 mm in diameter by about 9 mm to about 30 mm in length in an expanded state has a stent system crossability measured as mean cross force of less than 0.04 Newtons.


In some embodiments, the tortuosity fixture and the simulated lesion are configured according to tortuosity test 1. Provided herein is a the tortuosity fixture and the simulated lesion are configured according to tortuosity test 2.


In some embodiments, the balloon comprises a polymer, and the stent mounted on the balloon has a crossing profile of at most 1.12 mm.


In some embodiments, the polymer of the balloon comprises polyamide. In some embodiments, the polymer of the balloon comprises at least one of: polyethylene, polyethylene terephthalate (PET), high density polyethylene (HDPE), Arnitel, Hyrtrel, polyetherether ketone (PEEK), urethane, polyurethane, urethane elastomer, nylon, polyamide, polyether block amide (PEBAX), a block copolymer of any polymer listed herein, Teflon, polyolefin, and a thermoplastic elastomer.


In some embodiments, the coating is at most 20 micrometers in thickness and comprises a polymer. In some embodiments, the polymer of the coating is hydrophilic. In some embodiments, the hydrophilic polymer of the coating comprises PLGA. In some embodiments, the polymer of the coating is bioabsorbable. In some embodiments, the polymer of the coating comprises at least one of PLGA, a copolymer comprising PLGA (i.e. a PLGA copolymer), a PLGA copolymer with a ratio of about 40:60 to about 60:40, a PLGA copolymer with a ratio of about 70:30 to about 90:10, a PLGA copolymer having a molecular weight of about 10 kD, a PLGA copolymer having a molecular weight of about 19 kD, PGA poly(glycolide), LPLA poly(l-lactide), DLPLA poly(dl-lactide), PCL poly(e-caprolactone) PDO, poly(dioxolane) PGA-TMC, 85/15 DLPLG p(dl-lactide-co-glycolide), 75/25 DLPL, 65/35 DLPLG, 50/50 DLPLG, TMC poly(trimethylcarbonate), p(CPP:SA) poly(1,3-bis-p-(carboxyphenoxy)propane-co-sebacic acid), and a combination thereof.


In some embodiments, the coating comprises a pharmaceutical agent. In some embodiments, the pharmaceutical agent comprises at least one of rapamycin, a prodrug, a derivative, an analog, a hydrate, an ester, and a salt thereof; wherein at least a portion of the pharmaceutical agent is in crystalline form. In some embodiments, the pharmaceutical agent comprises one or more of rapamycin, biolimus (biolimus A9), 40-O-(2-Hydroxyethyl)rapamycin (everolimus), 40-O-Benzyl-rapamycin, 40-O-(4′-Hydroxymethyl)benzyl-rapamycin, 40-O-[4′-(1,2-Dihydroxyethyl)]benzyl-rapamycin, 40-O-Allyl-rapamycin, 40-O-[3′-(2,2-Dimethyl-1,3-dioxolan-4(S)-yl)-prop-2′-en-1′-yl]-rapamycin, (2′:E,4′S)-40-O-(4′,5′-Dihydroxypent-2′-en-1′-yl)-rapamycin 40-O-(2-Hydroxy)ethoxycar-bonylmethyl-rapamycin, 40-O-(3-Hydroxy)propyl-rapamycin 4O—O-(6-Hydroxy)hexyl-rapamycin 40-O-[2-(2-Hydroxy)ethoxy]ethyl-rapamycin 4O—O-[(3S)-2,2-Dimethyldioxolan-3-yl]methyl-rapamycin, 40-O-[(2S)-2,3-Dihydroxyprop-1-yl]-rapamycin, 4O—O-(2-Acetoxy)ethyl-rapamycin 4O—O-(2-Nicotinoyloxy)ethyl-rapamycin, 4O—O-[2-(N-Morpholino)acetoxy]ethyl-rapamycin 4O—O-(2-N-Imidazolylacetoxy)ethyl-rapamycin, 40-O-[2-(N-Methyl-N′-piperazinyl)acetoxy]ethyl-rapamycin, 39-O-Desmethyl-39,40-O,O-ethylene-rapamycin, (26R)-26-Dihydro-40-O-(2-hydroxy)ethyl-rapamycin, 28-O-Methyl-rapamycin, 4O—O-(2-Aminoethyl)-rapamycin, 4O—O-(2-Acetaminoethyl)-rapamycin 4O—O-(2-Nicotinamidoethyl)-rapamycin, 4O—O-(2-(N-Methyl-imidazo-2′-ylcarbethoxamido)ethyl)-rapamycin, 4O—O-(2-Ethoxycarbonylaminoethyl)-rapamycin, 40-O-(2-Tolylsulfonamidoethyl)-rapamycin, 40-O-[2-(4′,5′-Dicarboethoxy-1′,2′,3′-triazol-1′-yl)-ethyl]-rapamycin, 42-Epi-(tetrazolyl)rapamycin (tacrolimus), 42-[3-hydroxy-2-(hydroxymethyl)-2-methylpropanoate]rapamycin (temsirolimus), (42S)-42-Deoxy-42-(1H-tetrazol-1-yl)-rapamycin (zotarolimus), picrolimus, novolimus, myolimus, and salts, derivatives, isomers, racemates, diastereoisomers, prodrugs, hydrate, ester, or analogs thereof.


In some embodiments, an uncoated stent strut thickness of the stent is at most 64 micrometers.


In some embodiments, the stent system crossability expressed as peak cross force is at most 0.1 Newton. In some embodiments, the stent system crossability expressed as mean cross force is at most 0.03 Newtons.


In some embodiments, the stent has a closed cell design. In some embodiments, the stent has an open cell design. In some embodiments, the stent has a hybrid of an open and a closed cell design.


In some embodiments, the elongate member has a useable length of about 140 centimeters.


In some embodiments, the stent system crossability is achieved with at least one of: at most 5% coating delamination, at most 10% coating delamination, at most 15% coating delamination, and at most 20% coating delamination. In some embodiments, the coating delamination is tested by visual inspection.


In some embodiments, the stent system crossability is achieved with at least one of: at most 5% coating cracking, at most 10% coating cracking, at most 15% coating cracking, and at most 20% coating cracking. In some embodiments, the coating delamination is tested by visual inspection.


Provided herein is a method of concurrently delivering a first coated stent to a first target location in a body and a second coated stent to second target location in the body, the method comprising: advancing a first stent delivery system through a guiding catheter in which the first stent delivery system comprises a first elongate member having a first inflation lumen and a first guidewire lumen therein, a first balloon having a first interior that is in fluid communication with the first inflation lumen; and a first coated stent mounted on the first balloon, and advancing a second stent delivery system through the guiding catheter in which the second stent delivery system comprises a second elongate member having a second inflation lumen and a second guidewire lumen therein, a second balloon having a second interior that is in fluid communication with the second inflation lumen; and a second coated stent mounted on the second balloon, wherein the advancing of the second stent delivery system is performed while the first stent delivery system is also in the guiding catheter.


In some embodiments, the first balloon comprises a polymer, and the first coated stent mounted on the balloon has a crossing profile of at most 1.06 mm for a 2.25 mm diameter stent, 1.09 mm for a 2.5 mm diameter stent, 1.11 mm for a 2.75 mm diameter stent, 1.12 mm for a 3.0 mm diameter stent, 1.18 mm for a 3.5 mm diameter stent, and 1.25 mm for a 4.0 mm diameter stent, wherein the diameter is an expanded stent diameter.


In some embodiments, the polymer of the first balloon comprises polyamide. In some embodiments, the polymer of the first balloon comprises at least one of: polyethylene, polyethylene terephthalate (PET), high density polyethylene (HDPE), Arnitel, Hyrtrel, polyetherether ketone (PEEK), urethane, polyurethane, urethane elastomer, nylon, polyamide, polyether block amide (PEBAX), a block copolymer of any polymer listed herein, Teflon, polyolefin, and a thermoplastic elastomer.


In some embodiments, the first coated stent comprises a first coating which is at most 20 micrometers in thickness and comprises a polymer. In some embodiments, the first coating is hydrophilic. In some embodiments, the hydrophilic polymer comprises PLGA. In some embodiments, the polymer of the first coating is bioabsorbable. In some embodiments, the polymer of the first coating comprises at least one of PLGA, a copolymer comprising PLGA (i.e. a PLGA copolymer), a PLGA copolymer with a ratio of about 40:60 to about 60:40, a PLGA copolymer with a ratio of about 70:30 to about 90:10, a PLGA copolymer having a molecular weight of about 10 kD, a PLGA copolymer having a molecular weight of about 19 kD, PGA poly(glycolide), LPLA poly(l-lactide), DLPLA poly(dl-lactide), PCL poly(e-caprolactone) PDO, poly(dioxolane) PGA-TMC, 85/15 DLPLG p(dl-lactide-co-glycolide), 75/25 DLPL, 65/35 DLPLG, 50/50 DLPLG, TMC poly(trimethylcarbonate), p(CPP:SA) poly(1,3-bis-p-(carboxyphenoxy)propane-co-sebacic acid), and a combination thereof.


In some embodiments, the second balloon comprises a polymer, and the second coated stent mounted on the balloon has a crossing profile of at most 1.06 mm for a 2.25 mm diameter stent, 1.09 mm for a 2.5 mm diameter stent, 1.11 mm for a 2.75 mm diameter stent, 1.12 mm for a 3.0 mm diameter stent, 1.18 mm for a 3.5 mm diameter stent, and 1.25 mm for a 4.0 mm diameter stent, wherein the diameter is an expanded stent diameter.


In some embodiments, the polymer of the second balloon comprises polyamide. In some embodiments, the polymer of the second balloon comprises at least one of: polyethylene, polyethylene terephthalate (PET), high density polyethylene (HDPE), Arnitel, Hyrtrel, polyetherether ketone (PEEK), urethane, polyurethane, urethane elastomer, nylon, polyamide, polyether block amide (PEBAX), a block copolymer of any polymer listed herein, Teflon, polyolefin, and a thermoplastic elastomer.


In some embodiments, the second coated stent comprises a second coating which is at most 20 micrometers in thickness and comprises a polymer. In some embodiments, the polymer of the second coating is hydrophilic. In some embodiments, the hydrophilic polymer comprises PLGA. In some embodiments, the polymer of the second coating is bioabsorbable. In some embodiments, the polymer of the second coating comprises at least one of PLGA, a copolymer comprising PLGA (i.e. a PLGA copolymer), a PLGA copolymer with a ratio of about 40:60 to about 60:40, a PLGA copolymer with a ratio of about 70:30 to about 90:10, a PLGA copolymer having a molecular weight of about 10 kD, a PLGA copolymer having a molecular weight of about 19 kD, PGA poly(glycolide), LPLA poly(l-lactide), DLPLA poly(dl-lactide), PCL poly(e-caprolactone) PDO, poly(dioxolane) PGA-TMC, 85/15 DLPLG p(dl-lactide-co-glycolide), 75/25 DLPL, 65/35 DLPLG, 50/50 DLPLG, TMC poly(trimethylcarbonate), p(CPP:SA) poly(1,3-bis-p-(carboxyphenoxy)propane-co-sebacic acid), and a combination thereof.


In some embodiments, an uncoated stent strut thickness of the first coated stent is at most 64 micrometers. In some embodiments, an uncoated stent strut thickness of the second coated stent is at most 64 micrometers.


In some embodiments, the first stent delivery system and the second stent delivery system are configured to be simultaneously advanced distally.


In some embodiments, the first stent delivery system and the second stent delivery system are configured to be simultaneously withdrawn proximally.


In some embodiments, the first stent delivery system and the second stent delivery system each are manipulable when both systems are within the guiding catheter.


In some embodiments, the guiding catheter is a 7F guiding catheter.


In some embodiments, the first elongate member has a useable length of about 140 centimeters. In some embodiments, the second elongate member has a useable length of about 140 centimeters.


Provided herein is a stent delivery system comprising: an elongate member having an inflation lumen and a guidewire lumen therein; a balloon having an interior that is in fluid communication with the inflation lumen; and a stent comprising a coating mounted on the balloon, wherein when at least a portion of the stent system that includes the mounted stent is tested using Lubricity Test 1, the lubricity is at most 20 g.


In some embodiments, at least the portion of the stent system that includes the mounted stent is tested using Lubricity Test 1 the lubricity is at most 15 g.


In some embodiments, the balloon comprises a polymer, and the stent mounted on the balloon has a crossing profile of at most 1.12 mm.


In some embodiments, the polymer of the balloon comprises polyamide. In some embodiments, the polymer of the balloon comprises at least one of: polyethylene, polyethylene terephthalate (PET), high density polyethylene (HDPE), Arnitel, Hyrtrel, polyetherether ketone (PEEK), urethane, polyurethane, urethane elastomer, nylon, polyamide, polyether block amide (PEBAX), a block copolymer of any polymer listed herein, Teflon, polyolefin, and a thermoplastic elastomer.


In some embodiments, the coating is at most 20 micrometers in thickness and comprises a polymer. In some embodiments, the polymer of the coating is hydrophilic. In some embodiments, the hydrophilic polymer of the coating comprises PLGA. In some embodiments, the polymer of the coating is bioabsorbable. In some embodiments, the polymer of the coating comprises at least one of PLGA, a copolymer comprising PLGA (i.e. a PLGA copolymer), a PLGA copolymer with a ratio of about 40:60 to about 60:40, a PLGA copolymer with a ratio of about 70:30 to about 90:10, a PLGA copolymer having a molecular weight of about 10 kD, a PLGA copolymer having a molecular weight of about 19 kD, PGA poly(glycolide), LPLA poly(l-lactide), DLPLA poly(dl-lactide), PCL poly(e-caprolactone) PDO, poly(dioxolane) PGA-TMC, 85/15 DLPLG p(dl-lactide-co-glycolide), 75/25 DLPL, 65/35 DLPLG, 50/50 DLPLG, TMC poly(trimethylcarbonate), p(CPP:SA) poly(1,3-bis-p-(carboxyphenoxy)propane-co-sebacic acid), and a combination thereof.


In some embodiments, the coating comprises a pharmaceutical agent. In some embodiments, the pharmaceutical agent comprises at least one of rapamycin, a prodrug, a derivative, an analog, a hydrate, an ester, and a salt thereof; wherein at least a portion of the pharmaceutical agent is in crystalline form. In some embodiments, the pharmaceutical agent comprises one or more of rapamycin, biolimus (biolimus A9), 40-O-(2-Hydroxyethyl)rapamycin (everolimus), 40-O-Benzyl-rapamycin, 40-O-(4′-Hydroxymethyl)benzyl-rapamycin, 40-O-[4′-(1,2-Dihydroxyethyl)]benzyl-rapamycin, 40-O-Allyl-rapamycin, 40-O-[3′-(2,2-Dimethyl-1,3-dioxolan-4(S)-yl)-prop-2′-en-1′-yl]-rapamycin, (2′:E,4′S)-40-O-(4′,5′-Dihydroxypent-2′-en-1′-yl)-rapamycin 40-O-(2-Hydroxy)ethoxycar-bonylmethyl-rapamycin, 40-O-(3-Hydroxy)propyl-rapamycin 4O—O-(6-Hydroxy)hexyl-rapamycin 40-O-[2-(2-Hydroxy)ethoxy]ethyl-rapamycin 4O—O-[(3S)-2,2-Dimethyldioxolan-3-yl]methyl-rapamycin, 40-O-[(2S)-2,3-Dihydroxyprop-1-yl]-rapamycin, 4O—O-(2-Acetoxy)ethyl-rapamycin 4O—O-(2-Nicotinoyloxy)ethyl-rapamycin, 4O—O-[2-(N-Morpholino)acetoxy]ethyl-rapamycin 4O—O-(2-N-Imidazolylacetoxy)ethyl-rapamycin, 40-O-[2-(N-Methyl-N′-piperazinyl)acetoxy]ethyl-rapamycin, 39-O-Desmethyl-39,40-O,O-ethylene-rapamycin, (26R)-26-Dihydro-40-O-(2-hydroxy)ethyl-rapamycin, 28-O-Methyl-rapamycin, 4O—O-(2-Aminoethyl)-rapamycin, 4O—O-(2-Acetaminoethyl)-rapamycin 4O—O-(2-Nicotinamidoethyl)-rapamycin, 4O—O-(2-(N-Methyl-imidazo-2′-ylcarbethoxamido)ethyl)-rapamycin, 4O—O-(2-Ethoxycarbonylaminoethyl)-rapamycin, 40-O-(2-Tolylsulfonamidoethyl)-rapamycin, 40-O-[2-(4′,5′-Dicarboethoxy-1′,2′,3′-triazol-1′-yl)-ethyl]-rapamycin, 42-Epi-(tetrazolyl)rapamycin (tacrolimus), 42-[3-hydroxy-2-(hydroxymethyl)-2-methylpropanoate]rapamycin (temsirolimus), (42S)-42-Deoxy-42-(1H-tetrazol-1-yl)-rapamycin (zotarolimus), picrolimus, novolimus, myolimus, and salts, derivatives, isomers, racemates, diastereoisomers, prodrugs, hydrate, ester, or analogs thereof.


In some embodiments, at least the portion of the stent system that includes the mounted stent is tested using Lubricity Test 1 and has a lubricity of at least one of: at most about 14 g, at most about 13 g, at most about 12 g, at most about 11 g at most about 10 g, at most about 9 g, at most about 8 g, at most about 7 g, at most about 6 g, and at most about 5 g.


In some embodiments, the stent has a closed cell design. In some embodiments, the stent has an open cell design. In some embodiments, the stent has a hybrid of an open and a closed cell design.


In some embodiments, the elongate member has a useable length of about 140 centimeters.


Provided herein is a stent comprising: a coating of at most 20 micrometers thickness comprising polymer and a pharmaceutical agent, in which the coated stent comprises a surface hardness (Hf) of at most 2 GPa when measured by Nanoindentation Test 1.


Provided herein is a stent comprising: a coating of at most 20 micrometers thickness comprising polymer and a pharmaceutical agent, in which the coated stent tested in a wetted state comprises a surface hardness (Hf) of at least one of: at most 2 GPa, at most 1.8 GPa, at most 1.6 GPa, at most 1.4 GPa, at most 1.2 GPa, at most 1 GPa, at most 0.8 GPa, at most 0.75 GPa, and at most 0.5 GPa, when measured by Nanoindentation Test 1.


In some embodiments, the polymer comprises PLGA. In some embodiments, the polymer is hydrophilic. In some embodiments, the polymer is bioabsorbable. In some embodiments, the polymer comprises at least one of PLGA, a copolymer comprising PLGA (i.e. a PLGA copolymer), a PLGA copolymer with a ratio of about 40:60 to about 60:40, a PLGA copolymer with a ratio of about 70:30 to about 90:10, a PLGA copolymer having a molecular weight of about 10 kD, a PLGA copolymer having a molecular weight of about 19 kD, PGA poly(glycolide), LPLA poly(l-lactide), DLPLA poly(dl-lactide), PCL poly(e-caprolactone) PDO, poly(dioxolane) PGA-TMC, 85/15 DLPLG p(dl-lactide-co-glycolide), 75/25 DLPL, 65/35 DLPLG, 50/50 DLPLG, TMC poly(trimethylcarbonate), p(CPP:SA) poly(1,3-bis-p-(carboxyphenoxy)propane-co-sebacic acid), and a combination thereof.


In some embodiments, the uncoated stent strut thickness is at most 64 micrometers.


T In some embodiments, the coating comprises a pharmaceutical agent. In some embodiments, the pharmaceutical agent comprises at least one of rapamycin, a prodrug, a derivative, an analog, a hydrate, an ester, and a salt thereof; wherein at least a portion of the pharmaceutical agent is in crystalline form. In some embodiments, the pharmaceutical agent comprises one or more of rapamycin, biolimus (biolimus A9), 40-O-(2-Hydroxyethyl)rapamycin (everolimus), 40-O-Benzyl-rapamycin, 40-O-(4′-Hydroxymethyl)benzyl-rapamycin, 40-O-[4′-(1,2-Dihydroxyethyl)]benzyl-rapamycin, 40-O-Allyl-rapamycin, 40-O-[3′-(2,2-Dimethyl-1,3-dioxolan-4(S)-yl)-prop-2′-en-1′-yl]-rapamycin, (2′:E,4′S)-40-O-(4′,5′-Dihydroxypent-2′-en-1′-yl)-rapamycin 40-O-(2-Hydroxy)ethoxycar-bonylmethyl-rapamycin, 40-O-(3-Hydroxy)propyl-rapamycin 4O—O-(6-Hydroxy)hexyl-rapamycin 40-O-[2-(2-Hydroxy)ethoxy]ethyl-rapamycin 4O—O-[(3S)-2,2-Dimethyldioxolan-3-yl]methyl-rapamycin, 40-O-[(2S)-2,3-Dihydroxyprop-1-yl]-rapamycin, 4O—O-(2-Acetoxy)ethyl-rapamycin 4O—O-(2-Nicotinoyloxy)ethyl-rapamycin, 4O—O-[2-(N-Morpholino)acetoxy]ethyl-rapamycin 4O—O-(2-N-Imidazolylacetoxy)ethyl-rapamycin, 40-O-[2-(N-Methyl-N-piperazinyl)acetoxy]ethyl-rapamycin, 39-O-Desmethyl-39,40-O,O-ethylene-rapamycin, (26R)-26-Dihydro-40-O-(2-hydroxy)ethyl-rapamycin, 28-O-Methyl-rapamycin, 4O—O-(2-Aminoethyl)-rapamycin, 4O—O-(2-Acetaminoethyl)-rapamycin 4O—O-(2-Nicotinamidoethyl)-rapamycin, 4O—O-(2-(N-Methyl-imidazo-2′-ylcarbethoxamido)ethyl)-rapamycin, 4O—O-(2-Ethoxycarbonylaminoethyl)-rapamycin, 40-O-(2-Tolylsulfonamidoethyl)-rapamycin, 40-O-[2-(4′,5′-Dicarboethoxy-1′,2′,3′-triazol-1′-yl)-ethyl]-rapamycin, 42-Epi-(tetrazolyl)rapamycin (tacrolimus), 42-[3-hydroxy-2-(hydroxymethyl)-2-methylpropanoate]rapamycin (temsirolimus), (42S)-42-Deoxy-42-(1H-tetrazol-1-yl)-rapamycin (zotarolimus), picrolimus, novolimus, myolimus, and salts, derivatives, isomers, racemates, diastereoisomers, prodrugs, hydrate, ester, or analogs thereof.


In some embodiments, the coated stent comprises a surface hardness (Hf) of at least one of: at most 1.5 GPa, at most 1.4 GPa, at most 1.3 GPa, at most 1.2 GPa, at most 1.1 GPa, at most 1.0 GPa, at most 0.9 GPa, at most 0.8 GPa, at most 0.7 GPa, at most 0.6 GPa, at most 0.5 GPa, at most 0.4 GPa, at most 0.3 GPa, at most 0.2 GPa, when measured by Nanoindentation Test 1.


In some embodiments, the coated stent is wetted in a saline solution for about 5 minutes prior to surface hardness (Hf) testing. In some embodiments, the coated stent is wetted in a saline solution for about 4 hours prior to surface hardness (Hf) testing.


INCORPORATION BY REFERENCE

All publications and patent applications mentioned in this specification are herein incorporated by reference to the same extent as if each individual publication or patent application was specifically and individually indicated to be incorporated by reference.





BRIEF DESCRIPTION OF THE DRAWINGS

The novel features of the invention are set forth with particularity in the appended claims. A better understanding of the features and advantages of the present invention will be obtained by reference to the following detailed description that sets forth illustrative embodiments, in which the principles of the invention are utilized, and the accompanying drawings of which:



FIG. 1 depicts an in-vitro tortuosity fixture, such as is used on Tortuosity Test 2, showing various simulated paths of the coronary vasculature.



FIG. 2 depicts a stent delivery systems of embodiments described herein advanced through a single guiding catheter concurrently and to two branches of an artery.



FIGS. 3A-3D depicts a guiding catheters in an aortic arch through which two stent delivery system embodiments described herein may be advanced concurrently to reach two locations in a coronary artery.





DETAILED DESCRIPTION

The present invention is explained in greater detail below. This description is not intended to be a detailed catalog of all the different ways in which the invention may be implemented, or all the features that may be added to the instant invention. For example, features illustrated with respect to one embodiment may be incorporated into other embodiments, and features illustrated with respect to a particular embodiment may be deleted from that embodiment. In addition, numerous variations and additions to the various embodiments contemplated herein will be apparent to those skilled in the art in light of the instant disclosure, which do not depart from the instant invention. Hence, the following specification is intended to illustrate selected embodiments of the invention, and not to exhaustively specify all permutations, combinations and variations thereof.


Definitions

As used in the present specification, the following words and phrases are generally intended to have the meanings as set forth below, except to the extent that the context in which they are used indicates otherwise.


“Substrate” as used herein, refers to any surface upon which it is desirable to deposit a coating comprising a polymer and a pharmaceutical or biological agent, wherein the coating process does not substantially modify the morphology of the pharmaceutical agent or the activity of the biological agent. Biomedical implants are of particular interest for the present invention; however the present invention is not intended to be restricted to this class of substrates. Those of skill in the art will appreciate alternate substrates that could benefit from the coating process described herein, such as pharmaceutical tablet cores, as part of an assay apparatus or as components in a diagnostic kit (e.g. a test strip).


“Biomedical implant” as used herein refers to any implant for insertion into the body of a human or animal subject, including but not limited to stents (e.g., coronary stents, vascular stents including peripheral stents and graft stents, urinary tract stents, urethral/prostatic stents, rectal stent, oesophageal stent, biliary stent, pancreatic stent), electrodes, catheters, leads, implantable pacemaker, cardioverter or defibrillator housings, joints, screws, rods, ophthalmic implants, femoral pins, bone plates, grafts, anastomotic devices, perivascular wraps, sutures, staples, shunts for hydrocephalus, dialysis grafts, colostomy bag attachment devices, ear drainage tubes, leads for pace makers and implantable cardioverters and defibrillators, vertebral disks, bone pins, suture anchors, hemostatic barriers, clamps, screws, plates, clips, vascular implants, tissue adhesives and sealants, tissue scaffolds, various types of dressings (e.g., wound dressings), bone substitutes, intraluminal devices, vascular supports, etc.


The implants may be formed from any suitable material, including but not limited to polymers (including stable or inert polymers, organic polymers, organic-inorganic copolymers, inorganic polymers, and biodegradable polymers), metals, metal alloys, inorganic materials such as silicon, and composites thereof, including layered structures with a core of one material and one or more coatings of a different material. Substrates made of a conducting material facilitate electrostatic capture. However, the invention contemplates the use of electrostatic capture, as described below, in conjunction with substrate having low conductivity or which are non-conductive. To enhance electrostatic capture when a non-conductive substrate is employed, the substrate is processed for example while maintaining a strong electrical field in the vicinity of the substrate.


Subjects into which biomedical implants of the invention may be applied or inserted include both human subjects (including male and female subjects and infant, juvenile, adolescent, adult and geriatric subjects) as well as animal subjects (including but not limited to pig, rabbit, mouse, dog, cat, horse, monkey, etc.) for veterinary purposes and/or medical research.


In a preferred embodiment the biomedical implant is an expandable intraluminal vascular graft or stent (e.g., comprising a wire mesh tube) that can be expanded within a blood vessel by an angioplasty balloon associated with a catheter to dilate and expand the lumen of a blood vessel, such as described in U.S. Pat. No. 4,733,665 to Palmaz.


“Pharmaceutical agent” as used herein refers to any of a variety of drugs or pharmaceutical compounds that can be used as active agents to prevent or treat a disease (meaning any treatment of a disease in a mammal, including preventing the disease, i.e. causing the clinical symptoms of the disease not to develop; inhibiting the disease, i.e. arresting the development of clinical symptoms; and/or relieving the disease, i.e. causing the regression of clinical symptoms). It is possible that the pharmaceutical agents of the invention may also comprise two or more drugs or pharmaceutical compounds. Pharmaceutical agents, include but are not limited to antirestenotic agents, antidiabetics, analgesics, antiinflammatory agents, antirheumatics, antihypotensive agents, antihypertensive agents, psychoactive drugs, tranquillizers, antiemetics, muscle relaxants, glucocorticoids, agents for treating ulcerative colitis or Crohn's disease, antiallergics, antibiotics, antiepileptics, anticoagulants, antimycotics, antitussives, arteriosclerosis remedies, diuretics, proteins, peptides, enzymes, enzyme inhibitors, gout remedies, hormones and inhibitors thereof, cardiac glycosides, immunotherapeutic agents and cytokines, laxatives, lipid-lowering agents, migraine remedies, mineral products, otologicals, anti parkinson agents, thyroid therapeutic agents, spasmolytics, platelet aggregation inhibitors, vitamins, cytostatics and metastasis inhibitors, phytopharmaceuticals, chemotherapeutic agents and amino acids. Examples of suitable active ingredients are acarbose, antigens, beta-receptor blockers, non-steroidal antiinflammatory drugs (NSAIDs), cardiac glycosides, acetylsalicylic acid, virustatics, aclarubicin, acyclovir, cisplatin, actinomycin, alpha- and beta-sympatomimetics, dmeprazole, allopurinol, alprostadil, prostaglandins, amantadine, ambroxol, amlodipine, methotrexate, S-aminosalicylic acid, amitriptyline, amoxicillin, anastrozole, atenolol, azathioprine, balsalazide, beclomethasone, betahistine, bezafibrate, bicalutamide, diazepam and diazepam derivatives, budesonide, bufexamac, buprenorphine, methadone, calcium salts, potassium salts, magnesium salts, candesartan, carbamazepine, captopril, cefalosporins, cetirizine, chenodeoxycholic acid, ursodeoxycholic acid, theophylline and theophylline derivatives, trypsins, cimetidine, clarithromycin, clavulanic acid, clindamycin, clobutinol, clonidine, cotrimoxazole, codeine, caffeine, vitamin D and derivatives of vitamin D, colestyramine, cromoglicic acid, coumarin and coumarin derivatives, cysteine, cytarabine, cyclophosphamide, ciclosporin, cyproterone, cytabarine, dapiprazole, desogestrel, desonide, dihydralazine, diltiazem, ergot alkaloids, dimenhydrinate, dimethyl sulphoxide, dimeticone, domperidone and domperidan derivatives, dopamine, doxazosin, doxorubizin, doxylamine, dapiprazole, benzodiazepines, diclofenac, glycoside antibiotics, desipramine, econazole, ACE inhibitors, enalapril, ephedrine, epinephrine, epoetin and epoetin derivatives, morphinans, calcium antagonists, irinotecan, modafinil, orlistat, peptide antibiotics, phenyloin, riluzoles, risedronate, sildenafil, topiramate, macrolide antibiotics, oestrogen and oestrogen derivatives, progestogen and progestogen derivatives, testosterone and testosterone derivatives, androgen and androgen derivatives, ethenzamide, etofenamate, etofibrate, fenofibrate, etofylline, etoposide, famciclovir, famotidine, felodipine, fenofibrate, fentanyl, fenticonazole, gyrase inhibitors, fluconazole, fludarabine, fluarizine, fluorouracil, fluoxetine, flurbiprofen, ibuprofen, flutamide, fluvastatin, follitropin, formoterol, fosfomicin, furosemide, fusidic acid, gallopamil, ganciclovir, gemfibrozil, gentamicin, ginkgo, Saint John's wort, glibenclamide, urea derivatives as oral antidiabetics, glucagon, glucosamine and glucosamine derivatives, glutathione, glycerol and glycerol derivatives, hypothalamus hormones, goserelin, gyrase inhibitors, guanethidine, halofantrine, haloperidol, heparin and heparin derivatives, hyaluronic acid, hydralazine, hydrochlorothiazide and hydrochlorothiazide derivatives, salicylates, hydroxyzine, idarubicin, ifosfamide, imipramine, indometacin, indoramine, insulin, interferons, iodine and iodine derivatives, isoconazole, isoprenaline, glucitol and glucitol derivatives, itraconazole, ketoconazole, ketoprofen, ketotifen, lacidipine, lansoprazole, levodopa, levomethadone, thyroid hormones, lipoic acid and lipoic acid derivatives, lisinopril, lisuride, lofepramine, lomustine, loperamide, loratadine, maprotiline, mebendazole, mebeverine, meclozine, mefenamic acid, mefloquine, meloxicam, mepindolol, meprobamate, meropenem, mesalazine, mesuximide, metamizole, metformin, methotrexate, methylphenidate, methylprednisolone, metixene, metoclopramide, metoprolol, metronidazole, mianserin, miconazole, minocycline, minoxidil, misoprostol, mitomycin, mizolastine, moexipril, morphine and morphine derivatives, evening primrose, nalbuphine, naloxone, tilidine, naproxen, narcotine, natamycin, neostigmine, nicergoline, nicethamide, nifedipine, niflumic acid, nimodipine, nimorazole, nimustine, nisoldipine, adrenaline and adrenaline derivatives, norfloxacin, novamine sulfone, noscapine, nystatin, ofloxacin, olanzapine, olsalazine, omeprazole, omoconazole, ondansetron, oxaceprol, oxacillin, oxiconazole, oxymetazoline, pantoprazole, paracetamol, paroxetine, penciclovir, oral penicillins, pentazocine, pentifylline, pentoxifylline, perphenazine, pethidine, plant extracts, phenazone, pheniramine, barbituric acid derivatives, phenylbutazone, phenyloin, pimozide, pindolol, piperazine, piracetam, pirenzepine, piribedil, piroxicam, pramipexole, pravastatin, prazosin, procaine, promazine, propiverine, propranolol, propyphenazone, prostaglandins, protionamide, proxyphylline, quetiapine, quinapril, quinaprilat, ramipril, ranitidine, reproterol, reserpine, ribavirin, rifampicin, risperidone, ritonavir, ropinirole, roxatidine, roxithromycin, ruscogenin, rutoside and rutoside derivatives, sabadilla, salbutamol, salmeterol, scopolamine, selegiline, sertaconazole, sertindole, sertralion, silicates, sildenafil, simvastatin, sitosterol, sotalol, spaglumic acid, sparfloxacin, spectinomycin, spiramycin, spirapril, spironolactone, stavudine, streptomycin, sucralfate, sufentanil, sulbactam, sulphonamides, sulfasalazine, sulpiride, sultamicillin, sultiam, sumatriptan, suxamethonium chloride, tacrine, tacrolimus, taliolol, tamoxifen, taurolidine, tazarotene, temazepam, teniposide, tenoxicam, terazosin, terbinafine, terbutaline, terfenadine, terlipressin, tertatolol, tetracyclins, teryzoline, theobromine, theophylline, butizine, thiamazole, phenothiazines, thiotepa, tiagabine, tiapride, propionic acid derivatives, ticlopidine, timolol, tinidazole, tioconazole, tioguanine, tioxolone, tiropramide, tizanidine, tolazoline, tolbutamide, tolcapone, tolnaftate, tolperisone, topotecan, torasemide, antioestrogens, tramadol, tramazoline, trandolapril, tranylcypromine, trapidil, trazodone, triamcinolone and triamcinolone derivatives, triamterene, trifluperidol, trifluridine, trimethoprim, trimipramine, tripelennamine, triprolidine, trifosfamide, tromantadine, trometamol, tropalpin, troxerutine, tulobuterol, tyramine, tyrothricin, urapidil, ursodeoxycholic acid, chenodeoxycholic acid, valaciclovir, valproic acid, vancomycin, vecuronium chloride, Viagra, venlafaxine, verapamil, vidarabine, vigabatrin, viloazine, vinblastine, vincamine, vincristine, vindesine, vinorelbine, vinpocetine, viquidil, warfarin, xantinol nicotinate, xipamide, zafirlukast, zalcitabine, zidovudine, zolmitriptan, zolpidem, zoplicone, zotipine and the like. See, e.g., U.S. Pat. No. 6,897,205; see also U.S. Pat. Nos. 6,838,528; 6,497,729.


In some embodiments of the methods and/or devices provided herein, the pharmaceutical agent comprises a macrolide immunosuppressive drug. In some embodiments, the active agent is selected from rapamycin, a prodrug, a derivative, an analog, a hydrate, an ester, and a salt thereof. In some embodiments, the active agent is selected from sirolimus, a prodrug, a derivative, an analog, a hydrate, an ester, and a salt thereof. As used herein, rapamycin and sirolimus are interchangable terms. In some embodiments, the active agent is selected from one or more of sirolimus, everolimus, zotarolimus and biolimus. In some embodiments, the active agent comprises a macrolide immunosuppressive (limus) drug.


In some embodiments, the pharmaceutical agent comprises one or more of rapamycin, biolimus (biolimus A9), 40-O-(2-Hydroxyethyl)rapamycin (everolimus), 40-O-Benzyl-rapamycin, 40-O-(4′-Hydroxymethyl)benzyl-rapamycin, 40-O-[4′-(1,2-Dihydroxyethyl)]benzyl-rapamycin, 40-O-Allyl-rapamycin, 40-O-[3′-(2,2-Dimethyl-1,3-dioxolan-4(S)-yl)-prop-2′-en-1′-yl]-rapamycin, (2′:E,4′S)-40-O-(4′,5′-Dihydroxypent-2′-en-1′-yl)-rapamycin 40-O-(2-Hydroxy)ethoxycar-bonylmethyl-rapamycin, 40-O-(3-Hydroxy)propyl-rapamycin 4O—O-(6-Hydroxy)hexyl-rapamycin 40-O-[2-(2-Hydroxy)ethoxy]ethyl-rapamycin 4O—O-[(3S)-2,2-Dimethyldioxolan-3-yl]methyl-rapamycin, 40-O-[(2S)-2,3-Dihydroxyprop-1-yl]-rapamycin, 4O—O-(2-Acetoxy)ethyl-rapamycin 4O—O-(2-Nicotinoyloxy)ethyl-rapamycin, 4O—O-[2-(N-Morpholino)acetoxy]ethyl-rapamycin 4O—O-(2-N-Imidazolylacetoxy)ethyl-rapamycin, 40-O-[2-(N-Methyl-N′-piperazinyl)acetoxy]ethyl-rapamycin, 39-O-Desmethyl-39,40-O,O-ethylene-rapamycin, (26R)-26-Dihydro-40-O-(2-hydroxy)ethyl-rapamycin, 28-O-Methyl-rapamycin, 4O—O-(2-Aminoethyl)-rapamycin, 4O—O-(2-Acetaminoethyl)-rapamycin 4O—O-(2-Nicotinamidoethyl)-rapamycin, 4O—O-(2-(N-Methyl-imidazo-2′-ylcarbethoxamido)ethyl)-rapamycin, 4O—O-(2-Ethoxycarbonylaminoethyl)-rapamycin, 40-O-(2-Tolylsulfonamidoethyl)-rapamycin, 40-O-[2-(4′,5′-Dicarboethoxy-1′,2′,3′-triazol-1′-yl)-ethyl]-rapamycin, 42-Epi-(tetrazolyl)rapamycin (tacrolimus), 42-[3-hydroxy-2-(hydroxymethyl)-2-methylpropanoate]rapamycin (temsirolimus), (42S)-42-Deoxy-42-(1H-tetrazol-1-yl)-rapamycin (zotarolimus), picrolimus, novolimus, myolimus, and salts, derivatives, isomers, racemates, diastereoisomers, prodrugs, hydrate, ester, or analogs thereof.


The pharmaceutical agents may, if desired, also be used in the form of their pharmaceutically acceptable salts or derivatives (meaning salts which retain the biological effectiveness and properties of the compounds of this invention and which are not biologically or otherwise undesirable), and in the case of chiral active ingredients it is possible to employ both optically active isomers and racemates or mixtures of diastereoisomers. As well, the pharmaceutical agent may include a prodrug, a hydrate, an ester, a derivative or analogs of a compound or molecule.


A “pharmaceutically acceptable salt” may be prepared for any pharmaceutical agent having a functionality capable of forming a salt, for example an acid or base functionality. Pharmaceutically acceptable salts may be derived from organic or inorganic acids and bases. The term “pharmaceutically-acceptable salts” in these instances refers to the relatively non-toxic, inorganic and organic base addition salts of the pharmaceutical agents.


“Prodrugs” are derivative compounds derivatized by the addition of a group that endows greater solubility to the compound desired to be delivered. Once in the body, the prodrug is typically acted upon by an enzyme, e.g., an esterase, amidase, or phosphatase, to generate the active compound.


“Stability” as used herein in refers to the stability of the drug in a polymer coating deposited on a substrate in its final product form (e.g., stability of the drug in a coated stent). The term stability may define 5% or less degradation of the drug in the final product form. In some embodiments, the term stability will define 10% or less degradation of the drug in the final product form. In some embodiments, the term stability will define 15% or less degradation of the drug in the final product form. In some embodiments, the term stability will define 20% or less degradation of the drug in the final product form.


Some embodiments comprise active biological agents. In some embodiments, the coating comprises an active biological agent. “Active biological agent” as used herein refers to a substance, originally produced by living organisms, that can be used to prevent or treat a disease (meaning any treatment of a disease in a mammal, including preventing the disease, i.e. causing the clinical symptoms of the disease not to develop; inhibiting the disease, i.e. arresting the development of clinical symptoms; and/or relieving the disease, i.e. causing the regression of clinical symptoms). It is possible that the active biological agents of the invention may also comprise two or more active biological agents or an active biological agent combined with a pharmaceutical agent, a stabilizing agent or chemical or biological entity. Although the active biological agent may have been originally produced by living organisms, those of the present invention may also have been synthetically prepared, or by methods combining biological isolation and synthetic modification. By way of a non-limiting example, a nucleic acid could be isolated form from a biological source, or prepared by traditional techniques, known to those skilled in the art of nucleic acid synthesis. Furthermore, the nucleic acid may be further modified to contain non-naturally occurring moieties. Non-limiting examples of active biological agents include peptides, proteins, enzymes, glycoproteins, nucleic acids (including deoxyribonucleotide or ribonucleotide polymers in either single or double stranded form, and unless otherwise limited, encompasses known analogues of natural nucleotides that hybridize to nucleic acids in a manner similar to naturally occurring nucleotides), antisense nucleic acids, fatty acids, antimicrobials, vitamins, hormones, steroids, lipids, polysaccharides, carbohydrates and the like. They further include, but are not limited to, antirestenotic agents, antidiabetics, analgesics, antiinflammatory agents, antirheumatics, antihypotensive agents, antihypertensive agents, psychoactive drugs, tranquillizers, antiemetics, muscle relaxants, glucocorticoids, agents for treating ulcerative colitis or Crohn's disease, antiallergics, antibiotics, antiepileptics, anticoagulants, antimycotics, antitussives, arteriosclerosis remedies, diuretics, proteins, peptides, enzymes, enzyme inhibitors, gout remedies, hormones and inhibitors thereof, cardiac glycosides, immunotherapeutic agents and cytokines, laxatives, lipid-lowering agents, migraine remedies, mineral products, otologicals, anti parkinson agents, thyroid therapeutic agents, spasmolytics, platelet aggregation inhibitors, vitamins, cytostatics and metastasis inhibitors, phytopharmaceuticals and chemotherapeutic agents. Preferably, the active biological agent is a peptide, protein or enzyme, including derivatives and analogs of natural peptides, proteins and enzymes. The active biological agent may also be a hormone, gene therapies, RNA, siRNA, and/or cellular therapies (for non-limiting example, stem cells or T-cells).


In some embodiments, the coating of the device comprises a combination of a pharmaceutical agent and an active biological agent.


In some embodiments, the device comprises an active agent. In some embodiments, the coating of the device comprises an active agent. “Active agent” as used herein refers to any pharmaceutical agent or active biological agent as described herein.


“Activity” as used herein refers to the ability of a pharmaceutical or active biological agent to prevent or treat a disease (meaning any treatment of a disease in a mammal, including preventing the disease, i.e. causing the clinical symptoms of the disease not to develop; inhibiting the disease, i.e. arresting the development of clinical symptoms; and/or relieving the disease, i.e. causing the regression of clinical symptoms). Thus the activity of a pharmaceutical or active biological agent should be of therapeutic or prophylactic value.


“Secondary, tertiary and quaternary structure” as used herein are defined as follows. The active biological agents of the present invention will typically possess some degree of secondary, tertiary, or quaternary structure, or a combination thereof, upon which the activity of the agent depends. As an illustrative, non-limiting example, proteins possess secondary, tertiary and quaternary structure. Secondary structure refers to the spatial arrangement of amino acid residues that are near one another in the linear sequence. The α-helix and the β-strand are elements of secondary structure. Tertiary structure refers to the spatial arrangement of amino acid residues that are far apart in the linear sequence and to the pattern of disulfide bonds. Proteins containing more than one polypeptide chain exhibit an additional level of structural organization. Each polypeptide chain in such a protein is called a subunit. Quaternary structure refers to the spatial arrangement of subunits and the nature of their contacts. For example hemoglobin consists of two α and two β chains. It is well known that protein function arises from its conformation or three dimensional arrangement of atoms (a stretched out polypeptide chain is devoid of activity). Thus one aspect of the present invention is to manipulate active biological agents, while being careful to maintain their conformation, so as not to lose their therapeutic activity.


“Polymer” as used herein, refers to a series of repeating monomeric units that have been cross-linked or polymerized. Any suitable polymer can be used to carry out the present invention. It is possible that the polymers of the invention may also comprise two, three, four or more different polymers. In some embodiments, of the invention only one polymer is used. In some preferred embodiments a combination of two polymers are used. Combinations of polymers can be in varying ratios, to provide coatings with differing properties. Those of skill in the art of polymer chemistry will be familiar with the different properties of polymeric compounds. Polymers are referred to herein with respect to coating polymers and with regard to balloon polymers. These may be different polymers having different attributes. For example, the coating polymer is meant to be implanted in the subject when the device is implanted, however, the balloon polymer is part of the delivery system and is used to expand the device to the desired dimensions. Thus, the two polymers serve very different purposes and are typically made of different polymers, as described herein.


Typical balloon polymers are well known and may comprise any number of types of polymers that are compliant, semi-compliant, or non-compliant in use, for example. Polymers of the balloon may comprise, for non-limiting example, polyamide. Polymers of the balloon may comprise, for non-limiting example, at least one of: polyethylene, polyethylene terephthalate (PET), high density polyethylene (HDPE), Arnitel, Hyrtrel, polyetherether ketone (PEEK), urethane, polyurethane, urethane elastomer, nylon, polyamide, polyether block amide (PEBAX), a block copolymer of any polymer listed herein, Teflon, polyolefin, and a thermoplastic elastomer.


The balloon may be formed of any material which may be made by radial expansion, typically thermoplastic polymers. It is possible to make balloons from a variety of thermoplastic polymers. Some balloons may comprise low, linear low, medium and high density polyethylenes; polypropylenes; poly(ethylene vinyl acetate) (EVA); poly(ethylene vinyl alcohol) (EVOH) and EVA/EVOH terpolymers; polyolefin-ionomers; ethylene-butylene-styrene block copolymers blended with low molecular weight polystyrene and, optionally, polypropylene, and similar compositions substituting butadiene or isoprene in place of the ethylene and butylene; poly(vinyl chloride); polyurethanes; polyesters and copolyesters; polycarbonate; thermoplastic elastomers; silicone-polycarbonate copolymers; polyamides; thermoplastic polyimides; liquid crystal polymers; ABS (acrylonitrile butadiene styrene); ANS (acrylonitrile styrene); Delrin polyacetal; PEI (polyetherimide); and PES (polyether sulfone). Physical blends and copolymers of such materials may also be used.


Orientable polyesters, especially polyethylene terephthalate (PET), in some embodiments form the balloon of the delivery system. Suitable PET polymers have an initial intrinsic viscosity of at least 0.5, for instance, 0.6-1.3. Other high strength polyester materials, such as poly(ethylene napthalenedicarboxylate) (PEN); and poly(butylene terephthalate may also be used. Polyester copolymers such as the random copolymer made from dimethyl terephthalate dimethyl isophthalate and ethylene glycol described in U.S. Pat. No. 5,330,428 Wang, et al. (incorporated in its entirety by reference herein) may also be employed.


Examples of polyamides which may be used in some embodiments include nylon 6, nylon 64, nylon 66, nylon 610, nylon 610, nylon 612, nylon 46, nylon 9, nylon 10, nylon 11, nylon 12, and mixtures thereof.


The balloon may be formed of polyurethanes such as Tecothane from Thermedics. Tecothane. is a thermoplastic, aromatic, polyether polyurethane synthesized from methylene diisocyanate (MDI), polytetramethylene ether glycol (PTMEG) and 1,4 butanediol chain extender. Tecothane. 1065D and 1075D are examples. Other polyurethanes which have been used are Isoplast. 301, a high strength engineering thermoplastic polyurethane, and Pellethane. 2363-75D, both sold by Dow Chemical Co. References illustrating polyurethane balloon materials include U.S. Pat. No. 4,950,239, to Gahara, U.S. Pat. No. 5,500,180 to Anderson et al., U.S. Pat. No. 6,146,356 to Wang, et al., and U.S. Pat. No. 6,572,813, to Zhang, et al., which are incorporated herein by reference in their entirety.


Other suitable polymeric materials include Engage from DuPont Dow Elastomers (an ethylene alpha-olefin polymer) and Exact, available from Exxon Chemical, both of which are thermoplastic polymers and are believed to be polyolefin elastomers produced from metallocene catalysts. These are compliant materials which provide balloons which have a substantial range of available diameters to which they may be expanded and still recover elastically.


Balloons of the invention may be also made of polyamide/polyether block copolymers. The polyamide/polyether block copolymers are commonly identified by the acronym PEBA (polyether block amide). The polyamide and polyether segments of these block copolymers may be linked through amide linkages or ester linked segmented polymers, i.e. polyamide/polyether polyesters. Such polyamide/polyether/polyester block copolymers are made by a molten state polycondensation reaction of a dicarboxylic polyamide and a polyether diol. The result is a short chain polyester made up of blocks of polyamide and polyether.


Polyamide/polyether polyesters are sold commercially under the Pebax, trademark by Elf Atochem North America, Inc., Philadelphia Pa. Examples of suitable commercially available polymers are the Pebax 33 series polymers with hardness 60 and above, Shore D scale, especially Pebax 6333, 7033 and 7233. These polymers are made up of nylon 12 segments and poly(tetramethylene ether) segments.


It is also possible to utilize polyester/polyether segmented block copolymers and obtain similar balloon properties. Such polymers are made up of at least two polyester and at least two polyether segments. The polyether segments are the same as previously described for the polyamide/polyether block copolymers useful in the invention. The polyester segments are polyesters of an aromatic dicarboxylic acid and a two to four carbon diol. The polyether segments of the polyester/polyether segmented block copolymers are aliphatic polyethers having at least 2 and no more than 10 linear saturated aliphatic carbon atoms between ether linkages. More preferably the ether segments have 4-6 carbons between ether linkages, and most preferably they are poly(tetramethylene ether) segments. Examples of other polyethers which may be employed in place of the preferred tetramethylene ether segments include polyethylene glycol, polypropylene glycol, poly(pentamethylene ether) and poly(hexamethylene ether). The hydrocarbon portions of the polyether may be optionally branched. An example is the polyether of 2-ethylhexane diol. Generally such branches will contain no more than two carbon atoms. The molecular weight of the polyether segments is suitably between about 400 and 2,500, preferably between 650 and 1000.


The polyester segments are polyesters of an aromatic dicarboxylic acid and a two to four carbon diol. Suitable dicarboxylic acids used to prepare the polyester segments of the polyester/polyether block copolymers are ortho-, meta- or para-phthalic acid, napthalenedicarboxylic acid or meta-terphenyl-4,4′-dicarboxylic acids. Preferred polyester/polyether block copolymers are poly(butylene terephthalate)-block-poly(tetramethylene oxide) polymers such as Arnitel EM 740, sold by DSM Engineering Plastics, and Hytrel polymers, sold by DuPont, such as Hytrel 8230.


Examples of thermoplastic polyimides are described in T. L. St. Clair and H. D. Burks, “Thermoplastic/Melt-Processable Polyimides,” NASA Conf. Pub. #2334 (1984), pp. 337-355, incorporated herein by reference in its entirety. A suitable thermoplastic polyimide is described in U.S. Pat. No. 5,096,848 (incorporated herein by reference in its entirety) and is available commercially under the tradename Aurum from Mitsui Toatsu Chemicals, Inc., of Tokyo, Japan.


Examples of liquid crystal polymers include the products Vectra from Hoechst Celanese; Rodrun from Unitika; LX and HX series polymers and Zenite polymers from DuPont; Sumikosuper and Ekonol from Sumitomo Chemical; Granlar from Grandmont; and Xydar® from Amoco. Suitably the liquid crystal polymer materials are blended with another thermoplastic polymer such as PET, nylon 12, or a block copolymer such as Pebax7033 or 7233 or Arintel EM 740 or Hytrel 8230. The liquid crystal polymer may be present as fibers in a matrix of the blend polymer.


The balloon material may be multilayered, for instance combining an outer layer of a material which is relatively soft and flexible, and/or lubricious, with an inner layer of a stronger polymer. Alternatively, or additionally, an innermost layer may be provided which is selected for compatibility with direct bonding, e.g. by fusion welding, or adhesive bonding, to the catheter material.


Polymers used for coatings described herein may be durable (non-bioabsorbable), bioabsorbable, or a combination thereof. Durable polymers and/or bioabsorbable polymers known in the art may be used in some embodiments described herein. Polymers may be hydrophilic and/or hydrophobic, depending on the embodiment. Some coating polymers known in the art and may include polylactic acid, polycaprolactone, polyethylene glucol, ethylvinylacetate, polyorganophosphazine, polyurethane, polytetrafluoroethane, phosphorylcholine, methacrylo-phosphorylcholine-lauryl-methacrulate, combinations thereof, and/or copolymers thereof. Representative polymers for coatings in some embodiments include, but are not limited to, poly(ester amide), polystyrene-polyisobutylene-polystyrene block copolymer (SIS), polystyrene, polyisobutylene, polycaprolactone (PCL), poly(L-lactide), poly(D,L-lactide), poly(lactides), polylactic acid (PLA), poly(lactide-co-glycolide), poly(glycolide), polyalkylene, polyfluoroalkylene, polyhydroxyalkanoate, poly(3-hydroxybutyrate), poly(4-hydroxybutyrate), poly(3-hydroxyvalerate), poly(3-hydroxybutyrate-co-3-hydroxyvalerate), poly(3-hydroxyhexanoate), poly(4-hyroxyhexanoate), mid-chain polyhydroxyalkanoate, poly (trimethylene carbonate), poly (ortho ester), polyphosphazenes, poly (phosphoester), poly(tyrosine derived arylates), poly(tyrosine derived carbonates), polydimethyloxanone (PDMS), polyvinylidene fluoride (PVDF), polyhexafluoropropylene (HFP), polydimethylsiloxane, poly (vinylidene fluoride-co-hexafluoropropylene) (PVDF-HFP), poly (vinylidene fluoride-co-chlorotrifluoroethylene) (PVDF-CTFE), poly(methacrylates) such as poly(butyl methacrylate) (PBMA) or poly(methyl methacrylate) (PMMA), poly(vinyl acetate), poly(ethylene-co-vinyl acetate), poly(ethylene-co-vinyl alcohol), poly(ester urethanes), poly(ether-urethanes), poly(carbonate-urethanes), poly(silicone-urethanes), poly(urea-urethanes) or a combination thereof.


In some other embodiments, the coating polymer may be, but is not limited to, polymers and co-polymers of PEG acrylate (PEGA), PEG methacrylate, 2-methacryloyloxyethylphosphorylcholine (MPC) and n-vinyl pyrrolidone (VP), carboxylic acid bearing monomers such as methacrylic acid (MA), acrylic acid (AA), hydroxyl bearing monomers such as HEMA, hydroxypropyl methacrylate (HPMA), hydroxypropylmethacrylamide, and 3-trimethylsilylpropyl methacrylate (TMSPMA), poly(ethylene glycol) (PEG), poly(propylene glycol), SIS-PEG, polystyrene-PEG, polyisobutylene-PEG, PCL-PEG, PLA-PEG, PMMA-PEG, PDMS-PEG, PVDF-PEG, PLURONIC™ surfactants (polypropylene oxide-co-polyethylene glycol), poly(tetramethylene glycol), poly(L-lysine-ethylene glycol) (PLL-g-PEG), poly(L-g-lysine-hyaluronic acid) (PLL-g-HA), poly(L-lysine-g-phosphoryl choline) (PLL-g-PC), poly(L-lysine-g-vinylpyrrolidone) (PLL-g-PVP), poly(ethylimine-g-ethylene glycol) (PEI-g-PEG), poly(ethylimine-g-hyaluronic acid) (PEI-g-HA), poly(ethylimine-g-phosphoryl choline) (PEI-g-PC), and poly(ethylimine-g-vinylpyrrolidone) (PEI-g-PVP), PLL-co-HA, PLL-co-PC, PLL-co-PVP, PEI-co-PEG, PEI-co-HA, PEI-co-PC, and PEI-co-PVP, hydroxy functional poly(vinyl pyrrolidone), polyalkylene oxide, dextran, dextrin, sodium hyaluronate, hyaluronic acid, elastin, chitosan, acrylic sulfate, acrylic sulfonate, acrylic sulfamate, methacrylic sulfate, methacrylic sulfonate, methacrylic sulfamate and combination thereof. The non-fouling polymer can be, for example, poly(ethylene glycol), poly(alkylene oxide), hydroxyethylmethacrylate (HEMA) polymer and copolymers, poly(n-propylmethacrylamide), sulfonated polystyrene, hyaluronic acid, poly(vinyl alcohol), poly(N-vinyl-2-pyrrolidone), sulfonated dextran, phosphoryl choline, choline, or combinations thereof.


In some other embodiments, the coating polymer comprises at least one of: PLGA, a copolymer comprising PLGA (i.e. a PLGA copolymer), a PLGA copolymer with a ratio of about 40:60 to about 60:40, a PLGA copolymer with a ratio of about 70:30 to about 90:10, a PLGA copolymer having a molecular weight of about 10 kD, a PLGA copolymer having a molecular weight of about 19 kD, PGA poly(glycolide), LPLA poly(l-lactide), DLPLA poly(dl-lactide), PCL poly(e-caprolactone) PDO, poly(dioxolane) PGA-TMC, 85/15 DLPLG p(dl-lactide-co-glycolide), 75/25 DLPL, 65/35 DLPLG, 50/50 DLPLG, TMC poly(trimethylcarbonate), p(CPP:SA) poly(1,3-bis-p-(carboxyphenoxy)propane-co-sebacic acid), and a combination thereof


“Copolymer” as used herein refers to a polymer being composed of two or more different monomers. A copolymer may also and/or alternatively refer to random, block, graft, copolymers known to those of skill in the art.


“Biocompatible” as used herein, refers to any material that does not cause injury or death to the animal or induce an adverse reaction in an animal when placed in intimate contact with the animal's tissues. Adverse reactions include for example inflammation, infection, fibrotic tissue formation, cell death, or thrombosis. The terms “biocompatible” and “biocompatibility” when used herein are art-recognized and mean that the referent is neither itself toxic to a host (e.g., an animal or human), nor degrades (if it degrades) at a rate that produces byproducts (e.g., monomeric or oligomeric subunits or other byproducts) at toxic concentrations, causes inflammation or irritation, or induces an immune reaction in the host. It is not necessary that any subject composition have a purity of 100% to be deemed biocompatible. Hence, a subject composition may comprise 99%, 98%, 97%, 96%, 95%, 90% 85%, 80%, 75% or even less of biocompatible agents, e.g., including polymers and other materials and excipients described herein, and still be biocompatible.


To determine whether a polymer or other material is biocompatible, it may be necessary to conduct a toxicity analysis. Such assays are well known in the art. One example of such an assay may be performed with live carcinoma cells, such as GT3TKB tumor cells, in the following manner: the sample is degraded in 1 M NaOH at 37 degrees C. until complete degradation is observed. The solution is then neutralized with 1 M HCl. About 200 microliters of various concentrations of the degraded sample products are placed in 96-well tissue culture plates and seeded with human gastric carcinoma cells (GT3TKB) at 104/well density. The degraded sample products are incubated with the GT3TKB cells for 48 hours. The results of the assay may be plotted as % relative growth vs. concentration of degraded sample in the tissue-culture well. In addition, polymers and formulations of the present invention may also be evaluated by well-known in vivo tests, such as subcutaneous implantations in rats to confirm that they do not cause significant levels of irritation or inflammation at the subcutaneous implantation sites.


The terms “bioabsorbable,” “biodegradable,” “bioerodible,” and “bioresorbable,” are art-recognized synonyms. These terms are used herein interchangeably. Bioabsorbable polymers typically differ from non-bioabsorbable polymers in that the former may be absorbed (e.g.; degraded) during use. In certain embodiments, such use involves in vivo use, such as in vivo therapy, and in other certain embodiments, such use involves in vitro use. In general, degradation attributable to biodegradability involves the degradation of a bioabsorbable polymer into its component subunits, or digestion, e.g., by a biochemical process, of the polymer into smaller, non-polymeric subunits. In certain embodiments, biodegradation may occur by enzymatic mediation, degradation in the presence of water (hydrolysis) and/or other chemical species in the body, or both. The bioabsorbabilty of a polymer may be shown in-vitro as described herein or by methods known to one of skill in the art. An in-vitro test for bioabsorbability of a polymer does not require living cells or other biologic materials to show bioabsorption properties (e.g. degradation, digestion). Thus, resorbtion, resorption, absorption, absorbtion, erosion, and dissolution may also be used synonymously with the terms “bioabsorbable,” “biodegradable,” “bioerodible,” and “bioresorbable.” Mechanisms of degradation of a bioaborbable polymer may include, but are not limited to, bulk degradation, surface erosion, and combinations thereof.


As used herein, the term “biodegradation” encompasses both general types of biodegradation. The degradation rate of a biodegradable polymer often depends in part on a variety of factors, including the chemical identity of the linkage responsible for any degradation, the molecular weight, crystallinity, biostability, and degree of cross-linking of such polymer, the physical characteristics (e.g., shape and size) of the implant, and the mode and location of administration. For example, the greater the molecular weight, the higher the degree of crystallinity, and/or the greater the biostability, the biodegradation of any bioabsorbable polymer is usually slower.


“Therapeutically desirable morphology” as used herein refers to the gross form and structure of the pharmaceutical agent, once deposited on the substrate, so as to provide for optimal conditions of ex vivo storage, in vivo preservation and/or in vivo release. Such optimal conditions may include, but are not limited to increased shelf life, increased in vivo stability, good biocompatibility, good bioavailability or modified release rates. Typically, for the present invention, the desired morphology of a pharmaceutical agent would be crystalline or semi-crystalline or amorphous, although this may vary widely depending on many factors including, but not limited to, the nature of the pharmaceutical agent, the disease to be treated/prevented, the intended storage conditions for the substrate prior to use or the location within the body of any biomedical implant. Preferably at least 10%, 20%, 30%, 40%, 50%, 60%, 70%, 80%, 90% or 100% of the pharmaceutical agent is in crystalline or semi-crystalline form.


“Stabilizing agent” as used herein refers to any substance that maintains or enhances the stability of the biological agent. Ideally these stabilizing agents are classified as Generally Regarded As Safe (GRAS) materials by the US Food and Drug Administration (FDA). Examples of stabilizing agents include, but are not limited to carrier proteins, such as albumin, gelatin, metals or inorganic salts. Pharmaceutically acceptable excipient that may be present can further be found in the relevant literature, for example in the Handbook of Pharmaceutical Additives: An International Guide to More Than 6000 Products by Trade Name, Chemical, Function, and Manufacturer; Michael and Irene Ash (Eds.); Gower Publishing Ltd.; Aldershot, Hampshire, England, 1995.


“Compressed fluid” as used herein refers to a fluid of appreciable density (e.g., >0.2 g/cc) that is a gas at standard temperature and pressure. “Supercritical fluid”, “near-critical fluid”, “near-supercritical fluid”, “critical fluid”, “densified fluid” or “densified gas” as used herein refers to a compressed fluid under conditions wherein the temperature is at least 80% of the critical temperature of the fluid and the pressure is at least 50% of the critical pressure of the fluid, and/or a density of +50% of the critical density of the fluid.


Examples of substances that demonstrate supercritical or near critical behavior suitable for the present invention include, but are not limited to carbon dioxide, isobutylene, ammonia, water, methanol, ethanol, ethane, propane, butane, pentane, dimethyl ether, xenon, sulfur hexafluoride, halogenated and partially halogenated materials such as chlorofluorocarbons, hydrochlorofluorocarbons, hydrofluorocarbons, perfluorocarbon (such as perfluoromethane and perfluoropropane, chloroform, trichloro-fluoromethane, dichloro-difluoromethane, dichloro-tetrafluoroethane) and mixtures thereof. Preferably, the supercritical fluid is hexafluoropropane (FC-236EA), or 1,1,1,2,3,3-hexafluoropropane. Preferably, the supercritical fluid is hexafluoropropane (FC-236EA), or 1,1,1,2,3,3-hexafluoropropane for use in PLGA polymer coatings.


Supercritical fluids are used in some embodiments to manufacture polymer coatings of the device according to an RESS (and/or eRESS) process.


“Sintering” as used herein refers to the process by which parts of the polymer or the entire polymer becomes continuous (e.g., formation of a continuous polymer film). As discussed below, the sintering process is controlled to produce a fully conformal continuous polymer (complete sintering) or to produce regions or domains of continuous coating while producing voids (discontinuities) in the polymer. As well, the sintering process is controlled such that some phase separation is obtained or maintained between polymer different polymers (e.g., polymers A and B) and/or to produce phase separation between discrete polymer particles. Through the sintering process, the adhesions properties of the coating are improved to reduce flaking of detachment of the coating from the substrate during manipulation in use. As described below, in some embodiments, the sintering process is controlled to provide incomplete sintering of the polymer. In embodiments involving incomplete sintering, a polymer is formed with continuous domains, and voids, gaps, cavities, pores, channels or, interstices that provide space for sequestering a therapeutic agent which is released under controlled conditions. Depending on the nature of the polymer, the size of polymer particles and/or other polymer properties, a compressed gas, a densified gas, a near critical fluid or a super-critical fluid may be employed. In one example, carbon dioxide is used to treat a substrate that has been coated with a polymer and a drug, using dry powder and RESS electrostatic coating processes. In another example, isobutylene is employed in the sintering process. In other examples a mixture of carbon dioxide and isobutylene is employed. In another example, 1,1,2,3,3-hexafluoropropane is employed in the sintering process.


When an amorphous material is heated to a temperature above its glass transition temperature, or when a crystalline material is heated to a temperature above a phase transition temperature, the molecules comprising the material are more mobile, which in turn means that they are more active and thus more prone to reactions such as oxidation. However, when an amorphous material is maintained at a temperature below its glass transition temperature, its molecules are substantially immobilized and thus less prone to reactions. Likewise, when a crystalline material is maintained at a temperature below its phase transition temperature, its molecules are substantially immobilized and thus less prone to reactions. Accordingly, processing drug components at mild conditions, such as the deposition and sintering conditions described herein, minimizes cross-reactions and degradation of the drug component. One type of reaction that is minimized by the processes of the invention relates to the ability to avoid conventional solvents which in turn minimizes-oxidation of drug, whether in amorphous, semi-crystalline, or crystalline form, by reducing exposure thereof to free radicals, residual solvents, protic materials, polar-protic materials, oxidation initiators, and autoxidation initiators.


Sintering may be used in some embodiments in order to manufacture the coated stent.


“Rapid Expansion of Supercritical Solutions” or “RESS” as used herein involves the dissolution of a polymer into a compressed fluid, typically a supercritical fluid, followed by rapid expansion into a chamber at lower pressure, typically near atmospheric conditions. The rapid expansion of the supercritical fluid solution through a small opening, with its accompanying decrease in density, reduces the dissolution capacity of the fluid and results in the nucleation and growth of polymer particles. The atmosphere of the chamber is maintained in an electrically neutral state by maintaining an isolating “cloud” of gas in the chamber. Carbon dioxide, nitrogen, argon, helium, or other appropriate gas is employed to prevent electrical charge is transferred from the substrate to the surrounding environment.


Device coatings described herein may be manufactured using an RESS process.


“Bulk properties” properties of a coating including a pharmaceutical or a biological agent that can be enhanced through the methods of the invention include for example: adhesion, smoothness, conformality, thickness, and compositional mixing.


“Electrostatically charged” or “electrical potential” or “electrostatic capture” as used herein refers to the collection of the spray-produced particles upon a substrate that has a different electrostatic potential than the sprayed particles. Thus, the substrate is at an attractive electronic potential with respect to the particles exiting, which results in the capture of the particles upon the substrate. i.e. the substrate and particles are oppositely charged, and the particles transport through the gaseous medium of the capture vessel onto the surface of the substrate is enhanced via electrostatic attraction. This may be achieved by charging the particles and grounding the substrate or conversely charging the substrate and grounding the particles, by charging the particles at one potential (e.g. negative charge) and charging the substrate at an opposited potential (e.g. positive charge), or by some other process, which would be easily envisaged by one of skill in the art of electrostatic capture. A process that includes electrostatically charged particles, or creates an electrical potential between the particles and the substrate, or includes electrostatic capture of the particles on the substrate may be denoted as an “e-” or an “e” process. For non-limiting example, an RESS particle deposition process that further comprises electrostatic capture of the particles on the substrate may be referred to as an “e-RESS” or “eRESS” process herein.


“Intimate mixture” as used herein, refers to two or more materials, compounds, or substances that are uniformly distributed or dispersed together.


“Layer” as used herein refers to a material covering a surface or forming an overlying part or segment. Two different layers may have overlapping portions whereby material from one layer may be in contact with material from another layer. Contact between materials of different layers can be measured by determining a distance between the materials. For example, Raman spectroscopy may be employed in identifying materials from two layers present in close proximity to each other.


While layers defined by uniform thickness and/or regular shape are contemplated herein, several embodiments described below relate to layers having varying thickness and/or irregular shape. Material of one layer may extend into the space largely occupied by material of another layer. For example, in a coating having three layers formed in sequence as a first polymer layer, a pharmaceutical agent layer and a second polymer layer, material from the second polymer layer which is deposited last in this sequence may extend into the space largely occupied by material of the pharmaceutical agent layer whereby material from the second polymer layer may have contact with material from the pharmaceutical layer. It is also contemplated that material from the second polymer layer may extend through the entire layer largely occupied by pharmaceutical agent and contact material from the first polymer layer.


It should be noted however that contact between material from the second polymer layer (or the first polymer layer) and material from the pharmaceutical agent layer (e.g.; a pharmaceutical agent crystal particle or a portion thereof) does not necessarily imply formation of a mixture between the material from the first or second polymer layers and material from the pharmaceutical agent layer. In some embodiments, a layer may be defined by the physical three-dimensional space occupied by crystalline particles of a pharmaceutical agent (and/or biological agent). It is contemplated that such layer may or may not be continuous as physical space occupied by the crystal particles of pharmaceutical agents may be interrupted, for example, by polymer material from an adjacent polymer layer. An adjacent polymer layer may be a layer that is in physical proximity to be pharmaceutical agent particles in the pharmaceutical agent layer. Similarly, an adjacent layer may be the layer formed in a process step right before or right after the process step in which pharmaceutical agent particles are deposited to form the pharmaceutical agent layer.


As described herein, material deposition and layer formation provided herein are advantageous in that the pharmaceutical agent remains largely in crystalline form during the entire process. While the polymer particles and the pharmaceutical agent particles may be in contact, the layer formation process is controlled to avoid formation of a mixture between the pharmaceutical agent particles the polymer particles during formation of a coated device.


“Laminate coating” as used herein refers to a coating made up of two or more layers of material. Means for creating a laminate coating as described herein (e.g.; a laminate coating comprising bioabsorbable polymer(s) and pharmaceutical agent) may include coating the stent with drug and polymer as described herein (RESS, e-RESS, e-DPC, compressed-gas sintering). The process comprises performing multiple and sequential coating steps (with sintering steps for polymer materials) wherein different materials may be deposited in each step, thus creating a laminated structure with a multitude of layers (at least 2 layers) including polymer layers and pharmaceutical agent layers to build the final device (e.g.; laminate coated stent).


Trackability


Provided herein is a stent delivery system comprising: an elongate member having an inflation lumen and a guidewire lumen therein; a balloon having an interior that is in fluid communication with the inflation lumen; and a stent comprising a coating mounted on the balloon, in which for a stent of about 2.25 mm in diameter to about 4.0 mm in diameter by about 9 mm to about 30 mm in length in an expanded state, a stent system trackability expressed as peak force over the track length is at most 1.5 Newtons.


Provided herein is a stent delivery system comprising: an elongate member having an inflation lumen and a guidewire lumen therein; a balloon having an interior that is in fluid communication with the inflation lumen; and a stent comprising a coating mounted on the balloon, in which for a stent of about 2.25 mm in diameter to about 4.0 mm in diameter by about 9 mm to about 30 mm in length in an expanded state, a stent system trackability expressed as mean force over the track length is at most 0.5 Newtons.


“Trackability” as used herein is defined as the ability of the delivery system to advance over a guidewire along the path of a vessel in a simulated anatomy. The trackability of a stent system can describe the stent system's performance tracking through the curved vessel system up to (and in some instances, including) the lesion to be treated in the artery. Thus, the trackability is a combined property, which is mainly determined by the stiffness and profile of the stent, and friction effects between the stent system and the guiding catheter and the guide wire. Trackability can be expressed as a mean track force over the track length, and/or as a peak force measured over the track length. Quantitative assessment can be provided by, for example, the method provided in Schmidt W, Grabow N, Behrens P, Schmitz K-P: “Trackability, Crossability, and Pushability of Coronary Stent Systems—An Experimental Approach” Biomed. Technik 47 (2002), Erg. 1, S. 124-126, which is a method used in Tortuosity Test 1 (which is also described in “New Aspects of in vitro Testing of Arterial Stents based on the new European Standard EN 14299” by Wolfram Schmidt, Peter Behrens, Klaus-Peter Schmitz, Institute for Biomedical Engineering, University of Rostock, Germany at http://www.iib-ev.de/pl/pdf/EN14299.pdf). Another test method that may provide a quantitative assessment of trackability (called Tortuosity Test 2 herein) is described in W. Schmidt, P. Lanzer, P. Behrens, L. D. T. Topoleski, and K.-P. Schmitz “A Comparison of the Mechanical Performance Characteristics of Seven Drug-Eluting Stent Systems” Catheterization and Cardiovascular Interventions 73:350-360 (2009).


In some embodiments, stent system trackability is tested according to Tortuosity test 1. In some embodiments, stent system trackability is tested according to Tortuosity test 2.


Tortuosity Test 1: Trackability testing may be performed according to “New Aspects of in vitro Testing of Arterial Stents based on the new European Standard EN 14299” by Wolfram Schmidt, Peter Behrens, Klaus-Peter Schmitz, Institute for Biomedical Engineering, University of Rostock, Germany at http://www.iib-ev.de/pl/pdf/EN14299.pdf which is incorporated herein by reference in its entirety.


Tortuosity Test 2: Trackability testing may be performed according to W. Schmidt, P. Lanzer, P. Behrens, L. D. T. Topoleski, and K.-P. Schmitz “A Comparison of the Mechanical Performance Characteristics of Seven Drug-Eluting Stent Systems” Catheterization and Cardiovascular Interventions 73:350-360 (2009) which is incorporated herein by reference in its entirety.



FIG. 1 depicts an in-vitro tortuosity fixture 10, such as is used on Tortuosity Test 2 showing various simulated paths of the coronary vasculature. A guiding catheter 2 has been advanced into the aortic arch and its opening 4 is at or about the opening to an artery of the heart. Various arteries branch from this simulated location including the right circumflexus 8. A first path 6a simulates the tortuosity to reach the right posterior venrticule sinistri. A second path 6b and third path 6c simulate the tortuosity to reach the right marginalis sinister and the right postero-lateralis. A fourth path 6d simulates the tortuosity to reach the interverticularis anterior. A fifth path 6e and a sixth path 6f simulate the tortuosity to reach the right diagonalis. A seventh path 6g and an eighth path 6h simulate the tortuosity to reach the right lateralis. For some embodiments, the challenge path used to test the system trackability is the fifth path 6e.


In some embodiments, the balloon comprises a polymer, and the stent mounted on the balloon has a crossing profile of at most 1.12 mm.


In some embodiments, the polymer of the balloon comprises polyamide. In some embodiments, the polymer of the balloon comprises at least one of: polyethylene, polyethylene terephthalate (PET), high density polyethylene (HDPE), Arnitel, Hyrtrel, polyetherether ketone (PEEK), urethane, polyurethane, urethane elastomer, nylon, polyamide, polyether block amide (PEBAX), a block copolymer of any polymer listed herein, Teflon, polyolefin, and a thermoplastic elastomer.


In some embodiments, the coating is at most 20 micrometers in thickness and comprises a polymer. In some embodiments, the coating is at least one of: at most 30 micrometers in thickness, at most 28 micrometers in thickness, at most 25 micrometers in thickness, at most 22 micrometers in thickness, at most 20 micrometers in thickness, at most 18 micrometers in thickness, at most 15 micrometers in thickness, at most 10 micrometers in thickness, and comprises a polymer.


In some embodiments, the polymer of the coating is hydrophilic. In some embodiments, the hydrophilic polymer of the coating comprises PLGA. In some embodiments, the polymer of the coating is bioaborbable. In some embodiments, the polymer of the coating comprises at least one of PLGA, a copolymer comprising PLGA (i.e. a PLGA copolymer), a PLGA copolymer with a ratio of about 40:60 to about 60:40, a PLGA copolymer with a ratio of about 70:30 to about 90:10, a PLGA copolymer having a molecular weight of about 10 kD, a PLGA copolymer having a molecular weight of about 19 kD, PGA poly(glycolide), LPLA poly(l-lactide), DLPLA poly(dl-lactide), PCL poly(e-caprolactone) PDO, poly(dioxolane) PGA-TMC, 85/15 DLPLG p(dl-lactide-co-glycolide), 75/25 DLPL, 65/35 DLPLG, 50/50 DLPLG, TMC poly(trimethylcarbonate), p(CPP:SA) poly(1,3-bis-p-(carboxyphenoxy)propane-co-sebacic acid), and a combination thereof.


In some embodiments, the coating comprises a pharmaceutical agent. In some embodiments, the pharmaceutical agent comprises at least one of rapamycin, a prodrug, a derivative, an analog, a hydrate, an ester, and a salt thereof; wherein at least a portion of the pharmaceutical agent is in crystalline form.


In some embodiments, an uncoated stent strut thickness is at most 64 micrometers. In some embodiments, an uncoated stent strut thickness is at least one of: at most 100 micrometers, at most 90 micrometers, at most 85 micrometers, at most 80 micrometers, at most 75 micrometers, at most 70 micrometers, at most 68 micrometers, at most 65 micrometers, at most 64 micrometers, at most 62 micrometers, at most 60 micrometers, at most 55 micrometers, at most 50 micrometers, at most 45 micrometers, and at most 40 micrometers.


In some embodiments, stent system trackability expressed as peak force over the track length is at most 1 Newton. In some embodiments, stent system trackability expressed as mean force over the track length is at most 0.3 Newtons.


In some embodiments, the stent has a closed cell design. In some embodiments, the stent has an open cell design. In some embodiments, the stent has a hybrid of an open and a closed cell design.


In some embodiments, the elongate member has a useable length of about 140 centimeters. In some embodiments, the elongate member has a useable length of at least one of: about 250 centimeters, about 210 centimeters, about 200 centimeters, about 180 centimeters, about 160 centimeters, about 150 centimeters, about 140 centimeters, about 130 centimeters, and about 110 centimeters. As used with respect to useable length, “about” refers to variability of any of: 1 centimeter, 2 centimeters, 5 centimeters, 10 centimeters, 1-5 centimeters, 2-5 centimeters, 2-10 centimeters, and 5-10 centimeters.


In some embodiments, the stent system trackability is achieved with at least one of: at most 5% coating delamination, at most 10% coating delamination, at most 15% coating delamination, and at most 20% coating delamination. In some embodiments, the stent system trackability is achieved with at least one of: at most about 5% coating delamination, at most about 10% coating delamination, at most about 15% coating delamination, and at most about 20% coating delamination. As used with respect to percent coating delamination, “about” refers to variability of any of: 1%, 2%, 5%, 10%, 15%, 1%-5%, 5%-10%, 1%-15%, and 5%-15%. For example, a delamination that is at most about 5% with a variability of 2% may include delamination of 3% to 7% of the coating. In some embodiments, the coating delamination is tested by visual inspection.


In some embodiments, the stent system trackability is achieved with at least one of: at most 5% coating cracking, at most 10% coating cracking, at most 15% coating cracking, and at most 20% coating cracking. In some embodiments, the stent system trackability is achieved with at least one of: at most about 5% coating cracking, at most about 10% coating cracking, at most about 15% coating cracking, and at most about 20% coating cracking. As used with respect to percent coating cracking, “about” refers to variability of any of: 1%, 2%, 5%, 10%, 15%, 1%-5%, 5%-10%, 1%-15%, and 5%-15%. For example, a cracking that is at most about 5% with a variability of 2% may include cracking of 3% to 7% of the coating. In some embodiments, the coating cracking is tested by visual inspection.


Visual Inspection: Testing of delamination and/or cracking may be achieved by visual inspection. Visual inspection may involve the use of various microscopy techniques which allow visualization of defects in the stent coating.


In order to determine the percentage of delamination, the abluminal surface (or a statistically relevant portion thereof) may be visualized and the total percentage of delamination of the stent may be extrapolated based on the area of delamination and the area of stent (and/or stent coating) visualized. There may be, for example, 9 locations on the stent visualized, corresponding to 3 non-overlapping areas of the distal end of the stent, 3 non-overlapping areas of the proximal end of the stent, and 3 non-overlapping areas of the middle of the stent, wherein none of the 9 areas overlap. The delamination may be scanned before choosing these locations for obvious areas of delamination and these areas additionally included as locations of visual inspection, and the other 9 areas should not overlap these locations if possible based on the level of focus of the device used to visualize the stent abluminal surface.


Likewise, in order to determine the percentage of coating cracking, the abluminal and/or the sidewalls of the stent (or a statistically relevant portion thereof) may be visualized and the total percentage of coating cracking of the stent coating may be extrapolated based on the area of coating cracking and the area of stent coating visualized. The areas of highest stress during stent tracking may be chosen for inspection, which may be the sidewalls of the coated stent, for example. There may be, for example, 9 locations on the stent, visualized, corresponding to 3 non-overlapping areas of the distal end of the stent (whether a sidewall, two sidewalls, an abluminal surface or some combination thereof), 3 non-overlapping areas of the proximal end of the stent (whether a sidewall, two sidewalls, an abluminal surface or some combination thereof), and 3 non-overlapping areas of the middle of the stent (whether a sidewall, two sidewalls, an abluminal surface or some combination thereof), wherein none of the 9 areas overlap. The coating cracking may be scanned before choosing these locations for areas of coating cracking and these should be included as additional locations of visual inspection, and the other 9 areas should not overlap these locations, if possible based on the level of focus of the device used to visualize each coating cracking inspection location.


Pushability


Provided herein is a stent delivery system comprising: an elongate member having an inflation lumen and a guidewire lumen therein; a balloon having an interior that is in fluid communication with the inflation lumen; and a stent comprising a coating mounted on the balloon, in which a stent of about 2.25 mm in diameter to about 4.0 mm in diameter by about 9 mm to about 30 mm in length in an expanded state has a stent system pushability ((Fdist/Fprox)×100%) of at most 18%.


“Pushability” as used herein is defined as the ability of the delivery system to be pushed without bending or buckling. The pushability parameter ((Fdist/Fprox)×100%) can be described as the ability to transmit a proximal push force (Fprox) to the distal part of the stent system (i.e. the force measured at the tip of the system (Fdist). Pushability is essentially the amount of force lost in the system. While this can be a qualitative assessment, it can also be defined by quantitative data, given by the ratio of distal reactive force related to the proximal push force. A total occlusion model may be used which is equipped by two separate load cells (in order to assess distal reactive force and proximal push force). Quantitative assessment can be provided by, for example, the method provided in Schmidt W, Grabow N, Behrens P, Schmitz K-P: “Trackability, Crossability, and Pushability of Coronary Stent Systems—An Experimental Approach” Biomed. Technik 47 (2002), Erg. 1, S. 124-126. Another similar test method provides a quantitative assessment of trackability (called Tortuosity Test 2 herein) is described in W. Schmidt, P. Lanzer, P. Behrens, L. D. T. Topoleski, and K.-P. Schmitz “A Comparison of the Mechanical Performance Characteristics of Seven Drug-Eluting Stent Systems” Catheterization and Cardiovascular Interventions 73:350-360 (2009).


In some embodiments, the stent system pushability is measured according to Tortuosity Test 2.


Tortuosity Test 2: Pushability testing may be performed according to W. Schmidt, P. Lanzer, P. Behrens, L. D. T. Topoleski, and K.-P. Schmitz “A Comparison of the Mechanical Performance Characteristics of Seven Drug-Eluting Stent Systems” Catheterization and Cardiovascular Interventions 73:350-360 (2009) which is incorporated herein by reference in its entirety.


In some embodiments, the balloon comprises a polymer, and the stent mounted on the balloon has a crossing profile of at most 1.06 mm for a 2.25 diameter balloon, at most 1.09 mm for a 2.5 diameter balloon, at most 1.11 mm for a 2.75 diameter balloon, at most 1.12 mm for a 3.0 diameter balloon, at most 1.18 mm for a 3.5 diameter balloon, and at most 1.35 mm for a 4.0 diameter balloon.


In some embodiments, the polymer of the balloon comprises polyamide. In some embodiments, the polymer of the balloon comprises at least one of: polyethylene, polyethylene terephthalate (PET), high density polyethylene (HDPE), Arnitel, Hyrtrel, polyetherether ketone (PEEK), urethane, polyurethane, urethane elastomer, nylon, polyamide, polyether block amide (PEBAX), a block copolymer of any polymer listed herein, Teflon, polyolefin, and a thermoplastic elastomer.


In some embodiments, the coating is at most 20 micrometers in thickness and comprises a polymer. In some embodiments, the coating is at least one of: at most 30 micrometers in thickness, at most 28 micrometers in thickness, at most 25 micrometers in thickness, at most 22 micrometers in thickness, at most 20 micrometers in thickness, at most 18 micrometers in thickness, at most 15 micrometers in thickness, at most 10 micrometers in thickness, and comprises a polymer.


In some embodiments, the polymer of the coating is hydrophilic. In some embodiments, the hydrophilic polymer of the coating comprises PLGA. In some embodiments, the polymer of the coating is bioabsorbable. In some embodiments, the polymer of the coating comprises at least one of PLGA, a copolymer comprising PLGA (i.e. a PLGA copolymer), a PLGA copolymer with a ratio of about 40:60 to about 60:40, a PLGA copolymer with a ratio of about 70:30 to about 90:10, a PLGA copolymer having a molecular weight of about 10 kD, a PLGA copolymer having a molecular weight of about 19 kD, PGA poly(glycolide), LPLA poly(l-lactide), DLPLA poly(dl-lactide), PCL poly(e-caprolactone) PDO, poly(dioxolane) PGA-TMC, 85/15 DLPLG p(dl-lactide-co-glycolide), 75/25 DLPL, 65/35 DLPLG, 50/50 DLPLG, TMC poly(trimethylcarbonate), p(CPP:SA) poly(1,3-bis-p-(carboxyphenoxy)propane-co-sebacic acid), and a combination thereof.


In some embodiments, the coating comprises a pharmaceutical agent. In some embodiments, the pharmaceutical agent comprises at least one of rapamycin, a prodrug, a derivative, an analog, a hydrate, an ester, and a salt thereof; wherein at least a portion of the pharmaceutical agent is in crystalline form.


In some embodiments, an uncoated stent strut thickness of the stent is at most 64 micrometers. In some embodiments, an uncoated stent strut thickness is at least one of: at most 100 micrometers, at most 90 micrometers, at most 85 micrometers, at most 80 micrometers, at most 75 micrometers, at most 70 micrometers, at most 68 micrometers, at most 65 micrometers, at most 64 micrometers, at most 62 micrometers, at most 60 micrometers, at most 55 micrometers, at most 50 micrometers, at most 45 micrometers, and at most 40 micrometers.


In some embodiments, the stent has a closed cell design. In some embodiments, the stent has an open cell design. In some embodiments, the stent has a hybrid of an open and a closed cell design.


In some embodiments, the elongate member has a useable length of about 140 centimeters. In some embodiments, the elongate member has a useable length of at least one of: about 250 centimeters, about 210 centimeters, about 200 centimeters, about 180 centimeters, about 160 centimeters, about 150 centimeters, about 140 centimeters, about 130 centimeters, and about 110 centimeters. As used with respect to useable length, “about” refers to variability of any of: 1 centimeter, 2 centimeters, 5 centimeters, 10 centimeters, 1-5 centimeters, 2-5 centimeters, 2-10 centimeters, and 5-10 centimeters.


In some embodiments, the stent system pushability is achieved with at least one of: at most 5% coating delamination, at most 10% coating delamination, at most 15% coating delamination, and at most 20% coating delamination. In some embodiments, the stent system trackability is achieved with at least one of: at most about 5% coating delamination, at most about 10% coating delamination, at most about 15% coating delamination, and at most about 20% coating delamination. As used with respect to percent coating delamination, “about” refers to variability of any of: 1%, 2%, 5%, 10%, 15%, 1%-5%, 5%-10%, 1%-15%, and 5%-15%. For example, a delamination that is at most about 5% with a variability of 2% may include delamination of 3% to 7% of the coating. In some embodiments, the coating delamination is tested by visual inspection.


In some embodiments, the stent system pushability is achieved with at least one of: at most 5% coating cracking, at most 10% coating cracking, at most 15% coating cracking, and at most 20% coating cracking. In some embodiments, the stent system trackability is achieved with at least one of: at most about 5% coating cracking, at most about 10% coating cracking, at most about 15% coating cracking, and at most about 20% coating cracking. As used with respect to percent coating cracking, “about” refers to variability of any of: 1%, 2%, 5%, 10%, 15%, 1%-5%, 5%-10%, 1%-15%, and 5%-15%. For example, a cracking that is at most about 5% with a variability of 2% may include cracking of 3% to 7% of the coating. In some embodiments, the coating delamination is tested by visual inspection.


Visual Inspection: Testing of delamination and/or cracking may be achieved by visual inspection. Visual inspection may involve the use of various microscopy techniques which allow visualization of defects in the stent coating.


In order to determine the percentage of delamination, the abluminal surface (or a statistically relevant portion thereof) may be visualized and the total percentage of delamination of the stent may be extrapolated based on the area of delamination and the area of stent (and/or stent coating) visualized. There may be, for example, 9 locations on the stent visualized, corresponding to 3 non-overlapping areas of the distal end of the stent, 3 non-overlapping areas of the proximal end of the stent, and 3 non-overlapping areas of the middle of the stent, wherein none of the 9 areas overlap. The delamination may be scanned before choosing these locations for obvious areas of delamination and these areas additionally included as locations of visual inspection, and the other 9 areas should not overlap these locations if possible based on the level of focus of the device used to visualize the stent abluminal surface.


Likewise, in order to determine the percentage of coating cracking, the abluminal and/or the sidewalls of the stent (or a statistically relevant portion thereof) may be visualized and the total percentage of coating cracking of the stent coating may be extrapolated based on the area of coating cracking and the area of stent coating visualized. The areas of highest stress during stent tracking may be chosen for inspection, which may be the sidewalls of the coated stent, for example. There may be, for example, 9 locations on the stent visualized, corresponding to 3 non-overlapping areas of the distal end of the stent (whether a sidewall, two sidewalls, an abluminal surface or some combination thereof), 3 non-overlapping areas of the proximal end of the stent (whether a sidewall, two sidewalls, an abluminal surface or some combination thereof), and 3 non-overlapping areas of the middle of the stent (whether a sidewall, two sidewalls, an abluminal surface or some combination thereof), wherein none of the 9 areas overlap. The coating cracking may be scanned before choosing these locations for areas of coating cracking and these should be included as additional locations of visual inspection, and the other 9 areas should not overlap these locations, if possible based on the level of focus of the device used to visualize each coating cracking inspection location.


Crossability


Provided herein is a stent delivery system comprising: an elongate member having an inflation lumen and a guidewire lumen therein; a balloon having an interior that is in fluid communication with the inflation lumen; and a stent comprising a coating mounted on the balloon, in which a stent of about 2.25 mm in diameter to about 4.0 mm in diameter by about 9 mm to about 30 mm in length in an expanded state has a stent system crossability measured as peak cross force of at most 0.15 Newtons.


Provided herein is a stent delivery system comprising: an elongate member having an inflation lumen and a guidewire lumen therein; a balloon having an interior that is in fluid communication with the inflation lumen; and a stent comprising a coating mounted on the balloon, in which a stent of about 2.25 mm in diameter to about 4.0 mm in diameter by about 9 mm to about 30 mm in length in an expanded state has a stent system crossability measured as mean cross force of less than 0.04 Newtons.


“Crossability” as used herein is defined as the ability of the distal part of the stent system to pass through a narrowed vessel lesion. Crossability (or cross force) can be expressed as a mean cross force, and/or as a peak cross force. Quantitative assessment can be provided by, for example, the method provided in Schmidt W, Grabow N, Behrens P, Schmitz K-P: “Trackability, Crossability, and Pushability of Coronary Stent Systems—An Experimental Approach” Biomed. Technik 47 (2002), Erg. 1, S. 124-126, which is a method used in Tortuosity Test 1 (which is also described in “New Aspects of in vitro Testing of Arterial Stents based on the new European Standard EN 14299” by Wolfram Schmidt, Peter Behrens, Klaus-Peter Schmitz, Institute for Biomedical Engineering, University of Rostock, Germany at http://www.iib-ev.de/pl/pdf/EN14299.pdf). Another test method that may provide a quantitative assessment of trackability (called Tortuosity Test 2 herein) is described in W. Schmidt, P. Lanzer, P. Behrens, L. D. T. Topoleski, and K.-P. Schmitz “A Comparison of the Mechanical Performance Characteristics of Seven Drug-Eluting Stent Systems” Catheterization and Cardiovascular Interventions 73:350-360 (2009).


In some embodiments, the tortuosity fixture and the simulated lesion are configured according to Tortuosity Test 1. In some embodiments, the tortuosity fixture and the simulated lesion are configured according to tortuosity test 2.


Tortuosity Test 1: Crossability testing may be performed according to “New Aspects of in vitro Testing of Arterial Stents based on the new European Standard EN 14299” by Wolfram Schmidt, Peter Behrens, Klaus-Peter Schmitz, Institute for Biomedical Engineering, University of Rostock, Germany at http://www.iib-ev.de/pl/pdf/EN14299.pdf which is incorporated herein by reference in its entirety.


Tortuosity Test 2: Crossability testing may be performed according to W. Schmidt, P. Lanzer, P. Behrens, L. D. T. Topoleski, and K.-P. Schmitz “A Comparison of the Mechanical Performance Characteristics of Seven Drug-Eluting Stent Systems” Catheterization and Cardiovascular Interventions 73:350-360 (2009) which is incorporated herein by reference in its entirety.


In some embodiments, the balloon comprises a polymer, and the stent mounted on the balloon has a crossing profile of at most 1.06 mm for a 2.25 diameter balloon, at most 1.09 mm for a 2.5 diameter balloon, at most 1.11 mm for a 2.75 diameter balloon, at most 1.12 mm for a 3.0 diameter balloon, at most 1.18 mm for a 3.5 diameter balloon, and at most 1.35 mm for a 4.0 diameter balloon.


In some embodiments, the polymer of the balloon comprises polyamide. In some embodiments, the polymer of the balloon comprises at least one of: polyethylene, polyethylene terephthalate (PET), high density polyethylene (HDPE), Arnitel, Hyrtrel, polyetherether ketone (PEEK), urethane, polyurethane, urethane elastomer, nylon, polyamide, polyether block amide (PEBAX), a block copolymer of any polymer listed herein, Teflon, polyolefin, and a thermoplastic elastomer.


In some embodiments, the coating is at most 20 micrometers in thickness and comprises a polymer. In some embodiments, the coating is at least one of: at most 30 micrometers in thickness, at most 28 micrometers in thickness, at most 25 micrometers in thickness, at most 22 micrometers in thickness, at most 20 micrometers in thickness, at most 18 micrometers in thickness, at most 15 micrometers in thickness, at most 10 micrometers in thickness, and comprises a polymer.


In some embodiments, the polymer of the coating is hydrophilic. In some embodiments, the hydrophilic polymer of the coating comprises PLGA. In some embodiments, the polymer of the coating is bioabsorbable. In some embodiments, the polymer of the coating comprises at least one of PLGA, a copolymer comprising PLGA (i.e. a PLGA copolymer), a PLGA copolymer with a ratio of about 40:60 to about 60:40, a PLGA copolymer with a ratio of about 70:30 to about 90:10, a PLGA copolymer having a molecular weight of about 10 kD, a PLGA copolymer having a molecular weight of about 19 kD, PGA poly(glycolide), LPLA poly(l-lactide), DLPLA poly(dl-lactide), PCL poly(e-caprolactone) PDO, poly(dioxolane) PGA-TMC, 85/15 DLPLG p(dl-lactide-co-glycolide), 75/25 DLPL, 65/35 DLPLG, 50/50 DLPLG, TMC poly(trimethylcarbonate), p(CPP:SA) poly(1,3-bis-p-(carboxyphenoxy)propane-co-sebacic acid), and a combination thereof.


In some embodiments, the coating comprises a pharmaceutical agent. In some embodiments, the pharmaceutical agent comprises at least one of rapamycin, a prodrug, a derivative, an analog, a hydrate, an ester, and a salt thereof; wherein at least a portion of the pharmaceutical agent is in crystalline form.


In some embodiments, an uncoated stent strut thickness of the stent is at most 64 micrometers. In some embodiments, an uncoated stent strut thickness is at least one of: at most 100 micrometers, at most 90 micrometers, at most 85 micrometers, at most 80 micrometers, at most 75 micrometers, at most 70 micrometers, at most 68 micrometers, at most 65 micrometers, at most 64 micrometers, at most 62 micrometers, at most 60 micrometers, at most 55 micrometers, at most 50 micrometers, at most 45 micrometers, and at most 40 micrometers.


In some embodiments, the stent system crossability expressed as peak cross force is at most 0.1 Newton. In some embodiments, the stent system crossability expressed as mean cross force is at most 0.03 Newtons.


In some embodiments, the stent has a closed cell design. In some embodiments, the stent has an open cell design. In some embodiments, the stent has a hybrid of an open and a closed cell design.


In some embodiments, the elongate member has a useable length of about 140 centimeters. In some embodiments, the elongate member has a useable length of at least one of: about 250 centimeters, about 210 centimeters, about 200 centimeters, about 180 centimeters, about 160 centimeters, about 150 centimeters, about 140 centimeters, about 130 centimeters, and about 110 centimeters. As used with respect to useable length, “about” refers to variability of any of: 1 centimeter, 2 centimeters, 5 centimeters, 10 centimeters, 1-5 centimeters, 2-5 centimeters, 2-10 centimeters, and 5-10 centimeters.


In some embodiments, the stent system crossability is achieved with at least one of: at most 5% coating delamination, at most 10% coating delamination, at most 15% coating delamination, and at most 20% coating delamination. In some embodiments, the stent system trackability is achieved with at least one of: at most about 5% coating delamination, at most about 10% coating delamination, at most about 15% coating delamination, and at most about 20% coating delamination. As used with respect to percent coating delamination, “about” refers to variability of any of: 1%, 2%, 5%, 10%, 15%, 1%-5%, 5%-10%, 1%-15%, and 5%-15%. For example, a delamination that is at most about 5% with a variability of 2% may include delamination of 3% to 7% of the coating. In some embodiments, the coating delamination is tested by visual inspection.


In some embodiments, the stent system crossability is achieved with at least one of: at most 5% coating cracking, at most 10% coating cracking, at most 15% coating cracking, and at most 20% coating cracking. In some embodiments, the stent system trackability is achieved with at least one of: at most about 5% coating cracking, at most about 10% coating cracking, at most about 15% coating cracking, and at most about 20% coating cracking. As used with respect to percent coating cracking, “about” refers to variability of any of: 1%, 2%, 5%, 10%, 15%, 1%-5%, 5%-10%, 1%-15%, and 5%-15%. For example, a cracking that is at most about 5% with a variability of 2% may include cracking of 3% to 7% of the coating. In some embodiments, the coating delamination is tested by visual inspection.


Visual Inspection: Testing of delamination and/or cracking may be achieved by visual inspection. Visual inspection may involve the use of various microscopy techniques which allow visualization of defects in the stent coating.


In order to determine the percentage of delamination, the abluminal surface (or a statistically relevant portion thereof) may be visualized and the total percentage of delamination of the stent may be extrapolated based on the area of delamination and the area of stent (and/or stent coating) visualized. There may be, for example, 9 locations on the stent visualized, corresponding to 3 non-overlapping areas of the distal end of the stent, 3 non-overlapping areas of the proximal end of the stent, and 3 non-overlapping areas of the middle of the stent, wherein none of the 9 areas overlap. The delamination may be scanned before choosing these locations for obvious areas of delamination and these areas additionally included as locations of visual inspection, and the other 9 areas should not overlap these locations if possible based on the level of focus of the device used to visualize the stent abluminal surface.


Likewise, in order to determine the percentage of coating cracking, the abluminal and/or the sidewalls of the stent (or a statistically relevant portion thereof) may be visualized and the total percentage of coating cracking of the stent coating may be extrapolated based on the area of coating cracking and the area of stent coating visualized. The areas of highest stress during stent tracking may be chosen for inspection, which may be the sidewalls of the coated stent, for example. There may be, for example, 9 locations on the stent visualized, corresponding to 3 non-overlapping areas of the distal end of the stent (whether a sidewall, two sidewalls, an abluminal surface or some combination thereof), 3 non-overlapping areas of the proximal end of the stent (whether a sidewall, two sidewalls, an abluminal surface or some combination thereof), and 3 non-overlapping areas of the middle of the stent (whether a sidewall, two sidewalls, an abluminal surface or some combination thereof), wherein none of the 9 areas overlap. The coating cracking may be scanned before choosing these locations for areas of coating cracking and these should be included as additional locations of visual inspection, and the other 9 areas should not overlap these locations, if possible based on the level of focus of the device used to visualize each coating cracking inspection location.


Multiple Stent Systems Through a Guiding Catheter


Provided herein is a method of concurrently delivering a first coated stent to a first target location in a body and a second coated stent to second target location in the body, the method comprising: advancing a first stent delivery system through a guiding catheter in which the first stent delivery system comprises a first elongate member having a first inflation lumen and a first guidewire lumen therein, a first balloon having a first interior that is in fluid communication with the first inflation lumen; and a first coated stent mounted on the first balloon, and advancing a second stent delivery system through the guiding catheter in which the second stent delivery system comprises a second elongate member having a second inflation lumen and a second guidewire lumen therein, a second balloon having a second interior that is in fluid communication with the second inflation lumen; and a second coated stent mounted on the second balloon, wherein the advancing of the second stent delivery system is performed while the first stent delivery system is also in the guiding catheter.



FIG. 2 depicts a stent delivery systems 16a, 16b of embodiments described herein advanced through a single guiding catheter 12 concurrently and to two branches 14a, 14b of an artery. Also depicted here are two guidewires 18a and 18b which are passed through the vasculature to the target lesion(s) prior to advancing the respective delivery systems 16a, 16b.



FIGS. 3A-3D depict embodiments of guiding catheters in an aortic arch 32 through which two stent delivery system embodiments described herein may be advanced concurrently to reach two locations in a coronary artery. FIG. 3A shows an Amplatz-like catheter 24 passed over the aortic arch 32 and engaged in the right coronary artery 20. FIG. 3B shows a Judkins-like catheter 26 passed over the aortic arch 32 and minimally engaged in the right coronary artery 20. FIG. 3C shows an EBU-like (extra back-up) catheter 28 passed over the aortic arch 32 and engaged in the left main stem 22. FIG. 3D shows an Judkins-like catheter 30 passed over the aortic arch 32 and engaged in the left main stem 22. Other guiding catheters may be used and are contemplated herein, despite the limited number of guiding catheters depicted in FIGS. 3A-3D. In some embodiments, the guiding catheter is delivered into the aortic arch 32, the delivery systems are passed through the guiding catheter concurrently (or simultaneously), and guidewires guide the delivery systems to different branches of the vasculature (for non-limiting example, the right coronary artery and the left main branch).


In some embodiments, the first balloon comprises a polymer, and the first coated stent mounted on the balloon has a crossing profile of at most 1.06 mm for a 2.25 mm diameter stent, 1.09 mm for a 2.5 mm diameter stent, 1.11 mm for a 2.75 mm diameter stent, 1.12 mm for a 3.0 mm diameter stent, 1.18 mm for a 3.5 mm diameter stent, and 1.25 mm for a 4.0 mm diameter stent, wherein the diameter is an expanded stent diameter.


In some embodiments, the polymer of the first balloon comprises polyamide. In some embodiments, the polymer of the first balloon comprises at least one of: polyethylene, polyethylene terephthalate (PET), high density polyethylene (HDPE), Arnitel, Hyrtrel, polyetherether ketone (PEEK), urethane, polyurethane, urethane elastomer, nylon, polyamide, polyether block amide (PEBAX), a block copolymer of any polymer listed herein, Teflon, polyolefin, and a thermoplastic elastomer.


In some embodiments, the first coated stent comprises a first coating which is at most 20 micrometers in thickness and comprises a polymer. In some embodiments, the coating is at least one of: at most 30 micrometers in thickness, at most 28 micrometers in thickness, at most 25 micrometers in thickness, at most 22 micrometers in thickness, at most 20 micrometers in thickness, at most 18 micrometers in thickness, at most 15 micrometers in thickness, at most 10 micrometers in thickness, and comprises a polymer.


In some embodiments, the first coating is hydrophilic. In some embodiments, the hydrophilic polymer comprises PLGA. In some embodiments, the polymer of the first coating is bioabsorbable. In some embodiments, the polymer of the first coating comprises at least one of PLGA, a copolymer comprising PLGA (i.e. a PLGA copolymer), a PLGA copolymer with a ratio of about 40:60 to about 60:40, a PLGA copolymer with a ratio of about 70:30 to about 90:10, a PLGA copolymer having a molecular weight of about 10 kD, a PLGA copolymer having a molecular weight of about 19 kD, PGA poly(glycolide), LPLA poly(l-lactide), DLPLA poly(dl-lactide), PCL poly(e-caprolactone) PDO, poly(dioxolane) PGA-TMC, 85/15 DLPLG p(dl-lactide-co-glycolide), 75/25 DLPL, 65/35 DLPLG, 50/50 DLPLG, TMC poly(trimethylcarbonate), p(CPP:SA) poly(1,3-bis-p-(carboxyphenoxy)propane-co-sebacic acid), and a combination thereof.


In some embodiments, the second balloon comprises a polymer, and the second coated stent mounted on the balloon has a crossing profile of at most 1.06 mm for a 2.25 mm diameter stent, 1.09 mm for a 2.5 mm diameter stent, 1.11 mm for a 2.75 mm diameter stent, 1.12 mm for a 3.0 mm diameter stent, 1.18 mm for a 3.5 mm diameter stent, and 1.25 mm for a 4.0 mm diameter stent, wherein the diameter is an expanded stent diameter.


In some embodiments, the polymer of the second balloon comprises polyamide. In some embodiments, the polymer of the second balloon comprises at least one of: polyethylene, polyethylene terephthalate (PET), high density polyethylene (HDPE), Arnitel, Hyrtrel, polyetherether ketone (PEEK), urethane, polyurethane, urethane elastomer, nylon, polyamide, polyether block amide (PEBAX), a block copolymer of any polymer listed herein, Teflon, polyolefin, and a thermoplastic elastomer.


In some embodiments, the second coated stent comprises a second coating which is at most 20 micrometers in thickness and comprises a polymer. In some embodiments, the coating is at least one of: at most 30 micrometers in thickness, at most 28 micrometers in thickness, at most 25 micrometers in thickness, at most 22 micrometers in thickness, at most 20 micrometers in thickness, at most 18 micrometers in thickness, at most 15 micrometers in thickness, at most 10 micrometers in thickness, and comprises a polymer.


In some embodiments, the polymer of the second coating is hydrophilic. In some embodiments, the hydrophilic polymer comprises PLGA. In some embodiments, the polymer of the second coating is bioabsorbable. In some embodiments, the polymer of the second coating comprises at least one of PLGA, a copolymer comprising PLGA (i.e. a PLGA copolymer), a PLGA copolymer with a ratio of about 40:60 to about 60:40, a PLGA copolymer with a ratio of about 70:30 to about 90:10, a PLGA copolymer having a molecular weight of about 10 kD, a PLGA copolymer having a molecular weight of about 19 kD, PGA poly(glycolide), LPLA poly(l-lactide), DLPLA poly(dl-lactide), PCL poly(e-caprolactone) PDO, poly(dioxolane) PGA-TMC, 85/15 DLPLG p(dl-lactide-co-glycolide), 75/25 DLPL, 65/35 DLPLG, 50/50 DLPLG, TMC poly(trimethylcarbonate), p(CPP:SA) poly(1,3-bis-p-(carboxyphenoxy)propane-co-sebacic acid), and a combination thereof.


In some embodiments, an uncoated stent strut thickness of the first coated stent is at most 64 micrometers. In some embodiments, an uncoated stent strut thickness of the second coated stent is at most 64 micrometers. In some embodiments, an uncoated stent strut thickness is at least one of: at most 100 micrometers, at most 90 micrometers, at most 85 micrometers, at most 80 micrometers, at most 75 micrometers, at most 70 micrometers, at most 68 micrometers, at most 65 micrometers, at most 64 micrometers, at most 62 micrometers, at most 60 micrometers, at most 55 micrometers, at most 50 micrometers, at most 45 micrometers, and at most 40 micrometers.


In some embodiments, the first stent delivery system and the second stent delivery system are configured to be simultaneously advanced distally.


In some embodiments, the first stent delivery system and the second stent delivery system are configured to be simultaneously withdrawn proximally.


In some embodiments, the first stent delivery system and the second stent delivery system each are manipulable when both systems are within the guiding catheter.


In some embodiments, the guiding catheter is a 7F guiding catheter.


In some embodiments, the first elongate member has a useable length of about 140 centimeters. In some embodiments, the second elongate member has a useable length of about 140 centimeters. In some embodiments, the elongate member has a useable length of at least one of: about 250 centimeters, about 210 centimeters, about 200 centimeters, about 180 centimeters, about 160 centimeters, about 150 centimeters, about 140 centimeters, about 130 centimeters, and about 110 centimeters. As used with respect to useable length, “about” refers to variability of any of: 1 centimeter, 2 centimeters, 5 centimeters, 10 centimeters, 1-5 centimeters, 2-5 centimeters, 2-10 centimeters, and 5-10 centimeters.


Lubricity/Friction Testing


Provided herein is a stent delivery system comprising: an elongate member having an inflation lumen and a guidewire lumen therein; a balloon having an interior that is in fluid communication with the inflation lumen; and a stent comprising a coating mounted on the balloon, wherein when at least a portion of the stent system that includes the mounted stent is tested using Lubricity Test 1, the lubricity is at most 20 g.


“Lubricity” as used herein is defined as how slippery a surface is. A surface is lubricious if it is a slippery surface. A coating on the outer or inner surface of a medical device, such as a catheter or a stent delivery system, is considered lubricious if (when wetted) it can be inserted into the intended body part without leading to injuries and/or causing unacceptable levels of discomfort to the subject. To test lubricity on the bench, in-vitro, a coating is considered lubricious if it has a friction as measured on a Harland FTS5000 Friction Tester (HFT) of 20 g or less, preferably of 15 g or less, at a clamp-force of 300 g, a pull speed of 1 cm/s, a temperature of 22° C. and 35% relative humidity. The test method (herein referred to as Lubricity Test 1) is performed as indicated in US Patent Application 20080292776, which is incorporated here by reference in its entirety, with modification to test method in order to capture the mounted stent lubricity (rather than the catheter lubricity), including adjusting the travel distance (transport movement) to at least the stent length but no more than about 2 cm greater than the stent length, with further adjustment to allow for acceleration time prior to the friction tester pads reaching the mounted stent (about 2 cm in order to account for acceleration time).


In some embodiments, at least the portion of the stent system that includes the mounted stent is tested using Lubricity Test 1 the lubricity is at most 15 g.


Lubricity Test 1: Lubricity may be tested according to US Patent Application 20080292776, which is incorporated here by reference in its entirety.


In some embodiments, the balloon comprises a polymer, and the stent mounted on the balloon has a crossing profile of at most 1.06 mm for a 2.25 diameter balloon, at most 1.09 mm for a 2.5 diameter balloon, at most 1.11 mm for a 2.75 diameter balloon, at most 1.12 mm for a 3.0 diameter balloon, at most 1.18 mm for a 3.5 diameter balloon, and at most 1.35 mm for a 4.0 diameter balloon.


In some embodiments, the polymer of the balloon comprises polyamide. In some embodiments, the polymer of the balloon comprises at least one of: polyethylene, polyethylene terephthalate (PET), high density polyethylene (HDPE), Arnitel, Hyrtrel, polyetherether ketone (PEEK), urethane, polyurethane, urethane elastomer, nylon, polyamide, polyether block amide (PEBAX), a block copolymer of any polymer listed herein, Teflon, polyolefin, and a thermoplastic elastomer.


In some embodiments, the coating is at most 20 micrometers in thickness and comprises a polymer. In some embodiments, the coating is at least one of: at most 30 micrometers in thickness, at most 28 micrometers in thickness, at most 25 micrometers in thickness, at most 22 micrometers in thickness, at most 20 micrometers in thickness, at most 18 micrometers in thickness, at most 15 micrometers in thickness, at most 10 micrometers in thickness, and comprises a polymer.


In some embodiments, the polymer of the coating is hydrophilic. In some embodiments, the hydrophilic polymer of the coating comprises PLGA. In some embodiments, the polymer of the coating is bioabsorbable. In some embodiments, the polymer of the coating comprises at least one of PLGA, a copolymer comprising PLGA (i.e. a PLGA copolymer), a PLGA copolymer with a ratio of about 40:60 to about 60:40, a PLGA copolymer with a ratio of about 70:30 to about 90:10, a PLGA copolymer having a molecular weight of about 10 kD, a PLGA copolymer having a molecular weight of about 19 kD, PGA poly(glycolide), LPLA poly(l-lactide), DLPLA poly(dl-lactide), PCL poly(e-caprolactone) PDO, poly(dioxolane) PGA-TMC, 85/15 DLPLG p(dl-lactide-co-glycolide), 75/25 DLPL, 65/35 DLPLG, 50/50 DLPLG, TMC poly(trimethylcarbonate), p(CPP:SA) poly(1,3-bis-p-(carboxyphenoxy)propane-co-sebacic acid), and a combination thereof.


In some embodiments, the coating comprises a pharmaceutical agent. In some embodiments, the pharmaceutical agent comprises at least one of rapamycin, a prodrug, a derivative, an analog, a hydrate, an ester, and a salt thereof; wherein at least a portion of the pharmaceutical agent is in crystalline form.


In some embodiments, the pharmaceutical agent comprises one or more of rapamycin, biolimus (biolimus A9), 40-O-(2-Hydroxyethyl)rapamycin (everolimus), 40-O-Benzyl-rapamycin, 40-O-(4′-Hydroxymethyl)benzyl-rapamycin, 40-O-[4′-(1,2-Dihydroxyethyl)]benzyl-rapamycin, 40-O-Allyl-rapamycin, 40-O-[3′-(2,2-Dimethyl-1,3-dioxolan-4(S)-yl)-prop-2′-en-1′-yl]-rapamycin, (2′:E,4′S)-40-O-(4′,5′-Dihydroxypent-2′-en-1′-yl)-rapamycin 40-O-(2-Hydroxy)ethoxycar-bonylmethyl-rapamycin, 40-O-(3-Hydroxy)propyl-rapamycin 4O—O-(6-Hydroxy)hexyl-rapamycin 40-O-[2-(2-Hydroxy)ethoxy]ethyl-rapamycin 4O—O-[(3S)-2,2-Dimethyldioxolan-3-yl]methyl-rapamycin, 40-O-[(2S)-2,3-Dihydroxyprop-1-yl]-rapamycin, 4O—O-(2-Acetoxy)ethyl-rapamycin 4O—O-(2-Nicotinoyloxy)ethyl-rapamycin, 4O—O-[2-(N-Morpholino)acetoxy]ethyl-rapamycin 4O—O-(2-N-Imidazolylacetoxy)ethyl-rapamycin, 40-O-[2-(N-Methyl-N′-piperazinyl)acetoxy]ethyl-rapamycin, 39-O-Desmethyl-39,40-O,O-ethylene-rapamycin, (26R)-26-Dihydro-40-O-(2-hydroxy)ethyl-rapamycin, 28-O-Methyl-rapamycin, 4O—O-(2-Aminoethyl)-rapamycin, 4O—O-(2-Acetaminoethyl)-rapamycin 4O—O-(2-Nicotinamidoethyl)-rapamycin, 4O—O-(2-(N-Methyl-imidazo-2′-ylcarbethoxamido)ethyl)-rapamycin, 4O—O-(2-Ethoxycarbonylaminoethyl)-rapamycin, 40-O-(2-Tolylsulfonamidoethyl)-rapamycin, 40-O-[2-(4′,5′-Dicarboethoxy-1′,2′,3′-triazol-1′-yl)-ethyl]-rapamycin, 42-Epi-(tetrazolyl)rapamycin (tacrolimus), 42-[3-hydroxy-2-(hydroxymethyl)-2-methylpropanoate]rapamycin (temsirolimus), (42S)-42-Deoxy-42-(1H-tetrazol-1-yl)-rapamycin (zotarolimus), picrolimus, novolimus, myolimus, and salts, derivatives, isomers, racemates, diastereoisomers, prodrugs, hydrate, ester, or analogs thereof.


In some embodiments, at least the portion of the stent system that includes the mounted stent is tested using Lubricity Test 1 and has a lubricity of at least one of: at most about 14 g, at most about 13 g, at most about 12 g, at most about 11 g at most about 10 g, at most about 9 g, at most about 8 g, at most about 7 g, at most about 6 g, and at most about 5 g. As used with respect to lubricity, the term “about” refers to variability of any of: 0.5 g, 1 g, 1.5 g, 2 g, 2.5 g, 3 g, 1 g-3 g, 5%, 10%, 15%, 20%, 25%, 35%, 50%, 5%-50%, 10-25%, and 10%-35%.


In some embodiments, the stent has a closed cell design. In some embodiments, the stent has an open cell design. In some embodiments, the stent has a hybrid of an open and a closed cell design.


In some embodiments, the elongate member has a useable length of about 140 centimeters. In some embodiments, the elongate member has a useable length of at least one of: about 250 centimeters, about 210 centimeters, about 200 centimeters, about 180 centimeters, about 160 centimeters, about 150 centimeters, about 140 centimeters, about 130 centimeters, and about 110 centimeters. As used with respect to useable length, “about” refers to variability of any of: 1 centimeter, 2 centimeters, 5 centimeters, 10 centimeters, 1-5 centimeters, 2-5 centimeters, 2-10 centimeters, and 5-10 centimeters.


Surface Hardness


Provided herein is a stent comprising: a coating of at most 20 micrometers thickness comprising polymer and a pharmaceutical agent, in which the coated stent comprises a surface hardness (Hf) of at most 2 GPa when measured by Nanoindentation Test 1. In some embodiments, the coating is at least one of: at most 30 micrometers in thickness, at most 28 micrometers in thickness, at most 25 micrometers in thickness, at most 22 micrometers in thickness, at most 20 micrometers in thickness, at most 18 micrometers in thickness, at most 15 micrometers in thickness, at most 10 micrometers in thickness, and comprises a polymer.


Provided herein is a stent comprising: a coating of at most 20 micrometers thickness comprising polymer and a pharmaceutical agent, in which the coated stent tested in a wetted state comprises a surface hardness (Hf) of at least one of: at most 2 GPa, at most 1.8 GPa, at most 1.6 GPa, at most 1.4 GPa, at most 1.2 GPa, at most 1 GPa, at most 0.8 GPa, at most 0.75 GPa, and at most 0.5 GPa, when measured by Nanoindentation Test 1. In some embodiments, the coating is at least one of: at most 30 micrometers in thickness, at most 28 micrometers in thickness, at most 25 micrometers in thickness, at most 22 micrometers in thickness, at most 20 micrometers in thickness, at most 18 micrometers in thickness, at most 15 micrometers in thickness, at most 10 micrometers in thickness, and comprises a polymer.


Surface Hardness: Nanoindentation is a widely used technique for measuring the hardness (surface hardness) and Young's modulus of many types of thin films. One method for determining the surface hardness of the coating using nanoindentation (Tapping AFM) is found in: Bruno A. Latella, Bee K. Gan, Christophe J. Barbé, and David J. Cassidy “Nanoindentation hardness, Young's modulus, and creep behavior of organic-inorganic silica-based sol-gel thin films on copper” J. Mater. Res., Vol. 23, No. 9: 2357-2365, September 2008 (referred to as Nanoindentation Test 1 herein). In some embodiments, the coating is tested wetted as noted below.


Wetted: The term “wetted” is generally known in the art and—in a broad sense—means “containing water”. In particular, the term is used herein to describe a coating that contains sufficient water to be lubricious. In terms of water concentration, in some embodiments a wetted coating contains at least 10 wt % of water based on the dry weight of the coating. In terms of water concentration, in some embodiments a wetted coating contains at least 50 wt % of water based on the dry weight of the coating. In terms of water concentration, in some embodiments a wetted coating contains at least 100 wt % of water based on the dry weight of the coating. Examples of wetting fluids include treated or untreated water, water-containing mixtures with, for example, organic solvents or aqueous solutions. The solvents or aqueous solutions may comprise salts, proteins, or polysaccharides, for example. In some embodiments, the coating (or coated stent) is wetted using a saline solution. In some embodiments, the coating (or coated stent) is wetted by immersing the coated stent in a saline solution for about 5 minutes.


In some embodiments, the coating (or coated stent) is wetted by immersing the coated stent in a saline solution for about 15 minutes. In some embodiments, the coating (or coated stent) is wetted by immersing the coated stent in a saline solution for about 30 minutes. In some embodiments, the coating (or coated stent) is wetted by immersing the coated stent in a saline solution for about 45 minutes. In some embodiments, the coating (or coated stent) is wetted by immersing the coated stent in a saline solution for at least 5 minutes. In some embodiments, the coating (or coated stent) is wetted by immersing the coated stent in a saline solution for at least 15 minutes. In some embodiments, the coating (or coated stent) is wetted by immersing the coated stent in a saline solution for at least 30 minutes. In some embodiments, the coating (or coated stent) is wetted by immersing the coated stent in a saline solution for at least 45 minutes. In some embodiments, the coating (or coated stent) is wetted by immersing the coated stent in a saline solution for between about 5 minutes and about 4 hours. In some embodiments, the coating (or coated stent) is wetted by immersing the coated stent in a saline solution for about 1 hour. In some embodiments, the coating (or coated stent) is wetted by immersing the coated stent in a saline solution for about 1.5 hours. In some embodiments, the coating (or coated stent) is wetted by immersing the coated stent in a saline solution for about 2 hours. In some embodiments, the coating (or coated stent) is wetted by immersing the coated stent in a saline solution for about 2.5 hours. In some embodiments, the coating (or coated stent) is wetted by immersing the coated stent in a saline solution for about 3 hours. In some embodiments, the coating (or coated stent) is wetted by immersing the coated stent in a saline solution for about 3.5 hours. In some embodiments, the coating (or coated stent) is wetted by immersing the coated stent in a saline solution for about 4 hours. In some embodiments, the coating (or coated stent) is wetted by immersing the coated stent in a saline solution for between about 30 minutes and about 1 hour. In some embodiments, the coating (or coated stent) is wetted by immersing the coated stent in a saline solution for between about 30 minutes and about 2 hours. In some embodiments, the coating (or coated stent) is wetted by immersing the coated stent in a saline solution for between about 1 hour and about 2 hours. In some embodiments, the coating (or coated stent) is wetted by immersing the coated stent in a saline solution for between about 2 hours and about 3 hours. In some embodiments, the coating (or coated stent) is wetted by immersing the coated stent in a saline solution for between about 3 hours and about 4 hours. As used herein, the term “about” when used in reference to immersion times for wetting a coated stent can mean variations of at least one of 1%, 5%, 10%, 25%, 50%, 75%, for immersion times less than 10 minutes, variations of 1 minute, 2 minutes, and 3 minutes, for times longer than 1 hour, variations of 1 minute, 5 minutes, 10 minutes, 15 minutes, 20 minutes, 30 minutes, and 45 minutes.


In some embodiments, the polymer comprises PLGA. In some embodiments, the polymer is hydrophilic. In some embodiments, the polymer is bioabsorbable. In some embodiments, the polymer comprises at least one of PLGA, a copolymer comprising PLGA (i.e. a PLGA copolymer), a PLGA copolymer with a ratio of about 40:60 to about 60:40, a PLGA copolymer with a ratio of about 70:30 to about 90:10, a PLGA copolymer having a molecular weight of about 10 kD, a PLGA copolymer having a molecular weight of about 19 kD, PGA poly(glycolide), LPLA poly(l-lactide), DLPLA poly(dl-lactide), PCL poly(e-caprolactone) PDO, poly(dioxolane) PGA-TMC, 85/15 DLPLG p(dl-lactide-co-glycolide), 75/25 DLPL, 65/35 DLPLG, 50/50 DLPLG, TMC poly(trimethylcarbonate), p(CPP:SA) poly(1,3-bis-p-(carboxyphenoxy)propane-co-sebacic acid), and a combination thereof.


In some embodiments, the uncoated stent strut thickness is at most 64 micrometers. In some embodiments, an uncoated stent strut thickness is at least one of: at most 100 micrometers, at most 90 micrometers, at most 85 micrometers, at most 80 micrometers, at most 75 micrometers, at most 70 micrometers, at most 68 micrometers, at most 65 micrometers, at most 64 micrometers, at most 62 micrometers, at most 60 micrometers, at most 55 micrometers, at most 50 micrometers, at most 45 micrometers, and at most 40 micrometers.


In some embodiments, the coating comprises a pharmaceutical agent. In some embodiments, the pharmaceutical agent comprises at least one of rapamycin, a prodrug, a derivative, an analog, a hydrate, an ester, and a salt thereof; wherein at least a portion of the pharmaceutical agent is in crystalline form.


In some embodiments, the pharmaceutical agent comprises one or more of rapamycin, biolimus (biolimus A9), 40-O-(2-Hydroxyethyl)rapamycin (everolimus), 40-O-Benzyl-rapamycin, 40-O-(4′-Hydroxymethyl)benzyl-rapamycin, 40-O-[4′-(1,2-Dihydroxyethyl)]benzyl-rapamycin, 40-O-Allyl-rapamycin, 40-O-[3′-(2,2-Dimethyl-1,3-dioxolan-4(S)-yl)-prop-2′-en-1′-yl]-rapamycin, (2′:E,4′S)-40-O-(4′,5′-Dihydroxypent-2′-en-1′-yl)-rapamycin 40-O-(2-Hydroxy)ethoxycar-bonylmethyl-rapamycin, 40-O-(3-Hydroxy)propyl-rapamycin 4O—O-(6-Hydroxy)hexyl-rapamycin 40-O-[2-(2-Hydroxy)ethoxy]ethyl-rapamycin 4O—O-[(3S)-2,2-Dimethyldioxolan-3-yl]methyl-rapamycin, 40-O-[(2S)-2,3-Dihydroxyprop-1-yl]-rapamycin, 4O—O-(2-Acetoxy)ethyl-rapamycin 4O—O-(2-Nicotinoyloxy)ethyl-rapamycin, 4O—O-[2-(N-Morpholino)acetoxy]ethyl-rapamycin 4O—O-(2-N-Imidazolylacetoxy)ethyl-rapamycin, 40-O-[2-(N-Methyl-N′-piperazinyl)acetoxy]ethyl-rapamycin, 39-O-Desmethyl-39,40-O,O-ethylene-rapamycin, (26R)-26-Dihydro-40-O-(2-hydroxy)ethyl-rapamycin, 28-O-Methyl-rapamycin, 4O—O-(2-Aminoethyl)-rapamycin, 4O—O-(2-Acetaminoethyl)-rapamycin 4O—O-(2-Nicotinamidoethyl)-rapamycin, 4O—O-(2-(N-Methyl-imidazo-2′-ylcarbethoxamido)ethyl)-rapamycin, 4O—O-(2-Ethoxycarbonylaminoethyl)-rapamycin, 40-O-(2-Tolylsulfonamidoethyl)-rapamycin, 40-O-[2-(4′,5′-Dicarboethoxy-1′,2′,3′-triazol-1′-yl)-ethyl]-rapamycin, 42-Epi-(tetrazolyl)rapamycin (tacrolimus), 42-[3-hydroxy-2-(hydroxymethyl)-2-methylpropanoate]rapamycin (temsirolimus), (42S)-42-Deoxy-42-(1H-tetrazol-1-yl)-rapamycin (zotarolimus), picrolimus, novolimus, myolimus, and salts, derivatives, isomers, racemates, diastereoisomers, prodrugs, hydrate, ester, or analogs thereof.


In some embodiments, the coated stent comprises a surface hardness (Hf) of at least one of: at most 1.5 GPa, at most 1.4 GPa, at most 1.3 GPa, at most 1.2 GPa, at most 1.1 GPa, at most 1.0 GPa, at most 0.9 GPa, at most 0.8 GPa, at most 0.7 GPa, at most 0.6 GPa, at most 0.5 GPa, at most 0.4 GPa, at most 0.3 GPa, and at most 0.2 GPa, when measured by Nanoindentation Test 1. In some embodiments, the coated stent comprises a surface hardness (Hf) of at least one of: at most about 1.5 GPa, at most about 1.4 GPa, at most about 1.3 GPa, at most about 1.2 GPa, at most about 1.1 GPa, at most about 1.0 GPa, at most about 0.9 GPa, at most about 0.8 GPa, at most about 0.7 GPa, at most about 0.6 GPa, at most about 0.5 GPa, at most about 0.4 GPa, at most about 0.3 GPa, and at most about 0.2 GPa, when measured by Nanoindentation Test 1. As used herein, the term “about” when used in reference to surface hardness can mean variations of at least one of 1%, 5%, 10%, 25%, 50%, 75%, 1%-50%, 5%-25%, 25%-50%. and 50%-75%.


In some embodiments, the coated stent is wetted in a saline solution for about 5 minutes prior to surface hardness (Hf) testing. In some embodiments, the coated stent is wetted in a saline solution for about 4 hours prior to surface hardness (Hf) testing.


Systems, devices, and/or methods described herein may comprise the elements described in any of, and/or the methods described in any of: U.S. Provisional Application No. 61/243,955, filed Sep. 18, 2009, U.S. Provisional Application No. 61/212,964, filed Apr. 17, 2009, U.S. Provisional Application No. 61/165,880, filed Apr. 1, 2009, U.S. Provisional Application No. 61/104,669, filed Oct. 10, 2008, U.S. Provisional Application No. 61/045,928, filed Apr. 17, 2008, U.S. Provisional Application No. 60/912,394, filed Apr. 17, 2007, U.S. Provisional Application No. 60/771,725, filed Feb. 8, 2006, U.S. Provisional Application No. 60/752,338, filed Dec. 20, 2005, and the contents of all of these applications are incorporated herein by reference in their entirety.


Systems, devices, and/or methods described herein may comprise the elements described in any of, and/or the methods described in any of: U.S. Provisional Application No. 60/912,408, filed Apr. 17, 2007, U.S. Provisional Application No. 60/884,005, filed Jan. 8, 2007, and U.S. Provisional Application No. 60/981,445, filed Oct. 19, 2007, and the contents of all these applications are incorporated herein by reference in their entirety.


Conventional processes for spray coating stents require that drug and polymer be dissolved in solvent or mutual solvent before spray coating can occur. The platform provided herein the drugs and polymers are coated on the stent framework in discrete steps, which can be carried out simultaneously or alternately. This allows discrete deposition of the active agent (e.g., a drug) within a polymer thereby allowing the placement of more than one drug on a single medical device with or without an intervening polymer layer. For example, the present platform provides a dual drug eluting stent.


Some of the advantages provided by the subject invention include employing compressed fluids (e.g., supercritical fluids, for example e-RESS based methods (which is synonymous with an RESS based method, in some embodiments including electrostatic capture); solvent free deposition methodology; a platform that allows processing at lower temperatures thereby preserving the qualities of the active agent and the polymer; the ability to incorporate two, three or more drugs while minimizing deleterious effects from direct interactions between the various drugs and/or their excipients during the fabrication and/or storage of the drug eluting stents; a dry deposition; enhanced adhesion and mechanical properties of the layers on the stent framework; precision deposition and rapid batch processing; and ability to form intricate structures.


Provided herein is a device comprising a stent; and a plurality of layers that form a laminate coating on said stent; wherein at least one of said layers comprises a bioabsorbable polymer and at least one of said layers comprises one or more active agents; wherein at least a portion of the active agent is in crystalline form.


Provided herein is a device comprising a stent; and a plurality of layers that form a laminate coating on said stent; wherein at least one of said layers comprises a bioabsorbable polymer and at least one of said layers comprises a pharmaceutical agent selected from rapamycin, a prodrug, a derivative, an analog, a hydrate, an ester, and a salt thereof; wherein at least a portion of the pharmaceutical agent is in crystalline form.


In some embodiments, the pharmaceutical agent comprises one or more of rapamycin, biolimus (biolimus A9), 40-O-(2-Hydroxyethyl)rapamycin (everolimus), 40-O-Benzyl-rapamycin, 40-O-(4′-Hydroxymethyl)benzyl-rapamycin, 40-O-[4′-(1,2-Dihydroxyethyl)]benzyl-rapamycin, 40-O-Allyl-rapamycin, 40-O-[3′-(2,2-Dimethyl-1,3-dioxolan-4(S)-yl)-prop-2′-en-1′-yl]-rapamycin, (2′:E,4′S)-40-O-(4′,5′-Dihydroxypent-2′-en-1′-yl)-rapamycin 40-O-(2-Hydroxy)ethoxycar-bonylmethyl-rapamycin, 40-O-(3-Hydroxy)propyl-rapamycin 4O—O-(6-Hydroxy)hexyl-rapamycin 40-O-[2-(2-Hydroxy)ethoxy]ethyl-rapamycin 4O—O-[(3S)-2,2-Dimethyldioxolan-3-yl]methyl-rapamycin, 40-O-[2S)-2,3-Dihydroxyprop-1-yl]-rapamycin, 4O—O-(2-Acetoxy)ethyl-rapamycin 4O—O-(2-Nicotinoyloxy)ethyl-rapamycin, 4O—O-[2-(N-Morpholino)acetoxy]ethyl-rapamycin 4O—O-(2-N-Imidazolylacetoxy)ethyl-rapamycin, 40-O-[2-(N-Methyl-N′-piperazinyl)acetoxy]ethyl-rapamycin, 39-O-Desmethyl-39,40-O,O-ethylene-rapamycin, (26R)-26-Dihydro-40-O-(2-hydroxy)ethyl-rapamycin, 28-O-Methyl-rapamycin, 4O—O-(2-Aminoethyl)-rapamycin, 4O—O-(2-Acetaminoethyl)-rapamycin 4O—O-(2-Nicotinamidoethyl)-rapamycin, 4O—O-(2-(N-Methyl-imidazo-2′-ylcarbethoxamido)ethyl)-rapamycin, 4O—O-(2-Ethoxycarbonylaminoethyl)-rapamycin, 40-O-(2-Tolylsulfonamidoethyl)-rapamycin, 40-O-[2-(4′,5′-Dicarboethoxy-1′,2′,3′-triazol-1′-yl)-ethyl]-rapamycin, 42-Epi-(tetrazolyl)rapamycin (tacrolimus), 42-[3-hydroxy-2-(hydroxymethyl)-2-methylpropanoate]rapamycin (temsirolimus), (42S)-42-Deoxy-42-(1H-tetrazol-1-yl)-rapamycin (zotarolimus), picrolimus, novolimus, myolimus, and salts, derivatives, isomers, racemates, diastereoisomers, prodrugs, hydrate, ester, or analogs thereof.


In some embodiments, the device has at least one pharmaceutical agent layer defined by a three-dimensional physical space occupied by crystal particles of said pharmaceutical agent and said three dimensional physical space is free of polymer. In some embodiments, at least some of the crystal particles in said three dimensional physical space defining said at least one pharmaceutical agent layer are in contact with polymer particles present in a polymer layer adjacent to said at least one pharmaceutical agent layer defined by said three-dimensional space free of polymer.


In some embodiments, the plurality of layers comprises a first polymer layer comprising a first bioabsorbable polymer and a second polymer layer comprising a second bioabsorbable polymer, wherein said at least one layer comprising said pharmaceutical agent is between said first polymer layer and said second polymer layer. In some embodiments, first and second bioabsorbable polymers are the same polymer. In some embodiments, the first and second bioabsorbable polymers are different. In some embodiments, the second polymer layer has at least one contact point with at least one particle of said pharmaceutical agent in said pharmaceutical agent layer and said second polymer layer has at least one contact point with said first polymer layer.


In some embodiments, the stent has a stent longitudinal axis; and said second polymer layer has a second polymer layer portion along said stent longitudinal wherein said second layer portion is free of contact with particles of said pharmaceutical agent. In some embodiments, the device has at least one pharmaceutical agent layer defined by a three-dimensional physical space occupied by crystal particles of said pharmaceutical agent and said three dimensional physical space is free of polymer.


The second polymer layer may have a layer portion defined along a longitudinal axis of the stent, said polymer layer portion having a thickness less than said maximum thickness of said second polymer layer; wherein said portion is free of contact with particles of said pharmaceutical agent.


The polymer layer portion may be a sub layer which, at least in part, extends along the abluminal surface of the stent along the longitudinal axis of the stent (where the longitudinal axis of the stent is the central axis of the stent along its tubular length). For example, when a coating is removed from the abluminal surface of the stent, such as when the stent is cut along its length, flattened, and the coating is removed by scraping the coating off using a scalpel, knife or other sharp tool, the coating that is removed (despite having a pattern consistent with the stent pattern) has a layer that can be shown to have the characteristics described herein. This may be shown by sampling multiple locations of the coating that is representative of the entire coating.


Alternatively, and/or additionally, since stents are generally comprised of a series of struts and voids. The methods provided herein advantageously allow for coatings extending around each strut, the layers of coating are likewise disposed around each strut. Thus, a polymer layer portion may be a layer which, at least, extends around each strut a distance from said strut (although the distance may vary where the coating thickness on the abluminal surface is different than the coating thickness on the luminal and/or sidewalls).


In some embodiments, the stent comprises at least one strut having a strut length along said stent longitudinal axis, wherein said second layer portion extends substantially along said strut length. In some embodiments, the stent has a stent length along said stent longitudinal axis and said second layer portion extends substantially along said stent length.


In some embodiments, the stent comprises at least five struts, each strut having a strut length along said stent longitudinal axis, wherein said second layer portion extends substantially along substantially the strut length of at least two struts. In some embodiments, the stent comprises at least five struts, each strut having a strut length along said stent longitudinal axis, wherein said second layer portion extends substantially along substantially the strut length of at least three struts. In some embodiments, the stent comprises at least five struts, each strut having a strut length along said stent longitudinal axis, wherein said second layer portion extends substantially along substantially the strut length of least four struts. In some embodiments, the stent comprises at least five struts, each strut having a strut length along said stent longitudinal axis, wherein said second layer portion extends substantially along substantially the strut length of all said at least five struts. In some embodiments, the stent has a stent length along said stent longitudinal axis and said second layer portion extends substantially along said stent length.


In some embodiments, the stent has a stent length along said stent longitudinal axis and said second layer portion extends along at least 50% of said stent length. In some embodiments, the stent has a stent length along said stent longitudinal axis and said second layer portion extends along at least 75% of said stent length. In some embodiments, the stent has a stent length along said stent longitudinal axis and said second layer portion extends along at least 85% of said stent length. In some embodiments, the stent has a stent length along said stent longitudinal axis and said second layer portion extends along at least 90% of said stent length. In some embodiments, the stent has a stent length along said stent longitudinal axis and said second layer portion extends along at least 99% of said stent length.


In some embodiments, the laminate coating has a total thickness and said second polymer layer portion has a thickness of from about 0.01% to about 10% of the total thickness of said laminate coating. In some embodiments, the laminate coating has a total thickness and said horizontal second polymer layer portion has a thickness of from about 1% to about 5% of the total thickness of said laminate coating. In some embodiments, the laminate coating has a total thickness of from about 5 μm to about 50 μm and said horizontal second polymer layer portion has a thickness of from about 0.001 μm to about 5 μm. In some embodiments, the laminate coating has a total thickness of from about 10 μm to about 20 μm and said second polymer layer portion has a thickness of from about 0.01 μm to about 5 μm.


In some embodiments, the laminate coating is at least 25% by volume pharmaceutical agent. In some embodiments, the laminate coating is at least 35% by volume pharmaceutical agent. In some embodiments, the laminate coating is about 50% by volume pharmaceutical agent.


In some embodiments, at least a portion of the pharmaceutical agent is present in a phase separate from one or more phases formed by said polymer.


In some embodiments, the pharmaceutical agent is at least 50% crystalline. In some embodiments, the pharmaceutical agent is at least 75% crystalline. In some embodiments, the pharmaceutical agent is at least 90% crystalline. In some embodiments, the pharmaceutical agent is at least 95% crystalline. In some embodiments, the pharmaceutical agent is at least 99% crystalline.


In some embodiments, the stent has a stent longitudinal length and the coating has a coating outer surface along said stent longitudinal length, wherein said coating comprises pharmaceutical agent in crystalline form present in the coating below said coating outer surface. In some embodiments, the stent has a stent longitudinal length and the coating has a coating outer surface along said stent longitudinal length, wherein said coating comprises pharmaceutical agent in crystalline form present in the coating up to at least 1 μm below said coating outer surface. In some embodiments, the stent has a stent longitudinal length and the coating has a coating outer surface along said stent longitudinal length, wherein said coating comprises pharmaceutical agent in crystalline form present in the coating up to at least 5 μm below said coating outer surface.


In some embodiments, the coating exhibits an X-ray spectrum showing the presence of said pharmaceutical agent in crystalline form. In some embodiments, the coating exhibits a Raman spectrum showing the presence of said pharmaceutical agent in crystalline form. In some embodiments, the coating exhibits a Differential Scanning calorimetry (DSC) curve showing the presence of said pharmaceutical agent in crystalline form. In some embodiments, the coating exhibits Wide Angle X-ray Scattering (WAXS) spectrum showing the presence of said pharmaceutical agent in crystalline form. In some embodiments, the coating exhibits a wide angle radiation scattering spectrum showing the presence of said pharmaceutical agent in crystalline form. In some embodiments, the coating exhibits an Infra Red (IR) spectrum showing the presence of said pharmaceutical agent in crystalline form.


Provided herein is a device comprising: a stent; and a plurality of layers that form a laminate coating on said stent, wherein a first layer comprises a first bioabsorbable polymer, a second layer comprises a pharmaceutical agent, a third layer comprises a second bioabsorbable polymer, a fourth layer comprises the pharmaceutical agent, and a fifth layer comprises a third bioabsorbable polymer, wherein the pharmaceutical agent is selected from rapamycin, a prodrug, a derivative, an analog, a hydrate, an ester, and a salt thereof, and wherein at least a portion of the pharmaceutical agent is in crystalline form.


In some embodiments, the pharmaceutical agent comprises one or more of rapamycin, biolimus (biolimus A9), 40-O-(2-Hydroxyethyl)rapamycin (everolimus), 40-O-Benzyl-rapamycin, 40-O-(4′-Hydroxymethyl)benzyl-rapamycin, 40-O-[4′-(1,2-Dihydroxyethyl)]benzyl-rapamycin, 40-O-Allyl-rapamycin, 40-O-[3′-(2,2-Dimethyl-1,3-dioxolan-4(S)-yl)-prop-2′-en-1′-yl]-rapamycin, (2′:E,4′S)-40-O-(4′,5′-Dihydroxypent-2′-en-1′-yl)-rapamycin 40-O-(2-Hydroxy)ethoxycar-bonylmethyl-rapamycin, 40-O-(3-Hydroxy)propyl-rapamycin 4O—O-(6-Hydroxy)hexyl-rapamycin 40-O-[2-(2-Hydroxy)ethoxy]ethyl-rapamycin 4O—O-[(3S)-2,2-Dimethyldioxolan-3-yl]methyl-rapamycin, 40-O-[(2S)-2,3-Dihydroxyprop-1-yl]-rapamycin, 4O—O-(2-Acetoxy)ethyl-rapamycin 4O—O-(2-Nicotinoyloxy)ethyl-rapamycin, 40-O-[2-(N-Morpholino)acetoxy]ethyl-rapamycin 4O—O-(2-N-Imidazolylacetoxy)ethyl-rapamycin, 40-O-[2-(N-Methyl-N′-piperazinyl)acetoxy]ethyl-rapamycin, 39-O-Desmethyl-39,40-O,O-ethylene-rapamycin, (26R)-26-Dihydro-40-O-(2-hydroxy)ethyl-rapamycin, 28-O-Methyl-rapamycin, 4O—O-(2-Aminoethyl)-rapamycin, 4O—O-(2-Acetaminoethyl)-rapamycin 4O—O-(2-Nicotinamidoethyl)-rapamycin, 4O—O-(2-(N-Methyl-imidazo-2′-ylcarbethoxamido)ethyl)-rapamycin, 4O—O-(2-Ethoxycarbonylaminoethyl)-rapamycin, 40-O-(2-Tolylsulfonamidoethyl)-rapamycin, 40-O-[2-(4′,5′-Dicarboethoxy-1′,2′,3′-triazol-1′-yl)-ethyl]-rapamycin, 42-Epi-(tetrazolyl)rapamycin (tacrolimus), 42-[3-hydroxy-2-(hydroxymethyl)-2-methylpropanoate]rapamycin (temsirolimus), (42S)-42-Deoxy-42-(1H-tetrazol-1-yl)-rapamycin (zotarolimus), picrolimus, novolimus, myolimus, and salts, derivatives, isomers, racemates, diastereoisomers, prodrugs, hydrate, ester, or analogs thereof.


In some embodiments, at least two of said first bioabsorbable polymer, said second bioabsorbable polymer and said third bioabsorbable polymer are the same polymer. In some embodiments, the first bioabsorbable polymer, the second bioabsorbable polymer and the third bioabsorbable polymer are the same polymer. In some embodiments, at least two of said first bioabsorbable polymer, said second bioabsorbable polymer and said third bioabsorbable polymer are different polymers. In some embodiments, the first bioabsorbable polymer, said second bioabsorbable polymer and said third bioabsorbable polymer are different polymers.


In some embodiments, the third layer has at least one contact point with particles of said pharmaceutical agent in said second layer; and said third layer has at least one contact point with said first layer.


In some embodiments, at least two of the first polymer, the second polymer, and the third polymer are the same polymer, and wherein said same polymer comprises a copolymer comprising PLGA (i.e. a PLGA copolymer). In some embodiments, the third polymer has an in vitro dissolution rate higher than the in vitro dissolution rate of the first polymer. In some embodiments, the third polymer is PLGA copolymer with a ratio of about 40:60 to about 60:40 and the first polymer is a PLGA copolymer with a ratio of about 70:30 to about 90:10. In some embodiments, the third polymer is PLGA copolymer having a molecular weight of about 10 kD and the second polymer is a PLGA copolymer having a molecular weight of about 19 kD.


Provided herein is a device comprising a stent; and a plurality of layers that form a laminate coating on said stent; wherein at least one of said layers comprises a bioabsorbable polymer, at least one of said layers comprises a first active agent and at least one of said layers comprises a second active agent; wherein at least a portion of first and/or second active agents is in crystalline form.


In some embodiments, the bioabsorbable polymer is selected from the group PLGA, PGA poly(glycolide), LPLA poly(l-lactide), DLPLA poly(dl-lactide), PCL poly(e-caprolactone) PDO, poly(dioxolane) PGA-TMC, 85/15 DLPLG p(dl-lactide-co-glycolide), 75/25 DLPL, 65/35 DLPLG, 50/50 DLPLG, TMC poly(trimethylcarbonate), p(CPP:SA) poly(1,3-bis-p-(carboxyphenoxy)propane-co-sebacic acid). In some embodiments, the polymer comprises an intimate mixture of two or more polymers.


In some embodiments, the first and second active agents are independently selected from pharmaceutical agents and active biological agents.


In some embodiments, the stent is formed of stainless steel material. In some embodiments, the stent is formed of a material comprising a cobalt chromium alloy. In some embodiments, the stent is formed from a material comprising the following percentages by weight: about 0.05 to about 0.15 C, about 1.00 to about 2.00 Mn, about 0.04 Si, about 0.03 P, about 0.3 S, about 19.0 to about 21.0 Cr, about 9.0 to about 11.0 Ni, about 14.0 to about 16.00 W, about 3.0 Fe, and Bal. Co. In some embodiments, the stent is formed from a material comprising at most the following percentages by weight: about 0.025 C, about 0.15 Mn, about 0.15 Si, about 0.015 P, about 0.01 S, about 19.0 to about 21.0 Cr, about 33 to about 37 Ni, about 9.0 to about 10.5 Mo, about 1.0 Fe, about 1.0 Ti, and Bal. Co. In some embodiments, thestent is formed from a material comprising L605 alloy.


In some embodiments, the stent has a thickness of from about 50% to about 90% of a total thickness of said device. In some embodiments, the device has a thickness of from about 20 μm to about 500 μm. In some embodiments, the device has a thickness of about 90 μm or less. In some embodiments, the laminate coating has a thickness of from about 5 μm to about 50 μm. In some embodiments, the laminate coating has a thickness of from about 10 μm to about 20 μm. In some embodiments, the stent has a thickness of from about 50 μm to about 80 μm.


Provided herein is a device comprising: a stent, wherein the stent is formed from a material comprising the following percentages by weight: 0.05-0.15 C, 1.00-2.00 Mn, 0.040 Si, 0.030 P, 0.3 S, 19.00-21.00 Cr, 9.00-11.00 Ni, 14.00-16.00 W, 3.00 Fe, and Bal. Co; and a plurality of layers that form a laminate coating on said stent, wherein a first layer comprises a first bioabsorbable polymer, a second layer comprises a pharmaceutical agent, a third layer comprises a second bioabsorbable polymer, a fourth layer comprises the pharmaceutical agent, and a fifth layer comprises a third bioabsorbable polymer, wherein the pharmaceutical agent is selected from rapamycin, a prodrug, a derivative, an analog, a hydrate, an ester, and a salt thereof, wherein at least a portion of the pharmaceutical agent is in crystalline form, and wherein at least one of said first polymer, second polymer and third polymer comprises a PLGA copolymer.


In some embodiments, the pharmaceutical agent comprises one or more of rapamycin, biolimus (biolimus A9), 40-O-(2-Hydroxyethyl)rapamycin (everolimus), 40-O-Benzyl-rapamycin, 40-O-(4′-Hydroxymethyl)benzyl-rapamycin, 40-O-[4′-(1,2-Dihydroxyethyl)]benzyl-rapamycin, 40-O-Allyl-rapamycin, 40-O-[3′-(2,2-Dimethyl-1,3-dioxolan-4(S)-yl)-prop-2′-en-1′-yl]-rapamycin, (2′:E,4′S)-40-O-(4′,5′-Dihydroxypent-2′-en-1′-yl)-rapamycin 40-O-(2-Hydroxy)ethoxycar-bonylmethyl-rapamycin, 40-O-(3-Hydroxy)propyl-rapamycin 4O—O-(6-Hydroxy)hexyl-rapamycin 40-O-[2-(2-Hydroxy)ethoxy]ethyl-rapamycin 4O—O-[(3S)-2,2-Dimethyldioxolan-3-yl]methyl-rapamycin, 40-O-[(2S)-2,3-Dihydroxyprop-1-yl]-rapamycin, 4O—O-(2-Acetoxy)ethyl-rapamycin 4O—O-(2-Nicotinoyloxy)ethyl-rapamycin, 4O—O-[2-(N-Morpholino)acetoxy]ethyl-rapamycin 4O—O-(2-N-Imidazolylacetoxy)ethyl-rapamycin, 40-O-[2-(N-Methyl-N-piperazinyl)acetoxy]ethyl-rapamycin, 39-O-Desmethyl-39,40-O,O-ethylene-rapamycin, (26R)-26-Dihydro-40-O-(2-hydroxy)ethyl-rapamycin, 28-O-Methyl-rapamycin, 4O—O-(2-Aminoethyl)-rapamycin, 4O—O-(2-Acetaminoethyl)-rapamycin 4O—O-(2-Nicotinamidoethyl)-rapamycin, 4O—O-(2-(N-Methyl-imidazo-2′-ylcarbethoxamido)ethyl)-rapamycin, 4O—O-(2-Ethoxycarbonylaminoethyl)-rapamycin, 40-O-(2-Tolylsulfonamidoethyl)-rapamycin, 40-O-[2-(4′,5′-Dicarboethoxy-1′,2′,3′-triazol-1′-yl)-ethyl]-rapamycin, 42-Epi-(tetrazolyl)rapamycin (tacrolimus), 42-[3-hydroxy-2-(hydroxymethyl)-2-methylpropanoate]rapamycin (temsirolimus), (42S)-42-Deoxy-42-(1H-tetrazol-1-yl)-rapamycin (zotarolimus), picrolimus, novolimus, myolimus, and salts, derivatives, isomers, racemates, diastereoisomers, prodrugs, hydrate, ester, or analogs thereof.


In some embodiments, the device has a pharmaceutical agent content of from about 0.5 μg/mm to about 20 μg/mm. In some embodiments, the device has a pharmaceutical agent content of from about 8 μg/mm to about 12 μg/mm. In some embodiments, the device has a pharmaceutical agent content of from about 5 μg to about 500 μg. In some embodiments, the device has a pharmaceutical agent content of from about 100 μg to about 160 μg. In some embodiments, the device has a pharmaceutical agent content of from about 100 μg to about 160 μg.


Content is expressed herein in units of μg/mm, however, this may simply be converted to μg/mm2 or another amount per area (e.g., μg/cm2).


Provided herein is a method of preparing a device comprising a stent and a plurality of layers that form a laminate coating on said stent; said method comprising: (a) providing a stent; (b) forming a plurality of layers on said stent to form said laminate coating on said stent; wherein at least one of said layers comprises a bioabsorbable polymer and at least one of said layers comprises one or more active agents; wherein at least a portion of the active agent is in crystalline form. The method may further comprise loading the stent on a balloon of a stent delivery catheter.


Provided herein is a method of preparing a device comprising a stent and a plurality of layers that form a laminate coating on said stent; said method comprising: (a) providing a stent; (b) forming a plurality of layers to form said laminate coating on said stent; wherein at least one of said layers comprises a bioabsorbable polymer and at least one of said layers comprises a pharmaceutical agent selected from rapamycin, a prodrug, a derivative, an analog, a hydrate, an ester, and a salt thereof wherein at least a portion of the pharmaceutical agent is in crystalline form. The method may further comprise mounting the stent on a balloon of a stent delivery catheter. In some embodiments, the stent delivery catheter comprises an elongate member having an inflation lumen and a guidewire lumen therein and a balloon having an interior that is in fluid communication with the inflation lumen


In some embodiments, the pharmaceutical agent comprises one or more of rapamycin, biolimus (biolimus A9), 40-O-(2-Hydroxyethyl)rapamycin (everolimus), 40-O-Benzyl-rapamycin, 40-O-(4′-Hydroxymethyl)benzyl-rapamycin, 40-O-[4′-(1,2-Dihydroxyethyl)]benzyl-rapamycin, 40-O-Allyl-rapamycin, 40-O-[3′-(2,2-Dimethyl-1,3-dioxolan-4(S)-yl)-prop-2′-en-1′-yl]-rapamycin, (2′:E,4′S)-40-O-(4′,5′-Dihydroxypent-2′-en-1′-yl)-rapamycin 40-O-(2-Hydroxy)ethoxycar-bonylmethyl-rapamycin, 40-O-(3-Hydroxy)propyl-rapamycin 4O—O-(6-Hydroxy)hexyl-rapamycin 40-O-[2-(2-Hydroxy)ethoxy]ethyl-rapamycin 4O—O-[(3S)-2,2-Dimethyldioxolan-3-yl]methyl-rapamycin, 40-O-[(2S)-2,3-Dihydroxyprop-1-yl]-rapamycin, 4O—O-(2-Acetoxy)ethyl-rapamycin 4O—O-(2-Nicotinoyloxy)ethyl-rapamycin, 4O—O-[2-(N-Morpholino)acetoxy]ethyl-rapamycin 4O—O-(2-N-Imidazolylacetoxy)ethyl-rapamycin, 40-O-[2-(N-Methyl-N′-piperazinyl)acetoxy]ethyl-rapamycin, 39-O-Desmethyl-39,40-O,O-ethylene-rapamycin, (26R)-26-Dihydro-40-O-(2-hydroxy)ethyl-rapamycin, 28-O-Methyl-rapamycin, 4O—O-(2-Aminoethyl)-rapamycin, 4O—O-(2-Acetaminoethyl)-rapamycin 4O—O-(2-Nicotinamidoethyl)-rapamycin, 4O—O-(2-(N-Methyl-imidazo-2′-ylcarbethoxamido)ethyl)-rapamycin, 4O—O-(2-Ethoxycarbonylaminoethyl)-rapamycin, 40-O-(2-Tolylsulfonamidoethyl)-rapamycin, 40-O-[2-(4′,5′-Dicarboethoxy-1′,2′,3′-triazol-1′-yl)-ethyl]-rapamycin, 42-Epi-(tetrazolyl)rapamycin (tacrolimus), 42-[3-hydroxy-2-(hydroxymethyl)-2-methylpropanoate]rapamycin (temsirolimus), (42S)-42-Deoxy-42-(1H-tetrazol-1-yl)-rapamycin (zotarolimus), picrolimus, novolimus, myolimus, and salts, derivatives, isomers, racemates, diastereoisomers, prodrugs, hydrate, ester, or analogs thereof.


Provided herein is a method of preparing a device comprising a stent and a plurality of layers that form a laminate coating on said stent; said method comprising: (a) providing a stent; (b) forming a plurality of layers to form said laminate coating on said stent; wherein at least one of said layers comprises a bioabsorbable polymer and at least one of said layers comprises a pharmaceutical agent selected from rapamycin, a prodrug, a derivative, an analog, a hydrate, an ester, and a salt thereof; wherein at least a portion of the pharmaceutical agent is in crystalline form, wherein said method comprises forming at least one pharmaceutical agent layer defined by a three-dimensional physical space occupied by crystal particles of said pharmaceutical agent and said three dimensional physical space is free of polymer. The method may further comprise mounting the stent on a balloon of a stent delivery catheter. In some embodiments, the stent delivery catheter comprises an elongate member having an inflation lumen and a guidewire lumen therein and a balloon having an interior that is in fluid communication with the inflation lumen


In some embodiments, the pharmaceutical agent comprises one or more of rapamycin, biolimus (biolimus A9), 40-O-(2-Hydroxyethyl)rapamycin (everolimus), 40-O-Benzyl-rapamycin, 40-O-(4′-Hydroxymethyl)benzyl-rapamycin, 40-O-[4′-(1,2-Dihydroxyethyl)]benzyl-rapamycin, 40-O-Allyl-rapamycin, 40-O-[3′-(2,2-Dimethyl-1,3-dioxolan-4(S)-yl)-prop-2′-en-1′-yl]-rapamycin, (2′:E,4′S)-40-β-(4′,5′-Dihydroxypent-2′-en-1′-yl)-rapamycin 40-O-(2-Hydroxy)ethoxycar-bonylmethyl-rapamycin, 40-O-(3-Hydroxy)propyl-rapamycin 4O—O-(6-Hydroxy)hexyl-rapamycin 40-O-[2-(2-Hydroxy)ethoxy]ethyl-rapamycin 4O—O-[(3S)-2,2-Dimethyldioxolan-3-yl]methyl-rapamycin, 40-O-[(2S)-2,3-Dihydroxyprop-1-yl]-rapamycin, 4O—O-(2-Acetoxy)ethyl-rapamycin 4O—O-(2-Nicotinoyloxy)ethyl-rapamycin, 4O—O-[2-(N-Morpholino)acetoxy]ethyl-rapamycin 4O—O-(2-N-Imidazolylacetoxy)ethyl-rapamycin, 40-O-[2-(N-Methyl-N′-piperazinyl)acetoxy]ethyl-rapamycin, 39-O-Desmethyl-39,40-O,O-ethylene-rapamycin, (26R)-26-Dihydro-40-O-(2-hydroxy)ethyl-rapamycin, 28-O-Methyl-rapamycin, 4O—O-(2-Aminoethyl)-rapamycin, 4O—O-(2-Acetaminoethyl)-rapamycin 4O—O-(2-Nicotinamidoethyl)-rapamycin, 4O—O-(2-(N-Methyl-imidazo-2′-ylcarbethoxamido)ethyl)-rapamycin, 4O—O-(2-Ethoxycarbonylaminoethyl)-rapamycin, 40-O-(2-Tolylsulfonamidoethyl)-rapamycin, 40-O-[2-(4′,5′-Dicarboethoxy-1′,2′,3′-triazol-1′-yl)-ethyl]-rapamycin, 42-Epi-(tetrazolyl)rapamycin (tacrolimus), 42-[3-hydroxy-2-(hydroxymethyl)-2-methylpropanoate]rapamycin (temsirolimus), (42S)-42-Deoxy-42-(1H-tetrazol-1-yl)-rapamycin (zotarolimus), picrolimus, novolimus, myolimus, and salts, derivatives, isomers, racemates, diastereoisomers, prodrugs, hydrate, ester, or analogs thereof.


Provided herein is a method of preparing a device comprising a stent and a plurality of layers that form a laminate coating on said stent; said method comprising: (a) providing a stent; (b) discharging at least one pharmaceutical agent and/or at least one active biological agent in dry powder form through a first orifice; (c) forming a supercritical or near supercritical fluid solution comprising at least one supercritical fluid solvent and at least one polymer and discharging said supercritical or near supercritical fluid solution through a second orifice under conditions sufficient to form solid particles of the polymer; (d) depositing the polymer and pharmaceutical agent and/or active biological agent particles onto said substrate, wherein an electrical potential is maintained between the substrate and the polymer and pharmaceutical agent and/or active biological agent particles, thereby forming said coating; and (e) sintering said polymer under conditions that do not substantially modify a morphology of said pharmaceutical agent and/or activity of said biological agent. The method may further comprise mounting the stent on a balloon of a stent delivery catheter. In some embodiments, the stent delivery catheter comprises an elongate member having an inflation lumen and a guidewire lumen therein and a balloon having an interior that is in fluid communication with the inflation lumen


In some embodiments, step (b) comprises discharging a pharmaceutical agent selected from rapamycin, a prodrug, a derivative, an analog, a hydrate, an ester, and a salt thereof wherein at least a portion of the pharmaceutical agent is in crystalline form. In some embodiments, the pharmaceutical agent comprises one or more of rapamycin, biolimus (biolimus A9), 40-O-(2-Hydroxyethyl)rapamycin (everolimus), 40-O-Benzyl-rapamycin, 40-O-(4′-Hydroxymethyl)benzyl-rapamycin, 40-O-[4′-(1,2-Dihydroxyethyl)]benzyl-rapamycin, 40-O-Allyl-rapamycin, 40-O-[3′-(2,2-Dimethyl-1,3-dioxolan-4(S)-yl)-prop-2′-en-1′-yl]-rapamycin, (2′:E,4′S)-40-O-(4′,5′-Dihydroxypent-2′-en-1′-yl)-rapamycin 40-O-(2-Hydroxy)ethoxycar-bonylmethyl-rapamycin, 40-O-(3-Hydroxy)propyl-rapamycin 4O—O-(6-Hydroxy)hexyl-rapamycin 40-O-[2-(2-Hydroxy)ethoxy]ethyl-rapamycin 4O—O-[(3S)-2,2-Dimethyldioxolan-3-yl]methyl-rapamycin, 40-O-[(2S)-2,3-Dihydroxyprop-1-yl]-rapamycin, 4O—O-(2-Acetoxy)ethyl-rapamycin 4O—O-(2-Nicotinoyloxy)ethyl-rapamycin, 4O—O-[2-(N-Morpholino)acetoxy]ethyl-rapamycin 4O—O-(2-N-Imidazolylacetoxy)ethyl-rapamycin, 40-O-[2-(N-Methyl-N′-piperazinyl)acetoxy]ethyl-rapamycin, 39-O-Desmethyl-39,40-O,O-ethylene-rapamycin, (26R)-26-Dihydro-40-O-(2-hydroxy)ethyl-rapamycin, 28-O-Methyl-rapamycin, 4O—O-(2-Aminoethyl)-rapamycin, 4O—O-(2-Acetaminoethyl)-rapamycin 4O—O-(2-Nicotinamidoethyl)-rapamycin, 4O—O-(2-(N-Methyl-imidazo-2′-ylcarbethoxamido)ethyl)-rapamycin, 4O—O-(2-Ethoxycarbonylaminoethyl)-rapamycin, 40-O-(2-Tolylsulfonamidoethyl)-rapamycin, 40-O-[2-(4′,5′-Dicarboethoxy-1′,2′,3′-triazol-1′-yl)-ethyl]-rapamycin, 42-Epi-(tetrazolyl)rapamycin (tacrolimus), 42-[3-hydroxy-2-(hydroxymethyl)-2-methylpropanoate]rapamycin (temsirolimus), (42S)-42-Deoxy-42-(1H-tetrazol-1-yl)-rapamycin (zotarolimus), picrolimus, novolimus, myolimus, and salts, derivatives, isomers, racemates, diastereoisomers, prodrugs, hydrate, ester, or analogs thereof. In some embodiments, step (c) comprises forming solid particles of a bioabsorbable polymer.


In some embodiments, step (e) comprises forming a polymer layer having a length along a horizontal axis of said device wherein said polymer layer has a layer portion along said length, wherein said layer portion is free of pharmaceutical agent.


In some embodiments, step (e) comprises contacting said polymer with a densified fluid. In some embodiments, step (e) comprises contacting said polymer with a densified fluid for a period of time at a temperature of from about 5° C. and 150° C. and a pressure of from about 10 psi to about 500 psi. In some embodiments, step (e) comprises contacting said polymer with a densified fluid for a period of time at a temperature of from about 25° C. and 95° C. and a pressure of from about 25 psi to about 100 psi. In some embodiments, step (e) comprises contacting said polymer with a densified fluid for a period of time at a temperature of from about 50° C. and 85° C. and a pressure of from about 35 psi to about 65 psi.


Provided herein is a method of preparing a device comprising a stent and a plurality of layers that form a laminate coating on said stent; said method comprising: (a) providing a stent; (b) forming a supercritical or near supercritical fluid solution comprising at least one supercritical fluid solvent and a first polymer, discharging said supercritical or near supercritical fluid solution under conditions sufficient to form solid particles of said first polymer, depositing said first polymer particles onto said stent, wherein an electrical potential is maintained between the stent and the first polymer, and sintering said first polymer; (c) depositing pharmaceutical agent particles in dry powder form onto said stent, wherein an electrical potential is maintained between the stent and said pharmaceutical agent particles; and (d) forming a supercritical or near supercritical fluid solution comprising at least one supercritical fluid solvent and a second polymer and discharging said supercritical or near supercritical fluid solution under conditions sufficient to form solid particles of said second polymer, wherein an electrical potential is maintained between the stent and the second polymer, and sintering said second polymer. The method may further comprise mounting the stent on a balloon of a stent delivery catheter. In some embodiments, the stent delivery catheter comprises an elongate member having an inflation lumen and a guidewire lumen therein and a balloon having an interior that is in fluid communication with the inflation lumen


In some embodiments, step (c) and step (d) are repeated at least once. In some embodiments, steps (c) and step (d) are repeated 2 to 20 times.


In some embodiments, the pharmaceutical agent is selected from rapamycin, a prodrug, a derivative, an analog, a hydrate, an ester, and a salt thereof; wherein at least a portion of the pharmaceutical agent is in crystalline form. In some embodiments, the pharmaceutical agent comprises one or more of rapamycin, biolimus (biolimus A9), 40-O-(2-Hydroxyethyl)rapamycin (everolimus), 40-O-Benzyl-rapamycin, 40-O-(4′-Hydroxymethyl)benzyl-rapamycin, 40-O-[4′-(1,2-Dihydroxyethyl)]benzyl-rapamycin, 40-O-Allyl-rapamycin, 40-O-[3′-(2,2-Dimethyl-1,3-dioxolan-4(S)-yl)-prop-2′-en-1′-yl]-rapamycin, (2′:E,4′S)-40-O-(4′,5′-Dihydroxypent-2′-en-1′-yl)-rapamycin 40-O-(2-Hydroxy)ethoxycar-bonylmethyl-rapamycin, 40-O-(3-Hydroxy)propyl-rapamycin 4O—O-(6-Hydroxy)hexyl-rapamycin 40-O-[2-(2-Hydroxy)ethoxy]ethyl-rapamycin 4O—O-[(3S)-2,2-Dimethyldioxolan-3-yl]methyl-rapamycin, 40-O-[(2S)-2,3-Dihydroxyprop-1-yl]-rapamycin, 4O—O-(2-Acetoxy)ethyl-rapamycin 4O—O-(2-Nicotinoyloxy)ethyl-rapamycin, 4O—O-[2-(N-Morpholino)acetoxy]ethyl-rapamycin 4O—O-(2-N-Imidazolylacetoxy)ethyl-rapamycin, 40-O-[2-(N-Methyl-N′-piperazinyl)acetoxy]ethyl-rapamycin, 39-O-Desmethyl-39,40-O,O-ethylene-rapamycin, (26R)-26-Dihydro-40-O-(2-hydroxy)ethyl-rapamycin, 28-O-Methyl-rapamycin, 4O—O-(2-Aminoethyl)-rapamycin, 4O—O-(2-Acetaminoethyl)-rapamycin 4O—O-(2-Nicotinamidoethyl)-rapamycin, 4O—O-(2-(N-Methyl-imidazo-2′-ylcarbethoxamido)ethyl)-rapamycin, 4O—O-(2-Ethoxycarbonylaminoethyl)-rapamycin, 40-O-(2-Tolylsulfonamidoethyl)-rapamycin, 40-O-[2-(4′,5′-Dicarboethoxy-1′,2′,3′-triazol-1′-yl)-ethyl]-rapamycin, 42-Epi-(tetrazolyl)rapamycin (tacrolimus), 42-[3-hydroxy-2-(hydroxymethyl)-2-methylpropanoate]rapamycin (temsirolimus), (42S)-42-Deoxy-42-(1H-tetrazol-1-yl)-rapamycin (zotarolimus), picrolimus, novolimus, myolimus, and salts, derivatives, isomers, racemates, diastereoisomers, prodrugs, hydrate, ester, or analogs thereof. In some embodiments, the first and second polymers are bioabsorbable.


In some embodiments, step (d) comprises forming a polymer layer having a length along a horizontal axis of said device wherein said polymer layer has a layer portion along said length, wherein said layer portion is free of pharmaceutical agent.


In some embodiments, sintering said first and/or sintering said second polymer comprises contacting said first and/or second polymer with a densified fluid.


In some embodiments, the contacting step is carried out for a period of from about 1 minute to about 60 minutes. In some embodiments, the contacting step is carried out for a period of from about 10 minutes to about 30 minutes.


In some embodiments, maintaining said electrical potential between said polymer particles and or pharmaceutical agent particles and said stent comprises maintaining a voltage of from about 5 kvolts to about 100 kvolts. In some embodiments, maintaining said electrical potential between said polymer particles and or pharmaceutical agent particles and said stent comprises maintaining a voltage of from about 20 kvolts to about 30 kvolts.


Provided herein is a device prepared by a process comprising a method as described herein. In some embodiments, the device is a stent. In some embodiments, the stent is mounted to a stent delivery catheter comprising an elongate member having an inflation lumen and a guidewire lumen therein and a balloon having an interior that is in fluid communication with the inflation lumen.


Provided herein is method of treating a subject comprising delivering a device as described herein in a body lumen of the subject.


Provided herein is a method of treating a subject comprising delivering in the body of the subject a device comprising: a stent, wherein the stent is formed from a material comprising the following percentages by weight: 0.05-0.15 C, 1.00-2.00 Mn, 0.040 Si, 0.030 P, 0.3 S, 19.00-21.00 Cr, 9.00-11.00 Ni, 14.00-16.00 W, 3.00 Fe, and Bal. Co; and a plurality of layers that form a laminate coating on said stent, wherein a first layer comprises a first bioabsorbable polymer, a second layer comprises a pharmaceutical agent, a third layer comprises a second bioabsorbable polymer, a fourth layer comprises the pharmaceutical agent, and a fifth layer comprises a third bioabsorbable polymer, wherein the pharmaceutical agent is selected from rapamycin, a prodrug, a derivative, an analog, a hydrate, an ester, and a salt thereof, wherein at least a portion of the pharmaceutical agent is in crystalline form, and wherein at least one of said first polymer, second polymer and third polymer comprises a copolymer comprising PLGA (i.e. a PLGA copolymer). In some embodiments, the pharmaceutical agent comprises one or more of rapamycin, biolimus (biolimus A9), 40-O-(2-Hydroxyethyl)rapamycin (everolimus), 40-O-Benzyl-rapamycin, 40-O-(4′-Hydroxymethyl)benzyl-rapamycin, 40-O-[4′-(1,2-Dihydroxyethyl)]benzyl-rapamycin, 40-O-Allyl-rapamycin, 40-O-[3′-(2,2-Dimethyl-1,3-dioxolan-4(S)-yl)-prop-2′-en-1′-yl]-rapamycin, (2′:E,4′S)-40-O-(4′,5′-Dihydroxypent-2′-en-1′-yl)-rapamycin 40-O-(2-Hydroxy)ethoxycar-bonylmethyl-rapamycin, 40-O-(3-Hydroxy)propyl-rapamycin 4O—O-(6-Hydroxy)hexyl-rapamycin 40-O-[2-(2-Hydroxy)ethoxy]ethyl-rapamycin 4O—O-[(3S)-2,2-Dimethyldioxolan-3-yl]methyl-rapamycin, 40-O-[(2S)-2,3-Dihydroxyprop-1-yl]-rapamycin, 4O—O-(2-Acetoxy)ethyl-rapamycin 4O—O-(2-Nicotinoyloxy)ethyl-rapamycin, 4O—O-[2-(N-Morpholino)acetoxy]ethyl-rapamycin 4O—O-(2-N-Imidazolylacetoxy)ethyl-rapamycin, 40-O-[2-(N-Methyl-N-piperazinyl)acetoxy]ethyl-rapamycin, 39-O-Desmethyl-39,40-O,O-ethylene-rapamycin, (26R)-26-Dihydro-40-O-(2-hydroxy)ethyl-rapamycin, 28-O-Methyl-rapamycin, 4O—O-(2-Aminoethyl)-rapamycin, 4O—O-(2-Acetaminoethyl)-rapamycin 4O—O-(2-Nicotinamidoethyl)-rapamycin, 40-O-(2-(N-Methyl-imidazo-2′-ylcarbethoxamido)ethyl)-rapamycin, 4O—O-(2-Ethoxycarbonylaminoethyl)-rapamycin, 40-O-(2-Tolylsulfonamidoethyl)-rapamycin, 40-O-[2-(4′,5′-Dicarboethoxy-1′,2′,3′-triazol-1′-yl)-ethyl]-rapamycin, 42-Epi-(tetrazolyl)rapamycin (tacrolimus), 42-[3-hydroxy-2-(hydroxymethyl)-2-methylpropanoate]rapamycin (temsirolimus), (42S)-42-Deoxy-42-(1H-tetrazol-1-yl)-rapamycin (zotarolimus), picrolimus, novolimus, myolimus, and salts, derivatives, isomers, racemates, diastereoisomers, prodrugs, hydrate, ester, or analogs thereof.


In some embodiments, the device has a pharmaceutical agent content of from about 0.5 μg/mm to about 20 μg/mm. In some embodiments, the device has a pharmaceutical agent content of from about 8 μg/mm to about 12 μg/mm. In some embodiments, the device has a pharmaceutical agent content of from about 100 μg to about 160 μg. In some embodiments, the device has a pharmaceutical agent content of from about 120 μg to about 150 μg.


In some embodiments, the device has an initial pharmaceutical agent amount and the amount of pharmaceutical agent delivered by said device to vessel wall tissue of said subject is higher than the amount of pharmaceutical agent delivered by a conventional drug eluting stent having the same initial pharmaceutical agent content as the initial pharmaceutical agent content of said device. In some embodiments, the amount of pharmaceutical agent delivered by said device to vessel wall tissue of said subject is at least 25% more that the amount of pharmaceutical agent delivered to vessel wall tissue of said subject by said conventional drug eluting stent. In some embodiments, the method comprises treating restenosis in a blood vessel of said the subject. In some embodiments, the subject is selected from a pig, a rabbit and a human.


“Vessel wall tissue” as used herein refers to the tissue surrounding the lumen of a vessel, including the endothelium, neointima, tunica media, IEL (internal elastic lamina), EEL (external elastic lamina), and the tunica adventitia.


In some embodiments, the presence of crystallinity is shown by at least one of XRD, Raman Spectroscopy, Infrared analytical methods, and DSC.


In some embodiments, the coating on an abluminal surface of said stent has a greater thickness than coating on a luminal surface of said stent. In some embodiments, the ratio of coating on the abluminal surface to coating on the luminal surface of the device is 80:20. In some embodiments, the ratio of coating on the abluminal surface to coating on the luminal surface of the device is 75:25. In some embodiments, the ratio of coating on the abluminal surface to coating on the luminal surface of the device is 70:30. In some embodiments, the ratio of coating on the abluminal surface to coating on the luminal surface of the device is 60:40.


In some embodiments, the stent is a coronary stent, a vascular stent, a peripheral stent, billiarty stent, and intercranial stent.


EXAMPLES

The following examples are provided to illustrate selected embodiments. They should not be considered as limiting the scope of the invention, but merely as being illustrative and representative thereof. For each example listed below, multiple analytical techniques may be provided. Any single technique of the multiple techniques listed may be sufficient to show the parameter and/or characteristic being tested, or any combination of techniques may be used to show such parameter and/or characteristic. Those skilled in the art will be familiar with a wide range of analytical techniques for the characterization of drug/polymer coatings. Techniques presented here, but not limited to, may be used to additionally and/or alternatively characterize specific properties of the coatings with variations and adjustments employed which would be obvious to those skilled in the art.


Sample Preparation


Generally speaking, coatings on stents, on coupons, or samples prepared for in-vivo models are prepared as below. Nevertheless, modifications for a given analytical method are presented within the examples shown, and/or would be obvious to one having skill in the art. Thus, numerous variations, changes, and substitutions will now occur to those skilled in the art without departing from the invention. It should be understood that various alternatives to the embodiments of the invention described herein and examples provided may be employed in practicing the invention and showing the parameters and/or characteristics described.


Coatings on Stents


Coated stents as described herein and/or made by a method disclosed herein are prepared. In some examples, the coated stents have a targeted thickness of ˜15 microns (˜5 microns of active agent). In some examples, the coating process is PDPDP (Polymer, sinter, Drug, Polymer, sinter, Drug, Polymer, sinter) using deposition of drug in dry powder form and deposition of polymer particles by RESS methods and equipment described herein. In the illustrations below, resulting coated stents may have a 3-layer coating comprising polymer (for example, PLGA) in the first layer, drug (for example, rapamycin) in a second layer and polymer in the third layer, where a portion of the third layer is substantially drug free (e.g. a sub-layer within the third layer having a thickness equal to a fraction of the thickness of the third layer). As described layer, the middle layer (or drug layer) may be overlapping with one or both first (polymer) and third (polymer) layer. The overlap between the drug layer and the polymer layers is defined by extension of polymer material into physical space largely occupied by the drug. The overlap between the drug and polymer layers may relate to partial packing of the drug particles during the formation of the drug layer. When crystal drug particles are deposited on top of the first polymer layer, voids and or gaps may remain between dry crystal particles. The voids and gaps are available to be occupied by particles deposited during the formation of the third (polymer) layer. Some of the particles from the third (polymer) layer may rest in the vicinity of drug particles in the second (drug) layer. When the sintering step is completed for the third (polymer) layer, the third polymer layer particles fuse to form a continuous film that forms the third (polymer) layer. In some embodiments, the third (polymer) layer however will have a portion along the longitudinal axis of the stent whereby the portion is free of contacts between polymer material and drug particles. The portion of the third layer that is substantially of contact with drug particles can be as thin as 1 nanometer.


Polymer-coated stents having coatings comprising polymer but no drug are made by a method disclosed herein and are prepared having a targeted thickness of, for example, ˜5 microns. An example coating process is PPP (PLGA, sinter, PLGA, sinter, PLGA, sinter) using RESS methods and equipment described herein. These polymer-coated stents may be used as control samples in some of the examples, infra.


In some examples, the stents are made of a cobalt-chromium alloy and are 5 to 50 mm in length, preferably 10-20 mm in length, with struts of thickness between 20 and 100 microns, preferably 50-70 microns, measuring from an abluminal surface to a luminal surface, or measuring from a side wall to a side wall. In some examples, the stent may be cut lengthwise and opened to lay flat be visualized and/or assayed using the particular analytical technique provided.


Sample Preparation for In-Vivo Models


Devices comprising stents having coatings disclosed herein are delivered to and implanted to the porcine coronary arteries of pigs (domestic swine, juvenile farm pigs, or Yucatan miniature swine). Porcine coronary stenting is exploited herein since such model yields results that are comparable to other investigations assaying neointimal hyperplasia in human subjects. Deliverability features are assessed during delivery to the arteries of the pigs. In some embodiments, the stents are expanded to a 1:1.1 balloon:artery ratio. At multiple time points, animals may be euthanized (e.g. t=1 day, 7 days, 14 days, 21 days, and 28 days), the stents are explanted, and assayed.


Devices comprising stents having coatings disclosed herein alternatively are implanted in the common iliac arteries of New Zealand white rabbits. The stents are expanded to a 1:1.1 balloon:artery ratio. At multiple time points, animals are euthanized (e.g., t=1 day, 7 days, 14 days, 21 days, and 28 days), the stents are explanted, and assayed.


Example 1

This example illustrates embodiments that provide a coated coronary stent, comprising: a stent framework and a rapamycin-polymer coating wherein at least part of rapamycin is in crystalline form and the rapamycin-polymer coating comprises one or more resorbable polymers.


In these experiments two different polymers were employed:

    • Polymer A: −50:50 PLGA-Ester End Group, MW˜19 kD, degradation rate ˜1-2 months
    • Polymer B: −50:50 PLGA-Carboxylate End Group, MW˜10 kD, degradation rate ˜28 days


Metal stents were coated as follows:

    • AS1: Polymer A/Rapamycin/Polymer A/Rapamycin/Polymer A
    • AS2: Polymer A/Rapamycin/Polymer A/Rapamycin/Polymer B
    • AS1 (B) or AS1(213): Polymer B/Rapamycin/Polymer B/Rapamycin/Polymer B
    • AS1b: Polymer A/Rapamycin/Polymer A/Rapamycin/Polymer A
    • AS2b: Polymer A/Rapamycin/Polymer A/Rapamycin/Polymer B


Example 2—Crystallinity

The presence and or quantification of the Active agent crystallinity can be determined from a number of characterization methods known in the art, but not limited to, XRPD, vibrational spectroscopy (FTIR, NR, Raman), polarized optical microscopy, calorimetry, thermal analysis and solid-state NMR.


X-Ray Diffraction to Determine the Presence and/or Quantification of Active Agent Crystallinity


Active agent and polymer coated proxy substrates are prepared using 316L stainless steel coupons for X-ray powder diffraction (XRPD) measurements to determine the presence of crystallinity of the active agent. The coating on the coupons is equivalent to the coating on the stents described herein. Coupons of other materials described herein, such as cobalt-chromium alloys, may be similarly prepared and tested. Likewise, substrates such as stents, or other medical devices described herein may be prepared and tested. Where a coated stent is tested, the stent may be cut lengthwise and opened to lay flat in a sample holder.


For example XRPD analyses are performed using an X-ray powder diffractometer (for example, a Bruker D8 Advance X-ray diffractometer) using Cu Kα radiation. Diffractograms are typically collected between 2 and 40 degrees 2 theta. Where required low background XRPD sample holders are employed to minimize background noise.


The diffractograms of the deposited active agent are compared with diffractograms of known crystallized active agents, for example micronized crystalline sirolimus in powder form. XRPD patterns of crystalline forms show strong diffraction peaks whereas amorphous show diffuse and non-distinct patterns. Crystallinity is shown in arbitrary Intensity units.


A related analytical technique which may also be used to provide crystallinity detection is wide angle scattering of radiation (e.g.; Wide Anle X-ray Scattering or WAXS), for example, as described in F. Unger, et al., “Poly(ethylene carbonate): A thermoelastic and biodegradable biomaterial for drug eluting stent coatings?” Journal of Controlled Release, Volume 117, Issue 3, 312-321(2007) for which the technique and variations of the technique specific to a particular sample would be obvious to one of skill in the art.


Raman Spectroscopy


Raman spectroscopy, a vibrational spectroscopy technique, can be useful, for example, in chemical identification, characterization of molecular structures, effects of bonding, identification of solid state form, environment and stress on a sample. Raman spectra can be collected from a very small volume (<1 μm3); these spectra allow the identification of species present in that volume. Spatially resolved chemical information, by mapping or imaging, terms often used interchangeably, can be achieved by Raman microscopy.


Raman spectroscopy and other analytical techniques such as described in Balss, et al., “Quantitative spatial distribution of sirolimus and polymers in drug-eluting stents using confocal Raman microscopy” J. of Biomedical Materials Research Part A, 258-270 (2007), incorporated in its entirety herein by reference, and/or described in Belu et al., “Three-Dimensional Compositional Analysis of Drug Eluting Stent Coatings Using Cluster Secondary Ion Mass Spectroscopy” Anal. Chem. 80: 624-632 (2008) incorporated herein in its entirety by reference may be used.


For example, to test a sample using Raman microscopy and in particular confocal Raman microscopy, it is understood that to get appropriate Raman high resolution spectra sufficient acquisition time, laser power, laser wavelength, sample step size and microscope objective need to be optimized. For example a sample (a coated stent) is prepared as described herein. Alternatively, a coated coupon could be tested in this method. Maps are taken on the coating using Raman microscopy. A WITec CRM 200 scanning confocal Raman microscope using a Nd:YAG laser at 532 nm is applied in the Raman imaging mode. The laser light is focused upon the sample using a 100× dry objective (numerical aperture 0.90), and the finely focused laser spot is scanned into the sample. As the laser scans the sample, over each 0.33 micron interval a Raman spectrum with high signal to noise is collected using 0.3 seconds of integration time. Each confocal cross-sectional image of the coatings displays a region 70 μm wide by 10 μm deep, and results from the gathering of 6300 spectra with a total imaging time of 32 min.


Multivariate analysis using reference spectra from samples of rapamycin (amorphous and crystalline) and polymer are used to deconvolve the spectral data sets, to provide chemical maps of the distribution.


Infrared (IR) Spectroscopy for In-Vitro Testing


Infrared (IR) Spectroscopy such as FTIR and ATR-IR are well utilized techniques that can be applied to show, for example, the quantitative drug content, the distribution of the drug in the sample coating, the quantitative polymer content in the coating, and the distribution of polymer in the coating. Infrared (IR) Spectroscopy such as FTIR and ATR-IR can similarly be used to show, for example, drug crystallinity. The following table (Table 1) lists the typical IR materials for various applications. These IR materials are used for IR windows, diluents or ATR crystals.
















TABLE 1





Material
NaCl
KBr
CsI
AgCl
Ge
ZnSe
Diamond






















Transmission
40,000
40,000
40,000
25,000
5,500
20,000
40,000


range (cm−1)
~625
~400
~200
~360
~625
~454
~2,500 &









1667-33


Water sol
35.7
53.5
44.4
Insol.
Insol.
Insol.
Insol.


(g/100 g, 25 C.)


Attacking
Wet
Wet
Wet
Ammonium
H2SO4,
Acids,
K2Cr2Os,


materials
Solvents
Solvents
Solvents
Salts
aqua
strong
conc.







regin
alkalies,
H2SO4








chlorinated








solvents









In one test, a coupon of crystalline ZnSe is coated by the processes described herein, creating a PDPDP (Polymer, Drug, Polymer, Drug, Polymer) layered coating that is about 10 microns thick. The coated coupon is analyzed using FTIR. The resulting spectrum shows crystalline drug as determined by comparison to the spectrum obtained for the crystalline form of a drug standard (i.e. a reference spectrum).


Differential Scanning Calorimetry (DSC)


DSC can provide qualitative evidence of the crystallinity of the drug (e.g. rapamycin) using standard DSC techniques obvious to one of skilled in the art. Crystalline melt can be shown using this analytical method (e.g. rapamycin crystalline melting—at about 185 degrees C. to 200 degrees C., and having a heat of fusion at or about 46.8 J/g). The heat of fusion decreases with the percent crystallinity. Thus, the degree of crystallinity could be determined relative to a pure sample, or versus a calibration curve created from a sample of amorphous drug spiked and tested by DSC with known amounts of crystalline drug. Presence (at least) of crystalline drug on a stent could be measured by removing (scraping or stripping) some drug from the stent and testing the coating using the DSC equipment for determining the melting temperature and the heat of fusion of the sample as compared to a known standard and/or standard curve.


Example 3

SEM-In-Vitro Testing-Coating Visualization


Testing of delamination and/or cracking may be achieved by visual inspection. Visual inspection may involve the use of various microscopy techniques which allow visualization of defects in the stent coating.


Testing may be performed prior to and following in-vitro deliverability testing according to Tortuosity Test 1 or Tortuosity Test 2, as noted herein. The dried stent is visualized using SEM for changes in coating.


Testing may be performed prior to and following in-vivo deliverability testing according at time 0. A dried stent is visualized using SEM for changes in coating.


For example the samples are observed by SEM using a Hitachi S-4800 with an accelerating voltage of 800V. Various magnifications may used to evaluate the coating integrity, especially at high strain or high stress regions.


In order to determine the percentage of delamination, the abluminal surface (or a statistically relevant portion thereof) may be visualized and the total percentage of delamination of the stent may be extrapolated based on the area of delamination and the area of stent (and/or stent coating) visualized. There may be, for example, 9 locations on the stent visualized, corresponding to 3 non-overlapping areas of the distal end of the stent, 3 non-overlapping areas of the proximal end of the stent, and 3 non-overlapping areas of the middle of the stent, wherein none of the 9 areas overlap. The delamination may be scanned before choosing these locations for obvious areas of delamination and these areas additionally included as locations of visual inspection, and the other 9 areas should not overlap these locations if possible based on the level of focus of the device used to visualize the stent abluminal surface.


Likewise, in order to determine the percentage of coating cracking, the abluminal and/or the sidewalls of the stent (or a statistically relevant portion thereof) may be visualized and the total percentage of coating cracking of the stent coating may be extrapolated based on the area of coating cracking and the area of stent coating visualized. The areas of highest stress during stent tracking may be chosen for inspection, which may be the sidewalls of the coated stent, for example. There may be, for example, 9 locations on the stent visualized, corresponding to 3 non-overlapping areas of the distal end of the stent (whether a sidewall, two sidewalls, an abluminal surface or some combination thereof), 3 non-overlapping areas of the proximal end of the stent (whether a sidewall, two sidewalls, an abluminal surface or some combination thereof), and 3 non-overlapping areas of the middle of the stent (whether a sidewall, two sidewalls, an abluminal surface or some combination thereof), wherein none of the 9 areas overlap. The coating cracking may be scanned before choosing these locations for areas of coating cracking and these should be included as additional locations of visual inspection, and the other 9 areas should not overlap these locations, if possible based on the level of focus of the device used to visualize each coating cracking inspection location.


Example 4—Preparation of Supercritical Solution Comprising Poly(Lactic-Co-Glycolic Acid) (PLGA) in Hexafluoropropane

A view cell at room temperature (with no applied heat) is pressurized with filtered 1,1,1,2,3,3-Hexafluoropropane until it is full and the pressure reaches 4500 psi. Poly(lactic-co-glycolic acid) (PLGA) is added to the cell for a final concentration of 2 mg/ml. The polymer is stirred to dissolve for one hour. The polymer is fully dissolved when the solution is clear and there are no solids on the walls or windows of the cell.


Example 5—Dry Powder Rapamycin Coating on an Electrically Charged L605 Cobalt Chromium Metal Coupon

A 1 cm×2 cm L605 cobalt chromium metal coupon serving as a target substrate for rapamycin coating is placed in a vessel and attached to a high voltage electrode. Alternatively, the substrate may be a stent or another biomedical device as described herein, for example. The vessel (V), of approximately 1500 cm3 volume, is equipped with two separate nozzles through which rapamycin or polymers could be selectively introduced into the vessel. Both nozzles are grounded. Additionally, the vessel (V) is equipped with a separate port was available for purging the vessel. Upstream of one nozzle (D) is a small pressure vessel (PV) approximately 5 cm3 in volume with three ports to be used as inlets and outlets. Each port is equipped with a valve which could be actuated opened or closed. One port, port (1) used as an inlet, is an addition port for the dry powdered rapamycin. Port (2), also an inlet is used to feed pressurized gas, liquid, or supercritical fluid into PV. Port (3), used as an outlet, is used to connect the pressure vessel (PV) with nozzle (D) contained in the primary vessel (V) with the target coupon.


Dry powdered Rapamycin obtained from LC Laboratories in a predominantly crystalline solid state, 50 mg milled to an average particle size of approximately 3 microns, is loaded into (PV) through port (1) then port (1) is actuated to the closed position. The metal coupon is then charged to +7.5 kV using a Glassman Series EL high-voltage power source. The drug nozzle on port has a voltage setting of −7.5 kV. After approximately 60-seconds, the drug is injected and the voltage is eliminated. Upon visual inspection of the coupon using an optical microscope, the entire surface area of the coupon is examined for relatively even distribution of powdered material. X-ray diffraction (XRD) is performed as described herein to confirm that the powdered material is largely crystalline in nature as deposited on the metal coupon. UV-Vis and FTIR spectroscopy is performed as describe herein to confirm that the material deposited on the coupon is rapamycin.


Example 6—Polymer Coating on an Electrically Charged L605 Coupon Using Rapid Expansion from a Liquefied Gas

A coating apparatus as described in Example 5 above is used in the foregoing example. In this example the second nozzle, nozzle (P), is used to feed precipitated polymer particles into vessel (V) to coat a L605 coupon. Alternatively, the substrate may be a stent or another biomedical device as described herein, for example. Nozzle (P) is equipped with a heater and controller to minimize heat loss due to the expansion of liquefied gases. Upstream of nozzle (P) is a pressure vessel, (PV2), with approximately 25-cm3 internal volume. The pressure vessel (PV2) is equipped with multiple ports to be used for inlets, outlets, thermocouples, and pressure transducers. Additionally, (PV2) is equipped with a heater and a temperature controller. Each port is connected to the appropriate valves, metering valves, pressure regulators, or plugs to ensure adequate control of material into and out of the pressure vessel (PV2). One outlet from (PV2) is connected to a metering valve through pressure rated tubing which was then connected to nozzle (P) located in vessel (V). In the experiment, 150 mg of poly(lactic-co-glycolic acid) (PLGA) is added to pressure vessel (PV2). 1,1,1,2,3,3-hexafluoropropane is added to the pressure vessel (PV2) through a valve and inlet. Pressure vessel (PV2) is set at room temperature with no applied heat and the pressure is 4500 psi. Nozzle (P) is heated to 150° C. A 1-cm×2-cm L605 coupon is placed into vessel (V), attached to an electrical lead and heated via a heat block 110° C. Nozzle (P) is attached to ground. The voltage is set on the polymer spray nozzle and an emitter=pair beaker to a achieve a current greater than or equal to 0.02 mAmps using a Glassman high-voltage power source at which point the metering valve is opened between (PV2) and nozzle (P) in pressure vessel (PV). Polymer dissolved in liquefied gas and is fed at a constant pressure of 200 psig into vessel (V) maintained at atmospheric pressure through nozzle (P) at an approximate rate of 3.0 cm3/min. After approximately 5 seconds, the metering valve is closed discontinuing the polymer-solvent feed. Vessel (V) is Nitrogen gas for 30 seconds to displace the fluorocarbon. After approximately 30 seconds, the metering valve is again opened for a period of approximately 5 seconds and then closed. This cycle is repeated about 4 times. After an additional 1-minute the applied voltage to the coupon was discontinued and the coupon was removed from pressure vessel (V). Upon inspection by optical microscope, a polymer coating is examined for even distribution on all non-masked surfaces of the coupon.


Example 7—Coating of a Metal Cardiovascular Stent with Crystalline Rapamycin and Poly(Lactic-Co-Glycolic Acid) (PLGA)

The apparatus described in Examples 5 and 6 is used in the foregoing example. The metal stent used is made from cobalt chromium alloy of a nominal size of 18 mm in length with struts of 63 microns in thickness measuring from an abluminal surface to a luminal surface, or measuring from a side wall to a side wall. The stent is coated in an alternating fashion whereby the first coating layer of drug is followed by a layer of polymer. These two steps, called a drug/polymer cycle, are repeated twice so there are six layers in an orientation of drug-polymer-drug-polymer-drug-polmer. After completion of each polymer coating step and prior the application of the next drug coating step, the stent is first removed from the vessel (V) and placed in a small pressure vessel where it is exposed to supercritical hexafluoropropane.


Example 8—Layered Coating of a Cardiovascular Stent with an Anti-Restenosis Therapeutic and Polymer in Layers to Control Drug Elution Characteristics

A cardiovascular stent is coated using the methods described in Examples herein. The stent is coated in such as way that the drug and polymer are in alternating layers. The first application to the bare stent is a thin layer of a non-resorbing polymer, approximately 2-microns thick. The second layer is a therapeutic agent with anti-restenosis indication. Approximately 35 micrograms are added in this second layer. A third layer of polymer is added at approximately 2-microns thick, followed by a fourth drug layer which is composed of about 25 micrograms of the anti-restenosis agent. A fifth polymer layer, approximately 1-micron thick is added to stent, followed by the sixth layer that includes the therapeutic agent of approximately 15-micrograms. Finally, a last polymer layer is added to a thickness of about 2-microns. After the coating procedure, the stent is annealed using carbon dioxide as described in Example 4 above. In this example a drug eluting stent (DES) is described with low initial drug “burst” properties by virtue of a “sequestered drug layering” process, not possible in conventional solvent-based coating processes. Additionally, by virtue of a higher concentration of drug at the stent ‘inter-layer’ the elution profile is expected to reach as sustained therapeutic release over a longer period of time.


Example 9—Layered Coating of a Cardiovascular Stent with an Anti-Restenosis Therapeutic and an Anti-Thrombotic Therapeutic in a Polymer

In one test, devices were coated tested using this method. In these experiments two different polymers were employed: Polymer A: −50:50 PLGA-Ester End Group, MW˜19 kD, degradation rate ˜70 days; Polymer B: −50:50 PLGA-Carboxylate End Group, MW˜10 kD, degradation rate ˜28 days. Metal stents were coated as follows: AS1: (n=6) Polymer A/Rapamycin/Polymer A/Rapamycin/Polymer A; AS2: (n=6) Polymer A/Rapamycin/Polymer A/Rapamycin/Polymer B; AS1(213): (n=6) Polymer B/Rapamycin/Polymer B/Rapamycin/Polymer B; AS1b: (n=6) Polymer A/Rapamycin/Polymer A/Rapamycin/Polymer A; AS2b: (n=6) Polymer A/Rapamycin/Polymer A/Rapamycin/Polymer B.


In this example, after a first polymer layer of approximately 2-microns thick, a drug with anti-thrombotic indication is added in a layer of less than 2-microns in thickness. A third layer consisting of the non-resorbing polymer is added to a thickness of about 4-microns. Next another drug layer is added, a different therapeutic, with an anti-restenosis indication. This layer contains approximately 100 micrograms of the anti-restenosis agent. Finally, a polymer layer approximately 2-microns in thickness is added to the stent. After coating the stent is treated as described in example 20 to sinter the coating using hexafluoropropane.


Example 10—Coating of Stent with Rapamycin and Poly(Lactic-Co-Glycolic Acid) (PLGA)

Micronized Rapamycin is purchased from LC Laboratories. 50:50 PLGA (Mw=˜90) are purchased from Aldrich Chemicals. Eurocor CoCr (7 cell) stents are used. The stents are coated by dry electrostatic capture followed by supercritical fluid sintering, using 3 stents/coating run and 3 runs/data set. Analysis of the coated stents is performed by multiple techniques on both stents and coupons with relevant control experiments described herein.


In this example, PLGA is dissolved in 1,1,1,2,3,3-Hexafluoropropane with the following conditions: a) room temperature, with no applied heat; b) 4500 psi; and c) at 2 mg/ml concentration. The spray line is set at 4500 psi, 150° C. and nozzle temperature at 150° C. The solvent (Hexafluoropropane) is rapidly vaporized when coming out of the nozzle (at 150° C.). A negative voltage is set on the polymer spray nozzle to achieve a current of greater than or equal to 0.02 mAmps. The stent is loaded and polymer is sprayed for 15 seconds to create a first polymer coating.


The stent is then transferred to a sintering chamber that is at 75° C. The solvent, in this example 1, 1,2,3,3-hexafluoropropane, slowly enters the sintering chamber to create a pressure at 23 to 27 psi. Stents are sintered at this pressure for 10 minutes.


11.5 mg Rapamycin is loaded into the Drug injection port. The injection pressure is set at 280 psi with +7.5 kV for the stent holder and −7.5 kV for the drug injection nozzle. After the voltage is set for 60 s, the drug is injected into the chamber to create a first drug coating.


A second polymer coating is applied with two 15 second sprays of dissolved polymer with the above first polymer coating conditions. The second coating is also subsequently sintered in the same manner.


A second drug coating is applied with the same parameters as the first drug coating. Lastly, the outer polymer layer is applied with three 15 second sprays of dissolved polymer with the above polymer coating conditions and subsequently sintered.


Example 11—Tortuosity Test 1 with Delamination and/or Cracking Testing

A 3.0 diameter cardiovascular stent is coated using the methods described herein. The stent is mounted to the balloon of a catheter, wherein the balloon comprises polyamide, resulting in a maximum outer diameter (profile) of the mounted (crimped) stent of 1.12 mm. The trackability, pushability, and/or crossability is tested according to Tortuosity Test 1 (according to “New Aspects of in vitro Testing of Arterial Stents based on the new European Standard EN 14299” by Wolfram Schmidt, Peter Behrens, Klaus-Peter Schmitz, Institute for Biomedical Engineering, University of Rostock, Germany at http://www.iib-ev.de/pl/pdf/EN14299.pdf which is incorporated herein by reference in its entirety).


The delamination and/or cracking of the stent coating may also be determined following the Tortuosity testing by visual inspection using, for example, SEM, as noted in Example 3.


Example 12—Tortuosity Test 2 with Delamination and/or Cracking Testing

A 3.0 diameter cardiovascular stent is coated using the methods described herein. The stent is mounted to the balloon of a catheter, resulting in a maximum outer diameter (profile) of the mounted (crimped) stent of 1.12 mm. The system trackability, pushability, and/or crossability is tested according to Tortuosity Test 2 (according to W. Schmidt, P. Lanzer, P. Behrens, L. D. T. Topoleski, and K.-P. Schmitz “A Comparison of the Mechanical Performance Characteristics of Seven Drug-Eluting Stent Systems” Catheterization and Cardiovascular Interventions 73:350-360 (2009) which is incorporated herein by reference in its entirety).


The delamination and/or cracking of the stent coating may also be determined following the Tortuosity testing by visual inspection using, for example, SEM, as noted in Example 3.


Example 13—Delamination and/or Cracking

A 3.0 diameter cardiovascular stent is coated using the methods described herein. The stent is mounted to the balloon of a catheter resulting in a maximum outer diameter (profile) of the mounted (crimped) stent of 1.12 mm.


The stent is run through a tortuosity fixture simulating a delivery path for reaching a coronary artery at least once. The fixture, for example, may be from Tortuosity Test 1 or Tortuosity Test 2. Delamination and/or cracking of the stent coating is determined following the Tortuosity testing by visual inspection using, for example, SEM, as noted in Example 3.


Example 14—Multiple Sizes

At least one of the following is made:

    • A 2.25 diameter cardiovascular stent is coated using the methods described herein. The stent is mounted to the balloon of a catheter, resulting in a maximum outer diameter (profile) of the mounted (crimped) stent of 1.06 mm.
    • A 2.5 diameter cardiovascular stent is coated using the methods described herein. The stent is mounted to the balloon of a catheter, resulting in a maximum outer diameter (profile) of the mounted (crimped) stent of 1.09 mm.
    • A 2.75 diameter cardiovascular stent is coated using the methods described herein. The stent is mounted to the balloon of a resulting in a maximum outer diameter (profile) of the mounted (crimped) stent of 1.11 mm.
    • A 3.0 diameter cardiovascular stent is coated using the methods described herein. The stent is mounted to the balloon of a catheter, resulting in a maximum outer diameter (profile) of the mounted (crimped) stent of 1.12 mm.
    • A 3.5 diameter cardiovascular stent is coated using the methods described herein. The stent is mounted to the balloon of a catheter, resulting in a maximum outer diameter (profile) of the mounted (crimped) stent of 1.18 mm.
    • A 4.0 diameter cardiovascular stent is coated using the methods described herein. The stent is mounted to the balloon of a catheteride, resulting in a maximum outer diameter (profile) of the mounted (crimped) stent of 1.25 mm.


The stent is run through a tortuosity fixture simulating a delivery path for reaching a coronary artery at least once. The fixture, for example, may be from Tortuosity Test 1 or Tortuosity Test 2. Delamination and/or cracking of the stent coating is determined following the Tortuosity testing by visual inspection using, for example, SEM, as noted in Example 3.


Additionally and/or alternatively, the stent is tested according to Tortuosity Test 1 or Tortuosity Test 2. The system trackability, pushability, and/or crossability is determined as noted in the respective Tortuosity Test (1 or 2).


Example 15—Multiple Systems Through a Guiding Catheter

At least two of the following is made (which may be two systems of different sizes, or 2 systems of a same size):

    • A 2.25 diameter cardiovascular stent is coated using the methods described herein. The stent is mounted to the balloon of a catheter, resulting in a maximum outer diameter (profile) of the mounted (crimped) stent of 1.06 mm.
    • A 2.5 diameter cardiovascular stent is coated using the methods described herein. The stent is mounted to the balloon of a catheter, resulting in a maximum outer diameter (profile) of the mounted (crimped) stent of 1.09 mm.
    • A 2.75 diameter cardiovascular stent is coated using the methods described herein. The stent is mounted to the balloon of a catheter, resulting in a maximum outer diameter (profile) of the mounted (crimped) stent of 1.11 mm.
    • A 3.0 diameter cardiovascular stent is coated using the methods described herein. The stent is mounted to the balloon of a catheter, resulting in a maximum outer diameter (profile) of the mounted (crimped) stent of 1.12 mm.
    • A 3.5 diameter cardiovascular stent is coated using the methods described herein. The stent is mounted to the balloon of a catheter, resulting in a maximum outer diameter (profile) of the mounted (crimped) stent of 1.18 mm.
    • A 4.0 diameter cardiovascular stent is coated using the methods described herein. The stent is mounted to the balloon of a catheter, resulting in a maximum outer diameter (profile) of the mounted (crimped) stent of 1.25 mm.


The two systems are delivered concurrently, each to a location in the patient's coronary arterial system (which may be separate arteries or the same artery), by advancing the first system through a 7F guiding catheter such that the stent reaches a first location in the patient's coronary arterial system and delivering said stent to such first location, and, without removing the first system, advancing the second system through the same 7F guiding catheter such that the stent reaches a second location in the patient's coronary arterial system and delivering said stent to such second location. Both systems are then removed from the patient's vasculature.


Example 16—Multiple Systems Through a Guiding Catheter

At least two of the following is made (which may be two systems of different sizes, or 2 systems of a same size):

    • A 2.25 diameter cardiovascular stent is coated using the methods described herein. The stent is mounted to the balloon of a catheter resulting in a maximum outer diameter (profile) of the mounted (crimped) stent of 1.06 mm.
    • A 2.5 diameter cardiovascular stent is coated using the methods described herein. The stent is mounted to the balloon of a catheter, resulting in a maximum outer diameter (profile) of the mounted (crimped) stent of 1.09 mm
    • A 2.75 diameter cardiovascular stent is coated using the methods described herein. The stent is mounted to the balloon of a catheter, resulting in a maximum outer diameter (profile) of the mounted (crimped) stent of 1.11 mm
    • A 3.0 diameter cardiovascular stent is coated using the methods described herein. The stent is mounted to the balloon of a catheter, resulting in a maximum outer diameter (profile) of the mounted (crimped) stent of 1.12 mm.
    • A 3.5 diameter cardiovascular stent is coated using the methods described herein. The stent is mounted to the balloon of a catheter, resulting in a maximum outer diameter (profile) of the mounted (crimped) stent of 1.18 mm.
    • A 4.0 diameter cardiovascular stent is coated using the methods described herein. The stent is mounted to the balloon of a catheter resulting in a maximum outer diameter (profile) of the mounted (crimped) stent of 1.25 mm.


The two systems are delivered concurrently, each to a location in the patient's coronary arterial system (which may be separate arteries or the same artery), by advancing the first system through a 7F guiding catheter to the patient's coronary arterial system at the same time as a second system is advanced through the same 7F guiding catheter to the patient's coronary arterial system. The first system is then advanced to a first location in the arterial system to be stented, and the stent is delivered to such location. The second system is then advanced to a second location in the arterial system to be stented, and the stent is delivered to such location. Both systems are then removed from the patient's vasculature.


Example 17—Two 3.0×15 Stent Systems Through a 7F Guiding Catheter

Two 3.0 diameter×15 mm length cardiovascular stents were coated using the methods described herein. The stents were mounted to balloons of two catheters, wherein the balloon comprised polyamide, and the mounted stent maximum outer diameters (profiles) were both 1.12 mm.


The two systems were delivered concurrently, each to a location in the patient's coronary arterial system by advancing the first system through a 7F guiding catheter to the patient's coronary arterial system at the same time as a second system was advanced through the same 7F guiding catheter to the patient's coronary arterial system. The first system was then advanced to a first location in the arterial system to be stented, and the stent was delivered to such location. The second system was then advanced to a second location in the arterial system to be stented, and the stent was delivered to such location. Both systems were then removed from the patient's vasculature.


Example 18—Lubricity

At least one of the following is made:

    • A 2.25 diameter cardiovascular stent is coated using the methods described herein. The stent is mounted to the balloon of a catheter resulting in a maximum outer diameter (profile) of the mounted (crimped) stent of 1.06 mm.
    • A 2.5 diameter cardiovascular stent is coated using the methods described herein. The stent is mounted to the balloon of a catheter, resulting in a maximum outer diameter (profile) of the mounted (crimped) stent of 1.09 mm.
    • A 2.75 diameter cardiovascular stent is coated using the methods described herein. The stent is mounted to the balloon of a catheter, resulting in a maximum outer diameter (profile) of the mounted (crimped) stent of 1.11 mm.
    • A 3.0 diameter cardiovascular stent is coated using the methods described herein. The stent is mounted to the balloon of a catheter, resulting in a maximum outer diameter (profile) of the mounted (crimped) stent of 1.12 mm.
    • A 3.5 diameter cardiovascular stent is coated using the methods described herein. The stent is mounted to the balloon of a catheter, resulting in a maximum outer diameter (profile) of the mounted (crimped) stent of 1.18 mm.
    • A 4.0 diameter cardiovascular stent is coated using the methods described herein. The stent is mounted to the balloon of a catheter resulting in a maximum outer diameter (profile) of the mounted (crimped) stent of 1.25 mm.


Lubricity is tested according to US Patent Application 20080292776, which is incorporated here by reference in its entirety.


Example 19—Surface Hardness

A cardiovascular stent is coated using the methods described herein. Surface Hardness (Hf) of the stent coating is tested by Nanoindentation Test 1 using Tapping AFM, as described in Bruno A. Latella, Bee K. Gan, Christophe J. Barbé, and David J. Cassidy “Nanoindentation hardness, Young's modulus, and creep behavior of organic-inorganic silica-based sol-gel thin films on copper” J. Mater. Res., Vol. 23, No. 9: 2357-2365, September 2008, which is incorporated here by reference in its entirety.


Example 20—Surface Hardness—Wetted

A cardiovascular stent is coated using the methods described herein. Surface Hardness (Hf) of the wetted stent coating is tested by Nanoindentation Test 1 using Tapping AFM, as described in Bruno A. Latella, Bee K. Gan, Christophe J. Barbé, and David J. Cassidy “Nanoindentation hardness, Young's modulus, and creep behavior of organic-inorganic silica-based sol-gel thin films on copper” J. Mater. Res., Vol. 23, No. 9: 2357-2365, September 2008, which is incorporated here by reference in its entirety. In order to wet the stent coating prior to testing, the coating (or coated stent) is wetted by immersing the coated stent in a saline solution for about 5 minutes.


Example 21—Surface Hardness—Wetted

A cardiovascular stent is coated using the methods described herein. Surface Hardness (Hf) of the wetted stent coating is tested by Nanoindentation Test 1 using Tapping AFM, as described in Bruno A. Latella, Bee K. Gan, Christophe J. Barbé, and David J. Cassidy “Nanoindentation hardness, Young's modulus, and creep behavior of organic-inorganic silica-based sol-gel thin films on copper” J. Mater. Res., Vol. 23, No. 9: 2357-2365, September 2008, which is incorporated here by reference in its entirety. In order to wet the stent coating prior to testing, the coating (or coated stent) is wetted by immersing the coated stent in a saline solution for about 4 hours.


The foregoing is illustrative of the present invention, and is not to be construed as limiting thereof. While embodiments of the present invention have been shown and described herein, it will be obvious to those skilled in the art that such embodiments are provided by way of example only. Numerous variations, changes, and substitutions will now occur to those skilled in the art without departing from the invention. It should be understood that various alternatives to the embodiments of the invention described herein may be employed in practicing the invention. It is intended that the following claims define the scope of the invention and that methods and structures within the scope of these claims and their equivalents be covered thereby.

Claims
  • 1. A stent delivery system comprising: a. an elongate member having an inflation lumen and a guidewire lumen therein;b. a balloon having an interior that is in fluid communication with the inflation lumen; andc. a stent comprising a bioabsorbable polymer coating, consisting essentially of a hydrophilic polymer comprising at least one of PLGA, a PLGA copolymer, poly(glycolide) (PGA), poly(l-lactide) (LPLA), poly(dl-lactide) (DLPLA), poly(e-caprolactone) (PCL), poly(dioxolane) (PDO), PGA-TMC, 85/15 p(dl-lactide-co-glycolide) (PLPLG) 75/25 DLPL, 65/35 (DLPLG), 50/50 DLPLG, poly(trimethylcarbonate) (TMC), and poly(1,3-bis-p-(carboxyphenoxy)propane-co-sebacic acid) (p(CPP:SA), with a pharmaceutical agent dispersed within the polymer, the stent mounted on the balloon,wherein when at least a portion of the stent system that includes the mounted stent is tested using Lubricity Test 1, the lubricity is at most 7 g, wherein the polymer coating is at most 20 micrometers in thickness and provides the lubricity.
  • 2. The stent delivery system of claim 1, wherein for a stent of about 2.25 mm in diameter to about 4.0 mm in diameter by about 9 mm to about 30 mm in length in an expanded state, a stent system trackability expressed as a mean force over the track length is at most 0.5 Newtons, wherein the polymer coating is at most 20 micrometers in thickness.
  • 3. The stent delivery system of claim 2, wherein stent system trackability is tested according to at least one of: Tortuosity test 1 and Tortuosity test 2.
  • 4. The stent delivery system of claim 2, in which the balloon comprises a polymer, andin which the stent mounted on the balloon has a crossing profile of at most 1.12 mm.
  • 5. The stent delivery system of claim 2, wherein the stent system trackability is achieved with at least one of: at most 5% coating delamination, at most 10% coating delamination, at most 15% coating delamination, at most 20% coating delamination, at most 5% coating cracking, at most 10% coating cracking, at most 15% coating cracking, and at most 20% coating cracking.
  • 6. The stent delivery system of claim 1, wherein a stent of about 2.25 mm in diameter to about 4.0 mm in diameter by about 9 mm to about 30 mm in length in an expanded state has a stent system pushability ((Fdist/Fprox)×100%) of at most 18%, wherein the polymer coating is at most 20 micrometers in thickness.
  • 7. The stent delivery system of claim 6, wherein the stent system pushability is measured according to Tortuosity Test 2.
  • 8. The stent delivery system of claim 6, in which the balloon comprises a polymer, andin which the stent mounted on the balloon has a crossing profile selected from the group consisting of at most 1.06 mm for a 2.25 diameter balloon, at most 1.09 mm for a 2.5 diameter balloon, at most 1.11 mm for a 2.75 diameter balloon, at most 1.12 mm for a 3.0 diameter balloon, at most 1.18 mm for a 3.5 diameter balloon, and at most 1.35 mm for a 4.0 diameter balloon.
  • 9. The stent delivery system of claim 6, wherein the stent system pushability is achieved with at least one of: at most 5% coating delamination, at most 10% coating delamination, at most 15% coating delamination, at most 20% coating delamination, at most 5% coating cracking, at most 10% coating cracking, at most 15% coating cracking, and at most 20% coating cracking.
  • 10. The stent delivery system of claim 1, wherein a stent of about 2.25 mm in diameter to about 4.0 mm in diameter by about 9 mm to about 30 mm in length in an expanded state has a stent system crossability measured as mean cross force of less than 0.03 Newtons, wherein the polymer coating is at most 20 micrometers in thickness.
  • 11. The stent delivery system of claim 10, wherein the stent system crossability is measured according to at least one of: tortuosity test 1 and tortuosity test 2.
  • 12. The stent delivery system of claim 10, in which the balloon comprises a polymer, andin which the stent mounted on the balloon has a crossing profile selected from the group consisting of at most 1.06 mm for a 2.25 diameter balloon, at most 1.09 mm for a 2.5 diameter balloon, at most 1.11 mm for a 2.75 diameter balloon, at most 1.12 mm for a 3.0 diameter balloon, at most 1.18 mm for a 3.5 diameter balloon, and at most 1.35 mm for a 4.0 diameter balloon.
  • 13. The stent delivery system of claim 10, wherein the stent system crossability is at most 0.1 Newton expressed as peak cross force.
  • 14. The stent delivery system of claim 10, wherein the stent system crossability is achieved with at least one of: at most 5% coating delamination, at most 10% coating delamination, at most 15% coating delamination, at most 20% coating delamination, at most 5% coating cracking, at most 10% coating cracking, at most 15% coating cracking, and at most 20% coating cracking.
  • 15. The stent delivery system of claim 1, wherein when tested using Lubricity Test 1, at least the portion of the stent system that includes the mounted stent has a lubricity of at most about 6 g, or at most about 5 g.
  • 16. The stent delivery system of claim 1, in which the balloon comprises a polymer, andin which the stent mounted on the balloon has a crossing profile selected from the group consisting of at most 1.06 mm for a 2.25 diameter balloon, at most 1.09 mm for a 2.5 diameter balloon, at most 1.11 mm for a 2.75 diameter balloon, at most 1.12 mm for a 3.0 diameter balloon, at most 1.18 mm for a 3.5 diameter balloon, and at most 1.35 mm for a 4.0 diameter balloon.
CROSS REFERENCE

This application claims priority to U.S. Provisional Application No. 61/300,764, filed Feb. 2, 2010. The contents of this application are incorporated herein by reference in their entirety. This application also relates to U.S. Provisional Application No. 61/325,090, filed Apr. 16, 2010, U.S. Provisional Application No. 61/243,955, filed Sep. 18, 2009, U.S. Provisional Application No. 61/212,964, filed Apr. 17, 2009, U.S. Provisional Application No. 61/165,880, filed Apr. 1, 2009, U.S. Provisional Application No. 61/104,669, filed Oct. 10, 2008, U.S. Provisional Application No. 61/045,928, filed Apr. 17, 2008, U.S. Provisional Application No. 60/912,394, filed Apr. 17, 2007, U.S. Provisional Application No. 60/771,066, filed Feb. 7, 2006, U.S. Provisional Application No. 60/771,725, filed Feb. 8, 2006, U.S. Provisional Application No. 60/745,731, filed Apr. 26, 2006, U.S. Provisional Application No. 60/745,733, filed Apr. 26, 2006, U.S. Provisional Application No. 60/745,733, filed Apr. 26, 2006, U.S. Provisional Application No. 60/752,338, filed Dec. 20, 2005, U.S. Provisional Application No. 60/699,650, filed Jul. 15, 2005. The contents of these applications are incorporated herein by reference in their entirety. This application also relates to U.S. Provisional Application No. 60/912,408, filed Apr. 17, 2007, U.S. Provisional Application No. 60/912,394, filed Apr. 17, 2007, U.S. Provisional Application No. 60/884,005, filed Jan. 8, 2007, and U.S. Provisional Application No. 60/981,445, filed Oct. 19, 2007. The contents of these applications are incorporated herein by reference in their entirety.

US Referenced Citations (554)
Number Name Date Kind
3087660 Endicott Apr 1963 A
3087860 Endicott Apr 1963 A
3123077 Alcamo Mar 1964 A
3457280 Schmitt et al. Jul 1969 A
3597449 Deprospero et al. Aug 1971 A
3737337 Schnoring et al. Jun 1973 A
3773919 Boswell et al. Nov 1973 A
3929992 Sehgal et al. Dec 1975 A
4000137 Dvonch et al. Dec 1976 A
4188373 Krezanoski Feb 1980 A
4285987 Ayer et al. Aug 1981 A
4326532 Hammar Apr 1982 A
4336381 Nagata et al. Jun 1982 A
4389330 Tice et al. Jun 1983 A
4474572 McNaughton et al. Oct 1984 A
4474751 Haslam et al. Oct 1984 A
4478822 Haslam et al. Oct 1984 A
4530840 Tice et al. Jul 1985 A
4582731 Smith Apr 1986 A
4606347 Fogarty et al. Aug 1986 A
4617751 Johansson Oct 1986 A
4655771 Wallsten Apr 1987 A
4675189 Kent et al. Jun 1987 A
4733665 Palmaz Mar 1988 A
4734227 Smith Mar 1988 A
4734451 Smith Mar 1988 A
4758435 Schaaf Jul 1988 A
4762593 Youngner Aug 1988 A
4931037 Wetterman Jun 1990 A
4950239 Gahara Aug 1990 A
4985625 Hurst Jan 1991 A
5000519 Moore Mar 1991 A
5090419 Palestrant Feb 1992 A
5096848 Kawamura Mar 1992 A
5102417 Palmaz Apr 1992 A
5104404 Wolff Apr 1992 A
5106650 Hoy et al. Apr 1992 A
5125570 Jones Jun 1992 A
5158986 Cha et al. Oct 1992 A
5185776 Townsend Feb 1993 A
5195969 Wang et al. Mar 1993 A
5243023 Dezern Sep 1993 A
5270086 Hamlin Dec 1993 A
5272012 Opolski Dec 1993 A
5288711 Mitchell et al. Feb 1994 A
5320634 Vigil et al. Jun 1994 A
5324049 Mistrater et al. Jun 1994 A
5340614 Perman et al. Aug 1994 A
5342621 Eury Aug 1994 A
5350361 Tsukashima et al. Sep 1994 A
5350627 Nemphos et al. Sep 1994 A
5356433 Rowland et al. Oct 1994 A
5360403 Mische Nov 1994 A
5362718 Skotnicki et al. Nov 1994 A
5366504 Andersen et al. Nov 1994 A
5368045 Clement et al. Nov 1994 A
5372676 Lowe Dec 1994 A
5385776 Maxfield et al. Jan 1995 A
5387313 Thoms Feb 1995 A
5403347 Roby et al. Apr 1995 A
5470603 Staniforth et al. Nov 1995 A
5494620 Liu et al. Feb 1996 A
5500180 Anderson et al. Mar 1996 A
5514379 Weissleder et al. May 1996 A
5545208 Wolff et al. Aug 1996 A
5556383 Wang et al. Sep 1996 A
5562922 Lambert Oct 1996 A
5569463 Helmus et al. Oct 1996 A
5570537 Black et al. Nov 1996 A
5578709 Woiszwillo Nov 1996 A
5599576 Opolski Feb 1997 A
5605696 Eury et al. Feb 1997 A
5607442 Fischell et al. Mar 1997 A
5609629 Fearnot et al. Mar 1997 A
5626611 Liu et al. May 1997 A
5626862 Brem et al. May 1997 A
5632772 Alcime et al. May 1997 A
5669932 Fischell et al. Sep 1997 A
5674192 Sahatjian Oct 1997 A
5674242 Phan et al. Oct 1997 A
5674286 D'Alessio et al. Oct 1997 A
5725570 Heath Mar 1998 A
5733303 Israel et al. Mar 1998 A
5766158 Opolski Jun 1998 A
5800511 Mayer Sep 1998 A
5807404 Richter Sep 1998 A
5811032 Kawai et al. Sep 1998 A
5824049 Ragheb et al. Oct 1998 A
5837313 Ding et al. Nov 1998 A
5843120 Israel et al. Dec 1998 A
5871436 Eury Feb 1999 A
5873904 Ragheb et al. Feb 1999 A
5876426 Kume et al. Mar 1999 A
5876452 Athanasiou et al. Mar 1999 A
5913895 Burpee et al. Jun 1999 A
5924631 Rodrigues et al. Jul 1999 A
5948020 Yoon et al. Sep 1999 A
5957975 Lafont et al. Sep 1999 A
5981568 Kunz et al. Nov 1999 A
5981719 Woiszwillo et al. Nov 1999 A
6013855 McPherson et al. Jan 2000 A
6036978 Gombotz et al. Mar 2000 A
6039721 Johnson et al. Mar 2000 A
6068656 Von Oepen May 2000 A
6071308 Ballou et al. Jun 2000 A
6077880 Castillo et al. Jun 2000 A
6090925 Woiszwillo et al. Jul 2000 A
6129755 Mathis et al. Oct 2000 A
6143037 Goldsten et al. Nov 2000 A
6143314 Chandrashekar et al. Nov 2000 A
6146356 Wang et al. Nov 2000 A
6146404 Kim et al. Nov 2000 A
6147135 Yuan et al. Nov 2000 A
6153252 Hossainy et al. Nov 2000 A
6171327 Daniel et al. Jan 2001 B1
6190699 Luzzi et al. Feb 2001 B1
6193744 Ehr et al. Feb 2001 B1
6206914 Soykan et al. Mar 2001 B1
6217608 Penn Apr 2001 B1
6231599 Ley May 2001 B1
6231600 Zhong et al. May 2001 B1
6245104 Alt Jun 2001 B1
6248127 Shah et al. Jun 2001 B1
6248129 Froix Jun 2001 B1
6251980 Lan et al. Jun 2001 B1
6268053 Woiszwillo et al. Jul 2001 B1
6273913 Wright et al. Aug 2001 B1
6284758 Egi et al. Sep 2001 B1
6299635 Frantzen Oct 2001 B1
6309669 Setterstrom et al. Oct 2001 B1
6319541 Pletcher et al. Nov 2001 B1
6325821 Gaschino et al. Dec 2001 B1
6336934 Gilson et al. Jan 2002 B1
6342062 Suon et al. Jan 2002 B1
6344055 Shukov Feb 2002 B1
6355691 Goodman Mar 2002 B1
6358556 Ding et al. Mar 2002 B1
6361819 Tedeschi et al. Mar 2002 B1
6362718 Patrick et al. Mar 2002 B1
6364903 Tseng et al. Apr 2002 B2
6368658 Schwartz et al. Apr 2002 B1
6372246 Wei et al. Apr 2002 B1
6387121 Alt May 2002 B1
6409716 Sahatjian et al. Jun 2002 B1
6414050 Howdle et al. Jul 2002 B1
6416779 D-Augustine et al. Jul 2002 B1
6448315 Lidgren et al. Sep 2002 B1
6458387 Scott et al. Oct 2002 B1
6461380 Cox Oct 2002 B1
6461644 Jackson et al. Oct 2002 B1
6488703 Kveen et al. Dec 2002 B1
6495163 Jordan Dec 2002 B1
6497729 Moussy et al. Dec 2002 B1
6506213 Mandel et al. Jan 2003 B1
6511748 Barrows Jan 2003 B1
6517860 Rosser et al. Feb 2003 B1
6521258 Mandel et al. Feb 2003 B1
6524698 Schmoock Feb 2003 B1
6530951 Bates et al. Mar 2003 B1
6537310 Palmaz et al. Mar 2003 B1
6541033 Shah Apr 2003 B1
6572813 Zhang et al. Jun 2003 B1
6602281 Klein Aug 2003 B1
6605696 Rosey Aug 2003 B1
6610013 Fenster et al. Aug 2003 B1
6627246 Mehta et al. Sep 2003 B2
6649627 Cecchi et al. Nov 2003 B1
6660176 Tepper et al. Dec 2003 B2
6669785 DeYoung et al. Dec 2003 B2
6669980 Hanson et al. Dec 2003 B2
6670407 Howdle et al. Dec 2003 B2
6673053 Wang Jan 2004 B2
6682757 Wright Jan 2004 B1
6706283 Appel et al. Mar 2004 B1
6710059 Fernand et al. Mar 2004 B1
6720003 Cheng et al. Apr 2004 B2
6723913 Barbetta Apr 2004 B1
6726712 Raeder-Devens et al. Apr 2004 B1
6736996 Carbonell et al. May 2004 B1
6743505 Antall et al. Jun 2004 B2
6749902 Yonker et al. Jun 2004 B2
6755871 Damaso et al. Jun 2004 B2
6756084 Fulton et al. Jun 2004 B2
6767558 Wang et al. Jul 2004 B2
6780475 Fulton et al. Aug 2004 B2
6794902 Becker et al. Sep 2004 B2
6800663 Asgarzadeh et al. Oct 2004 B2
6815218 Jacobsen et al. Nov 2004 B1
6821549 Jayaraman Nov 2004 B2
6837611 Kuo et al. Jan 2005 B2
6838089 Carlsson et al. Jan 2005 B1
6838528 Zhou Jan 2005 B2
6858598 McKearn et al. Feb 2005 B1
6868123 Bellas et al. Mar 2005 B2
6884377 Burnham et al. Apr 2005 B1
6897205 Beckert et al. May 2005 B2
6884823 Plerick et al. Jun 2005 B1
6905555 DeYoung et al. Jun 2005 B2
6908624 Hossainy et al. Jun 2005 B2
6916800 McKearn et al. Jul 2005 B2
6923979 Fotland et al. Aug 2005 B2
6936270 Watson et al. Aug 2005 B2
6939569 Green et al. Sep 2005 B1
6973718 Sheppard et al. Dec 2005 B2
7056591 Pacetti et al. Jun 2006 B1
7094256 Shah et al. Aug 2006 B1
7148201 Stern et al. Dec 2006 B2
7152452 Kokish Dec 2006 B2
7160592 Rypacek et al. Jan 2007 B2
7163715 Kramer Jan 2007 B1
7169404 Hossainy et al. Jan 2007 B2
7171255 Holupka et al. Jan 2007 B2
7201750 Eggers et al. Apr 2007 B1
7201940 Kramer Apr 2007 B1
7229837 Chen Jun 2007 B2
7278174 Villalobos Oct 2007 B2
7282020 Kaplan Oct 2007 B2
7308748 Kokish Dec 2007 B2
7323454 De Nijs et al. Jan 2008 B2
7326734 Zi et al. Feb 2008 B2
7329383 Stinson Feb 2008 B2
7378105 Burke et al. May 2008 B2
7419696 Berg et al. Sep 2008 B2
7429378 Serhan et al. Sep 2008 B2
7444162 Hassan Oct 2008 B2
7455658 Wang Nov 2008 B2
7456151 Li et al. Nov 2008 B2
7462593 Cuttitta et al. Dec 2008 B2
7470281 Tedeschi Dec 2008 B2
7485113 Varner et al. Feb 2009 B2
7498042 Igaki et al. Mar 2009 B2
7524865 D'Amato et al. Apr 2009 B2
7527632 Houghton May 2009 B2
7537610 Reiss May 2009 B2
7537785 Loscalzo et al. May 2009 B2
7544381 Kangas Jun 2009 B2
7553827 Attawia et al. Jun 2009 B2
7713538 Lewis et al. May 2010 B2
7727275 Betts et al. Jun 2010 B2
7745566 Chattopadhyay et al. Jun 2010 B2
7763277 Canham et al. Jul 2010 B1
7771468 Whitbourne et al. Aug 2010 B2
7837726 Von Oepen et al. Nov 2010 B2
7842312 Burgermeister et al. Nov 2010 B2
7919108 Rees et al. Apr 2011 B2
7955383 Krivoruchko et al. Jun 2011 B2
7967855 Furst Jun 2011 B2
7972661 Pui et al. Jul 2011 B2
8070796 Furst et al. Dec 2011 B2
8109904 Papp Feb 2012 B1
8298565 Taylor et al. Oct 2012 B2
8333803 Park et al. Dec 2012 B2
8377356 Huang Feb 2013 B2
8535372 Fox et al. Sep 2013 B1
8709071 Huang et al. Apr 2014 B1
8753659 Lewis et al. Jun 2014 B2
8753709 Hossainy et al. Jun 2014 B2
8758429 Taylor et al. Jun 2014 B2
8795762 Fulton et al. Aug 2014 B2
8834913 Shaw et al. Sep 2014 B2
8852625 DeYoung et al. Oct 2014 B2
8900651 McClain et al. Dec 2014 B2
9090029 Prevost Jul 2015 B2
9433516 McClain et al. Sep 2016 B2
9486431 McClain et al. Nov 2016 B2
10117972 McClain et al. Nov 2018 B2
20010026804 Boutignon Oct 2001 A1
20010027299 Yang Oct 2001 A1
20010034336 Shah et al. Oct 2001 A1
20010037143 Oepen Nov 2001 A1
20010044629 Stinson Nov 2001 A1
20010049551 Tseng et al. Dec 2001 A1
20020002353 Michal Jan 2002 A1
20020007209 Scheerder et al. Jan 2002 A1
20020051485 Bottomley May 2002 A1
20020051845 Bottomley May 2002 A1
20020082679 Sirhan et al. Jun 2002 A1
20020082680 Shanley et al. Jun 2002 A1
20020091433 Ding et al. Jul 2002 A1
20020099332 Slepian et al. Jul 2002 A1
20020125860 Schworn et al. Sep 2002 A1
20020133072 Wang et al. Sep 2002 A1
20020144757 Craig et al. Oct 2002 A1
20020151959 Von Oepen Oct 2002 A1
20030001830 Wampler et al. Jan 2003 A1
20030004563 Jackson et al. Jan 2003 A1
20030028244 Bates et al. Feb 2003 A1
20030031699 Van Antwerp Feb 2003 A1
20030077200 Charles et al. Apr 2003 A1
20030088307 Shulze et al. May 2003 A1
20030125800 Shulze et al. Jul 2003 A1
20030143315 Pui et al. Jul 2003 A1
20030170305 O'Neil et al. Sep 2003 A1
20030180376 Dalal et al. Sep 2003 A1
20030185964 Weber et al. Oct 2003 A1
20030204238 Tedeschi Oct 2003 A1
20030209835 Chun et al. Nov 2003 A1
20030222017 Fulton et al. Dec 2003 A1
20030222018 Yonker et al. Dec 2003 A1
20030232014 Burke et al. Dec 2003 A1
20040013792 Epstein et al. Jan 2004 A1
20040018228 Fischell et al. Jan 2004 A1
20040022400 Magrath Feb 2004 A1
20040022853 Ashton et al. Feb 2004 A1
20040044397 Stinson Mar 2004 A1
20040059290 Palasis et al. Mar 2004 A1
20040096477 Chauhan et al. May 2004 A1
20040102758 Davila May 2004 A1
20040106982 Jalisi Jun 2004 A1
20040122205 Nathan Jun 2004 A1
20040126542 Fujiwara et al. Jul 2004 A1
20040143317 Takashi et al. Jul 2004 A1
20040144317 Chuman et al. Jul 2004 A1
20040147904 Hung et al. Jul 2004 A1
20040157789 Geall Aug 2004 A1
20040170685 Carpenter et al. Sep 2004 A1
20040193177 Houghton Sep 2004 A1
20040193262 Shadduck Sep 2004 A1
20040220660 Shanley et al. Nov 2004 A1
20040224001 Pacetti et al. Nov 2004 A1
20040234748 Stenzel Nov 2004 A1
20040236416 Falotico Nov 2004 A1
20040260000 Chaiko Dec 2004 A1
20040267345 Lorenzo Dec 2004 A1
20050003074 Brown et al. Jan 2005 A1
20050004661 Lewis et al. Jan 2005 A1
20050004663 Llanos Jan 2005 A1
20050010275 Sahatjian et al. Jan 2005 A1
20050015046 Weber et al. Jan 2005 A1
20050019747 Anderson et al. Jan 2005 A1
20050033414 Zhang et al. Feb 2005 A1
20050033417 Borges Feb 2005 A1
20050038498 Dubrow et al. Feb 2005 A1
20050048121 East et al. Mar 2005 A1
20050049694 Neary Mar 2005 A1
20050053639 Shalaby Mar 2005 A1
20050060028 Horres et al. Mar 2005 A1
20050069630 Fox et al. Mar 2005 A1
20050070989 Lye et al. Mar 2005 A1
20050070990 Stinson Mar 2005 A1
20050070997 Thornton et al. Mar 2005 A1
20050074479 Weber et al. Apr 2005 A1
20050075714 Cheng et al. Apr 2005 A1
20050079199 Heruth et al. Apr 2005 A1
20050079274 Palasis et al. Apr 2005 A1
20050084533 Howdle et al. Apr 2005 A1
20050095267 Campbell et al. May 2005 A1
20050131008 Betts et al. Jun 2005 A1
20050131513 Myers et al. Jun 2005 A1
20050147734 Seppala et al. Jul 2005 A1
20050159704 Scott et al. Jul 2005 A1
20050166841 Robida Aug 2005 A1
20050170071 Eramo Aug 2005 A1
20050175772 Worsham et al. Aug 2005 A1
20050177223 Palmaz Aug 2005 A1
20050191491 Wang et al. Sep 2005 A1
20050196424 Chappa Sep 2005 A1
20050208102 Schultz Sep 2005 A1
20050209244 Prescott Sep 2005 A1
20050209680 Gale et al. Sep 2005 A1
20050216075 Wang et al. Sep 2005 A1
20050220839 DeWitt Oct 2005 A1
20050222676 Shanley et al. Oct 2005 A1
20050238829 Motherwell et al. Oct 2005 A1
20050245637 Hossainy et al. Nov 2005 A1
20050255327 Chaney Nov 2005 A1
20050260186 Bookbinder et al. Nov 2005 A1
20050268573 Maxfield et al. Dec 2005 A1
20050288481 Desnoyer et al. Dec 2005 A1
20050288629 Kunis Dec 2005 A1
20060001011 Wilson et al. Jan 2006 A1
20060002974 Pacetti et al. Jan 2006 A1
20060020325 Burgermeister et al. Jan 2006 A1
20060030652 Adams et al. Feb 2006 A1
20060045901 Weber et al. Mar 2006 A1
20060067974 Labrecque et al. Mar 2006 A1
20060073329 Boyce et al. Apr 2006 A1
20060089705 Ding et al. Apr 2006 A1
20060093771 Rypacek et al. May 2006 A1
20060094744 Maryanoff et al. May 2006 A1
20060104969 Oray et al. May 2006 A1
20060106455 Furst et al. May 2006 A1
20060116755 Stinson Jun 2006 A1
20060121080 Lye et al. Jun 2006 A1
20060121089 Michal et al. Jun 2006 A1
20060134168 Chappa et al. Jun 2006 A1
20060134211 Lien et al. Jun 2006 A1
20060136041 Schmid et al. Jun 2006 A1
20060147698 Carroll et al. Jul 2006 A1
20060153729 Stinson Jul 2006 A1
20060160455 Sugyo et al. Jul 2006 A1
20060188547 Bezwada Aug 2006 A1
20060193886 Owens et al. Aug 2006 A1
20060193890 Owens Aug 2006 A1
20060198868 Dewitt et al. Sep 2006 A1
20060210638 Liversidge et al. Sep 2006 A1
20060216324 Stucke et al. Sep 2006 A1
20060222756 Davila et al. Oct 2006 A1
20060228415 Oberegger et al. Oct 2006 A1
20060228453 Cromack et al. Oct 2006 A1
20060235506 Ta et al. Oct 2006 A1
20060276877 Owens et al. Dec 2006 A1
20060287611 Fleming Dec 2006 A1
20070009564 McClain et al. Jan 2007 A1
20070009664 Fallais et al. Jan 2007 A1
20070026041 DesNoyer et al. Feb 2007 A1
20070026042 Narayanan Feb 2007 A1
20070032864 Furst Feb 2007 A1
20070038227 Massicotte et al. Feb 2007 A1
20070038289 Nishide et al. Feb 2007 A1
20070043434 Meerkin et al. Feb 2007 A1
20070059350 Kennedy et al. Mar 2007 A1
20070065478 Hossainy Mar 2007 A1
20070110888 Radhakrishnan et al. May 2007 A1
20070123973 Roth May 2007 A1
20070123977 Cottone et al. May 2007 A1
20070128274 Zhu et al. Jun 2007 A1
20070148251 Hossainy et al. Jun 2007 A1
20070154513 Atanasoska et al. Jul 2007 A1
20070154554 Burgermeister et al. Jul 2007 A1
20070196242 Boozer et al. Aug 2007 A1
20070196423 Ruane et al. Aug 2007 A1
20070198081 Castro et al. Aug 2007 A1
20070200268 Dave Aug 2007 A1
20070203569 Burgermeister et al. Aug 2007 A1
20070219579 Paul Sep 2007 A1
20070225795 Granada et al. Sep 2007 A1
20070250157 Nishide et al. Oct 2007 A1
20070259017 Francis Nov 2007 A1
20070280992 Margaron et al. Dec 2007 A1
20080030066 Mercier et al. Feb 2008 A1
20080051866 Chen et al. Feb 2008 A1
20080065192 Berglund Mar 2008 A1
20080071347 Cambronne Mar 2008 A1
20080071358 Weber et al. Mar 2008 A1
20080071359 Thornton et al. Mar 2008 A1
20080075753 Chappa Mar 2008 A1
20080077232 Nishide Mar 2008 A1
20080085880 Viswanath et al. Apr 2008 A1
20080091008 Viswanath et al. Apr 2008 A1
20080095919 McClain et al. Apr 2008 A1
20080097575 Cottone Apr 2008 A1
20080097591 Savage et al. Apr 2008 A1
20080098178 Veazey et al. Apr 2008 A1
20080107702 Jennissen May 2008 A1
20080118543 Pacetti et al. May 2008 A1
20080118544 Wang May 2008 A1
20080124372 Hossainy et al. May 2008 A1
20080138375 Yan et al. Jun 2008 A1
20080206304 Lindquist et al. Aug 2008 A1
20080213464 O'Connor Sep 2008 A1
20080233267 Berglund Sep 2008 A1
20080255510 Wang Oct 2008 A1
20080269449 Chattopadhyay et al. Oct 2008 A1
20080286325 Reyes et al. Nov 2008 A1
20080292776 Dias Nov 2008 A1
20080300669 Hossainy Dec 2008 A1
20080300689 Hossainy Dec 2008 A1
20090011116 Herweck Jan 2009 A1
20090043379 Prescott Feb 2009 A1
20090062909 Taylor et al. Mar 2009 A1
20090068266 Raheja et al. Mar 2009 A1
20090076446 Dubuclet et al. Mar 2009 A1
20090082855 Borges Mar 2009 A1
20090098178 Hofmann et al. Apr 2009 A1
20090105687 Deckman et al. Apr 2009 A1
20090105809 Lee Apr 2009 A1
20090110711 Trollsas et al. Apr 2009 A1
20090111787 Lim et al. Apr 2009 A1
20090123515 Taylor et al. May 2009 A1
20090123521 Weber et al. May 2009 A1
20090186069 DeYoung et al. Jul 2009 A1
20090202609 Keough et al. Aug 2009 A1
20090216317 Cromack et al. Aug 2009 A1
20090227949 Freyman et al. Sep 2009 A1
20090231578 Ling et al. Sep 2009 A1
20090263460 McDonald Oct 2009 A1
20090285974 Kerrigan Nov 2009 A1
20090292351 McClain et al. Nov 2009 A1
20090292776 Nesbitt et al. Nov 2009 A1
20090297578 Trollsas et al. Dec 2009 A1
20090300689 Conte et al. Dec 2009 A1
20100000328 Mahmoud Jan 2010 A1
20100006358 Ishikawa Jan 2010 A1
20100015200 McClain et al. Jan 2010 A1
20100030261 McClain et al. Feb 2010 A1
20100042206 Yadav Feb 2010 A1
20100055145 Betts Mar 2010 A1
20100055294 Wang et al. Mar 2010 A1
20100063570 Pacetti et al. Mar 2010 A1
20100063580 McClain et al. Mar 2010 A1
20100074934 Hunter Mar 2010 A1
20100131044 Patel May 2010 A1
20100155496 Stark et al. Jun 2010 A1
20100166869 Desai et al. Jul 2010 A1
20100196482 Radovic-Moreno et al. Aug 2010 A1
20100198330 Hossainy et al. Aug 2010 A1
20100198331 Rapoza et al. Aug 2010 A1
20100211164 McClain et al. Aug 2010 A1
20100228348 McClain et al. Sep 2010 A1
20100233332 Xing et al. Sep 2010 A1
20100239635 McClain et al. Sep 2010 A1
20100241220 McClain et al. Sep 2010 A1
20100256746 Taylor et al. Oct 2010 A1
20100256748 Taylor et al. Oct 2010 A1
20100262224 Kleiner Oct 2010 A1
20100272775 Cleek et al. Oct 2010 A1
20100272778 McClain et al. Oct 2010 A1
20100285085 Stankus et al. Nov 2010 A1
20100298928 McClain et al. Nov 2010 A1
20100303881 Hoke et al. Dec 2010 A1
20100305689 Venkatraman et al. Dec 2010 A1
20110009953 Luk et al. Jan 2011 A1
20110034422 Kannan et al. Feb 2011 A1
20110034989 Al-Marashi Feb 2011 A1
20110060073 Huang et al. Mar 2011 A1
20110159069 Shaw et al. Jun 2011 A1
20110160751 Granja Jun 2011 A1
20110172763 Ndondo-Lay Jul 2011 A1
20110189299 Okubo et al. Aug 2011 A1
20110190864 McClain et al. Aug 2011 A1
20110223212 Taton et al. Sep 2011 A1
20110238161 Fulton et al. Sep 2011 A1
20110243884 O'Shea et al. Oct 2011 A1
20110257732 McClain et al. Oct 2011 A1
20110264190 McClain et al. Oct 2011 A1
20110301697 Hoffmann et al. Dec 2011 A1
20120064124 McClain et al. Mar 2012 A1
20120064143 Sharp et al. Mar 2012 A1
20120065723 Drasler et al. Mar 2012 A1
20120101566 Mews et al. Apr 2012 A1
20120150275 Shaw-Klein Jun 2012 A1
20120160408 Clerc et al. Jun 2012 A1
20120172787 McClain et al. Jul 2012 A1
20120177742 McClain et al. Jul 2012 A1
20120231037 Levi et al. Sep 2012 A1
20120239161 Datta et al. Sep 2012 A1
20120271396 Zheng et al. Oct 2012 A1
20120280432 Chen et al. Nov 2012 A1
20120290075 Mortisen et al. Nov 2012 A1
20120323311 McClain et al. Dec 2012 A1
20130006351 Taylor et al. Jan 2013 A1
20130035754 Shulze et al. Feb 2013 A1
20130087270 Hossainy et al. Apr 2013 A1
20130110138 Hurtado et al. May 2013 A1
20130172853 McClain et al. Jul 2013 A1
20130291476 Broughton, Jr. et al. Nov 2013 A1
20140343667 McClain Nov 2014 A1
20140350522 McClain et al. Nov 2014 A1
20140371717 McClain et al. Dec 2014 A1
20150024116 Matson et al. Jan 2015 A1
20150025620 Taylor et al. Jan 2015 A1
20150250926 McClain et al. Sep 2015 A1
20160095726 McClain et al. Apr 2016 A1
Foreign Referenced Citations (200)
Number Date Country
2237466 Nov 1998 CA
2589761 Dec 2004 CA
2615452 Jan 2007 CA
2650590 Nov 2007 CA
2679712 Jul 2008 CA
2684482 Oct 2008 CA
2721832 Dec 2009 CA
2423899 Mar 2001 CN
1465410 Jan 2004 CN
1575860 Feb 2005 CN
1649551 Aug 2005 CN
1684641 Oct 2005 CN
101161300 Apr 2008 CN
102481195 May 2012 CN
4336209 Mar 1995 DE
29702671 Apr 1997 DE
29716476 Dec 1997 DE
19633901 Feb 1998 DE
29716467 Feb 1998 DE
19740506 Mar 1998 DE
19754870 Aug 1998 DE
19822157 Nov 1999 DE
69611186 May 2001 DE
0335341 Oct 1989 EP
0604022 Jun 1994 EP
800801 Oct 1997 EP
0876806 Nov 1998 EP
0982041 Mar 2000 EP
1195822 Apr 2002 EP
1325758 Jul 2003 EP
1327422 Jul 2003 EP
1454677 Sep 2004 EP
1502655 Feb 2005 EP
1626752 Feb 2006 EP
1750784 Feb 2007 EP
1909973 Apr 2008 EP
2197070 Jun 2010 EP
2293357 Mar 2011 EP
2293366 Mar 2011 EP
2758253 Jul 1998 FR
1994-098902 Apr 1994 JP
H06218063 Aug 1994 JP
H08206223 Aug 1996 JP
H09-056807 Mar 1997 JP
H1029524 Feb 1998 JP
H10151207 Jun 1998 JP
H10314313 Dec 1998 JP
H1157018 Mar 1999 JP
2000316981 Nov 2000 JP
2003-533493 Nov 2001 JP
2001521503 Nov 2001 JP
2002239013 Aug 2002 JP
2003-205037 Jul 2003 JP
2003-533286 Nov 2003 JP
2003-533493 Nov 2003 JP
2004512059 Apr 2004 JP
2004173770 Jun 2004 JP
2004-518458 Jun 2004 JP
2004-529674 Sep 2004 JP
2004528060 Sep 2004 JP
2005-505318 Feb 2005 JP
2005168646 Jun 2005 JP
2005519080 Jun 2005 JP
2005-523119 Aug 2005 JP
2005-523332 Aug 2005 JP
2005-296690 Oct 2005 JP
2006506191 Feb 2006 JP
2006512175 Apr 2006 JP
2007502281 Feb 2007 JP
2007215620 Aug 2007 JP
2009-501566 Jan 2009 JP
2009529399 Aug 2009 JP
2010052503 Mar 2010 JP
2010515539 May 2010 JP
2010516307 May 2010 JP
2011517589 Jun 2011 JP
2012527318 Nov 2012 JP
2013153822 Aug 2013 JP
10-2004-0034064 Apr 2004 KR
10-1231197 Feb 2013 KR
9409010 Apr 1994 WO
WO-95006487 Mar 1995 WO
9616691 Jun 1996 WO
WO 9620698 Jul 1996 WO
9632907 Oct 1996 WO
9641807 Dec 1996 WO
WO 97045502 Dec 1997 WO
9802441 Jan 1998 WO
9908729 Feb 1999 WO
9915530 Apr 1999 WO
9917680 Apr 1999 WO
99016388 Apr 1999 WO
0006051 Feb 2000 WO
0025702 May 2000 WO
00032238 Jun 2000 WO
0114387 Mar 2001 WO
WO-2001054662 Aug 2001 WO
0187345 Nov 2001 WO
0187368 Nov 2001 WO
WO-2001-087371 Nov 2001 WO
WO-2001087372 Nov 2001 WO
0226281 Apr 2002 WO
WO-2002040702 May 2002 WO
WO-2002043799 Jun 2002 WO
02055122 Jul 2002 WO
WO-2002-074194 Sep 2002 WO
WO-2002090085 Nov 2002 WO
02100456 Dec 2002 WO
WO-2003039553 May 2003 WO
WO-2003-082368 Oct 2003 WO
03090684 Nov 2003 WO
WO-2003101624 Dec 2003 WO
WO-2004009145 Jan 2004 WO
2004028406 Apr 2004 WO
WO-2004028589 Apr 2004 WO
WO-2004043506 May 2004 WO
2004045450 Jun 2004 WO
WO-2004045450 Jun 2004 WO
WO-2004098574 Nov 2004 WO
2005018696 Mar 2005 WO
WO-2005-042623 May 2005 WO
WO-2005063319 Jul 2005 WO
WO-2005069889 Aug 2005 WO
WO-2005-117942 Dec 2005 WO
WO-2006014534 Feb 2006 WO
WO-2006052575 May 2006 WO
2006063430 Jun 2006 WO
WO-2006065685 Jun 2006 WO
WO-2006-083796 Aug 2006 WO
WO-2006-099276 Sep 2006 WO
2007017707 Jan 2007 WO
2007017708 Jan 2007 WO
WO-2007-002238 Jan 2007 WO
WO-2007-011707 Jan 2007 WO
WO-2007-011707 Jan 2007 WO
WO-2007-011708 Jan 2007 WO
WO-2007-011708 Jan 2007 WO
WO-2007-127363 Jan 2007 WO
WO-2007092179 Aug 2007 WO
2007106441 Sep 2007 WO
WO 2007143609 Dec 2007 WO
2008024626 Feb 2008 WO
WO-2008042909 Apr 2008 WO
WO-2008-046641 Apr 2008 WO
WO-2008-046642 Apr 2008 WO
WO-2008052000 May 2008 WO
WO-2008070996 Jun 2008 WO
WO 2008086369 Jul 2008 WO
WO-2008131131 Oct 2008 WO
WO-2008-131131 Oct 2008 WO
WO-20080148013 Dec 2008 WO
09039553 Apr 2009 WO
2009051614 Apr 2009 WO
WO-2009051614 Apr 2009 WO
WO-2009051780 Apr 2009 WO
2009096822 Aug 2009 WO
2009113605 Sep 2009 WO
2009120361 Oct 2009 WO
WO-20090146209 Dec 2009 WO
2010001932 Jan 2010 WO
WO 2010009335 Jan 2010 WO
WO-2010075590 Jul 2010 WO
2010086863 Aug 2010 WO
WO-2010-111196 Sep 2010 WO
WO-2010-111196 Sep 2010 WO
WO-2010-111232 Sep 2010 WO
WO-2010-111232 Sep 2010 WO
WO-2010-111238 Sep 2010 WO
WO-2010-111238 Sep 2010 WO
WO-2010-120552 Oct 2010 WO
WO-2010-120552 Oct 2010 WO
WO-2010-121187 Oct 2010 WO
WO-2010-121187 Oct 2010 WO
2010135369 Nov 2010 WO
2010136604 Dec 2010 WO
WO-2010136604 Dec 2010 WO
WO-2011-009096 Jan 2011 WO
WO-2011097103 Aug 2011 WO
2011119159 Sep 2011 WO
WO-2011119762 Sep 2011 WO
WO-2011130448 Oct 2011 WO
WO-2011133655 Oct 2011 WO
2011140519 Nov 2011 WO
2012009684 Jan 2012 WO
WO-2012009684 Jan 2012 WO
WO-2012034079 Mar 2012 WO
2012078955 Jun 2012 WO
WO-2012082502 Jun 2012 WO
WO-2012092504 Jul 2012 WO
WO-2012142319 Oct 2012 WO
WO-2012166819 Dec 2012 WO
2013003644 Jan 2013 WO
WO-2013012689 Jan 2013 WO
WO-2013025535 Feb 2013 WO
WO-2013059509 Apr 2013 WO
WO-2013173657 Nov 2013 WO
WO-2013177211 Nov 2013 WO
WO-2014063111 Apr 2014 WO
WO-2014165264 Oct 2014 WO
2014186532 Nov 2014 WO
Non-Patent Literature Citations (426)
Entry
Ong and Serruys, “Technology Insight: an overview of research in drug-eluting stents,” Nat. Clin. Parct. Cardiovas. Med. 2(12):647-658 (2005).
PCT/US06/24221 Search Report dated Jan. 29, 2007.
PCT/US06/27321 Search Report dated Oct. 16, 2007.
PCT/US06/27322 Search Report dated Apr. 25, 2007.
PCT/US07/10227 Search Report dated Aug. 8, 2008.
PCT/US07/82275 Search Report dated Apr. 18, 2008.
PCT/US07/080213 Search Report dated Apr. 16, 2008.
PCT/US08/11852 Search Report dated Dec. 19, 2008.
PCT/US08/50536 Search Report dated Jun. 2, 2008.
PCT/US08/60671 Search Report dated Sep. 5, 2008.
PCT/US08/64732 Search Report dated Sep. 4, 2008.
PCT/US09/41045 Search Report dated Aug. 11, 2009.
PCT/US09/50883 Search Report dated Nov. 17, 2009.
Latella et al., “Nanoindentation hardness. Young's modulus, and creep behavior of organic-inorganic silica-based sol-gel thin films on copper,” J Mater Res 23(9): 2357-2365 (2008).
Schmidt et al., “In vitro measurement of quality parameters of stent-catheter systems,” Biomed Techn 50(S1):1505-1506 (2005).
PCT/US10/28265 Search Report and Written Opinion dated Dec. 13, 2010.
U.S. Appl. No. 11/158,724 Office Action dated Sep. 17, 2009.
Akoh et al., “One-Stage Synthesis of Raffinose Fatty Acid Polyesters.” Journal Food Science (1987) 52:1570.
Albert et al., “Antibiotics for preventing recurrent urinary tract infection in non-pregnant women,” Cochrane Database System Rev. 3, CD001209 (2004).
Au et al., “Methods to improve efficacy of intravesical mitomycin C: Results of a randomized phase III trial,” Journal of the National Cancer Institute, 93(8), 597-604 (2001).
AU2006270221 Exam Report dated Apr. 6, 2010.
AU2011232760 Exam Report dated Apr. 10, 2013.
AU2012203203 Exam Report dated Apr. 12, 2013.
AU2007243268 Exam Report dated May 15, 2013.
AU2007243268 Exam Report dated Aug. 31, 2011.
AU2009251504 Exam Report dated Dec. 8, 2011.
AU2009270849 Exam Report dated Feb. 14, 2012.
AU2012203577 Exam Report dated Jun. 7, 2013.
AU2011256902 Exam Report dated Jun. 13, 2013.
Balss et al., “Quantitative spatial distribution of sirolumus and polymers in drug-eluting stents using confocal Raman microscopy,” J. of Biomedical Materials Research Part A, 258-270 (2007).
Belu et al., “Three-Dimensional Compositional Analysis of Drug Eluting Stent Coatings Using Cluster Secondary Ioan Mass Spectroscopy,” Anal. Chem. 80:624-632 (2008).
Belu, et al., “Chemical imaging of drug eluting coatings: Combining surface analysis and confocal Rama microscopy” J. Controlled Release 126: 111-121 (2008).
Boneff, “Topical Treatment of Chronic Prostatitis and Premature Ejaculation,” International Urology and Nephrology 4(2):183-186 (1971).
Bookbinder et al., “A recombinant human enzyme for enhanced interstitial transport of therapeutics,” Journal of Controlled Release 114:230-241 (2006).
Borchert et al., “Prevention and treatement of urinary tract infection with probiotics: Review and research perspective,” Indian Journal Urol. 24(2):139-144 (2008).
Brunstein et al., “Histamine, a vasoactive agent with vascular disrupting potential improves tumour response by enhancing local drug delivery,” British Journal of Cancer 95:1663-1669 (2006).
Bugay et al., “Raman Analysis of Pharmaceuticals,” in “Applications of Vibrational Spectroscopy in Pharmaceutical Research and Development,” Ed. Pivonka, D.E., Chalmers, J.M., Griffiths, P.R. (2007) Wiley and Sons.
CA 2615452 Office Action dated Dec. 19, 2012.
CA 2684482 Office Action dated Jul. 11, 2012.
CA 2684482 Office Action dated Nov. 10, 2011.
CA 2688314 Office Action dated Jun. 6, 2012.
CA 2730995 Office Action dated Sep. 26, 2012.
CA 2757276 Office Action dated Feb. 15, 2013.
CA 2756307 Office action dated Feb. 18, 2013.
CA 2756386 Office action dated Mar. 15, 2013.
CA 2759015 Office action dated Apr. 8, 2013.
CA 2756388 Office Action dated Apr. 11, 2013.
CA 2613280 Office Action dated Oct. 2, 2012.
CA 2730995 Office action dated May 29, 2013.
CA 2650590 Office action dated Jul. 23, 2013.
Cadieux et al., “Use of triclosan-eluting ureteral stents in patients with long-term stents,” J. Endourol (Epub) (Jun. 19, 2009).
Channon et al., “Nitric Oxide Synthase in Atherosclerosis and Vascular Injury: Insights from Experimental Gene Therapy,” Arteriosclerosis, Thrombosis and Vascular Biology, 20(8): 1873-1881 (2000).
Chen et al. Immobilization of heparin on a silicone surface through a heterobifunctional PEG spacer. Biomaterials. Dec. 2005;26(35):7418-24.
Chłopek et al. “The influence of carbon fibres on the resorption time and mechanical properties of the lactide-glycolide co-polymer.” J. Biomater. Sci. Polymer Edn, vol. 18, No. 11, pp. 1355-1368 (2007).
Clair and Burks, “Thermoplastic/Melt-Processable Polyimides,” NASA Conf. Pub. #2334 (1984), pp. 337-355.
CN 2006800258093 Office Action dated May 30, 2012.
CN 200880007308.1 Office Action dated Nov. 23, 2011.
CN 200880007308.1 Office Action dated Oct. 18, 2012.
CN 200880020515 Office Action dated Oct. 9, 2012.
CN 200880100102.3 Office Action dated Jun. 1, 2012.
CN 200980122691 Office Action dated Oct. 10, 2012.
CN 200780047425.6 Office action dated Aug. 3, 2012.
CN 200780047425.6 Office action dated Feb. 28, 2013.
CN 200980136432.2 Office action dated Jan. 14, 2013.
CN 200880100102.3 Office Action dated Apr. 11, 2013.
CN 200880007308.1 Office Action dated Jul. 3, 2013.
CN200880020515 Office Action dated Jul. 22, 2013.
Cohen, et al. “Sintering Technique for the Preparation of Polymer Matrices fro the Controlled Release of Macromolecules.” Journal of Pharamceutical Sciences, vol. 73, No. 8, 1984, p. 1034-1037.
CRC Handbook of chemistry and physics. 71st ed. David R. Lide, Editor-in-Chief. Boca Raton, FL, CRC Press; 1990; 6-140.
Cyrus et al., “Intramural delivery of rapamycin with alphavbeta3-targeted paramagnetic nanoparticles inhibits stenosis after balloon injury,” Arterioscler Thromb Vasc Biol 2008;28:820-826.
DERWENT-ACC-No. 2004-108578 Abstracting 2004003077; Jan. 8, 2004; 3 pages.
DiStasi et al., “Percutaneous sequential bacillus Calmette-Guerin and mitomycin C for panurothelial carcinomatosis,” Can. J. Urol. 12(6):2895-2898 (2005).
Domingo, C. et al., “Precipication of ultrafine organic crystals from the rapid expansion of supercritical solutions over a capillary and a frit nozzle,” J. Supercritical Fluids 10:39-55 (1997).
Dzik-Jurasz, “Molecular imaging in vivo: an introduction,” The British Journal of Radiology, 76:S98-S109 (2003).
EA 201001497 Office Action dated Feb. 11, 2013.
EA 200901254/28 Office Action dated Jul. 18, 2012.
Electrostatic Process, Wiley Encyclopedia of Electrical and Electronics Engineering, John Wiley & Sons, Inc. 1999; 7:15-39.
Eltze et al., “Imidazoquinolinon, imidazopyridine, and isoquinolindione derivatives as novel and potent inhibitors of the poly (ADP-ribose) polymerase (PARP): a comparison with standard PARP inhibitors,” Mol. Pharmacol 74(6):1587-1598 (2008).
EP06773731.2 Search Report dated Oct. 2, 2012.
EP06787258.0 Search Report dated Feb. 6, 2012.
EP07756094.4 Search Report dated Aug. 31, 2012.
EP08733210.2 Search Report dated Oct. 23, 2012.
EP08756215.3 Search Report dated Oct. 5, 2011.
EP08756215.3 Search Report dated Jan. 28, 2013.
EP09805981.9 Office Action dated Feb. 13, 2013.
EP06787258.0 Office Action dated Mar. 15, 2013.
EP09755571.8 Search Report dated Apr. 9, 2013.
EP08705772.5 Search Report dated Feb. 20, 2013.
EP07756094.4 Office action dated May 29, 2013.
EP08733210.2 Office action dated Jul. 16, 2013.
Ettmayer et al. Lessons learned from marketed and investigational prodrugs. J Med Chem. May 6, 2004;47(10):2393-404.
Fibbi et al., “Chronic inflammation in the pathogenesis of benign prostatic hyperplasia,” Int J Androl. Jun. 1, 2010;33(3):475-88.
Fleischmann et al., “High Expression of Gastrin-Releasing Peptide Receptors in the Vascular bed of Urinary Tract Cancers: Promising Candidates for Vascular Targeting Applications.” Jun. 2009, Endocr. Relat. Cancer 16(2):623-33.
Froehlich et al., “Conscious sedation for gastroscopy: patient tolerance and cardiorespiratory parameters,” Gastroenterology 108(3):697-704 (1995).
Fujiwara et al., “Insulin-like growth factor 1 treatment via hydrogels rescues cochlear hair cells from ischemic injury,” Oct. 29, 2008, NeuroReport 19(16):1585-1588.
Fulton et al. Thin Fluoropolymer films and nanoparticle coatings from the rapid expansion of supercritical carbon dioxide solutions with electrostatic collection, Polymer Communication. 2003; 2627-3632.
Green et al., “Simple conjugated polymer nanoparticles as biological labels,” Proc Roy Soc A. published online Jun. 24, 2009 doi:10.1098/rspa.2009.0181.
Griebenow et al., “On Protein Denaturation in Aqueous-Organic Mixtures but not in Pure Organic Solvents,” J. Am Chem Soc., vol. 118. No. 47, 11695-11700 (1996).
Hamilos et al., “Differential effects of Drug-Eluting Stents on Local Endothelium-Dependent Coronary Vasomotion.” JACC vol. 51, No. 22, 2008, Endothelium and DES Jun. 3, 2008:2123-9.
Hartmann et al., “Tubo-ovarian abscess in virginal adolescents: exposure of the underlying etiology,” J. Pediatr Adolesc Gynecol, 22(3):313-16 (2009).
Hasegawa et al., “Nylong 6/Na-montmorillonite nano composites prepared by compounding Nylon 6 with Na-montmorillonite slurry,” Polymer 44 (2003) 2933-2937.
Hinds, WC. Aerosol Technology, Properties, Behavior and Measurement of Airborne Particles, Department of Environmental Health Sciences, Harvard University School of Public Health, Boston, Massachusetts. 1982; 283-314.
Hladik et al., “Can a topical microbicide prevent rectal HIV transmission?” PLoS Med. 5(8):e167 (2008).
Iconomidou et al., “Secondary Structure of Chorion Proteins of the Teleosatan Fish Dentex dentex by ATR FR-IR and FT-Raman Spectroscopy,” J. of Structural Biology, 132, 112-122 (2000).
IN-368/DELNP/2008 Exam Report dated Oct. 17, 2011.
IL-208648 Official Notification dated Feb. 9, 2012.
Jackson et al., “Characterization of perivascular poly(lactic-co-glycolic acid) films containing paclitaxel” Int. J. of Pharmaceutics, 283:97-109 (2004), incorporated in its entirety herein by reference.
Jensen et al., Neointimal hyperplasia after sirollmus-eluting and paclitaxel-eluting stend implantation in diabetic patients: the randomized diabetes and drug eluting stent (DiabeDES) intravascular ultrasound trial. European heart journal (29), pp. 2733-2741. Oct. 2, 2008. Retrieved from the Internet. Retrieved on [Jul. 17, 2012]. URL:<http://eurheartj.oxfordjournals.org/content/29/22/2733.full.pdf> entire document.
Jewell, et al., “Release of Plasmid DNA from Intravascular Stents Coated with Ultrathin Multilayered Polyelectrolyte Films” Biomacromolecules. 7: 2483-2491 (2006).
Johns, H.E, J.R.Cunningham, Thomas, Charles C., Publisher, “The Physics of Radiology,” 1983, Springfield, IL, pp. 133-143.
Joner et al. “Site-specific targeting of nanoparticle prednisolone reduces in-stent restenosis in a rabbit model of established atheroma,” Arterioscler Thromb Vase Biol. 2008;28:1960-1966.
Mei et al., “Local Delivery of Modified Paclitaxel-Loaded Poly( ε-caprolactone)/Pluronic F68 Nanoparticles for Long-Term Inhibition of Hyperplasia,” Journal of Pharmaceutical Sciences, vol. 98, No. 6, Jun. 2009.
Jovanovic et al. “Stabilization of Proteins in Dry Powder Formulations Using Supercritical Fluid Technology,” Pharm. Res. 2004; 21(11).
JP 2008-521633 Office Action dated Oct. 12, 2012.
JP2008-521633 Office Action dated Dec. 28, 2011.
JP-2009-534823 Office Action dated Sep. 20, 2012.
JP-2009-534823 Office Action dated Feb. 21, 2012.
JP-2009-545647 Office Action dated Jun. 5, 2012.
JP-2010-504253 Office Action dated Dec. 12, 2011.
JP-2010-504253 Office Action dated Dec. 7, 2012.
JP-2011-518920 Office action dated Dec. 17, 2012.
JP-2009-534823 Office Action dated Apr. 23, 2013.
JP-2012-503677 Office action dated Jan. 18, 2013.
JP-2011-505248 Office action dated Jun. 4, 2013.
JP-2010-510441 Office action dated May 7, 2013.
JP-2009-545647 Office Action dated May 14, 2013.
Kazemi et al., “The effect of betamethasone gel in reducing sore throat, cough, and hoarseness after laryngo-tracheal intubation,” Middle East J. Anesthesiol. 19(1):197-204 (2007).
Kehinde et al., “Bacteriology of urinary tract infection associated with indwelling J ureteral stents,” J. Endourol. 18(9):891-896 (2004).
Kelly et al., “Double-balloon trapping technique for embolization of a large wide-necked superior cerebellar artery aneurysm: case report,” Neurosurgery 63(4 Suppl 2):291-292 (2008).
Khan et al., “Cyclic Acetals of 4,1′,6′-Trichloro-4,1′,6′,-Trideoxy-Trideoxy-galacto-Sucrose and their Conversion into Methyl Ether Derivatives.”. Carb. Res. (1990) 198:275-283.
Khan et al., “Chemistry and the new uses of Sucrose: How Important?” Pur and Appl. Chem (1984) 56:833-844.
Khan et al., “Enzymic Regioselective Hydrolysis of Peracetylated Reducing Disaccharides, Specifically at the Anomeric Centre: Intermediates for the Synthesis of Oligosaccharides.” Tetrahedron Letters (1933) 34:7767.
Koh et al. “A novel nanostructured poly(lactic-co-glycolic-acid)-multi-walled carbon nanotube composite for blood-contacting applications: Thrombogenicity studies.”
KR10-2008-7003756 Office Action dated Oct. 30, 2012.
Kurt et al., “Tandem oral, rectal and nasal administrations of Ankaferd Blood Stopper to control profuse bleeding leading to hemodynamic instability,” Am J. Emerg. Med. 27(5):631, e1-2 (2009).
Labhasetwar et al., “Arterial uptake of biodegradable nanoparticles: effect of surface modifications,” Journal of Pharmaceutical Sciences, vol. 87, No. 10, Oct. 1998; 1229-1234.
Lamm et al., “Bladder Cancer: Current Optimal Intravesical Treatment: Pharmacologic Treatment,” Urologic Nursing 25(5):323-6, 331-2 (Oct. 26, 2005).
Lee et al., “Novel therapy for hearing loss: delivery of insulin-like growth factor 1 to the cochlea using gelatin hydrogel,” Otol. Neurotol. 28(7):976-81 (2007).
Lehmann et al., “Drug treatment of nonviral sexually transmitted diseases: specific issues in adolescents,” Pediatr Drugs 3(7):481-494 (2001.
Mahoney et al., “Three-Dimensional Compositional Analysis of Drug Eluting Stent Coatings Using Cluster Secondary Ion mass Spectrometry,” Anal. Chem. , 80, 624-632 (2008).
Mario, C.D. et al., “Drug-Eluting Bioabsorbable Magnesium Stent,” J. Interventional Cardiology 16(6):391-395 (2004).
McAlpine, J.B. et al., “Revised NMR Assignments for Rapamycine,” J. Antibiotics 44:688-690 (1991).
Mehik et al., “Alfuzosin treatment for chronic prostatitis/chronic pelvic pain syndrome: a prospecitve, randomized, double-blind, placebo-controlled, pilot study,” Urology 62(3):425-429 (2003).
Melonakos et al., Treatment of low-grade bulbar transitional cell carcinoma with urethral instillation of mitomycin C, Oct. 28, 2008, Adv. Urol., 173694 Epub.
Merrett et al., “Interaction of corneal cells with transforming growth factor beta2-modified poly dimethyl siloxane surfaces,” Journal of Biomedical Materials Research, Part A, vol. 67A, No. 3, pp. 981-993 (2003).
Middleton and Tipton, Synthetic biodegradable polymers as orthopedic devises. Biomaterials 2000; 21:2335-46.
Minoque et al., “Laryngotracheal topicalization with lidocaine before intubation decreases the incidence of coughing on emergence from general anesthesia,” Anesth. Analg. 99(4):1253-1257 (2004).
Mocco et al., “Pharos neurovascular intracranail stent: Elective use for a symptomatic stenosis refractory to medical therapy,” Catheter Cardiovasc. Interv. (epub) (Mar. 2009).
Mollen et al., “Prevalence of tubo-ovarian abcess in adolescents diagnosed with pelvice inflammatory disease in a pediatric emergency department,” Pediatr. Emerg. Care, 22(9): 621-625 (2006).
Moroni et al., “Post-ischemic brain damage:Targeting PARP-1 within the ischemic neurovaschular units as a realistic avenue to stroke treatment,” FEBS J. 276(1):36-45 (2009).
Muhlen et al., “Magnetic Resonance Imaging Contrast Agent Targeted Toward Activated Platelets Allows in Vivo Detection of Thrombosis and Monitoring of Thrombolysis Circulation,” 118:258-267 (2008).
NZ 588549 Examination Report dated Mar. 28, 2011.
PCT/US08/50536 International Search Report dated Jun. 2, 2008.
PCT/US12/46545 International Search Report dated Nov. 20, 2012.
PCT/US12/50408 International Search Report dated Oct. 19, 2012.
PCT/US2012/040040 International Search Report dated Sep. 7, 2012.
Perry et al., Chemical Engineer's Handbook, 5th Edition, McGraw-Hill, New York, 1973; 20-106.
Torchlin, “Micellar Nanocarriers: Pharmaecutial Perspectives,” Pharmaceutical Research, vol. 24, No. 1, Jan. 2007.
Plas et al., “Tubers and tumors: rapamycin therapy for benign and malignant tumors”, Curr Opin Cell Bio 21: 230-236, (2009).
Poling et al., The Properties of Gases and Liquids. McGraw-Hill, 2001; 9:1-9.97.
Pontari, “Chronic prostatitis/chronic pelvic pain syndrome in elderly men: toward better understanding and treatment,” Drugs Aging 20(15):1111-1115 (2003).
Pontari, “Inflammation and anti-inflammatory therapy in chronic prostatits,” Urology 60(6Suppl):29-33 (2002).
Raganath et al., “Hydrogel matrix entrapping PLGA-paclitaxel microspheres: drug delivery with near zero-order release and implantability advantages for malignant brain tumour,” Pharm Res (Epub) Jun. 20, 2009).
Ranade et al., “Physical characterization of controlled release of paclitaxel from the TAXUS Express2 drug-eluting stent,” J. Biomed Mater. Res. 71(4):625-634 (2004).
Reddy et al., “Inhibition of apoptosis through localized delivery of rapamycin-loaded nanoparticles prevented neointimal hyperplasia and reendothelialized injured artery,” Circ Cardiovasc Interv 2008;1;209-216.
Sahajanand Medical Technologies (Supralimus Core; Jul. 6, 2008).
Schmidt et al., “A Comparison of the Mechanical Performance Characteristics of Seven Drug-Eluting Stent Systems,” Catheterization and Cardiovascular Interventions 73:350-360 (2009).
Schmidt et al., “New aspects of in vitro testing of arterial stents based on the new European standard,” EN 14299, [online] (2009), [retrieved on Mar. 10, 2001] http://www.lib0ev.de/pl/pdf/EN14299.pdf (2009).
Schmidt et al., “Trackability, Crossability, and Pushability of Coronary Stent Systems—An Experimental Approach,” Biomed Techn 47 (2002), Erg. 1, S. 124-126.
Schreiber, S.L. et al., “Atomic Structure of the Rapamycin Human Immunophilin FKBP-12 Complex,” J. Am. Chem. Soc. 113:7433-7435 (1991).
Sen et al., “Topical heparin: A promising agent for the prevention of tracheal stenosis in airway surgery,” J. Surg. Res (Epub ahead of print) Feb. 21, 2009.
Serruys, Patrick et al., Comparison of Coronary-Artery Bypass Surgery and Stenting for the Treatment of Multivessel Disease, N. Engl. J. Med., 2001, vol. 344, No. 15, pp. 1117-1124.
SG201007602-4 Examination Report dated Feb. 13, 2013.
Shekunov et al. “Crystallization Processes in Pharmaceutical Technology and Drug Delivery Design.” Journal of Crystal Growth 211 (2000), pp. 122-136.
Simpson et al., “Hyaluronan and hyaluronidase in genitourinary tumors.” Front Biosci. 13:5664-5680.
Smith et al., “Mitomycin C and the endoscopic treatment of laryngotracheal stenosis: are two applications better than one?” Laryngoscope 119(2):272-283 (2009).
Szabadits et al., “Flexibility and trackability of laser cut coronary stent systems,” Acta of Bioengineering and Biomechanics 11(3):11-18 (2009).
Thalmann et al., “Long-term experience with bacillus Calmette-Guerin therapy of upper urinary tract transitional cell carcinoma in patients not eligible for surgery,” J Urol. 168(4 Pt 1):1381-1385 (2002).
Merriam-Webster Online Dictionary, obtained onlie at: http://www.merriam-webster.com/dictionary/derivative, downloaded 07 Jul. 5, 2008.
U.S. Appl. No. 11/158,724 Office Action dated Sep. 8, 2008.
U.S. Appl. No. 11/877,591 Office Action dated Feb. 29, 2012.
U.S. Appl. No. 11/877,591 Office Action dated Sep. 21, 2012.
U.S. Appl. No. 11/995,685 Office Action dated Aug. 20, 2010.
U.S. Appl. No. 11/995,685 Office Action dated Nov. 24, 2009.
U.S. Appl. No. 11/995,687 Office Action dated Sep. 28, 2011.
U.S. Appl. No. 12/298,459 Office Action dated Aug. 10, 2011.
U.S. Appl. No. 12/298,459 Office Action dated Apr. 6, 2012.
U.S. Appl. No. 12/426,198 Office Action dated Feb. 6, 2012.
U.S. Appl. No. 12/426,198 Office Action dated Mar. 23, 2011.
U.S. Appl. No. 12/443,959 Office Action dated Dec. 13, 2012.
U.S. Appl. No. 12/443,959 Office Action dated Feb. 15, 2012.
U.S. Appl. No. 12/504,597 Final Office Action dated Oct. 3, 2012.
U.S. Appl. No. 12/504,597 Office Action dated Dec. 5, 2011.
U.S. Appl. No. 12/522,379 Office Action dated Dec. 26, 2012.
U.S. Appl. No. 12/595,848 Office Action dated Jan. 13, 2012.
U.S. Appl. No. 12/601,101 Office Action dated Dec. 27, 2012.
U.S. Appl. No. 12/601,101 Office Action dated Mar. 27, 2012.
U.S. Appl. No. 12/648,106 Final Office Action dated Sep. 25, 2012.
U.S. Appl. No. 12/648,106 Office Action dated Jan. 30, 2012.
U.S. Appl. No. 12/729,156 Final Office Action dated Oct. 16, 2012.
U.S. Appl. No. 12/729,156 Office Action dated Feb. 1, 2012.
U.S. Appl. No. 12/729,580 Office Action dated Apr. 10, 2012.
U.S. Appl. No. 12/729,580 Office Action dated Jan. 22, 2013.
U.S. Appl. No. 12/729,603 Final Office Action dated Oct. 10, 2012.
U.S. Appl. No. 12/729,603 Office Action dated Mar. 27, 2012.
U.S. Appl. No. 12/751,902 Office Action dated Jul. 13, 2012.
U.S. Appl. No. 12/595,848 Office Action dated Mar. 15, 2013.
U.S. Appl. No. 12/738,411 Final Office action dated Apr. 11, 2013.
U.S. Appl. No. 13/605,904 Office Action dated Nov. 27, 2012.
U.S. Appl. No. 12/762,007 Office action dated Feb. 11, 2013.
U.S. Appl. No. 13/384,216 Office action dated Apr. 24, 2013.
U.S. Appl. No. 13/340,472 Office action dated Apr. 26, 2013.
U.S. Appl. No. 12/729,156 Office action dated May 8, 2013.
U.S. Appl. No. 13/086,335 Office action dated May 22, 2013.
U.S. Appl. No. 11/158,724 Office action dated May 23, 2013.
U.S. Appl. No. 12/601,101 Office action dated May 22, 2013.
U.S. Appl. No. 12/298,459 Office Action dated May 31, 2013.
U.S. Appl. No. 13/229,473 Office Action dated Jun. 17, 2013.
U.S. Appl. No. 13/605,904 Office Action dated Jun. 28, 2013.
U.S. Appl. No. 11/877,591 Office Action dated Jul. 1, 2013.
U.S. Appl. No. 12/748,134 Office Action dated Jul. 18, 2013.
U.S. Appl. No. 12/738,411 Office action dated Aug. 21, 2013.
U.S. Appl. No. 12/522,379 Final Office Action dated Aug. 28, 2013.
Unger et al., “Poly(ethylene carbonate): A thermoelastic and biodegradable biomaterial for drug eluting stent coatings?” Journal fo Controlled Release, vol. 117, Issue 3, 312-321 (2007).
Verma et al., “Effect of surface properties on nanoparticle-cell interactions,” Small 2010, 6, No. 1, 12-21.
Wagenlehner et al., “A pollen extract (Cernilton) in patients with inflammatory chronic prostatitis/chronic pelvic pain syndrome: a multicentre, randomized, prospective, double-blind, placebo-controlled phase 3 study,” Eur Urol 9 (Epub) (Jun. 3, 2009).
Wang et al. Controlled release of sirolimus from a multilayered PLGA stent matrix. Biomaterials 2000; 27:5588-95.
Wang et al., “Treatment with melagatran alone or in combination with thrombolytic therapy reduced ischemic brain injury,” Exp. Neurol 213(1):171-175 (2008).
Warner et al., “Mitomycin C and airway surgery: how well does it work?” Ontolaryngol Head Neck Surg. 138(6):700-709 (2008).
Wermuth, CG Similarity in drugs: reflections on analogue design. Drug Discov Today. Apr. 2006;11(7-8):348-54.
Witjes et al., “Intravesical pharmacotherapy for non-muscle-invasive bladder cancer: a critical analysis of currently available drugs, treatment schedules, and long-term results,” Eur. Urol. 53(1):45-52.
Wu et al., “Study on the preparation and characterization of biodegradable polylactide/multi-walled carbon nanotubes nanocomposites.” Polymer 48 (2007) 4449-4458.
Xu et al., “Biodegradation of poly(l-lactide-co-glycolide tube stents in bile” Polymer Degradation and Stability. 93:811-817 (2008).
Xue et al., “Spray-as-you-go airway topical anesthesia in patients with a difficult airway: a randomized, double-blind comparison of 2% and 4% lidocaine,” Anesth. Analg. 108(2): 536-543 (2009).
Yepes et al., “Tissue-type plasminogen activator in the ischemic brain: more than a thrombolytic,” Trends Neurosci. 32(1):48-55 (2009).
Yousof et al., “Reveratrol exerts its neuroprotective effect by modulating mitochondrial dysfunction and associated cell death during cerebral ischemia,” Brain Res. 1250:242-253 (2009).
Zhou et al. Synthesis and Characterization of Biodegradable Low Molecular Weight Aliphatic Polyesters and Their Use in Protein-Delivery Systems. J Appl Polym Sci 2004; 91:1848-56.
PCT/US2011/032371 International Search Report dated Jul. 7, 2011.
PCT/US10/42355 Search Report dated Sep. 2, 2010.
PCT/US10/28253 Search Report and Written Opinion dated Dec. 6, 2010.
PCT/US10/28265 Search Report and Written Opinion dated Dec. 3, 2010.
PCT/US10/28195 Search Report and Written Opinion dated Jan. 21, 2011.
PCT/US10/31470 Search Report and Written Opinion dated Jan. 28, 2011.
PCT/US10/29494 Search Report and Written Opinion dated Feb. 7, 2011.
PCT/US11/22623 Search Report and Written Opinion dated Mar. 28, 2011.
PCT/US2011/044263 International Search Report, International Preliminary Report on Patentability and Written Opinion dated Feb. 9, 2012.
PCT/US2007/82775 International Preliminary Report on Patentablity dated Apr. 28, 2009.
PCT/US09/69603 International Search Report dated Nov. 5, 2010.
PCT/US09/50883 International Preliminary Report on Patentability dated Jan. 18, 2011.
PCT/US10/28253 International Preliminary Report on Patentability dated Sep. 27, 2011.
PCT/US12/33367 International Search Report dated Aug. 1, 2012.
PCT/US10/28195 International Preliminary Report on Patentability dated Oct. 6, 2011.
PCT/US2011/051092 International Preliminary Report on Patentability dated Mar. 21, 2013.
PCT/US10/42355 International Preliminary Report on Patentability dated Jan. 17, 2012.
PCT/US2011/67921 Search Report and Written Opinion dated Jun. 22, 2012.
PCT/US2011/67921 International Preliminary Report on Patentability dated Jul. 11, 2013.
AU 2011256902 Office Action dated Jun. 10, 2014.
CA 2650590 Office action dated Sep. 18, 2014.
CA 2756307 Office action dated Mar. 24, 2014.
CA 2756386 Office Action dated May 16, 2014.
CA 2756388 Office Action dated Apr. 14, 2014.
CA 2759015 Office Action dated Jul. 21, 2014.
CA 2823355 Office action dated Apr. 14, 2014.
CN 200880020515 Office Action dated Apr. 15, 2014.
CN 200880020515 Office Action dated Oct. 21, 2014.
CN 200880100102.3 Office Action dated Aug. 27, 2014.
CN 200980136432.2 Office Action dated Jul. 3, 2014.
CN 201080024973.9 Office Action dated Aug. 7, 2014.
CN 201210206265.8 Office Action dated Sep. 15, 2014.
EP10800642.0 Search Report dated Mar. 19, 2014.
EP11772624.0 Search Report dated Jun. 5, 2014.
EP09798764.8 Office Action dated Jun. 30, 2014.
EP118077601.7 Search Report dated Sep. 17, 2014.
EP11852627.6 Search Report dated Sep. 17, 2014.
EP12771847.6 Search Report dated Oct. 15, 2014.
Han, et al., “Studies of a Novel Human Thrombomodulin Immobilized Substrate: Surface Characterization and Anticoagulation Activity Evaluation.” J. Biomater. Sci. Polymer Edn, 2001, 12 (10), 1075-1089.
ID—W00201003529 Office action dated Apr. 28, 2014.
IN-7740/DELNP/2009 Office Action dated Jul. 29, 2014.
JP 2008-521633 Office Action Translation dated Oct. 3, 2014.
JP-2009-545647 Office Action dated Apr. 22, 2014.
JP-2013-024508 Office Action dated May 2, 2014.
JP-2013-190903 Office Action dated Sep. 2, 2014.
KR10-2013-7031237 Office action dated Mar. 17, 2014.
PCT/US2014/025017 International Search Report and Written Opinion dated Jul. 7, 2014.
PCT/US2014/038117 International Search Report and Written Opinion dated Oct. 7, 2014.
Putkisto, K. et al. “Polymer Coating of Paper Using Dry Surface Treatment—Coating Structure and Performance”, ePlace newsletter, (Apr. 12, 2004), vol. 1, No. 8, pp. 1-20.
U.S. Appl. No. 11/158,724 Office Action dated Jun. 25, 2014.
U.S. Appl. No. 11/877,591 Office Action dated May 7, 2014.
U.S. Appl. No. 11/877,591 Final Office Action dated Sep. 29, 2014.
U.S. Appl. No. 11/995,685 Advisory Action dated Oct. 9, 2014.
U.S. Appl. No. 12/426,198 Office Action dated Nov. 3, 2014.
U.S. Appl. No. 12/504,597 Office Action dated Apr. 1, 2014.
U.S. Appl. No. 12/504,597 Office Action dated Oct. 23, 2014.
U.S. Appl. No. 12/522,379 Office Action dated Apr. 8, 2014.
U.S. Appl. No. 12/595,848 Office Action dated Jun. 3, 2014.
U.S. Appl. No. 12/601,101 Notice of Allowability dated Oct. 23, 2014.
U.S. Appl. No. 12/729,580 Office Action dated Sep. 10, 2014.
U.S. Appl. No. 12/729,603 Office Action dated Jun. 25, 2014.
U.S. Appl. No. 12/738,411 Office Action dated May 30, 2014.
U.S. Appl. No. 12/762,007 Final Office Action dated Apr. 30, 2014.
U.S. Appl. No. 13/086,335 Office Action dated Apr. 4, 2014.
U.S. Appl. No. 13/340,472 Office Action dated Aug. 29, 2014.
U.S. Appl. No. 13/090,525 Office Action dated Apr. 11, 2014.
U.S. Appl. No. 11/995,685 Office Action dated Jun. 18, 2014.
Abreu Filho et al., “Influence of metal alloy and the profile of coronary stents in patients with multivessel coronary disease,” CLINICS 2011;66(6):985-989.
CA 2757276 Office Action dated Feb. 5, 2014.
CA 2794704 Office action dated Feb. 7, 2014.
CA 2615452 Office Action dated Oct. 8, 2013.
CA 2613280 Office action dated Dec. 10, 2013.
CA 2667228 Office action dated Jan. 22, 2014.
CA 2679712 Office action dated Feb. 24, 2014.
CA 2667228 office action dated May 7, 2013.
CA 2730995 Office Action dated Feb. 20, 2014.
CA 2756386 Office action dated Oct. 24, 2013.
CA 2805631 Office Action dated Jan. 17, 2014.
CN 200880007308.1 Office Action dated Jan. 2, 2014.
CN 200880100102.3 Office Action dated Dec. 11, 2013.
CN 200980136432.2 Office action dated Nov. 4, 2013.
CN 201080024973.9 Office action dated Dec. 20, 2013.
Colombo et al. “Selection of Coronary Stents,” Journal of the American College of Cardiology, vol. 40, No. 6, 2002, p. 1021-1033.
EA 200901254 Office Action dated Jul. 29, 2013.
EA 201001497 Office Action dated Jul. 29, 2013.
EP07756094.4 Office Action dated Jan. 21, 2014.
EP08705772.5 Office Action dated Oct. 30, 2013.
EP09755571.8 Office Action dated Dec. 13, 2013.
EP09798764.8 Search Report dated Sep. 30, 2013.
EP10756676.2Search Report dated Jan. 31, 2014.
EP10756696.0 Search Report dated Oct. 10, 2013.
EP10764884.2 Search Report dated Oct. 28, 2013.
EP10765295.0 Search Report dated Oct. 17, 2013.
EP11769546.0 Search Report dated Sep. 19, 2013.
IL-201550 Official Notification dated Dec. 8, 2013.
IN-6884DEFNP2009 Office Action dated Oct. 31, 2013.
JP-2011-518920 Office action dated Oct. 23, 2013.
JP-2012-503677 Office action dated Nov. 1, 2013.
JP-2012-151964 Office Action dated Dec. 10, 2013.
KR10-2008-7003756 Office Action dated Sep. 23, 2013.
Matsumoto, D, et al. Neointimal Coverage of Sirolimus-Eluting Stents at 6-month Follow-up: Evaluated by Optical Coherence Tomography, European Heart Journal, Nov. 29, 2006; 28:961-967.
MX/a/2010/01 148 Office action dated Feb. 11, 2014.
PCT/US06/24221 International Preliminary Report on Patentability dated Dec. 24, 2007.
PCT/US06/27321 International Preliminary Report on Patentability dated Jan. 16, 2008.
PCT/US06/27322 International Preliminary Report on Patentability dated Jan. 16, 2008.
PCT/US07/10227 International Preliminary Report on Patentability dated Oct. 28, 2008.
PCT/US07/80213 International Preliminary Report on Patentability dated Apr. 7, 2009.
PCT/US08/11852 International Preliminary Report on Patentability dated Apr. 20, 2010.
PCT/US08/50536 International Preliminary Report on Patentability dated Jul. 14, 2009.
PCT/US08/60671 International Preliminary Report on Patentability dated Oct. 20, 2009.
PCT/US08/64732 International Preliminary Report on Patentability dated Dec. 1, 2009.
PCT/US09/41045 International Preliminary Report on Patentability dated Oct. 19, 2010.
PCT/US09/69603 International Preliminary Report on Patentability dated Jun. 29, 2011.
PCT/US10/28265 International Report on Patentability dated Sep. 27, 2011.
PCT/US10/29494 International Preliminary Report on Patentability dated Oct. 4, 2011.
PCT/US10/31470 International Preliminary Report on Patentability dated Oct. 18, 2011.
PCT/US11/032371 International Report on Patentability dated Oct. 16, 2012.
PCT/US11/051092 International Search Report dated Mar. 27, 2012.
PCT/US11/051092 Written Opinion dated Mar. 27, 2012.
PCT/US11/22623 International Preliminary Report on Patentability dated Aug. 7, 2012.
PCT/US11/29667 International Search Report and Written Opinion dated Jun. 1, 2011.
PCT/US12/33367 International Preliminary Report on Patentability dated Oct. 15, 2013.
PCT/US13/41466 International Search Report and Written Opinion dated Oct. 17, 2013.
PCT/US13/42093 International Search Report and Written Opinion dated Oct. 24, 2013.
PCT/US2011/033225 International Search Report and Written Opinion dated Jul. 7, 2011.
PCT/US2012/60896 International Search Report and Written Opinion dated Dec. 28, 2012.
PCT/US2013/065777 International Search Report and Written Opinion dated Jan. 29, 2014.
U.S. Appl. No. 11/158,724 Office action dated Dec. 31, 2013.
U.S. Appl. No. 11/877,591 Final Action dated Nov. 4, 2013.
U.S. Appl. No. 12/426,198 Office Action dated Feb. 7, 2014.
U.S. Appl. No. 12/595,848 Office Action dated Oct. 22, 2013.
U.S. Appl. No. 12/601,101 Office Action dated Feb. 13, 2014.
U.S. Appl. No. 12/648,106 Office Action dated Sep. 18, 2013.
U.S. Appl. No. 12/729,156 Office Action dated Feb. 13, 2014.
U.S. Appl. No. 12/729,580 Final Action dated Nov. 14, 2013.
U.S. Appl. No. 12/738,411 Office Action dated Feb. 6, 2014.
U.S. Appl. No. 12/751,902 Office Action dated Dec. 19, 2013.
U.S. Appl. No. 12/762,007 Final Office action dated Oct. 22, 2013.
U.S. Appl. No. 13/340,472 Office action dated Jan. 15, 2014.
U.S. Appl. No. 13/384,216 Final Action dated Nov. 6, 2013.
U.S. Appl. No. 13/445,723 Office action dated Mar. 14, 2014.
Zilberman et al., Drug-Eluting bioresorbable stents for various applications, Annu Rev Biomed Eng., 2006;8:158-180.
David Grant, Crystallization Impact on the Nature and Properties of the Crystalline Product, 2003, SSCI, http://www.ssci-inc.com/Information/RecentPublications/ApplicationNotes/CrystallizationImpact/tabid/138/Default.aspx.
Analytical Ultracentrifugation of Polymers and Nanoparticles, W. Machtle and L. Borger, (Springer) 2006, p. 41.
Chalmers, et al. (2007) Wiley and Sons.
Domb and Langer, “Polyanhydrides. I. Preparation of High Molecular Weight Polyanhydrides.” J. Polym Sci. 25:3373-3386 (1987).
European International Search Report of PCT/EP01/05736 dated Oct. 24, 2001.
Finn et al. Differential Response of Delayed Healing . . . Circulation vol. 112 (2005) 270-8.
Greco et al. (Journal of Thermal Analysis and Calorimetry, vol. 72 (2003) 1167-1174.).
Handschumacher, R.E. et al., Purine and Pyrimidine Antimetabolites, Chemotherapeutic Agents, pp. 712-732, Ch. XV1-2, 3rd Edition, Edited by J. Holland, et al., Lea and Febigol, publishers.
Higuchi, Rate of Release of Medicaments from Ointment Bases Containing Drugs in Suspension, Journal of Pharmaceutical Sciences, vol. 50, No. 10, p. 874, Oct. 1961.
Ji, et al., “96-Wellliquid-liquid extraction liquid chromatographytandem mass spectrometry method for the quantitative determination of ABT-578 in human blood samples” Journal of Chromatography B. 805:67-75 (2004).
Ju et al., J. Pharm. Sci. vol. 84, No. 12, 1455-1463.
Khayankarn et al., “Adhesion and Permeability of Polyimide-Clay Nanocomposite Films for Protective Coatings,” Journal of Applied Polymer Science, vol. 89,2875-2881 (2003).
Lawrance et al., “Rectal tacrolimus in the treatment of resistant ulcerative proctitis,” Aliment. Pharmacol Ther. 28(10):1214-20 (2008).
Levit, et al., “Supercritical C02 Assisted Electrospinning” J. of Supercritical Fluids, 329-333, vol. 31, Issue 3, (Nov. 2004).
Lewis, D. H., “Controlled Release of Bioactive Agents from Lactides/Glycolide Polymers” in Biodegradable Polymers as Drug Delivery Systems, Chasin, M. and Langer, R., eds., Marcel Decker (1990).
Luzzi, L.A., J. Phann. Psy. 59:1367 (1970).
Minchin, “Nanomedicine: sizing up targets with nanoparticles,” Nature Nanotechnology, vol. 33, Jan. 2008, 12-13.
Mishima et al. “Microencapsulation of Proteins by Rapid Expansion orSupercritical Solution with a Nonsolvent,” AIChE J. 2000;46(4):857-65.
Murphy et al., “Chronic prostatitis: management strategies,” Drugs 69(1): 71-84 (2009).
O'Donnell et al., “Salvage intravesical therapy with interferon-alpha 2b plus low dose bacillus Calmette-Guerin is effective in patients with superficial bladder cancer in whom bacillus calmette-guerin alone previously failed,” Journ. Urology, 166(4): 1300-1304 (2001).
O'Neil et al., “Extracellular matrix binding mixed micelles for drug delivery applications,” Journal of Controlled Release 137 (2009) 146-151.
Olbert et al., “In vitro and in vivo effects of CpG-Oligodeoxynucleotides (CpG-ODN) on murine transitional cell carcinoma and on the native murine urinary bladder wall,” Anticancer Res. 29(6):2067-2076 (2009).
Park et al., Pharm. Res. (1987) 4(6):457-464.
PCT/EP01/05736 International Preliminary Examination Report dated Jan. 14, 2002.
PCT/EP2000/004658 International Search Report from dated Sep. 15, 2000.
PCT/US06/27321 Written Opinion dated Oct. 16, 2007.
PCT/US09/50883 International Search Report dated Nov. 17, 2009.
PCT/US11/33225 International Search Report and Written Opinion dated Jul. 7, 2011.
PCT/US11/44263 International Search Report and Written Opinion dated Feb. 9, 2012.
PCT/US12/50408 International Search Report dated Oct. 16, 2012.
PCT/US13/41466 International Preliminary Report on Patentability dated Nov. 18, 2014.
PCT/US13/42093 International Preliminary Report on Patentability dated Nov. 25, 2014.
Ristikankare et al., “Sedation, topical pharnygeal anesthesia and cardiorespiratory safety during gastroscopy,” J. Clin Gastorenterol. 40(1 ):899-905 (2006).
Salo et al., “Biofilm formation by Escherichia coli isolated from patients with urinary tract infections,” Clin Nephrol. 71(5):501-507 (2009).
Saxena et al., “Haemodialysis catheter-related bloodstream infections: current treatment options and strategies for prevention,” Swiss Med Wkly 135:127-138 (2005).
Schetsky, L. McDonald, “Shape Memory Alloys”, Encyclopedia of Chemical Technology (3d Ed), John Wiley & Sons 1982, vol. 20 pp. 726-736.
Scheufler et al., “Crystal Structure of Human Bone Morphogenetic Protein-2 at 2.7 Angstrom resolution,” Journal of Molecular Biology, vol. 287, Issue 1, Mar. 1999, pp. 103-115, [retrieved online] at http://www.sciencedirect.comlscience/article/pii/S002283 699925901.
Sumathi et al., “Controlled comparison between betamethasone gel and lidocaine jelly applied over tracheal tube to reduce postoperative sore throat, cough, and hoarseness of voice,” Br. J. Anaesth. 100(2):215-218 (2008).
Testa, B., “Prodrug research: futile or fertile?”, Biochem. Pharmacal. Dec. 1, 2004;68(11):2097-2106.
Wang et al. “Synthesis, characterization, biodegradation, and drug delivery application of biodegradable lactic/glycolic acid polymers: I. Synthesis and characterization” J. Biomater. Sci. Polymer Edn. 11(3):301-318 (2000).
Extended European Search Report for Application No. 14797966.0 dated Dec. 19, 2016.
Third Party Submission for Application No. JP2015-538086 dated Jun. 4, 2018.
Third Party Submission for Application No. JP2017-130734 dated Nov. 7, 2018, 2 pages.
Search Report from Singapore Application No. 2013054127 dated Jul. 26, 2017, 5 pages.
Handbook of Coronary Stents, Patrick, W. Serruys, University Hospital Dijkzigt, Rotterdam/London 1997.
Farah et al., “Crystalline coating of rapamycin onto a stent: Process development and characterization”, International Journal of Pharmaceutics 445, Jan. 2013, pp. 20-28.
Chinese Search Report for Application No. 201910361865.3, dated Apr. 1, 2021, 11 pages.
Related Publications (1)
Number Date Country
20110190864 A1 Aug 2011 US
Provisional Applications (1)
Number Date Country
61300764 Feb 2010 US