Stent for placement at luminal os

Abstract
A prosthesis includes a radially expansible scaffold in at least two circumferential anchors extending from the scaffold. The prosthesis is placed across an os between a main body lumen and a branch lumen. The scaffold is expanded within the branch lumen and the circumferential anchors deformed outwardly to conform to the wall of the main body lumen. Optionally, a second prosthesis may be placed within the main body lumen after the first prosthesis has been deployed.
Description
BACKGROUND OF THE INVENTION

1. Field of the Invention


The present invention relates generally to medical devices and methods. More particularly, the present invention relates to the structure and deployment of a segmented stent at a luminal os at a branching point in the vasculature or elsewhere.


Maintaining the patency of body lumens is of interest in the treatment of a variety of diseases. Of particular interest in the to the present invention are the transluminal approaches to the treatment of body lumens. More particularly, the percutaneous treatment of atherosclerotic disease involving the coronary and peripheral arterial systems. Currently, percutaneous coronary interventions (PCI) involve a combination of balloon dilation along with the placement of an endovascular prosthesis commonly referred to as a stent. A major limitation of PCI/stent procedure is restenosis, i.e., the re-narrowing of a blockage after successful intervention typically occurring in the initial three to six months. The recent introduction of drug eluting stents (DES) has dramatically reduced the incidence of restenosis in coronary vascular applications and offers promise in peripheral stents, venous grafts, arterial and prosthetic grafts, as well as A-V fistulae. In addition to vascular applications, stents are being employed in treatment of other body lumens including the gastrointestinal systems (esophagus, large and small intestines, biliary system and pancreatic ducts) and the genital-urinary system (ureter, urethra, fallopian tubes, vas deferens).


While quite successful in treating arterial blockages and other conditions, most stent designs are challenged when used at a bifurcation in the blood vessel or other body lumen being treated. Presently, many different strategies are employed to treat bifurcation lesions with currently available stents all of which have major limitations.


One common approach is to place a conventional stent in the main or larger body lumen over the origin of the side branch. After removal of the stent delivery balloon, a second wire is introduced through a cell in the wall of the deployed stent and into the side branch. A balloon is then introduced into the side branch and inflated to enlarge the side-cell of the main vessel stent. This approach appears to work well when the side branch is relatively free of disease, although it is associated with increased rates of abrupt closure due to plaque shift as well as increased rates of late re-restenosis.


Another commonly employed strategy is the ‘kissing balloon’ technique in which separate balloons are positioned in the main and side branch vessels and simultaneously inflated. This technique is thought to prevent plaque shift.


Various two stent approaches including Culotte, T-Stent and Crush Stent techniques have been employed as well. When employing a T-stent approach, the operator deploys a stent in the side branch followed by placement of a main vessel stent. This approach is limited by anatomic variation (angle between main and side branch) and inaccuracy in stent positioning, which together can cause inadequate stent coverage of the os. More recently, the Crush approach has been introduced in which the side-vessel stent is deployed across the os with portions in both the main and side branch vessels. The main vessel stent is then delivered across the origin of the side branch and deployed, which results in crushing a portion of the side branch stent against the wall of the main vessel. Following main-vessel stent deployment, it is difficult and frequently not possible to re-enter the side branch after crush stenting. Unproven long-term results coupled with concern regarding the inability to re-enter the side branch and the impact of three layers of stent (which may be drug eluting) opposed against the main vessel wall has limited the adoption of this approach.


These limitations have led others to develop stents specifically designed to treat bifurcation lesions. One approach employs a stent design with a side opening for the branch vessel which is mounted on a specialized delivery balloon. The specialized balloon delivery system accommodates wires for both the main and side branch vessels. The system is tracked over both wires which provides a mean to axially and radially align the stent/stent delivery system. The specialized main vessel stent is then deployed and the stent delivery system removed while maintaining wire position in both the main and side branch vessels. The side branch is then addressed using kissing balloon or by delivering and an additional stent to the side branch. Though this approach has many theoretic advantages, it is limited by difficulties in tracking the delivery system over two wires (Vardi et al, U.S. Pat. Nos. 6,325,826 and 6,210,429).


For these reasons, it would be desirable to provide improved prostheses and methods for their placement to treat body lumens at or near the location of an os between a main body lumen and a side branch lumen, typically in the vasculature, and more particularly in the arterial vasculature. It would be further desirable if such prostheses and methods could treat the side branch vessels substantially completely in the region of the os and that the prostheses in the side branches be well-anchored at or near the os. At least some of these objectives will be met by the inventions described hereinbelow.


2. Description of the Background Art


Stent structures intended for treating bifurcated lesions are described in U.S. Pat. Nos. 6,599,316; 6,596,020; 6,325,826; and 6,210,429. Other stents and prostheses of interest are described in the following U.S. Pat. Nos. 4,994,071; 5,102,417; 5,342,387; 5,507,769; 5,575,817; 5,607,444; 5,609,627; 5,613,980; 5,669,924; 5,669,932; 5,720,735; 5,741,325; 5,749,825; 5,755,734; 5,755,735; 5,824,052; 5,827,320; 5,855,598; 5,860,998; 5,868,777; 5,893,887; 5,897,588; 5,906,640; 5,906,641; 5,967,971; 6,017,363; 6,033,434; 6,033,435; 6,048,361; 6,051,020; 6,056,775; 6,090,133; 6,096,073; 6,099,497; 6,099,560; 6,129,738; 6,165,195; 6,221,080; 6,221,098; 6,254,593; 6,258,116; 6,264,682; 6,346,089; 6,361,544; 6,383,213; 6,387,120; 6,409,750; 6,428,567; 6,436,104; 6,436,134; 6,440,165; 6,482,211; 6,508,836; 6,579,312; and 6,582,394;


BRIEF SUMMARY OF THE INVENTION

The present invention provides improved prostheses and methods for their placement at an ostium (sometimes referred to herein as an os) opening from a main body lumen to a branch body lumen. The prostheses and methods will be principally useful in the vasculature, most typically the arterial vasculature, including coronary, peripheral, venous grafts, arterial and prosthetic grafts, as well as A-V fistulae. In addition to these vascular applications the present invention will also be useful in the treatment of other body lumens including the gastrointestinal systems (esophagus, large and small intestines, biliary system and pancreatic duets) and the genital-urinary system (ureter, urethra, fallopian tubes, vas deferens), and the like.


The prostheses of the present invention are particularly advantageous since they permit substantially complete coverage of the wall of the branch body lumen up to the lumen os. Additionally, the prostheses have integrated anchoring components which expandably conform to and at least partially circumscribe the wall of the main body vessel to selectively and stably position the prosthesis within the side branch lumen. The anchoring components may be fully expanded to open the luminal passage through the main branch lumen. Such complete opening is an advantage since it provides patency through the main branch lumen. Moreover, the open main branch lumen permits optional placement of a second prosthesis within the main branch lumen using conventional techniques.


In a first aspect of the present invention, a prosthesis comprises a radially expansible scaffold and at least two “circumferential” anchors extending axially from an end of the scaffold. The anchors are adapted to “expandably circumscribe” a portion of, usually at least one-half of the circumference main vessel wall at or near the os when the scaffold is implanted in the branch lumen with one end of the scaffold adjacent the os. By “expandably circumscribe,” it is meant that the anchors will extend into the main body lumen after initial placement of the scaffold within the branch body lumen. The circumferential anchors will be adapted to then be partially or fully radially expanded, typically by expansion of a balloon or other expandable element therein, so that the anchors deform outwardly and engage the interior of the main lumen wall.


The circumferential anchors will usually extend axially within the main vessel lumen for some distance after complete deployment. Thus, the contact between the anchors and the main vessel wall will usually extend both circumferentially (typically covering an arc equal to one-half or more of the circumference) and axially.


Expansion of the circumferential anchors at least partially within the main body lumen provides a generally continuous coverage of the os from the side body lumen to the main body lumen. Further and/or complete expansion of the circumferential anchors within the main body lumen may press the anchors firmly against the main body lumen wall and open up the anchors so that they do not obstruct flow through the main body lumen.


Usually, the prosthesis will include at least three circumferential anchors extending axially from the end of the scaffold. The prosthesis could include four, five, or even a greater number of circumferential anchors, but the use of three such anchors is presently preferred since a greater number could interfere with subsequent access by the second expansion balloon. The circumferential anchors will have an initial length (i.e., prior to radial expansion of the scaffold) which is at least 1.5 times the width of the scaffold prior to expansion, typically being at least 2 times the width, more typically being at least 5 times the width, and often being 7 times the width or greater. The lengths will typically be at least 2 mm, preferably being at least 3 mm, and more preferably being at least 6 mm, depending on the diameter of the scaffold and prosthesis. The circumferential anchors will usually have a width which is expandable to accommodate the expansion of the scaffold, and the anchors may be “hinged” at their point of connection to the scaffold to permit freedom to adapt to the geometry of the main vessel lumen as the prosthesis is expanded. It is also possible that the anchors could be attached to the single point to the scaffold, thus reducing the need for such expandability. The anchors may be congruent, i.e., have identical geometries and dimensions, or may have different geometries and/or dimensions. In particular, in some instances, it may be desirable to provide anchors having different lengths and/or different widths.


Often, radiopaque or other visible markers will be placed on the prostheses and/or delivery balloon at desired locations. In particular, it may be desirable to provide radiopaque markers at or near the location on the prosthesis where the scaffold is joined to the circumferential anchors. Such markers will allow a transition region of the prosthesis between the scaffold and the anchors to be properly located near the os prior to scaffold expansion. Note that it is also possible to provide the radiopaque or other markers on a balloon or other delivery catheter, where the markers would also be aligned with the transition region between the scaffold and the circumferential anchors.


In a second aspect of the present invention, a prosthesis is deployed across an os opening from the main body lumen to a branch body lumen. The prosthesis is positioned so that a scaffold of the prosthesis lies within the branch body lumen and at least two, typically at least three, circumferential anchors extend from the scaffold at the os into the main body lumen. The scaffold is radially expanded to implant the scaffold in the branch body lumen. While at least some of the anchors may initially obstruct the lumen, the anchors are subsequently circumferentially deformed (usually after expansion of the scaffold) to circumscribe at least a portion of the main vessel wall, with at lest one anchor typically covering at least 50% of the circumferential length, preferably at least 60% of the circumferential length and often at least 75% or greater. In this way, the circumferential anchors will open a passage through the anchors and the main body lumen to permit generally unobstructed blood flow or flow of other body fluids. Positioning of the prosthesis will usually comprise aligning a visible marker on at least one of the prosthesis and delivery balloon with the os so that the prosthesis is properly positioned relative to both the side branch lumen and the main body lumen.


In an exemplary deployment protocol, the scaffold is first expanded with a balloon catheter positioned within the scaffold. The balloon catheter expands the scaffold within the branch body lumen and usually begins separating and deploying the circumferential anchors within the main body lumen. After the scaffold has been deployed, the anchors are deformed to circumscribe the wall of the main body lumen, typically using a balloon positioned transversely through the anchors. In some instances, the scaffold and the circumferential anchors may be expanded and deformed using the same balloon, e.g., the balloon is first used to expand the anchor, partially withdrawn, and advanced traversely through the circumferential anchors where it is expanded for a second time. Alternatively, separate balloon catheters may be employed for expanding scaffold within the side branch and deforming the circumferential anchors within the main body lumen.


Optionally, a second prosthesis may be deployed within the passage formed through the circumferential anchors. For example, the second prosthesis may be deployed by a balloon catheter exchanged over a guidewire pre-positioned for deformation of the anchors. Alternatively, although less preferable, the anchors may be deformed by deployment of the second prosthesis in order to reduce the procedure by one step.





BRIEF DESCRIPTION OF THE DRAWINGS


FIG. 1 is a schematic illustration of a prosthesis constructed in accordance with the principles of the present invention.



FIG. 1A is a detailed view of an anchor of the prosthesis of FIG. 1, shown with the anchor deployed in broken line.



FIG. 2 is a cross-sectional view taken along line 2-2 of FIG. 1.



FIG. 3 is a “rolled-out” illustration of an exemplary prosthesis constructed in accordance with the principles of the present invention.



FIGS. 4A-9B illustrate deployment of a stent at an os between a main blood vessel and a side branch blood vessel in accordance with the principles of the methods of the present invention.





DETAILED DESCRIPTION OF THE INVENTION

Referring to FIGS. 1 and 2, a stent 10 constructed in accordance with the principles of the present invention includes at least a radially expansible scaffold section 12 and an anchor section 14. The anchor section 14 includes at least two axially aligned circumferential anchors 16, with three being illustrated. The radially expansible scaffold section 12 will typically be balloon expandable and may be formed using a variety of conventional patterns and fabrication techniques as are well-described in the prior art. Many particular patterns and fabrication techniques are described in the patents which are listed in the Background section above, and the teachings of those patents are hereby incorporated by reference herein in their entirety.


The circumferential anchors 16 will usually extend axially from the scaffold section 12, as illustrated, but in some circumstances the anchors could extend helically, spirally, in a serpentine pattern, or other configurations. It is necessary, however, that the individual circumferential anchors be radially separable so that they can be independently folded, bent, and otherwise positioned within the main body lumen after the scaffold section 12 has been implanted within the branch body lumen. In the schematic embodiment of FIG. 1A, the circumferential anchors 16 may be independently folded out in a “petal-like” configuration, as generally shown in broken line for one of the anchors in FIGS. 1 and 2.


In preferred embodiments, the circumferential anchors 16 will be attached to the scaffold section 12 such that they can both bend and rotate relative to an axis A thereof, as shown in broken line in FIG. 1A. Bending will occur radially outwardly and rotation or twisting can occur about the axis A as the anchor is bent outwardly. Such freedom of motion can be provided by single point attachment joints as well as the three-point attachments shown in FIG. 3. Moreover, the expandable and bendable nature of anchors 62 in FIG. 3 will also permit both radially outward bending and twisting and rotation to help the anchors conform to the inside of the main vessel lumen in which they are deployed.


Referring now to FIG. 3, an exemplary prosthesis structure 50 (shown in a “rolled out” pattern) comprises a scaffold section 52 and a circumferential anchor section 54. Scaffold section 52 comprises a plurality of radially expansible serpentine cells 56 joined by smaller cells 58 comprising beams and a serpentine ring. The particular pattern illustrated for this structure is well-known and chosen to be exemplary of a useful scaffold. It will be appreciated that a wide variety of other conventional stent structures and patterns would be equally useful as the scaffold section of the prostheses of the present invention.


The scaffold section 52 is joined to the circumferential anchor section 54 at a plurality of points along a transition line 60. Individual circumferential anchors 62 each comprise four curving elements 66 which reduce in number to three and then to two in the axial direction away from the transition region 60. The particular structures shown permit radial expansion of the individual anchors as the scaffold is expanded. This is necessary since each circumferential anchor 62 is attached to three adjacent serpentine ring elements in the final serpentine ring 56. Thus, as these serpentine rings 56 are expanded, the circumferential anchor structures will also expand. It would be possible, of course, to join each of the circumferential anchors 62 only at a single location to the scaffold 52, thus allowing the anchors to be deployed without radial expansion.


The circumferential anchors 62 are curved and have a number of hinge regions which increase their conformability upon circumferential expansion by a balloon, as described hereinafter. Such conformability is highly desirable since the anchors will be expanded under a wide variety of differing conditions which will result in different final geometries for the anchors in use. The final configuration of the anchors in the main vessel lumen will depend on a number of factors, including length of the anchors and geometry of the vasculature and will vary greatly from deployment to deployment. While the anchors together will cover at least a portion of the main vessel wall circumference, most anchors will also be deformed to cover a significant axial length of the main vessel wall as well. Such coverage is schematically illustrated in the figures discussed below.


Referring now to FIGS. 4A-9B, deployment of the stent 10 in accordance with the principles of the present invention will be described. A stent 10 is carried to an os O located between a main vessel lumen MVL and a branch vessel lumen BVL in the vasculature, as shown in FIGS. 4A and 4B. Usually, the stent 10 will include at least one radiopaque marker 20 on stent 10 located near the transition region between the scaffold section 12 and the circumferential anchors 16. The radiopaque marker 20 can be aligned with the os O, typically under fluoroscopic imaging. Optionally, the stent 10 may include additional radiopaque markers, such as markers 22 and 24 at the ends of and/or elsewhere on the stent. The stent 10 is delivered by a balloon catheter 30 which may be introduced over a single guidewire GW which passes from the main vessel lumen MVL through the os O into the branch vessel BVL. Optionally, a second guidewire (not shown) which passes by the os O in the main vessel lumen MVL may also be employed.


After catheter 30 is positioned so that the marker 20 is adjacent the os O, as shown in FIGS. 4A and 4B, a balloon 32 which carries the stent is expanded to implant the scaffold region 10 within the branch vessel lumen BVL, as shown in FIGS. 5A and 5B. Expansion of the balloon 30 also partially deploys the circumferential anchors 16, opening them in a petal-like manner, as shown in FIG. 5B, typically extending both circumferentially and axially into the main vessel lumen MVL. The anchors 16, however, are not fully deployed and may remain at least partially within the central region of the main vessel lumen MVL.


In order to fully open the anchors 16, a second balloon catheter 130 is introduced over a guidewire GW to position the balloon 132 within the anchors, as shown in FIGS. 6A and 6B. Optionally, the first catheter 30 could be re-deployed, for example by partially withdrawing the catheter, repositioning the guidewire GW, and then advancing the deflated balloon 32 within the anchors 16. As it is generally difficult to completely deflate the balloon, however, and a partially inflated balloon would be difficult to pass through the anchors 16, it will generally be preferable to use the second balloon catheter 130 for the deforming the anchors 16. When using the second balloon catheter 130, a second GW will usually be prepositioned in the main vessel lumen MVL past the os 0, as shown in FIGS. 6A and 6B.


The anchors 16 are deformed by inflation of the balloon 132 within the anchors 16, as shown in FIGS. 7A and 7B. At this point, the protocol may be completed by withdrawing the second catheter 130, leaving the fully opened and deployed anchors 16 within the main vessel lumen MVL. Usually, however, it will be desirable to place a second stent or other prosthesis 150 within the deformed and deployed circumferential anchors 16 within the main vessel lumen MVL, as shown in FIGS. 8A, 8B, 9A and 9B. Catheter 152 is placed over the guidewire GW, typically the same guidewire used to deploy the second catheter 130, to position the stern 150 within the circumferential anchors 16 adjacent the os O (FIGS. 8A and 8B). The balloon of the catheter 152 is then inflated to deploy the second stent, as shown in FIGS. 9A and 9B. Optionally, another balloon catheter may be used open a passage through the stent 150 into the scaffold within the branch vessel lumen BVL.


When a second stent or prosthesis is deployed within the expanded anchor structure of the first prosthesis, the combination of the anchors and second stent both contribute to the support of the main vessel and os. In particular, the anchors are supported by the scaffold in the region of the os and over their lengths and tips by the deployed second stent.


While the above is a complete description of the preferred embodiments of the invention, various alternatives, modifications, and equivalents may be used. Therefore, the above description should not be taken as limiting the scope of the invention which is defined by the appended claims.

Claims
  • 1. A prosthesis for placement at an ostium opening from a main body lumen to a branch body lumen; the main body lumen having a main vessel wall with a portion of the main vessel wall opposing the ostium, said prosthesis comprising: a radially expansible scaffold having at least a first wall pattern; and at least two circumferential anchors extending axially from an end of the scaffold, said anchors having sufficient length to extend into and bend and rotate and thereby expandably circumscribe the main vessel wall and reach the portion of the main vessel wall opposing the ostium when the scaffold is implanted in the branch lumen with said one end adjacent the ostium, said prosthesis additionally having a region with a second wall pattern that is different from the first wall pattern, said second wall pattern permitting the anchors to both bend and rotate relative to the prosthesis, such that a flow path is maintained in the main body lumen between the anchors and beyond the ostium opening.
  • 2. The prosthesis of claim 1, comprising at least three circumferential anchors extending axially from the end of the scaffold.
  • 3. The prosthesis of claim 1, wherein the scaffold comprises a plurality of axially adjacent cells.
  • 4. The prosthesis of claim 1, wherein the circumferential anchors are all congruent.
  • 5. The prosthesis of claim 1, wherein the circumferential anchors will radially expand when the scaffold is radially expanded.
  • 6. The prosthesis of claim 1, further comprising a radiopaque marker at or near the region with the second wall pattern.
  • 7. The prosthesis of claim 1, mounted on a balloon wherein the balloon has a radiopaque marker aligned with the region between the scaffold and the circumferential anchors.
  • 8. The prosthesis of claim 1, mounted on a balloon catheter.
  • 9. The prosthesis of claim 1, comprising at least five anchors.
  • 10. A method for deploying a prosthesis across an ostium opening from a main lumen to a branch lumen, the main body lumen having a main vessel wall with a portion of the main vessel wall opposing the ostium, said method comprising: positioning a first prosthesis so that a scaffold lies within the branch lumen and at least two circumferential anchors extend from the scaffold and into the main lumen; radially expanding the scaffold to implant said scaffold in the branch lumen; circumferentially deforming the anchors such that at least one of said anchors bends and rotates relative to the prosthesis, and has sufficient length to reach the portion of the main vessel wall opposing the ostium, said deforming causing the anchors to circumscribe at least a portion of the main lumen wall and open a passage between the anchors; and deploying a second prosthesis within the passage between the anchors, and wherein the anchors have an axial length which is at least 1.5 times the width of the scaffold prior to radial expansion.
  • 11. The method of claim 10, wherein at least three circumferential anchors extend into the main lumen.
  • 12. The method of claim 10, wherein positioning the first prosthesis comprises aligning a visible marker on at least one of the prosthesis and a delivery balloon with the ostium.
  • 13. The method of claim 10, wherein the lumens are blood vessels.
  • 14. The method of claim 10, wherein the scaffold is expanded with a balloon expanded within the scaffold.
  • 15. The method of claim 14, wherein the anchors are deformed by expanding a balloon positioned transversely between the anchors.
  • 16. The method of claim 15, wherein the scaffold and anchors are expanded and deformed by the same balloon.
  • 17. The method of claim 15, wherein the scaffold and anchors are expanded and deformed by different balloons.
  • 18. The method of claim 10, wherein the second prosthesis is deployed by a balloon catheter exchanged over a guidewire pre-positioned for deformation of the anchors.
  • 19. The method of claim 10, wherein the anchors are deformed by deployment of the second prosthesis.
  • 20. The method of claim 10, wherein the deployed second prosthesis supports the anchors over their lengths from the ostium along the main lumen wall.
  • 21. A prosthesis for placement at an ostium opening from a main body lumen to a branch body lumen, the main body lumen having a main vessel wall with a portion of the main vessel wall opposing the ostium, said prosthesis comprising: a one piece body including a radially expansible scaffold having at least a first wall pattern; and at least one anchor extending from an end of the scaffold, said anchor having a length sufficient to circumscribe the main vessel wall and reach the portion of the main vessel wall opposing the ostium when the scaffold is implanted in the branch lumen with said one end adjacent the ostium, and wherein the anchor is configured to bend and rotate thereby enabling it to circumscribe the main vessel wall, said prosthesis additionally having a region with a second wall pattern that is different from the first wall pattern, said second wall pattern permitting the anchors to both bend and rotate relative to the prosthesis, such that a flow path is maintained in the body lumen between the anchors and beyond the ostium opening.
  • 22. The prosthesis of claim 21, wherein the anchor extends helically from the scaffold.
  • 23. The prosthesis of claim 22, additionally comprising a radiopaque marker.
  • 24. The prosthesis of claim 22, mounted on a balloon catheter.
  • 25. The prosthesis of claim 21, comprising at least three anchors.
  • 26. The prosthesis of claim 21, comprising at least five anchors.
  • 27. The prosthesis of claim 21, additionally comprising a radiopaque marker.
  • 28. The prosthesis of claim 21, mounted on a balloon catheter.
  • 29. A method for deploying a prosthesis across an ostium opening from a main lumen to a branch lumen, the main body lumen having a main vessel wall with a portion of the main vessel wall opposing the ostium, said method comprising: providing a first prosthesis having a scaffold and at least two anchors; positioning the first prosthesis so that the scaffold lies within the branch lumen and the at least two anchors extend into the main lumen; radially expanding the scaffold to implant said scaffold in the branch lumen; bending and rotating at least one anchor such that it extends circumferentially along the main vessel wall a sufficient distance to reach the portion of the main vessel wall opposing the ostium.
CROSS-REFERENCES TO RELATED APPLICATIONS

This application claims the benefit of U.S. Provisional Application No. 60/463,075, filed on Apr. 14, 2003, the full disclosure of which is incorporated herein by reference.

US Referenced Citations (242)
Number Name Date Kind
4950227 Savin et al. Aug 1990 A
4958634 Jang Sep 1990 A
4994071 MacGregor Feb 1991 A
5071406 Jang Dec 1991 A
5074845 Miraki et al. Dec 1991 A
5102417 Palmaz Apr 1992 A
5226889 Sheiban Jul 1993 A
5304132 Jang Apr 1994 A
5342387 Summers Aug 1994 A
5383892 Cardon et al. Jan 1995 A
5395333 Brill Mar 1995 A
5415635 Bagaoisan et al. May 1995 A
5507769 Marin et al. Apr 1996 A
5522882 Gaterud et al. Jun 1996 A
5540712 Kleshinski et al. Jul 1996 A
5575817 Martin Nov 1996 A
5593442 Klein Jan 1997 A
5607444 Lam Mar 1997 A
5609605 Marshall et al. Mar 1997 A
5609627 Goicoechea et al. Mar 1997 A
5613980 Chauhan Mar 1997 A
5632762 Myler May 1997 A
5645560 Crocker et al. Jul 1997 A
5656036 Palmaz Aug 1997 A
5658251 Ressemann et al. Aug 1997 A
5662608 Imran et al. Sep 1997 A
5669924 Shaknovich Sep 1997 A
5669932 Fischell et al. Sep 1997 A
5713917 Leonhardt et al. Feb 1998 A
5718712 Bonnal et al. Feb 1998 A
5720724 Ressemann et al. Feb 1998 A
5720735 Dorros Feb 1998 A
5741325 Chaikof et al. Apr 1998 A
5749825 Fischell et al. May 1998 A
5749851 Wang May 1998 A
5749890 Shaknovich May 1998 A
5755734 Richter et al. May 1998 A
5755735 Richter et al. May 1998 A
5755771 Penn et al. May 1998 A
5788708 Hegde et al. Aug 1998 A
5810871 Tuckey et al. Sep 1998 A
5824052 Khosravi et al. Oct 1998 A
5827320 Richter et al. Oct 1998 A
5843116 Crocker et al. Dec 1998 A
5855598 Pinchuk Jan 1999 A
5860998 Robinson et al. Jan 1999 A
5868777 Lam Feb 1999 A
5868783 Tower Feb 1999 A
5893887 Jayaraman Apr 1999 A
5897588 Hull et al. Apr 1999 A
5906640 Penn et al. May 1999 A
5906641 Thompson et al. May 1999 A
5922019 Hankh et al. Jul 1999 A
5961546 Robinson et al. Oct 1999 A
5964771 Beyar et al. Oct 1999 A
5967971 Bolser Oct 1999 A
5980532 Wang Nov 1999 A
6004347 McNamara et al. Dec 1999 A
6017363 Hojeibane Jan 2000 A
6027486 Crocker et al. Feb 2000 A
6027517 Crocker et al. Feb 2000 A
6033434 Borghi Mar 2000 A
6033435 Penn et al. Mar 2000 A
6048361 Von Oepen Apr 2000 A
6051020 Goicoechea et al. Apr 2000 A
6053913 Tu et al. Apr 2000 A
6053941 Lindenberg et al. Apr 2000 A
6056775 Borghi et al. May 2000 A
6056776 Lau et al. May 2000 A
6066155 Amann et al. May 2000 A
6066168 Lau et al. May 2000 A
6068654 Berg et al. May 2000 A
6068655 Sequin et al. May 2000 A
6077297 Robinson et al. Jun 2000 A
6090127 Globerman Jul 2000 A
6090133 Richter et al. Jul 2000 A
6096071 Yadav Aug 2000 A
6096073 Webster et al. Aug 2000 A
6099497 Adams et al. Aug 2000 A
6099560 Penn et al. Aug 2000 A
6120523 Crocker et al. Sep 2000 A
6127597 Beyar et al. Oct 2000 A
6129738 Lashinski et al. Oct 2000 A
6156052 Richter et al. Dec 2000 A
6159238 Killion et al. Dec 2000 A
6162243 Gray et al. Dec 2000 A
6165195 Wilson et al. Dec 2000 A
6168617 Blaeser et al. Jan 2001 B1
6183509 Dibie Feb 2001 B1
6206910 Berry et al. Mar 2001 B1
6210429 Vardi et al. Apr 2001 B1
6214036 Letendre et al. Apr 2001 B1
6221080 Power Apr 2001 B1
6221096 Aiba et al. Apr 2001 B1
6221098 Wilson et al. Apr 2001 B1
6231543 Hegde et al. May 2001 B1
6241738 Dereume Jun 2001 B1
6241744 Imran et al. Jun 2001 B1
6254593 Wilson Jul 2001 B1
6258116 Hojeibane Jul 2001 B1
6261305 Marotta et al. Jul 2001 B1
6261316 Shaolian et al. Jul 2001 B1
6264682 Wilson et al. Jul 2001 B1
6264686 Rieu et al. Jul 2001 B1
6267783 Letendre et al. Jul 2001 B1
6270525 Letendre et al. Aug 2001 B1
6280412 Pederson, Jr. et al. Aug 2001 B1
6287315 Wijeratne et al. Sep 2001 B1
6287336 Globerman et al. Sep 2001 B1
6290728 Phelps et al. Sep 2001 B1
6293964 Yadav Sep 2001 B1
6325826 Vardi et al. Dec 2001 B1
6331186 Wang et al. Dec 2001 B1
6344052 Greenan et al. Feb 2002 B1
6346089 Dibie Feb 2002 B1
6352551 Wang Mar 2002 B1
6361544 Wilson et al. Mar 2002 B1
6383212 Durcan et al. May 2002 B2
6383213 Wilson et al. May 2002 B2
6387120 Wilson et al. May 2002 B2
6391032 Blaeser et al. May 2002 B2
6395008 Ellis et al. May 2002 B1
6402778 Wang Jun 2002 B2
6409741 Crocker et al. Jun 2002 B1
6409750 Hyodoh et al. Jun 2002 B1
6409755 Vrba Jun 2002 B1
6409757 Trout, III et al. Jun 2002 B1
6428567 Wilson et al. Aug 2002 B2
6436104 Hojeibane Aug 2002 B2
6436134 Richter et al. Aug 2002 B2
6440165 Richter et al. Aug 2002 B1
6451050 Rudakov et al. Sep 2002 B1
6478814 Wang et al. Nov 2002 B2
6482211 Choi Nov 2002 B1
6482227 Solovay Nov 2002 B1
6488700 Klumb et al. Dec 2002 B2
6508836 Wilson et al. Jan 2003 B2
6517558 Gittings et al. Feb 2003 B2
6524335 Hartley et al. Feb 2003 B1
6540779 Richter et al. Apr 2003 B2
6547813 Stiger et al. Apr 2003 B2
6554856 Doorly et al. Apr 2003 B1
6562061 Wang et al. May 2003 B1
6565597 Fearnot et al. May 2003 B1
6572649 Berry et al. Jun 2003 B2
6579312 Wilson et al. Jun 2003 B2
6579314 Lombardi et al. Jun 2003 B1
6582394 Reiss et al. Jun 2003 B1
6589274 Stiger et al. Jul 2003 B2
6596020 Vardi et al. Jul 2003 B2
6599316 Vardi et al. Jul 2003 B2
6607552 Hanson Aug 2003 B1
6626934 Blaeser et al. Sep 2003 B2
6637107 Yasuhara et al. Oct 2003 B2
6652580 Chuter et al. Nov 2003 B1
6656215 Yanez et al. Dec 2003 B1
6656216 Hossainy et al. Dec 2003 B1
6663665 Shaolian et al. Dec 2003 B2
6663666 Quiachon et al. Dec 2003 B1
6673104 Barry Jan 2004 B2
6673106 Mitelberg et al. Jan 2004 B2
6673107 Brandt et al. Jan 2004 B1
6682557 Quiachon et al. Jan 2004 B1
6706062 Vardi et al. Mar 2004 B2
6726714 DiCaprio et al. Apr 2004 B2
6740113 Vrba May 2004 B2
6756094 Wang Jun 2004 B1
6764504 Wang Jul 2004 B2
6770092 Richter Aug 2004 B2
6790224 Gerberding Sep 2004 B2
6805697 Helm et al. Oct 2004 B1
6805702 Chen et al. Oct 2004 B1
6824553 Samson et al. Nov 2004 B1
6830575 Stenzel et al. Dec 2004 B2
6843802 Villalobos et al. Jan 2005 B1
6852116 Leonhardt et al. Feb 2005 B2
6872215 Crocker et al. Mar 2005 B2
6911038 Mertens et al. Jun 2005 B2
6926690 Renati Aug 2005 B2
20010008976 Wang Jul 2001 A1
20010011188 Berry et al. Aug 2001 A1
20010020181 Layne Sep 2001 A1
20010023356 Raz et al. Sep 2001 A1
20010037137 Vardi et al. Nov 2001 A1
20010041930 Globerman et al. Nov 2001 A1
20020058984 Butaric et al. May 2002 A1
20020058993 Landau et al. May 2002 A1
20020116047 Vardi et al. Aug 2002 A1
20020156516 Vardi et al. Oct 2002 A1
20020169498 Kim et al. Nov 2002 A1
20020173840 Brucker et al. Nov 2002 A1
20020183763 Callol et al. Dec 2002 A1
20020183780 Wang Dec 2002 A1
20020193862 Mitelberg et al. Dec 2002 A1
20020193868 Mitelberg et al. Dec 2002 A1
20020198559 Mistry et al. Dec 2002 A1
20030083734 Friedrich et al. May 2003 A1
20030097171 Elliott May 2003 A1
20030114912 Sequin et al. Jun 2003 A1
20030125797 Chobotov et al. Jul 2003 A1
20030199967 Hartley et al. Oct 2003 A1
20040015227 Vardi et al. Jan 2004 A1
20040024441 Bertolino et al. Feb 2004 A1
20040054362 Lopath et al. Mar 2004 A1
20040054396 Hartley et al. Mar 2004 A1
20040073250 Pederson, Jr. et al. Apr 2004 A1
20040093058 Cottone et al. May 2004 A1
20040106985 Jang Jun 2004 A1
20040133268 Davidson et al. Jul 2004 A1
20040138730 Mitelberg et al. Jul 2004 A1
20040138737 Davidson et al. Jul 2004 A1
20040143209 Liu et al. Jul 2004 A1
20040158306 Mitelberg et al. Aug 2004 A1
20040204754 Kaplan et al. Oct 2004 A1
20040220655 Swanson et al. Nov 2004 A1
20040249434 Andreas et al. Dec 2004 A1
20040254627 Thompson et al. Dec 2004 A1
20040260378 Goshgarian Dec 2004 A1
20040260383 Stelter et al. Dec 2004 A1
20050010278 Vardi et al. Jan 2005 A1
20050015108 Williams et al. Jan 2005 A1
20050049678 Cocks et al. Mar 2005 A1
20050154447 Goshgarian Jul 2005 A1
20050165469 Hogendijk Jul 2005 A1
20050192656 Eidenschink Sep 2005 A1
20050203563 Pederson, Jr. et al. Sep 2005 A9
20050209674 Kutscher et al. Sep 2005 A1
20050228483 Kaplan et al. Oct 2005 A1
20050234536 Mitelberg et al. Oct 2005 A1
20050251195 Wang Nov 2005 A1
20050261722 Crocker et al. Nov 2005 A1
20050288769 Globerman Dec 2005 A1
20060025849 Kaplan et al. Feb 2006 A1
20060079952 Kaplan et al. Apr 2006 A1
20060116748 Kaplan et al. Jun 2006 A1
20070203571 Kaplan et al. Aug 2007 A1
20070213803 Kaplan et al. Sep 2007 A1
20070213804 Kaplan et al. Sep 2007 A1
20070276460 Davis et al. Nov 2007 A1
20080015610 Kaplan et al. Jan 2008 A1
20080015678 Kaplan et al. Jan 2008 A1
20080183269 Kaplan et al. Jul 2008 A2
Foreign Referenced Citations (16)
Number Date Country
0712 614 Nov 1995 EP
0 959 811 May 1997 EP
0876 805 May 1998 EP
1 433 441 Nov 1999 EP
1 325 715 Jan 2003 EP
1 325 716 Jan 2003 EP
1 325 717 Jan 2003 EP
1 362 564 May 2003 EP
WO 9638101 Dec 1996 WO
WO 9824503 Jun 1998 WO
WO 0069367 Nov 2000 WO
WO 0249538 Jun 2002 WO
WO 2004026180 Apr 2004 WO
WO 2004058100 Jul 2004 WO
WO 2004089249 Oct 2004 WO
WO 2004103217 Dec 2004 WO
Related Publications (1)
Number Date Country
20040204754 A1 Oct 2004 US
Provisional Applications (1)
Number Date Country
60463075 Apr 2003 US