Not Applicable
The invention relates to devices and methods for implanting devices within a heart chamber. More specifically, the invention relates to devices configured to load a stent, e.g., a prosthetic heart valve frame, into a lumen of a delivery sheath or catheter for translation through the lumen to the distal end of the delivery sheath or catheter.
Stents in general, and prosthetic cardiac valve and left atrial appendage occluding devices specifically, are well known in the art. The native heart valves, e.g., aortic, pulmonary, tricuspid and mitral valves, are critical in assuring the forward-only flow of an adequate supply of blood through the cardiovascular system. These heart valves may lose functionality as a result of, inter alia, congenital, inflammatory, infectious diseases or conditions. Early interventions repaired or replaced the dysfunctional valve(s) during open heart surgery. More recently, besides the open heart surgical approach discussed above, gaining access to the valve of interest may be achieved percutaneously via one of at least the following known access routes: transapical; transfemoral; transatrial; and trans septal delivery techniques, collectively transcatheter techniques.
Generally, in a transcatheter technique, the prosthetic valve is mounted within a stented frame that is capable of achieving collapsed and expanded states. The device is collapsed and advanced through a sheath or delivery catheter positioned in a blood vessel of the patient until reaching the implantation site. The stented frame is generally released from the catheter or sheath and, by a variety of means, expanded with the valve to the expanded functional size and orientation within the heart. One of the key issues is ease of delivery of the prosthetic valve, including the stent frame and valve. More specifically the outer diameter of the collapsed device within the catheter is of significant interest. The present invention addresses this issue.
The human heart comprises four chambers and four heart valves that assist in the forward (antegrade) flow of blood through the heart. The chambers include the left atrium, left ventricle, right atrium and right ventricle. The four heart valves include the mitral valve, the tricuspid valve, the aortic valve and the pulmonary valve. See generally
The mitral valve is located between the left atrium and left ventricle and helps control the flow of blood from the left atrium to the left ventricle by acting as a one-way valve to prevent backflow into the left atrium. Similarly, the tricuspid valve is located between the right atrium and the right ventricle, while the aortic valve and the pulmonary valve are semilunar valves located in arteries flowing blood away from the heart. The valves are all one-way valves, with leaflets that open to allow forward (antegrade) blood flow. The normally functioning valve leaflets close under the pressure exerted by reverse blood to prevent backflow (retrograde) of the blood into the chamber it just flowed out of. For example, the mitral valve when working properly provides a one-way valving between the left atrium and the left ventricle, opening to allow antegrade flow from the left atrium to the left ventricle and closing to prevent retrograde flow from the left ventricle into the left atrium. This retrograde flow, when present, is known as mitral regurgitation or mitral valve regurgitation.
Native heart valves may be, or become, dysfunctional for a variety of reasons and/or conditions including but not limited to disease, trauma, congenital malformations, and aging. These types of conditions may cause the valve structure to fail to close properly resulting in regurgitant retrograde flow of blood from the left ventricle to the left atrium in the case of a mitral valve failure.
Mitral valve regurgitation is a specific problem resulting from a dysfunctional mitral valve that allows at least some retrograde blood flow back into the left atrium from the right atrium. In some cases, the dysfunction results from mitral valve leaflet(s) that prolapse up into the left atrial chamber, i.e., above the upper surface of the annulus instead of connecting or coapting to block retrograde flow. This backflow of blood places a burden on the left ventricle with a volume load that may lead to a series of left ventricular compensatory adaptations and adjustments, including remodeling of the ventricular chamber size and shape, that vary considerably during the prolonged clinical course of mitral regurgitation.
Regurgitation can be a problem with native heart valves generally, including tricuspid, aortic and pulmonary valves as well as mitral valves.
Native heart valves generally, e.g., mitral valves, therefore, may require functional repair and/or assistance, including a partial or complete replacement. Such intervention may take several forms including open heart surgery and open heart implantation of a replacement heart valve. See e.g., U.S. Pat. No. 4,106,129 (Carpentier), for a procedure that is highly invasive, fraught with patient risks, and requiring not only an extended hospitalization but also a highly painful recovery period.
Less invasive methods and devices for replacing a dysfunctional heart valve are also known and involve percutaneous access and catheter-facilitated delivery of the replacement valve. Most of these solutions involve a replacement heart valve attached to a structural support such as a stent, commonly known in the art, or other form of wire network designed to expand upon release from a delivery catheter. See, e.g., U.S. Pat. No. 3,657,744 (Ersek); U.S. Pat. No. 5,411,552 (Andersen). The self-expansion variants of the supporting stent assist in positioning the valve, and holding the expanded device in position, within the subject heart chamber or vessel. This self-expanded form also presents problems when, as is often the case, the device is not properly positioned in the first positioning attempt and, therefore, must be recaptured and positionally adjusted. This recapturing process in the case of a fully, or even partially, expanded device requires re-collapsing the device to a point that allows the operator to retract the collapsed device back into a delivery sheath or catheter, adjust the inbound position for the device and then re-expand to the proper position by redeploying the positionally-adjusted device distally out of the delivery sheath or catheter. Collapsing the already expanded device is difficult because the expanded stent or wire network is generally designed to achieve the expanded state which also resists contractive or collapsing forces.
Besides the open heart surgical approach discussed above, gaining access to the valve of interest is achieved percutaneously via one of at least the following known access routes: transapical; transfemoral; transatrial; and trans septal delivery techniques.
Generally, the art is focused on systems and methods that, using one of the above-described known access routes, allow a partial delivery of the collapsed valve device, wherein one end of the device is released from a delivery sheath or catheter and expanded for an initial positioning followed by full release and expansion when proper positioning is achieved. See, e.g., U.S. Pat. No. 8,852,271 (Murray, III); U.S. Pat. No. 8,747,459 (Nguyen); U.S. Pat. No. 8,814,931 (Wang); U.S. Pat. No. 9,402,720 (Richter); U.S. Pat. No. 8,986,372 (Murray, III); and U.S. Pat. No. 9,277,991 (Salahieh); and U.S. Pat. Pub. Nos. 2015/0272731 (Racchini); and 2016/0235531 (Ciobanu).
In addition, known “replacement” prosthetic heart valves are intended for full replacement of the native heart valve. Therefore, these replacement heart valves physically engage tissue within the annular throat, i.e., below the annular plane and upper annular surface, and/or valve leaflets, thereby eliminating all remaining functionality of the native valve and making the patient completely reliant on the replacement valve. Generally speaking, it is a preferred solution that maintains and/or retains the native function of a heart valve, thus supplementation of the valve is preferred rather than full replacement. Obviously, there will be cases when native valve has either lost virtually complete functionality before the interventional implantation procedure, or the native valve continues to lose functionality after the implantation procedure. The preferred solution is delivery and implantation of a valve device that will function both as an adjunctive and/or supplementary functional valve as well as be fully capable of replacing the native function of a valve that has lost, or will lose, most or all of its functionality. However, the inventive solutions described infra will apply generally to all types and forms of heart valve devices, unless otherwise specified. The present disclosure also applies, as the skilled artisan will recognize, to stents generally.
Further, known solutions for, e.g., the mitral valve replacement systems, devices and methods require 2-chamber solutions, i.e., there is involvement and engagement of the implanted replacement valve device in the left atrium and the left ventricle. Generally, these solutions include a radially expanding stent in the left atrium, with anchoring or tethering (disposed downward through the native annulus or annular throat) connected from the stent device down through the annular throat, with the sub-annular surface within the left ventricle, the left ventricular chordae tendineae and even into the left ventricle wall surface(s). See, e.g., the MitraClip® marketed by the Abbott Group and currently the only US approved repair device. With the MitraClip® a catheter containing the MitraClip® is inserted into the femoral vein. The device enters the heart through the inferior vena cava to the right atrium and delivered trans-septally. The MitraClip® passes through the annulus into the left ventricle and sits below the leaflets, clipping the leaflets to decrease regurgitation.
Such 2-chamber and native annulus solutions are unnecessary bulky and therefore more difficult to deliver and to position/recapture/reposition from a strictly structural perspective. Further, the 2-chamber solutions present difficulties in terms of making the ventricular anchoring and/or tethering connections required to hold position. Moreover, these solutions interfere with the native valve functionality as described above because the device portions that are disposed within the left ventricle must be routed through the native annulus and/or annular throat and native mitral valve, thereby disrupting any remaining coaptation capability of the native leaflets. In addition, the 2-chamber solutions generally require an invasive anchoring of some of the native tissue, resulting in unnecessary trauma and potential complication.
It will be further recognized that the 2-chamber mitral valve solutions require sub-annular and/or ventricular engagement with anchors, tethers and the like precisely because the atrial portion of the device fails to adequately anchor itself to the atrial chamber and/or upper portion of the annulus. Again, some of the embodiments, or portions thereof, described herein are readily applicable to single or 2-chamber solutions, unless otherwise indicated.
Finally, known prosthetic cardiac valves consist of two or three leaflets that are arranged to act as a one-way valve, permitting fluid flow therethrough in the antegrade direction while preventing retrograde flow. The native mitral valve is located retrosternally at the fourth costal cartilage, consisting of an anterior and posterior leaflet, chordae tendinae, papillary muscles, ventricular wall and annulus connected to the atria. Each native leaflet is supported by chordae tendinae that are attached to papillary muscles which become taut with each ventricular contraction preserving valvular competence. Both the anterior and posterior leaflets of the native valve are attached via primary, secondary and tertiary chordae to both the antero-lateral and posterio-medial papillary muscles. A disruption in either papillary muscle in the setting of myocardial injury, can result in dysfunction of either the anterior or posterior leaflet of the mitral valve. Other mechanisms may result in failure of one, or both of the native mitral leaflets. In the case of a single mitral valve leaflet failure, the regurgitation may take the form of a non-central, eccentric jet of blood back into the left atrium. Other leaflet failures may comprise a more centralized regurgitation jet. Known prosthetic valve replacements generally comprise leaflets which are arranged to mimic the native valve structure, which may over time become susceptible to similar regurgitation outcomes.
The applications for collapsible and expandable stents are not limited to prosthetic heart valve implants. Vascular stents are commonly used and are generally collapsible to facilitate delivery through the lumen of a delivery catheter to the working site where the stent is translated out of the lumen of the catheter and it is expanded, either by a self-expanding means or through an expanding mechanism such as, inter alia, an expandable balloon.
As discussed above, known delivery methods and devices comprise expandable prosthetic valve stents and vascular stents that are collapsed during delivery via a delivery catheter. The problems with such collapsing and expanding structures include placing strain on the regions of the structure, e.g., stent, that must bend to accommodate the collapsing and expanding states. Further, the collapsed geometry in known devices may not be controlled or predictable, adding to the strain on the collapsing and expanding structure elements. Thus, the structures and methods for achieving the collapsed state within the delivery catheter or sheath lumen must allow predictable and repeatable collapsing to maintain and retain the integrity of the collapsing structure. Moreover, the stent, e.g., prosthetic heart valve or vascular stent, may comprise biological and/or biologically compatible material that cannot be allowed to become dry. Therefore, retaining a fluid reservoir within which the subject stent may reside is critical.
Various embodiments of the present invention address these, inter alia, issues.
A device and method for predictably and controlling the collapsing of a collapsible and expandable stent for subsequent translation through a delivery sheath lumen to an anatomical target such as a heart valve or intravascular location for expansion and implantation. The loading device defines in inner lumen comprising a successively decreasing, from the proximal to the distal direction, inner diameter to a region of constant inner diameter wherein the stent is in a collapsed configuration. The device and method may provide for an at least partially collapsed configuration of the stent that may be further collapsed as a part of the implantation procedure and may comprise a stent that is pre-loaded for future use.
Generally, various embodiments of the present invention are directed to devices and methods for achieving a predictable collapsed configuration or state for a collapsible and expandable support structure or stent as well as providing a mechanism for ensuring moisture retention within biological materials that may be attached or otherwise integrated with the collapsible and expandable support structure during the collapsing step.
The support structure or stent has multiple functions to aid with the treatment of cardiac valve regurgitation (mitral or tricuspid). These functions include its function as a scaffold for the functioning 4C valve, apposition to the atrial anatomy, optimized radial force for compliance with atrial distension, ability to load and deploy from a minimally invasive delivery system, and geometry to support with mitigating against paravalvular leak (PVL). The design features of the stent are adapted to meet one or more of the functions identified above. Specific design features and attributes for exemplary stents are discussed in detail below to assist in understanding of the utility of the funneling loading device and related methods. As discussed above, the invention is not limited to prosthetic heart valves comprising stent support structures, but may also be applied to collapsible and expandable stents such as commonly used for intravascular procedures.
Certain exemplary embodiment stent design concepts are intended to support minimally invasive procedures for the treatment of valvular regurgitation—mitral, tricuspid and/or otherwise. The stents may be self-expandable (e.g. nitinol or similar materials) or balloon expandable (e.g. cobalt chromium or similar materials). The stents are typically made of cells that may be open celled diamond like structures or continuous structures that have a working cell element. The stents may also be constructed using tubing, wires, braids or similar structures. Specific design features that aid with the functioning of the stent are described in detail below.
Stent “Iris” Transition Cells
With reference now to
Individual cells CO forming the outer section 102 of stent 100 are visible in
Individual cells CI forming the inner valve support section 104 are also illustrated as open cells regions formed within an inner region R defined by outer section 102, wherein the inner valve support section extends radially upward into the inner region R. As shown, individual cells CI are of a different size, and may comprise a different shape, than that of individual cells CO.
The region of stent 100 that facilitates the radially inward transition of the stent 100 from the outer section 102 to the inner section 104 of the stent 100 is the transition cell region 106. Transition cell region 106 may comprise cells CT that may comprise a different size and/or shape that either the outer section cells CO and/or the inner section cells CI. The outer and/or inner regions 102, 104, and/or transition cell region 106 of the stent 100 may be constructed from one continuous structure or may combine two or more structures to achieve intended design goals. Transition cell region 106 comprises generally a radially upward turn to allow the inner valve support section 104 to reside within the inner region 102 as shown in
The geometry and/or shape of the transition cells CT may be substantially straight segments when expanded as in
This transition cell region 106 of the stent 100 may be a strut, completed cell section or a partial cell section. The transition cell region 106 may have any number of struts (minimum of 3) or cell sections as generally required to meet design needs. Transition cells CT or struts may be evenly spaced and formed by substantially straight and equally spaced apart struts 108 as shown in
In a preferred embodiment, the struts 108 of transition section 106 may be straight as in
In another preferred embodiment, the transition cell region 106 may comprise transition cell struts 108′ that comprise transition cells CT that are formed by struts 108′ having an offset, i.e., not straight, are twisted and/or curvilinear. The degree of offset and/or twist and/or curvature of the struts 108′, and therefore the size and/or shape of the resultant expanded cells CT may be varied dependent on the number of cells/struts in the transition cell region 106, packing density when the stent is collapsed, and stress/strain distribution limitations of the transition cell region 106.
The structure of
Thus, the transition section 106 of
A feature of certain embodiments of the transition cell region 106 as shown in
As the skilled artisan will now recognize from the above, the geometry of the exemplary stent's struts enables a transition from expanded to collapsed. The stent that may be collapsed using the following inventive embodiments is certainly not restricted to the exemplary cases described above. Any stent requiring collapsing from an expanded configuration to achieve a configuration that fits within the lumen of a delivery sheath may be collapsed with the present inventions.
Thus,
The decreasing diameter proximal section 202 of loading funnel 200 transitions distally into a constant diameter section 204, comprising an inner diameter D3 that is substantially the same as the smallest inner diameter D2 of the decreasing diameter proximal section 202 at its distal end, the transition therebetween preferably smooth to facilitate stressless translation of the collapsing exemplary stent therealong.
Transitional sheath 300 comprises a proximal end portion P and a distal D end, an outer diameter D4 and defining a lumen comprising inner diameter D5, wherein both D4 and D5 are substantially constant. The lumen for each of devices 200 and 300 is shown in dashed lines in
Outer diameter D4 of sheath 300 may be the same as, or smaller than, the inner diameter D3 of the constant diameter section 204 of loading funnel 200. Thus, as shown, the proximal end portion P of sheath 300 is adapted or configured to fit within at least a distal portion of the lumen of the constant diameter section 204 of the loading funnel 200 to create a lumen that is fluidly communicating from the proximal end of the loading sheath 200 to the distal end D of the sheath 300. Generally, and without limitation, the various relevant diameter relationships are as follows, using the nomenclature provided above and in
D1>D1′>D2=D3≥D4
Sheath 300 may be removably connected with the constant diameter section 204 in a variety of ways, including but certainly not limited to: a frictional fit and/or the illustrated detent male member 206 disposed on constant diameter section 204 of loading funnel 200 until engaged, and pushed radially outwardly, by the proximal end portion P of sheath 300. Ultimately, when the male member 206 aligns with the slot or aperture 302, male member 206 may, as the skilled artisan will recognize, drop or snap within the receiving aperture 302 and/or slot as illustratively defined in the outer wall of constant diameter section 204 of sheath 300. In some cases, the slot 302 may allow relative rotation of the sheath 300 and loading funnel 200 within the slot 302, thus enabling relative rotation within the limits of the length of the slot 302 between the loading funnel 200 and the transitional sheath 300. As the skilled artisan will recognize, the above male member/slot or aperture arrangement may be effectively reversed: wherein the male member 206 may be disposed on the sheath 300 and the slot or aperture may be disposed on the constant diameter section 204 of loading funnel 200. Other possible connection alternatives, within limitation, between loading funnel 200 and sheath 300 may comprise a threaded connection; and a frictional fit. Still more alternatively, the components 200, 300 may be provided as a single unit, wherein the inner diameter of the single unit distal of the decreasing diameter section is constant. What is required in all cases is that the loading funnel 200 and sheath 300 are functionally connected to provide the dimensional features described above.
In some embodiments, the proximal end portion P of sheath 300 when engaged within constant diameter section 204 of loading funnel may extends proximally to the distal end of loading funnel 202, effectively sliding through the entire length of the lumen of constant diameter section 204. In other embodiments, proximal end portion P engages only a portion of the length of the lumen of constant diameter section 204.
The collapsing of an exemplary collapsible stent from an expanded configuration may be achieved by translating the expanded stent distally into the lumen of loading funnel 200 progressively along and through the decreasing diameter section 202, where the walls of loading funnel's lumen exert constant and equal pressure on the stent, causing a progressive, predictable and relatively stress-free collapsing and distal translation into the sheath 300 comprising lumen of inner diameter D5. At this stage, the exemplary stent is collapsed and ready for translation distally to the anatomical target. Release of the exemplary stent from the distal end of sheath 300 allows the stent, if self-expanding, to expand to its working expanded configuration. In other cases the stent may require additional assistance to expand, e.g., through push/pull wires and/or expanding balloons as is known in the art.
As the planar sheet 304 is reduced in diameter to slidingly fit within the constant diameter section 204 of the loading funnel 200, and form sheath 300′, the male member 206 described above located on loading funnel 200, may align with and fit within an aperture or slot 302′ of transitional sheath 300′ to provide a removable locking fit between transitional sheath 300′ and loading funnel 200 as described above. As noted above in the embodiment of
The structure of the loading device now explained, the skilled artisan will recognize the utility in effecting transition of a stent from an expanded size to a predetermined collapsed size with a predetermined diameter. Thus, the exemplary stent shown above may be slowly translated along the decreasing diameter section. As the stent is advanced, the inner walls of the decreasing diameter section 202 of loading funnel 200 exert a force that is circumferentially equal around the stent, thus enabling the stent to collapse along the points of least resistance and least stress. As discussed above, the circular and/or spiral struts will enable a predetermined, predictable and repeatable collapsing motion, leading to a predetermined, predictable and repeatable collapsed shape. When the stent has been collapsed within the constant diameter section 204 of loading funnel 200 and/or the constant diameter inner lumen of sheath 300, 300′, the collapsed stent may be translated therealong to the anatomical location of interest. When the collapsed stent is released from the distal end of the inner lumen of 300, 300′, it will be allowed to biasingly expand, effectively reversing the collapsing motion to reach an expanded state or configuration.
In some cases, as discussed, sheath 300, 300′ may comprise a transitional sheath that provides a transition to connect with a delivery sheath or catheter comprising the same or similar inner diameter. In other cases, sheath 300, 300′ may form the delivery sheath or catheter.
The loading device discussed above, e.g., loading funnel 200 and transitional sheath 300, 300′, further enables a stent to be pre-loaded for use. Thus, a stent may be collapsed and loaded into the loading funnel 202 lumen, together with fluid to keep the biological and/or biologically compatible material(s) properly wetted in preparation for translation, delivery and implant.
In some embodiments, the distal end of the constant diameter section 204 (or distal end of sheath 300, 300′) may be capped or plugged to hold fluid in the lumen of decreasing diameter section 202 and/or constant diameter section 204 (and/or lumen of sheath 300, 300′) and in other embodiments a cap may be placed over the proximal end of decreasing diameter section 202 to further aid in holding fluid therein. This arrangement may provide a longer storage mechanism for collapsed, or partially collapsed, stents comprising moisture-sensitive, biologic material.
Alternatively, the stent may be collapsed and translated into the lumen of sheath 300, 300′ as described above, filled with fluid and capped or plugged at both ends to retain fluid to assist in protecting moisture-sensitive biological material associated with the stent.
Once loaded and fluid-immersed, the stent may be held for a period of time in the collapsed configuration and/or transported to the site of need.
The description of the invention and its applications as set forth herein is illustrative and is not intended to limit the scope of the invention. Features of various embodiments may be combined with other embodiments within the contemplation of this invention. Variations and modifications of the embodiments disclosed herein are possible, and practical alternatives to and equivalents of the various elements of the embodiments would be understood to those of ordinary skill in the art upon study of this patent document. These and other variations and modifications of the embodiments disclosed herein may be made without departing from the scope and spirit of the invention.
This application claims the benefit of U.S. Provisional Application Ser. No. 62/726,602, filed Sep. 4, 2018 and entitled FUNNELING LOADING DEVICE FOR STENT, the entire contents of which are incorporated herein by reference.
Number | Name | Date | Kind |
---|---|---|---|
4424833 | Spector | Jan 1984 | A |
4503569 | Dotter | Mar 1985 | A |
4733665 | Palmaz | Mar 1988 | A |
4878906 | Lindemann | Nov 1989 | A |
5190528 | Fonger | Mar 1993 | A |
5415667 | Frater | May 1995 | A |
5441483 | Avitall | Aug 1995 | A |
5693083 | Baker | Dec 1997 | A |
5693089 | Inoue | Dec 1997 | A |
5776188 | Shepherd | Jul 1998 | A |
5843090 | Schuetz | Dec 1998 | A |
5928258 | Khan | Jul 1999 | A |
5957949 | Leonhardt | Sep 1999 | A |
5968070 | Bley | Oct 1999 | A |
6123723 | Konya | Sep 2000 | A |
6152144 | Lesh | Nov 2000 | A |
6231602 | Carpentier | May 2001 | B1 |
6287334 | Moll | Sep 2001 | B1 |
6319280 | Schoon | Nov 2001 | B1 |
6319281 | Patel | Nov 2001 | B1 |
6332893 | Mortier | Dec 2001 | B1 |
6371983 | Lane | Apr 2002 | B1 |
6409758 | Stobie | Jun 2002 | B2 |
6425916 | Garrison | Jul 2002 | B1 |
6471718 | Staehle et al. | Oct 2002 | B1 |
6494909 | Greenhalgh | Dec 2002 | B2 |
6503272 | Duerig | Jan 2003 | B2 |
6540782 | Snyders | Apr 2003 | B1 |
6569196 | Vesely | May 2003 | B1 |
6589275 | Ivancev | Jul 2003 | B1 |
6702826 | Liddicoat | Mar 2004 | B2 |
6738655 | Sen | May 2004 | B1 |
6790231 | Liddicoat | Sep 2004 | B2 |
6790237 | Stinson | Sep 2004 | B2 |
6821297 | Snyders | Nov 2004 | B2 |
6830585 | Artof | Dec 2004 | B1 |
6840957 | DiMatteo | Jan 2005 | B2 |
6875231 | Anduiza | Apr 2005 | B2 |
7011671 | Welch | Mar 2006 | B2 |
7041132 | Quijano | May 2006 | B2 |
7044966 | Svanidze | May 2006 | B2 |
7125420 | Rourke | Oct 2006 | B2 |
7153324 | Case | Dec 2006 | B2 |
7252682 | Seguin | Aug 2007 | B2 |
7276077 | Zadno-Azizi | Oct 2007 | B2 |
7276078 | Spenser | Oct 2007 | B2 |
7291168 | Macoviak | Nov 2007 | B2 |
7364588 | Mathis | Apr 2008 | B2 |
7381220 | Macoviak | Jun 2008 | B2 |
7442204 | Schwammenthal | Oct 2008 | B2 |
7445631 | Salahieh | Nov 2008 | B2 |
7455689 | Johnson | Nov 2008 | B2 |
7510572 | Gabbay | Mar 2009 | B2 |
7524331 | Birdsall | Apr 2009 | B2 |
7611534 | Kapadia | Nov 2009 | B2 |
7704277 | Zakay | Apr 2010 | B2 |
7749266 | Forster | Jul 2010 | B2 |
7758491 | Buckner | Jul 2010 | B2 |
7780723 | Taylor | Aug 2010 | B2 |
7789909 | Andersen | Sep 2010 | B2 |
7935144 | Robin | May 2011 | B2 |
7959672 | Salahieh | Jun 2011 | B2 |
7967853 | Eidenschink | Jun 2011 | B2 |
7998196 | Mathison | Aug 2011 | B2 |
8012201 | Lashinski | Sep 2011 | B2 |
8016877 | Seguin | Sep 2011 | B2 |
8021420 | Dolan | Sep 2011 | B2 |
8029556 | Rowe | Oct 2011 | B2 |
D648854 | Braido | Nov 2011 | S |
8052592 | Goldfarb | Nov 2011 | B2 |
8057493 | Goldfarb | Nov 2011 | B2 |
8070802 | Lamphere | Dec 2011 | B2 |
8083793 | Lane | Dec 2011 | B2 |
D653341 | Braido | Jan 2012 | S |
D653342 | Braido | Jan 2012 | S |
8092524 | Nugent | Jan 2012 | B2 |
8142492 | Forster | Mar 2012 | B2 |
8147541 | Forster | Apr 2012 | B2 |
D660433 | Braido | May 2012 | S |
D660967 | Braido | May 2012 | S |
8167932 | Bourang | May 2012 | B2 |
8236049 | Rowe | Aug 2012 | B2 |
8246677 | Ryan | Aug 2012 | B2 |
8252051 | Chau | Aug 2012 | B2 |
8287538 | Brenzel et al. | Oct 2012 | B2 |
8308798 | Pintor | Nov 2012 | B2 |
8348998 | Pintor | Jan 2013 | B2 |
8348999 | Kheradvar | Jan 2013 | B2 |
8366768 | Zhang | Feb 2013 | B2 |
8398708 | Meiri | Mar 2013 | B2 |
8409275 | Matheny | Apr 2013 | B2 |
8414645 | Dwork | Apr 2013 | B2 |
8439970 | Jimenez | May 2013 | B2 |
8454686 | Alkhatib | Jun 2013 | B2 |
8465541 | Dwork | Jun 2013 | B2 |
8491650 | Wiemeyer | Jul 2013 | B2 |
8512400 | Tran | Aug 2013 | B2 |
8518106 | Duffy | Aug 2013 | B2 |
8535373 | Stacchino | Sep 2013 | B2 |
8562673 | Yeung | Oct 2013 | B2 |
8568472 | Marchand | Oct 2013 | B2 |
8579963 | Tabor | Nov 2013 | B2 |
8579964 | Lane | Nov 2013 | B2 |
8603159 | Seguin | Dec 2013 | B2 |
8623075 | Murray, III et al. | Jan 2014 | B2 |
8636764 | Miles | Jan 2014 | B2 |
8641757 | Pintor | Feb 2014 | B2 |
8657870 | Turovskiy | Feb 2014 | B2 |
8663318 | Ho | Mar 2014 | B2 |
8679176 | Matheny | Mar 2014 | B2 |
8721715 | Wang | May 2014 | B2 |
8740976 | Tran | Jun 2014 | B2 |
8747459 | Nguyen | Jun 2014 | B2 |
8747461 | Centola | Jun 2014 | B2 |
8764793 | Lee | Jul 2014 | B2 |
8764820 | Dehdashtian | Jul 2014 | B2 |
8778020 | Gregg | Jul 2014 | B2 |
8790396 | Bergheim | Jul 2014 | B2 |
8795354 | Benichou | Aug 2014 | B2 |
8795357 | Yohanan | Aug 2014 | B2 |
8805466 | Salahieh | Aug 2014 | B2 |
8814931 | Wang | Aug 2014 | B2 |
8828043 | Chambers | Sep 2014 | B2 |
8828051 | Javois | Sep 2014 | B2 |
8845711 | Miles | Sep 2014 | B2 |
8845722 | Gabbay | Sep 2014 | B2 |
8852271 | Murray, III et al. | Oct 2014 | B2 |
8852272 | Gross | Oct 2014 | B2 |
8870949 | Rowe | Oct 2014 | B2 |
8876897 | Kheradvar | Nov 2014 | B2 |
8906022 | Krinke et al. | Dec 2014 | B2 |
8926692 | Dwork | Jan 2015 | B2 |
8956402 | Cohn | Feb 2015 | B2 |
8956405 | Wang | Feb 2015 | B2 |
8961518 | Kyle et al. | Feb 2015 | B2 |
8986372 | Murry, III | Mar 2015 | B2 |
8986374 | Cao | Mar 2015 | B2 |
8986375 | Garde | Mar 2015 | B2 |
8998980 | Shipley | Apr 2015 | B2 |
8998982 | Richter | Apr 2015 | B2 |
9005273 | Salahieh | Apr 2015 | B2 |
9011527 | Li | Apr 2015 | B2 |
D730520 | Braido | May 2015 | S |
D730521 | Braido | May 2015 | S |
9023101 | Krahbichler | May 2015 | B2 |
9050188 | Schweich, Jr. | Jun 2015 | B2 |
9060855 | Tuval | Jun 2015 | B2 |
9060857 | Nguyen | Jun 2015 | B2 |
9060858 | Thornton | Jun 2015 | B2 |
9061119 | Le | Jun 2015 | B2 |
9066800 | Clague | Jun 2015 | B2 |
9072603 | Tuval | Jul 2015 | B2 |
9101471 | Kleinschrodt | Aug 2015 | B2 |
9119717 | Wang | Sep 2015 | B2 |
9132008 | Dwork | Sep 2015 | B2 |
9132009 | Hacohen | Sep 2015 | B2 |
9138313 | McGuckin, Jr. | Sep 2015 | B2 |
9144493 | Carr | Sep 2015 | B2 |
9144494 | Murray | Sep 2015 | B2 |
9155619 | Liu | Oct 2015 | B2 |
9161835 | Rankin | Oct 2015 | B2 |
9173737 | Hill | Nov 2015 | B2 |
9192466 | Kovalsky | Nov 2015 | B2 |
9226820 | Braido | Jan 2016 | B2 |
9232942 | Seguin | Jan 2016 | B2 |
9232996 | Sun | Jan 2016 | B2 |
9248016 | Oba | Feb 2016 | B2 |
9259315 | Zhou | Feb 2016 | B2 |
9271856 | Duffy | Mar 2016 | B2 |
9277993 | Gamarra | Mar 2016 | B2 |
9289289 | Rolando | Mar 2016 | B2 |
9289292 | Anderl | Mar 2016 | B2 |
9295547 | Costello | Mar 2016 | B2 |
9295549 | Braido | Mar 2016 | B2 |
9301836 | Buchbinder | Apr 2016 | B2 |
9301839 | Stante | Apr 2016 | B2 |
9320597 | Savage | Apr 2016 | B2 |
9320599 | Salahieh | Apr 2016 | B2 |
9326853 | Olson | May 2016 | B2 |
9326854 | Casley | May 2016 | B2 |
9333075 | Biadillah | May 2016 | B2 |
9345572 | Cerf | May 2016 | B2 |
9351831 | Braido | May 2016 | B2 |
9358108 | Bortlein | Jun 2016 | B2 |
9364325 | Alon | Jun 2016 | B2 |
9364637 | Rothstein | Jun 2016 | B2 |
9370422 | Wang | Jun 2016 | B2 |
9387106 | Stante | Jul 2016 | B2 |
9402720 | Richter | Aug 2016 | B2 |
9414910 | Lim | Aug 2016 | B2 |
9414917 | Young | Aug 2016 | B2 |
9427316 | Schweich, Jr. | Aug 2016 | B2 |
9439763 | Geist | Sep 2016 | B2 |
9439795 | Wang | Sep 2016 | B2 |
9480560 | Quadri | Nov 2016 | B2 |
9498370 | Kyle et al. | Nov 2016 | B2 |
9504569 | Malewicz | Nov 2016 | B2 |
9522062 | Tuval | Dec 2016 | B2 |
9566152 | Schweich, Jr. | Feb 2017 | B2 |
9579194 | Elizondo | Feb 2017 | B2 |
9579197 | Duffy | Feb 2017 | B2 |
9622863 | Karapetian | Apr 2017 | B2 |
9717592 | Thapliyal | Aug 2017 | B2 |
9730791 | Ratz | Aug 2017 | B2 |
9737400 | Fish | Aug 2017 | B2 |
9737401 | Conklin | Aug 2017 | B2 |
9750604 | Naor | Sep 2017 | B2 |
9763780 | Morriss | Sep 2017 | B2 |
9795477 | Tran | Oct 2017 | B2 |
9801711 | Gainor | Oct 2017 | B2 |
9827093 | Cartledge | Nov 2017 | B2 |
9839517 | Centola | Dec 2017 | B2 |
9839765 | Morris | Dec 2017 | B2 |
9861477 | Backus | Jan 2018 | B2 |
9872765 | Zeng | Jan 2018 | B2 |
9877830 | Lim | Jan 2018 | B2 |
9968443 | Bruchman | May 2018 | B2 |
10004601 | Tuval | Jun 2018 | B2 |
10016274 | Tabor | Jul 2018 | B2 |
10016275 | Nyuli | Jul 2018 | B2 |
10022132 | Wlodarski et al. | Jul 2018 | B2 |
10034750 | Morriss | Jul 2018 | B2 |
10039637 | Maimon | Aug 2018 | B2 |
10039642 | Hillukka | Aug 2018 | B2 |
10098735 | Lei | Oct 2018 | B2 |
10098763 | Lei | Oct 2018 | B2 |
10117742 | Braido | Nov 2018 | B2 |
10143551 | Braido | Dec 2018 | B2 |
10182907 | Lapeyre | Jan 2019 | B2 |
10195023 | Wrobel | Feb 2019 | B2 |
10226340 | Keren | Mar 2019 | B2 |
10231834 | Keidar | Mar 2019 | B2 |
10238490 | Gifford, III | Mar 2019 | B2 |
10245145 | Mantanus | Apr 2019 | B2 |
10258464 | Delaloye | Apr 2019 | B2 |
10299917 | Morriss | May 2019 | B2 |
10321990 | Braido | Jun 2019 | B2 |
10327892 | O'Connor | Jun 2019 | B2 |
10327893 | Maiorano | Jun 2019 | B2 |
10350065 | Quadri | Jul 2019 | B2 |
10357360 | Hariton | Jul 2019 | B2 |
10368982 | Weber | Aug 2019 | B2 |
10376363 | Quadri | Aug 2019 | B2 |
10383725 | Chambers | Aug 2019 | B2 |
10390943 | Hernandez | Aug 2019 | B2 |
10405974 | Hayes | Sep 2019 | B2 |
10433961 | McLean | Oct 2019 | B2 |
10470880 | Braido | Nov 2019 | B2 |
10492907 | Duffy | Dec 2019 | B2 |
10500041 | Valdez | Dec 2019 | B2 |
10507107 | Nathe | Dec 2019 | B2 |
10512537 | Corbett | Dec 2019 | B2 |
10512538 | Alkhatib | Dec 2019 | B2 |
10517726 | Chau | Dec 2019 | B2 |
10524902 | Gründeman | Jan 2020 | B2 |
10524910 | Hammer | Jan 2020 | B2 |
10531951 | Spargias | Jan 2020 | B2 |
10537427 | Zeng | Jan 2020 | B2 |
10555809 | Hastings | Feb 2020 | B2 |
10555812 | Duffy | Feb 2020 | B2 |
10561495 | Chambers | Feb 2020 | B2 |
10595992 | Chambers | Mar 2020 | B2 |
10610362 | Quadri | Apr 2020 | B2 |
10653523 | Chambers | May 2020 | B2 |
10667905 | Ekvall | Jun 2020 | B2 |
10667909 | Richter | Jun 2020 | B2 |
10702379 | Garde | Jul 2020 | B2 |
10702380 | Morriss | Jul 2020 | B2 |
10709560 | Kofidis | Jul 2020 | B2 |
10751169 | Chambers | Aug 2020 | B2 |
10751170 | Richter | Aug 2020 | B2 |
10751172 | Para | Aug 2020 | B2 |
10758265 | Siegel | Sep 2020 | B2 |
10758342 | Chau | Sep 2020 | B2 |
10779935 | Scorsin | Sep 2020 | B2 |
10779936 | Pollak | Sep 2020 | B2 |
10779968 | Giasolli | Sep 2020 | B2 |
10786351 | Christianson | Sep 2020 | B2 |
10828152 | Chambers | Nov 2020 | B2 |
10856983 | Keränen | Dec 2020 | B2 |
10869756 | Al-Jilaihawi | Dec 2020 | B2 |
10874513 | Chambers | Dec 2020 | B2 |
10945835 | Morriss | Mar 2021 | B2 |
10973630 | Torrianni | Apr 2021 | B2 |
10980636 | Delaloye | Apr 2021 | B2 |
11000000 | Diedering | May 2021 | B2 |
11007053 | Braido | May 2021 | B2 |
11007054 | Braido | May 2021 | B2 |
11013599 | Subramanian | May 2021 | B2 |
11026782 | Chambers | Jun 2021 | B2 |
11033275 | Franano et al. | Jun 2021 | B2 |
11045202 | Amplatz | Jun 2021 | B2 |
11065113 | Backus | Jul 2021 | B2 |
11065116 | Tegels | Jul 2021 | B2 |
11065138 | Schreck | Jul 2021 | B2 |
11096781 | Gurovich | Aug 2021 | B2 |
11147666 | Braido | Oct 2021 | B2 |
11154239 | Toth | Oct 2021 | B2 |
11154396 | Dibie | Oct 2021 | B2 |
11154398 | Straubinger | Oct 2021 | B2 |
11197754 | Saffari | Dec 2021 | B2 |
11207176 | Delaloye | Dec 2021 | B2 |
11278399 | Liu | Mar 2022 | B2 |
11278406 | Straubinger | Mar 2022 | B2 |
11351028 | Peterson | Jun 2022 | B2 |
11389293 | Torrianni | Jul 2022 | B2 |
11395734 | Lee | Jul 2022 | B2 |
11413141 | Morin | Aug 2022 | B2 |
11419716 | Braido | Aug 2022 | B2 |
11452628 | Diedering | Sep 2022 | B2 |
11458013 | Righini | Oct 2022 | B2 |
20010005787 | Oz | Jun 2001 | A1 |
20020072710 | Stewart | Jun 2002 | A1 |
20020161377 | Rabkin | Oct 2002 | A1 |
20030057156 | Peterson | Mar 2003 | A1 |
20030083730 | Stinson | May 2003 | A1 |
20030199971 | Tower | Oct 2003 | A1 |
20030225445 | Derus | Dec 2003 | A1 |
20030233141 | Israel | Dec 2003 | A1 |
20040073286 | Armstrong et al. | Apr 2004 | A1 |
20040088041 | Stanford | May 2004 | A1 |
20040210307 | Khairkhahan | Oct 2004 | A1 |
20040243107 | Macoviak | Dec 2004 | A1 |
20050004641 | Pappu | Jan 2005 | A1 |
20050075727 | Wheatley | Apr 2005 | A1 |
20050096739 | Cao | May 2005 | A1 |
20050113861 | Corcoran | May 2005 | A1 |
20050197694 | Pai | Sep 2005 | A1 |
20050273160 | Lashinski | Dec 2005 | A1 |
20060142847 | Shaknovich | Jun 2006 | A1 |
20060184226 | Austin | Aug 2006 | A1 |
20060224183 | Freudenthal | Oct 2006 | A1 |
20060229708 | Powell | Oct 2006 | A1 |
20060271173 | Delgado, III | Nov 2006 | A1 |
20060276874 | Wilson | Dec 2006 | A1 |
20070016288 | Gurskis | Jan 2007 | A1 |
20070173930 | Sogard | Jul 2007 | A1 |
20070233223 | Styrc | Oct 2007 | A1 |
20070238979 | Huynh | Oct 2007 | A1 |
20070239254 | Chia | Oct 2007 | A1 |
20070239271 | Nguyen | Oct 2007 | A1 |
20070270931 | Leanna et al. | Nov 2007 | A1 |
20070275027 | Wen et al. | Nov 2007 | A1 |
20070293942 | Mirzaee | Dec 2007 | A1 |
20080039928 | Peacock | Feb 2008 | A1 |
20080082166 | Styrc | Apr 2008 | A1 |
20080262592 | Jordan | Oct 2008 | A1 |
20080269877 | Jenson | Oct 2008 | A1 |
20080275540 | Wen | Nov 2008 | A1 |
20080281398 | Koss | Nov 2008 | A1 |
20080288042 | Purdy | Nov 2008 | A1 |
20080288055 | Paul, Jr. | Nov 2008 | A1 |
20090076585 | Hendriksen | Mar 2009 | A1 |
20090082840 | Rusk | Mar 2009 | A1 |
20090099640 | Weng | Apr 2009 | A1 |
20090099647 | Glimsdale | Apr 2009 | A1 |
20090125096 | Chu | May 2009 | A1 |
20090143852 | Chambers | Jun 2009 | A1 |
20090171447 | Von Segesser | Jul 2009 | A1 |
20090171456 | Kveen | Jul 2009 | A1 |
20090198315 | Boudjemline | Aug 2009 | A1 |
20090248134 | Dierking | Oct 2009 | A1 |
20090248143 | Laham | Oct 2009 | A1 |
20090270967 | Fleming III | Oct 2009 | A1 |
20090276039 | Meretei | Nov 2009 | A1 |
20090281609 | Benichou | Nov 2009 | A1 |
20100021726 | Jo | Jan 2010 | A1 |
20100057192 | Celermajer | Mar 2010 | A1 |
20100069948 | Veznedaroglu | Mar 2010 | A1 |
20100168839 | Braido | Jul 2010 | A1 |
20100174355 | Boyle | Jul 2010 | A1 |
20100217260 | Aramayo | Aug 2010 | A1 |
20100217261 | Watson | Aug 2010 | A1 |
20100217262 | Stevenson | Aug 2010 | A1 |
20100217263 | Tukulj-Popovic | Aug 2010 | A1 |
20100217264 | Odom | Aug 2010 | A1 |
20100217265 | Chen | Aug 2010 | A1 |
20100217266 | Helevirta | Aug 2010 | A1 |
20100217267 | Bergin | Aug 2010 | A1 |
20100217268 | Bloebaum | Aug 2010 | A1 |
20100217269 | Landes | Aug 2010 | A1 |
20100256749 | Tran | Oct 2010 | A1 |
20100262157 | Silver et al. | Oct 2010 | A1 |
20110022151 | Shin | Jan 2011 | A1 |
20110046712 | Melsheimer | Feb 2011 | A1 |
20110082539 | Suri | Apr 2011 | A1 |
20110082540 | Forster | Apr 2011 | A1 |
20110208293 | Tabor | Aug 2011 | A1 |
20110218585 | Krinke et al. | Sep 2011 | A1 |
20110251676 | Sweeney | Oct 2011 | A1 |
20110269051 | Wijenberg | Nov 2011 | A1 |
20110301702 | Rust | Dec 2011 | A1 |
20110319988 | Schankereli | Dec 2011 | A1 |
20110319991 | Hariton | Dec 2011 | A1 |
20120016468 | Robin | Jan 2012 | A1 |
20120035719 | Forster | Feb 2012 | A1 |
20120078356 | Fish | Mar 2012 | A1 |
20120083875 | Johnson et al. | Apr 2012 | A1 |
20120095551 | Navia | Apr 2012 | A1 |
20120101567 | Jansen | Apr 2012 | A1 |
20120101571 | Thambar | Apr 2012 | A1 |
20120109079 | Asleson | May 2012 | A1 |
20120197390 | Alkhatib | Aug 2012 | A1 |
20120209375 | Madrid | Aug 2012 | A1 |
20120226130 | De Graff | Sep 2012 | A1 |
20120303048 | Manasse | Nov 2012 | A1 |
20120323313 | Seguin | Dec 2012 | A1 |
20130023852 | Drasler | Jan 2013 | A1 |
20130060329 | Agnew | Mar 2013 | A1 |
20130066419 | Gregg | Mar 2013 | A1 |
20130079872 | Gallagher | Mar 2013 | A1 |
20130090728 | Solem | Apr 2013 | A1 |
20130096671 | Iobbi | Apr 2013 | A1 |
20130123911 | Chalekian | May 2013 | A1 |
20130138138 | Clark | May 2013 | A1 |
20130150956 | Yohanan | Jun 2013 | A1 |
20130184811 | Rowe | Jul 2013 | A1 |
20130190861 | Chau | Jul 2013 | A1 |
20130204311 | Kunis | Aug 2013 | A1 |
20130204360 | Gainor | Aug 2013 | A1 |
20130226286 | Hargreaves | Aug 2013 | A1 |
20130231736 | Essinger | Sep 2013 | A1 |
20130238089 | Lichtenstein | Sep 2013 | A1 |
20130297010 | Bishop | Nov 2013 | A1 |
20130297012 | Willard | Nov 2013 | A1 |
20130304197 | Buchbinder | Nov 2013 | A1 |
20130310917 | Richter | Nov 2013 | A1 |
20130310923 | Kheradvar | Nov 2013 | A1 |
20130317598 | Rowe | Nov 2013 | A1 |
20130331933 | Alkhatib | Dec 2013 | A1 |
20140005768 | Thomas | Jan 2014 | A1 |
20140005773 | Wheatley | Jan 2014 | A1 |
20140005778 | Buchbinder | Jan 2014 | A1 |
20140012371 | Li | Jan 2014 | A1 |
20140018841 | Peiffer | Jan 2014 | A1 |
20140018906 | Rafiee | Jan 2014 | A1 |
20140031928 | Murphy | Jan 2014 | A1 |
20140031951 | Costello | Jan 2014 | A1 |
20140039613 | Navia | Feb 2014 | A1 |
20140046433 | Kovalsky | Feb 2014 | A1 |
20140046436 | Kheradvar | Feb 2014 | A1 |
20140052238 | Wang | Feb 2014 | A1 |
20140052241 | Harks | Feb 2014 | A1 |
20140057730 | Steinhauser | Feb 2014 | A1 |
20140057731 | Stephens | Feb 2014 | A1 |
20140057732 | Gilbert | Feb 2014 | A1 |
20140057733 | Yamamoto | Feb 2014 | A1 |
20140057734 | Lu | Feb 2014 | A1 |
20140057735 | Yu | Feb 2014 | A1 |
20140057736 | Burnett | Feb 2014 | A1 |
20140057737 | Solheim | Feb 2014 | A1 |
20140057738 | Albertsen | Feb 2014 | A1 |
20140057739 | Stites | Feb 2014 | A1 |
20140067050 | Costello | Mar 2014 | A1 |
20140074151 | Tischler | Mar 2014 | A1 |
20140081308 | Wondka et al. | Mar 2014 | A1 |
20140081375 | Bardill et al. | Mar 2014 | A1 |
20140088696 | Figulla | Mar 2014 | A1 |
20140114340 | Zhou | Apr 2014 | A1 |
20140128963 | Quill | May 2014 | A1 |
20140134322 | Larsen | May 2014 | A1 |
20140135817 | Tischler | May 2014 | A1 |
20140135907 | Gallagher | May 2014 | A1 |
20140142612 | Li | May 2014 | A1 |
20140142680 | Laske | May 2014 | A1 |
20140142688 | Duffy | May 2014 | A1 |
20140142691 | Pouletty | May 2014 | A1 |
20140163668 | Rafiee | Jun 2014 | A1 |
20140172076 | Jonsson | Jun 2014 | A1 |
20140172083 | Bruchman | Jun 2014 | A1 |
20140180397 | Gerberding | Jun 2014 | A1 |
20140180401 | Quill | Jun 2014 | A1 |
20140188157 | Clark | Jul 2014 | A1 |
20140194979 | Seguin | Jul 2014 | A1 |
20140222140 | Schreck | Aug 2014 | A1 |
20140228944 | Paniagua | Aug 2014 | A1 |
20140236288 | Lambrecht | Aug 2014 | A1 |
20140243954 | Shannon | Aug 2014 | A1 |
20140243967 | Salahieh | Aug 2014 | A1 |
20140243969 | Venkatasubramanian | Aug 2014 | A1 |
20140249564 | Daly | Sep 2014 | A1 |
20140249621 | Eidenschink | Sep 2014 | A1 |
20140257467 | Lane | Sep 2014 | A1 |
20140276395 | Wilson | Sep 2014 | A1 |
20140277074 | Kaplan | Sep 2014 | A1 |
20140277119 | Akpinar | Sep 2014 | A1 |
20140277388 | Skemp | Sep 2014 | A1 |
20140277389 | Braido | Sep 2014 | A1 |
20140277408 | Folan | Sep 2014 | A1 |
20140277411 | Börtlein | Sep 2014 | A1 |
20140277417 | Schraut | Sep 2014 | A1 |
20140277422 | Ratz | Sep 2014 | A1 |
20140277424 | Oslund | Sep 2014 | A1 |
20140277425 | Dakin | Sep 2014 | A1 |
20140277426 | Dakin | Sep 2014 | A1 |
20140288634 | Shalev | Sep 2014 | A1 |
20140288639 | Gainor | Sep 2014 | A1 |
20140296909 | Heipl | Oct 2014 | A1 |
20140296969 | Tegels | Oct 2014 | A1 |
20140296970 | Ekvall | Oct 2014 | A1 |
20140296975 | Tegels | Oct 2014 | A1 |
20140309727 | Lamelas | Oct 2014 | A1 |
20140330366 | Dehdashtian | Nov 2014 | A1 |
20140330368 | Gloss | Nov 2014 | A1 |
20140330369 | Matheny | Nov 2014 | A1 |
20140330370 | Matheny | Nov 2014 | A1 |
20140331475 | Duffy et al. | Nov 2014 | A1 |
20140343665 | Straubinger | Nov 2014 | A1 |
20140343669 | Lane | Nov 2014 | A1 |
20140343670 | Bakis | Nov 2014 | A1 |
20140358224 | Tegels | Dec 2014 | A1 |
20140371844 | Dale | Dec 2014 | A1 |
20140379020 | Campbell | Dec 2014 | A1 |
20150005857 | Kern | Jan 2015 | A1 |
20150018933 | Yang | Jan 2015 | A1 |
20150025621 | Costello | Jan 2015 | A1 |
20150025625 | Rylski | Jan 2015 | A1 |
20150039081 | Costello | Feb 2015 | A1 |
20150039083 | Rafiee | Feb 2015 | A1 |
20150066138 | Alexander | Mar 2015 | A1 |
20150066141 | Braido | Mar 2015 | A1 |
20150073548 | Matheny | Mar 2015 | A1 |
20150088248 | Scorsin | Mar 2015 | A1 |
20150088251 | May-Newman | Mar 2015 | A1 |
20150094802 | Buchbinder | Apr 2015 | A1 |
20150094804 | Bonhoeffer | Apr 2015 | A1 |
20150112428 | Daly | Apr 2015 | A1 |
20150112430 | Creaven | Apr 2015 | A1 |
20150119974 | Rothstein | Apr 2015 | A1 |
20150119978 | Tegels | Apr 2015 | A1 |
20150119980 | Beith | Apr 2015 | A1 |
20150119982 | Quill | Apr 2015 | A1 |
20150127032 | Lentz | May 2015 | A1 |
20150127093 | Hosmer | May 2015 | A1 |
20150127097 | Neumann | May 2015 | A1 |
20150127100 | Braido | May 2015 | A1 |
20150134054 | Morrissey | May 2015 | A1 |
20150142103 | Vidlund | May 2015 | A1 |
20150142104 | Braido | May 2015 | A1 |
20150148731 | McNamara | May 2015 | A1 |
20150150678 | Brecker | Jun 2015 | A1 |
20150157455 | Hoang | Jun 2015 | A1 |
20150157458 | Thambar | Jun 2015 | A1 |
20150173770 | Warner | Jun 2015 | A1 |
20150173897 | Raanani | Jun 2015 | A1 |
20150173898 | Drasler | Jun 2015 | A1 |
20150173899 | Braido | Jun 2015 | A1 |
20150196300 | Tischler | Jul 2015 | A1 |
20150196390 | Ma | Jul 2015 | A1 |
20150196393 | Vidlund | Jul 2015 | A1 |
20150209140 | Bell | Jul 2015 | A1 |
20150209143 | Duffy | Jul 2015 | A1 |
20150223729 | Balachandran | Aug 2015 | A1 |
20150223820 | Olson | Aug 2015 | A1 |
20150223934 | Vidlund | Aug 2015 | A1 |
20150230921 | Chau | Aug 2015 | A1 |
20150238312 | Lashinski | Aug 2015 | A1 |
20150238313 | Spence | Aug 2015 | A1 |
20150257879 | Bortlein | Sep 2015 | A1 |
20150257880 | Bortlein | Sep 2015 | A1 |
20150257881 | Bortlein | Sep 2015 | A1 |
20150257882 | Bortlein | Sep 2015 | A1 |
20150265402 | Centola | Sep 2015 | A1 |
20150265404 | Rankin | Sep 2015 | A1 |
20150272730 | Melnick | Oct 2015 | A1 |
20150272731 | Racchini | Oct 2015 | A1 |
20150272738 | Sievers | Oct 2015 | A1 |
20150282931 | Brunnett | Oct 2015 | A1 |
20150282958 | Centola | Oct 2015 | A1 |
20150289972 | Yang | Oct 2015 | A1 |
20150289974 | Matheny | Oct 2015 | A1 |
20150289977 | Kovalsky | Oct 2015 | A1 |
20150290007 | Aggerholm | Oct 2015 | A1 |
20150297346 | Duffy | Oct 2015 | A1 |
20150297381 | Essinger | Oct 2015 | A1 |
20150305860 | Wang | Oct 2015 | A1 |
20150305861 | Annest | Oct 2015 | A1 |
20150313710 | Eberhardt | Nov 2015 | A1 |
20150313712 | Carpentier | Nov 2015 | A1 |
20150320552 | Letac | Nov 2015 | A1 |
20150320556 | Levi | Nov 2015 | A1 |
20150327995 | Morin | Nov 2015 | A1 |
20150327996 | Fahim | Nov 2015 | A1 |
20150327999 | Board | Nov 2015 | A1 |
20150335422 | Straka | Nov 2015 | A1 |
20150342718 | Weber | Dec 2015 | A1 |
20150342734 | Braido | Dec 2015 | A1 |
20150351735 | Keranen | Dec 2015 | A1 |
20150351904 | Cooper | Dec 2015 | A1 |
20150351905 | Benson | Dec 2015 | A1 |
20150359628 | Keranen | Dec 2015 | A1 |
20150359629 | Ganesan | Dec 2015 | A1 |
20150366665 | Lombardi | Dec 2015 | A1 |
20150366667 | Bailey | Dec 2015 | A1 |
20150366690 | Lumauig | Dec 2015 | A1 |
20150374490 | Alkhatib | Dec 2015 | A1 |
20150374906 | Forsell | Dec 2015 | A1 |
20160000559 | Chen | Jan 2016 | A1 |
20160000562 | Siegel | Jan 2016 | A1 |
20160008128 | Squara | Jan 2016 | A1 |
20160008131 | Christianson | Jan 2016 | A1 |
20160015512 | Zhang | Jan 2016 | A1 |
20160015515 | Lashinski | Jan 2016 | A1 |
20160022417 | Karapetian | Jan 2016 | A1 |
20160022418 | Salahieh | Jan 2016 | A1 |
20160030165 | Mitra | Feb 2016 | A1 |
20160030168 | Spenser | Feb 2016 | A1 |
20160030169 | Shahriari | Feb 2016 | A1 |
20160030170 | Alkhatib | Feb 2016 | A1 |
20160030171 | Quijano | Feb 2016 | A1 |
20160030173 | Cai | Feb 2016 | A1 |
20160030175 | Madjarov | Feb 2016 | A1 |
20160038283 | Divekar | Feb 2016 | A1 |
20160045306 | Agrawal | Feb 2016 | A1 |
20160045308 | Macoviak | Feb 2016 | A1 |
20160045309 | Valdez | Feb 2016 | A1 |
20160045310 | Alkhatib | Feb 2016 | A1 |
20160045311 | McCann | Feb 2016 | A1 |
20160051358 | Sutton | Feb 2016 | A1 |
20160051362 | Cooper | Feb 2016 | A1 |
20160051364 | Cunningham | Feb 2016 | A1 |
20160066922 | Bridgeman | Mar 2016 | A1 |
20160067038 | Park | Mar 2016 | A1 |
20160067041 | Alkhatib | Mar 2016 | A1 |
20160074161 | Bennett | Mar 2016 | A1 |
20160074164 | Naor | Mar 2016 | A1 |
20160074165 | Spence | Mar 2016 | A1 |
20160081799 | Leo | Mar 2016 | A1 |
20160089234 | Gifford, III | Mar 2016 | A1 |
20160089235 | Yellin | Mar 2016 | A1 |
20160089236 | Kovalsky | Mar 2016 | A1 |
20160095700 | Righini | Apr 2016 | A1 |
20160095701 | Dale | Apr 2016 | A1 |
20160095702 | Gainor | Apr 2016 | A1 |
20160095703 | Thomas | Apr 2016 | A1 |
20160095704 | Whitman | Apr 2016 | A1 |
20160100844 | Li | Apr 2016 | A1 |
20160100939 | Armstrong | Apr 2016 | A1 |
20160100941 | Czyscon | Apr 2016 | A1 |
20160100942 | Morrissey | Apr 2016 | A1 |
20160106539 | Buchbinder | Apr 2016 | A1 |
20160113764 | Sheahan | Apr 2016 | A1 |
20160113766 | Ganesan | Apr 2016 | A1 |
20160113767 | Miller | Apr 2016 | A1 |
20160113768 | Ganesan | Apr 2016 | A1 |
20160120642 | Shaolian | May 2016 | A1 |
20160120643 | Kupumbati | May 2016 | A1 |
20160120646 | Dwork | May 2016 | A1 |
20160135951 | Salahieh | May 2016 | A1 |
20160136412 | McKinnon et al. | May 2016 | A1 |
20160143730 | Kheradvar | May 2016 | A1 |
20160143731 | Backus | May 2016 | A1 |
20160143734 | Shaolian | May 2016 | A1 |
20160151155 | Lutter | Jun 2016 | A1 |
20160157998 | Bruchman | Jun 2016 | A1 |
20160157999 | Lane | Jun 2016 | A1 |
20160158001 | Wallace | Jun 2016 | A1 |
20160158004 | Kumar | Jun 2016 | A1 |
20160158007 | Centola | Jun 2016 | A1 |
20160158011 | De Canniere | Jun 2016 | A1 |
20160158013 | Carpentier | Jun 2016 | A1 |
20160166381 | Sugimoto | Jun 2016 | A1 |
20160166382 | Nguyen | Jun 2016 | A1 |
20160166384 | Olson | Jun 2016 | A1 |
20160175096 | Dienno | Jun 2016 | A1 |
20160193044 | Achiluzzi | Jul 2016 | A1 |
20160193045 | Pollak | Jul 2016 | A1 |
20160193047 | Delaloye | Jul 2016 | A1 |
20160199177 | Spence | Jul 2016 | A1 |
20160199178 | Venkatasubramanian | Jul 2016 | A1 |
20160199180 | Zeng | Jul 2016 | A1 |
20160199182 | Gorman, III | Jul 2016 | A1 |
20160213470 | Ahlberg | Jul 2016 | A1 |
20160220363 | Peter | Aug 2016 | A1 |
20160235525 | Rothstein | Aug 2016 | A1 |
20160235530 | Thomas | Aug 2016 | A1 |
20160235531 | Ciobanu | Aug 2016 | A1 |
20160250022 | Braido | Sep 2016 | A1 |
20160250051 | Lim | Sep 2016 | A1 |
20160256168 | Nielsen | Sep 2016 | A1 |
20160256270 | Folan | Sep 2016 | A1 |
20160262884 | Lombardi et al. | Sep 2016 | A1 |
20160270910 | Birmingham | Sep 2016 | A1 |
20160270911 | Ganesan | Sep 2016 | A1 |
20160278922 | Braido | Sep 2016 | A1 |
20160296323 | Wulfman | Oct 2016 | A1 |
20160296333 | Balachandran | Oct 2016 | A1 |
20160302920 | Al-Jilaihawi | Oct 2016 | A1 |
20160302921 | Gosal | Oct 2016 | A1 |
20160302922 | Keidar | Oct 2016 | A1 |
20160310268 | Oba | Oct 2016 | A1 |
20160324640 | Gifford, III | Nov 2016 | A1 |
20160331527 | Vidlund et al. | Nov 2016 | A1 |
20160331529 | Marchand | Nov 2016 | A1 |
20160346081 | Zeng | Dec 2016 | A1 |
20160361161 | Braido | Dec 2016 | A1 |
20160374790 | Jacinto | Dec 2016 | A1 |
20160374801 | Jimenez | Dec 2016 | A1 |
20160374802 | Levi | Dec 2016 | A1 |
20160374803 | Figulla | Dec 2016 | A1 |
20160374842 | Havel | Dec 2016 | A1 |
20170079781 | Lim | Mar 2017 | A1 |
20170079785 | Li | Mar 2017 | A1 |
20170079787 | Benson | Mar 2017 | A1 |
20170079790 | Vidlund | Mar 2017 | A1 |
20170086973 | Zeng | Mar 2017 | A1 |
20170095256 | Lindgren | Apr 2017 | A1 |
20170100241 | Modine | Apr 2017 | A1 |
20170105839 | Subramanian | Apr 2017 | A1 |
20170165066 | Rothstein | Jun 2017 | A1 |
20170172737 | Kuetting | Jun 2017 | A1 |
20170202525 | Piazza | Jul 2017 | A1 |
20170252191 | Pacetti | Sep 2017 | A1 |
20170281193 | Asirvatham | Oct 2017 | A1 |
20170348098 | Rowe | Dec 2017 | A1 |
20170360570 | Berndt et al. | Dec 2017 | A1 |
20180014830 | Neumann | Jan 2018 | A1 |
20180092744 | Von Oepen | Apr 2018 | A1 |
20180116843 | Schreck | May 2018 | A1 |
20180116848 | McHugo | May 2018 | A1 |
20180133012 | Nathe | May 2018 | A1 |
20180185184 | Christakis | Jul 2018 | A1 |
20180193153 | Brenzel et al. | Jul 2018 | A1 |
20180206983 | Noe | Jul 2018 | A1 |
20180256329 | Chambers | Sep 2018 | A1 |
20180296335 | Miyashiro | Oct 2018 | A1 |
20180311039 | Cohen | Nov 2018 | A1 |
20180325664 | Gonda | Nov 2018 | A1 |
20180333102 | De Haan et al. | Nov 2018 | A1 |
20180360602 | Kumar | Dec 2018 | A1 |
20180369006 | Zhang | Dec 2018 | A1 |
20190099265 | Braido | Apr 2019 | A1 |
20190105088 | Peterson et al. | Apr 2019 | A1 |
20190151067 | Zucker | May 2019 | A1 |
20190201192 | Kruse | Jul 2019 | A1 |
20190224028 | Finn | Jul 2019 | A1 |
20190247189 | Dale | Aug 2019 | A1 |
20190247190 | Nathe | Aug 2019 | A1 |
20190321530 | Cambronne | Oct 2019 | A1 |
20190321531 | Cambronne | Oct 2019 | A1 |
20190365534 | Kramer | Dec 2019 | A1 |
20190365538 | Chambers | Dec 2019 | A1 |
20200000592 | Lee | Jan 2020 | A1 |
20200030507 | Higgins | Jan 2020 | A1 |
20200069423 | Peterson | Mar 2020 | A1 |
20200100897 | McLean | Apr 2020 | A1 |
20200113682 | Chang | Apr 2020 | A1 |
20200129294 | Hariton | Apr 2020 | A1 |
20200155306 | Bonyuet | May 2020 | A1 |
20200163765 | Christianson | May 2020 | A1 |
20200179111 | Vidlund | Jun 2020 | A1 |
20200179115 | Chambers | Jun 2020 | A1 |
20200188101 | Chambers | Jun 2020 | A1 |
20200222179 | Chambers | Jul 2020 | A1 |
20200253733 | Subramanian | Aug 2020 | A1 |
20200261219 | Kumar | Aug 2020 | A1 |
20200276013 | Chambers | Sep 2020 | A1 |
20200315678 | Mazzio et al. | Oct 2020 | A1 |
20200337765 | Smith | Oct 2020 | A1 |
20200368023 | Kheradvar | Nov 2020 | A1 |
20200375733 | Diedering | Dec 2020 | A1 |
20210236274 | Benson | Aug 2021 | A1 |
20210236276 | Diedering | Aug 2021 | A1 |
20210275297 | Berndt | Sep 2021 | A1 |
20210275301 | Kumar | Sep 2021 | A1 |
20210290383 | Chambers | Sep 2021 | A1 |
20220031451 | Spence | Feb 2022 | A1 |
20220338979 | Benichou | Oct 2022 | A1 |
20230218397 | Chambers et al. | Jul 2023 | A1 |
Number | Date | Country |
---|---|---|
2014203064 | Jun 2015 | AU |
2015230879 | Oct 2015 | AU |
2013201970 | Mar 2016 | AU |
2820130 | Sep 2006 | CN |
100413471 | Aug 2008 | CN |
100444811 | Dec 2008 | CN |
101953723 | Jan 2011 | CN |
101953724 | Jan 2011 | CN |
101953725 | Jan 2011 | CN |
101953728 | Jan 2011 | CN |
101953729 | Jan 2011 | CN |
101961269 | Feb 2011 | CN |
101961273 | Feb 2011 | CN |
102036622 | Apr 2011 | CN |
201870772 | Jun 2011 | CN |
203290964 | Nov 2013 | CN |
103431931 | Dec 2013 | CN |
203379235 | Jan 2014 | CN |
103598939 | Feb 2014 | CN |
103610520 | Mar 2014 | CN |
203619728 | Jun 2014 | CN |
203677318 | Jul 2014 | CN |
104287804 | Jan 2015 | CN |
104352261 | Feb 2015 | CN |
204133530 | Feb 2015 | CN |
204181679 | Mar 2015 | CN |
204246182 | Apr 2015 | CN |
204318826 | May 2015 | CN |
104688292 | Jun 2015 | CN |
102985033 | Aug 2015 | CN |
204581598 | Aug 2015 | CN |
204581599 | Aug 2015 | CN |
204683686 | Oct 2015 | CN |
105596052 | May 2016 | CN |
105615936 | Jun 2016 | CN |
205286438 | Jun 2016 | CN |
108348270 | Jul 2018 | CN |
107252363 | Apr 2020 | CN |
106913909 | Sep 2020 | CN |
107007887 | Oct 2020 | CN |
102010021345 | Nov 2011 | DE |
2596754 | May 2013 | EP |
2 810 620 | Dec 2014 | EP |
2967858 | Jan 2016 | EP |
2982336 | Feb 2016 | EP |
2967845 | Aug 2018 | EP |
2950752 | Jul 2022 | EP |
2016531722 | Oct 2016 | JP |
WO1995016476 | Jun 1995 | WO |
WO2009127973 | Oct 2009 | WO |
WO2014210299 | Dec 2014 | WO |
WO2015004173 | Jan 2015 | WO |
WO2016100806 | Jun 2016 | WO |
Entry |
---|
International Search Report and Written Opinion issued in related PCT application No. PCT/US2019/049410, dated Dec. 13, 2019. |
Notification Concerning Transmittal of International Preilminary Report on Patentability and International Preliminary Report on Patentability issued in PCT application No. PCT/US2019/049410, dated Mar. 18, 2021. |
Extended Search Report issued by the European Patent Office for application No. 19857502.9, date of completion of search Apr. 20, 2022, 7 pages. |
The Alta Valve™. Attributes, Challenges, and Future Programs, Dr. Philippe Genereux, MD, Jun. 22, 2018, 15 pages. |
4C Medical's Alta Valve: The First-in-Human Experience, Joep Rodes-Cabau, MD, Sep. 21, 2018, 43 pages, 80 pages, and 16 pages. |
Ferreira-Neto et al., “Transcatheter Mitral Valve Replacement With a New Supra-Annular Valve-First-in-Human Experience with the AltaValve System,” https://doi.org/10.1016/j.jcin.2018.10.056, By The American College of Cardiology Foundation Published by Elsevier, Jan. 28, 2019. |
European Office Action in Application No. 19857502.9, dated Jun. 5, 2022, 7 pages. |
Indian Office Action in Application No. 202137014456, dated Dec. 6, 2022, 7 pages. |
Japanese Office Action in Application No. 2021-512383, dated Aug. 17, 2021, 8 pages. |
Japanese Office Action in Application No. 2021-512383, dated Apr. 7, 2022, 4 pages. |
Japanese Decision of Rejection in Application No. 2021-512383, dated Jan. 4, 2023, 6 pages. |
Taiwanese Office Action in Application No. 108131952, dated Oct. 6, 2022, 10 pages. |
International Search Report and Written Opinion in Application No. PCT/US2019/049410, dated Dec. 13, 2019, 12 pages. |
Chinese Office Action in Application No. 2019800729970.2, dated Jul. 21, 2023, 9 pages. |
Number | Date | Country | |
---|---|---|---|
20200069449 A1 | Mar 2020 | US |
Number | Date | Country | |
---|---|---|---|
62726602 | Sep 2018 | US |