This invention relates to a mold for stent retention, in particular a split mold for stent retention, and a method for stent retention.
A typical stent is a cylindrically shaped device, which holds open and sometimes expands a segment of a blood vessel or other anatomical lumen such as urinary tracts and bile ducts. Stents are often used in the treatment of atherosclerotic stenosis in blood vessels. “Stenosis” refers to a narrowing or constriction of the diameter of a bodily passage or orifice. In such treatments, stents reinforce body vessels and prevent restenosis following angioplasty. “Restenosis” refers to the reoccurrence of stenosis in a blood vessel or heart valve after it has been subjected to angioplasty or valvuloplasty.
A stent is typically composed of scaffolding that includes a pattern or network of interconnecting structural elements often referred to in the art as struts or bar arms. The scaffolding can be formed from wires, tubes, or sheets of material rolled into a cylindrical shape.
In the case of a balloon expandable stent, the stent is mounted on a balloon connected to a catheter. Mounting the stent on the balloon typically is a two-step process. First, the stent is compressed or crimped onto the balloon. Second, the compressed or crimped stent is retained or secured on the balloon. The retained stent should have a sufficiently small diameter so that it can be transported through the narrow passages of blood vessels. The stent must be secured on the balloon during delivery until it is deployed at an implant or treatment site within a vessel in the body of a patient. The stent is then expanded by inflating the balloon. “Delivery” refers to introducing and transporting the crimped stent through a bodily lumen to the treatment site in a vessel. “Deployment” corresponds to the expanding of the crimped stent within the lumen at the treatment site. Delivery and deployment of a stent are accomplished by positioning the stent about one end of a catheter, inserting the end of the catheter through the skin into a bodily lumen, advancing the catheter in the bodily lumen to a desired treatment location, inflating the stent at the treatment location, and removing the catheter from the lumen by deflating the balloon.
The stent should be firmly secured to the balloon to avoid detachment of the stent before it is delivered and deployed in the lumen of the patient. Detachment of a stent from the balloon during delivery and deployment can result in medical complications. A lost stent can act as an embolus that can create a thrombosis and require surgical intervention. For this reason, a stent must be securely attached to the catheter. Stent retention is greatly facilitated by protrusion of the balloon into the interstitial spaces or gaps between stent struts in a stent pattern. Preferably, a portion of a balloon extends from the interior of the stent through a stent gap to the exterior of the stent. In other words, the portion of the balloon preferably extends beyond the outer surface of the stent.
One method of retaining or securing a stent on a balloon is to use a split mold. The split mold includes two half-molds that together form a cylindrical chamber for accommodating the stent and balloon. The split mold can be opened by separating the half-molds from each other so that the stent and balloon can be placed in the chamber. Then the half-molds can be pressed together to secure the stent and balloon in the chamber. Next, the balloon is inflated with a pressurized gas to press portions of the balloon into the spaces or gaps between stent struts to retain the stent on the balloon.
A disadvantage of the conventional split mold is that the balloon cannot extend through the gaps of the stent and beyond the outer surface of the stent. The cylindrical chamber's surface, which supports the stent during balloon inflation, presses against the outer surface of the stent when the balloon is inflated, preventing the balloon from extending beyond the outer surface of the stent to enhance stent retention.
The present invention overcomes the above disadvantage of the conventional split mold. The present invention provides protrusions on the stent supporting surfaces of a split mold, which allow the balloon to extend through the gaps of the stent and beyond the outer surface of the stent to enhance stent retention.
According to a first aspect of the invention, a stent retention mold includes two half-molds, each half-mold including a stent supporting surface, and a plurality of protrusions disposed on at least one of the stent supporting surfaces.
According to a second aspect of the invention, a stent retention method includes retaining a stent to a balloon using a split mold that includes a stent supporting surface having a plurality of protrusions, so that a portion of the balloon extends through a gap of the stent into a space between two protrusions on the stent supporting surface. The step of retaining may include inflating the balloon to press the portion of the balloon through the gap of the stent into the space between two protrusions on the stent supporting surface. Before the balloon is inflated, it may be desirable to align a protrusion pattern of the split mold with a strut pattern of the stent.
The stent retention method may also include placing the stent between the two half-molds. The method may additionally include separating the half-molds from each other and removing the retained stent from the split mold.
In one embodiment according to the first or second aspect of the invention, the protrusions may include a plurality of islands. Preferably, each island is less than or equal to 3 mm in length.
In another embodiment according to the first or second aspect of the invention, the protrusions may include a plurality of circumferential rings. Preferably, each ring is less than or equal to 0.5 mm in width.
In a further embodiment according to the first or second aspect of the invention, the protrusions may include a plurality of longitudinal ridges. Preferably, each ridge is less than or equal to 0.5 mm in width.
In a still further embodiment according to the first or second aspect of the invention, the protrusions may form a pattern that matches at least a portion of the strut pattern of a stent to be retained. Preferably, the width of each ridge is less than or equal to two times of the width of a stent strut.
Those of ordinary skill in the art will realize that the following description of the invention is illustrative only and not in any way limiting. Other embodiments of the invention will readily suggest themselves to such skilled persons based on the disclosure herein. All such embodiments are within the scope of this invention.
The stent, as fabricated, is uncrimped and may have an outside diameter that is typically from about 1 mm and to about 4 mm. When a stent is crimped, the structural elements deform allowing the stent to decrease in diameter. The deformation occurs primarily at the bending elements. The balloon, when mounted on a catheter, may have an outside diameter of between about 0.7 mm and 0.8 mm. An outside diameter of a crimped stent may be approximately the same as the outside diameter of the balloon.
A stent can be made from one or more suitable materials. For example, a stent may be made from a metallic material. Alternatively, a stent may be made from a polymeric material. A stent material may be biostable, bioabsorbable, biodegradable or bioerodable.
In an embodiment of the present invention, a split mold for retaining a stent to a balloon includes two half-molds.
The half-mold 20 shown in
The protrusions 24 on the stent supporting surface 22 are circumferential rings 24 arranged along the longitudinal axis of the stent supporting surface 22. Preferably, the space between two adjacent rings 24 is sufficiently large to accommodate the portion of the balloon protruding beyond the outer surface of the stent. Since the space is defined by the height of the rings 24 and the distance between two adjacent rings 24, the height and distance preferably are sufficiently large to accommodate a protruding portion of the balloon. In some embodiments, the height of the rings 24 may be equal to or less than 0.1 mm, equal to or less than 0.3 mm, or equal to or less than 0.5 mm. The distance between two adjacent rings 24 may be between the width of the ring and 2 mm. Each ring 24 may have any suitable cross-section. For example, the cross-section of the rings 24 may be semicircular, square, or rectangular.
To use a split mode of the present invention to retain a stent to a balloon, a crimped stent mounted on a balloon is first placed between the stent supporting surfaces of the split mold. The protrusion pattern of the split mold may be aligned with the strut pattern of the stent. The half-molds of the split mold are then pressed against each other to form a chamber to contain the stent and balloon. Then the balloon is inflated with a pressurized gas to press portions of the balloon through the gaps of the stent, beyond the outer surface of the stent, and into the spaces between two protrusions on the stent supporting surfaces. As shown in
While particular embodiments of the present invention have been shown and described, it will be obvious to those skilled in the art that changes and modifications can be made without departing from this invention in its broader aspects.
Number | Name | Date | Kind |
---|---|---|---|
4130617 | Wallace | Dec 1978 | A |
4264294 | Ruiz | Apr 1981 | A |
5630830 | Verbeek | May 1997 | A |
5653691 | Rupp et al. | Aug 1997 | A |
5672169 | Verbeek | Sep 1997 | A |
5759474 | Rupp et al. | Jun 1998 | A |
6077273 | Euteneuer et al. | Jun 2000 | A |
6290485 | Wang | Sep 2001 | B1 |
6387117 | Arnold et al. | May 2002 | B1 |
6464720 | Boatman et al. | Oct 2002 | B2 |
6481262 | Ching et al. | Nov 2002 | B2 |
6540774 | Cox | Apr 2003 | B1 |
6561788 | Gaudoin | May 2003 | B1 |
6569193 | Cox et al. | May 2003 | B1 |
6676697 | Richter | Jan 2004 | B1 |
6726713 | Schaldach et al. | Apr 2004 | B2 |
6776604 | Chobotov et al. | Aug 2004 | B1 |
6911041 | Zscheeg | Jun 2005 | B1 |
6948223 | Shortt | Sep 2005 | B2 |
7055237 | Thomas | Jun 2006 | B2 |
7097440 | Papp et al. | Aug 2006 | B2 |
7381048 | Brown et al. | Jun 2008 | B2 |
7708548 | Brown et al. | May 2010 | B2 |
20020077690 | Wang | Jun 2002 | A1 |
20020099406 | St. Germain | Jul 2002 | A1 |
20030208254 | Shortt | Nov 2003 | A1 |
20040236405 | Kula et al. | Nov 2004 | A1 |
20040249435 | Andreas | Dec 2004 | A1 |
Number | Date | Country |
---|---|---|
19746882 | Apr 1999 | DE |
WO 9740780 | Nov 1997 | WO |
WO 0049973 | Aug 2000 | WO |
WO 02053066 | Jul 2002 | WO |
WO 02066095 | Aug 2002 | WO |
Number | Date | Country | |
---|---|---|---|
20080001328 A1 | Jan 2008 | US |