The present invention relates to the field of medical stents and, more particularly, to a stent for the treatment of lesions and other problems in or near a vessel bifurcation.
A stent is an endoprosthesis scaffold or other device that typically is intraluminally placed or implanted within a vein, artery, or other tubular body organ for treating an occlusion, stenosis, aneurysm, collapse, dissection, or weakened, diseased, or abnormally dilated vessel or vessel wall, by expanding the vessel or by reinforcing the vessel wall. In particular, stents are quite commonly implanted into the coronary, cardiac, pulmonary, neurovascular, peripheral vascular, renal, gastrointestinal and reproductive systems, and have been successfully implanted in the urinary tract, the bile duct, the esophagus, the tracheo-bronchial tree and the brain, to reinforce these body organs. Two important current widespread applications for stents are for improving angioplasty results by preventing elastic recoil and remodeling of the vessel wall and for treating dissections in blood vessel walls caused by balloon angioplasty of coronary arteries, as well as peripheral arteries. Conventional stents have been used for treating more complex vascular problems, such as lesions at or near bifurcation points in the vascular system, where a secondary artery branches out of a larger, main artery, with limited success rates.
Conventional stent technology is relatively well developed. Conventional stent designs typically feature a straight tubular, single type cellular structure, configuration, or pattern that is repetitive through translation along the longitudinal axis. In many stent designs, the repeating structure, configuration, or pattern has strut and connecting members that impede blood flow at bifurcations. Furthermore, the configuration of struts and connecting members may obstruct the use of post-operative devices to treat a branch vessel in the region of a vessel bifurcation. For example, deployment of a first stent in the main lumen may prevent a physician from inserting a branch stent through the ostium of a branch vessel of a vessel bifurcation in cases where treatment of the main vessel is suboptimal because of displaced diseased tissue (for example, due to plaque shifting or “snow plowing”), occlusion, vessel spasm, dissection with or without intimal flaps, thrombosis, embolism, and/or other vascular diseases. As a result, the physician may choose either to insert a stent into the branch in cases in which such additional treatment may otherwise be unnecessary, or alternatively the physician may elect not to treat, or to “sacrifice”, such side lumen. Accordingly, the use of regular stents to treat diseased vessels at or near a vessel bifurcation may create a risk of compromising the benefit of stent usage to the patient after the initial procedure and in future procedures on the main vessel, branch vessels, and/or the bifurcation point.
A regular stent is designed in view of conflicting considerations of coverage versus access. For example, to promote coverage, the cell structure size of the stent may be minimized for optimally supporting a vessel wall, thereby preventing or reducing tissue prolapse. The cell size of a stent may be maximized for providing accessibility of blood flow and of a potentially future implanted branch stent to branch vessels, thereby preventing “stent jailing”, and minimizing the amount of implanted material. Regular stent design has typically compromised one consideration for the other in an attempt to address both. Problems the present inventors observed involving side branch jailing, fear of plaque shifting, total occlusion, and difficulty of the procedure are continuing to drive the present inventors' into the development of novel, non-conventional or special stents, which are easier, safer, and more reliable to use for treating the above-indicated variety of vascular disorders.
Although conventional stents are routinely used in clinical procedures, clinical data shows that these stents are not capable of completely preventing in-stent restenosis (ISR) or restenosis caused by intimal hyperplasia. In-stent restenosis is the reoccurrence of the narrowing or blockage of an artery in the area covered by the stent following stent implantation. Patients treated with coronary stents can suffer from in-stent restenosis.
Many pharmacological attempts have been made to reduce the amount of restenosis caused by intimal hyperplasia. Many of these attempts have dealt with the systemic delivery of drugs via oral or intravascular introduction. However, success with the systemic approach has been limited.
Systemic delivery of drugs is inherently limited since it is difficult to achieve constant drug delivery to the inflicted region and since systemically administered drugs often cycle through concentration peaks and valleys, resulting in time periods of toxicity and ineffectiveness. Therefore, to be effective, anti-restenosis drugs should be delivered in a localized manner.
One approach for localized drug delivery utilizes stents as delivery vehicles. For example, stents seeded with transfected endothelial cells expressing bacterial beta-galactosidase or human tissue-type plasminogen activator were utilized as therapeutic protein delivery vehicles. See, e.g., Dichek, D. A. et al., “Seeding of Intravascular Stents With Genetically Engineered Endothelial Cells”, Circulation, 80: 1347-1353 (1989).
U.S. Pat. No. 5,679,400, International Patent Application WO 91/12779, entitled “Intraluminal Drug Eluting Prosthesis,” and International Patent Application WO 90/13332, entitled “Stent With Sustained Drug Delivery” disclose stent devices capable of delivering antiplatelet agents, anticoagulant agents, antimigratory agents, antimetabolic agents, and other anti-restenosis drugs.
U.S. Pat. Nos. 6,273,913, 6,383,215, 6,258,121, 6,231,600, 5,837,008, 5,824,048, 5,679,400 and 5,609,629 teach stents coated with various pharmaceutical agents such as rapamycin, 17-beta-estradiol, taxol and dexamethasone.
Although prior art references disclose numerous stent configurations coated with one or more distinct anti-restenosis agents, they do not disclose the inventive stent design of the present application. There is, therefore, a need for a stent design that can effectively provide ostial branch support in a vessel bifurcation and effectively act as a delivery vehicle for drugs useful in preventing restenosis. This is particularly true in complicated cases, such as lesions located at a bifurcation.
The present invention is directed to a stent for use in a bifurcated body lumen having a main branch and a side branch. The stent comprises a radially expandable generally tubular stent body having proximal and distal opposing ends with a body wall having a surface extending therebetween. The surface has a geometrical configuration defining a first pattern, and the first pattern has first pattern struts and connectors arranged in a predetermined configuration. The stent also comprises a branch portion comprised of a second pattern, wherein the branch portion is at least partially detachable from the stent body.
In one embodiment, the second pattern is configured according to the first pattern having at least one absent connector, and in another embodiment, the second pattern has a plurality of absent connectors. The second pattern may have second pattern struts, and the second pattern struts can be more densely packed than the first pattern struts.
The invention is herein described, by way of example only, with reference to the accompanying drawings. With specific reference now to the drawings in detail, it is stressed that the particulars shown are by way of example and for purposes of illustrative discussion of the preferred embodiments of the present invention only, and are presented to provide what is believed to be the most useful and readily understood description of the principles and conceptual aspects of the invention. In this regard, no attempt is made to show structural details of the invention in more detail than is necessary for a fundamental understanding of the invention, the description taken with the drawings making apparent to those skilled in the art how the invention may be embodied in practice.
In the drawings:
The present invention relates to stents for placement at vessel bifurcations and are generally configured to at least partially cover a portion of a branch vessel as well as a main vessel. Referring to
Prior attempts at relieving main vessel 2 and branch vessel 4 from obstruction 6, such as the one depicted in
Referring now to
Stent 12 further includes a branch portion 30 located at some point along the length of stent 12. Branch portion 30 comprises a section or portion of stent wall 14 that is configured to extend into a branch vessel in a vessel bifurcation. In general, branch portion 30 is configured to be movable from an unextended position to an extended position. In the unextended position, branch portion 30 is disposed in the volume defined by the unexpanded stent 12, that is, the branch portion 30 does not protrude radially from stent wall 14. In the extended position, the branch portion 30 extends outwardly from stent wall 14 and branch portion 30 is extended into the branch vessel. As best seen in
As best seen in
When stent 12 is expanded, as shown in
Various alternative embodiments provide varying geometries of branch portion 30. For example, branch ring 32 may vary with respect to circumferential rings 28, and branch ring struts 36 may have different configurations than struts 24. In one alternate embodiment, branch ring struts 36 are longer than struts 24. In another embodiment, branch ring struts 36 are more closely packed circumferentially, resulting in a greater number of branch ring struts 36 per area within branch ring 32 as compared to circumferential rings 28. In another embodiment, branch ring struts 36 may be thinner than struts 24. In yet another embodiment, branch ring struts 36 may be made of a different material than struts 24.
Referring to
Referring to
Referring to
Referring to
Referring to
Referring now to
Referring to
Referring to
In this embodiment, when stent 69 is expanded, as shown in
Referring to
Referring to
As shown in
Referring again to
Referring now to
Referring now to
Referring to
Referring to
In a preferred embodiment, structural support members 224 may be provided as a transition between the main stent body 14 and branch portion 30. Support members 224 comprise generally elliptical half portions positioned in an opposing relation with a space 246 therebetween. Support members 224 surround a two concentric ring 228, 230 structure and a central branch opening 232. Branch opening 232 provides access to the side branch vessel when stent 220 is in the unexpanded condition and a side sheath may pass through opening 232. Rings 228 and 230 are interconnected by a plurality of inner connectors 234. Outer ring 230 is connected to structural support members 224 by a plurality of outer connectors 236. Rings 228, 230 are generally curvilinear members and include undulation petals, prongs, or peaks 238. In this embodiment outer ring 230 includes a greater number of peaks than inner ring 228. Preferably eight outer connectors and eight inner connectors interconnect support members 224 and rings 228, 230. In this embodiment, inner and outer connectors 234, 236 are generally straight members and are preferably aligned radially to extend toward the center of branch portion 30. In operation, the intersection of outer connectors 236 with support members 224 form a pivot point about which petals 238 may unfold or pivot outward into the side branch vessel. In a preferred embodiment, the generally straight inner and outer connectors pivot together such that the petals 238 open like a flower.
Referring to
In all of the above embodiments, the branch portion 30 protrudes into the branch vessel when the stent is fully expanded. The branch portion upon expansion can extend into the branch vessel in different lengths depending upon the application. The amount of extension may vary in a range between about 0.1-10.0 mm. In one preferred embodiment, the length of extension is 1-3 mm. In another preferred embodiment, the length of extension is approximately 2 mm. In alternative embodiments, the amount of extension into the branch vessel may be variable for different circumferential segments of branch portion 30. As shown in each of the embodiments, the branch portion is approximately 2.5 mm in width and about 2.5-3.0 mm in length. However, the branch portion can be dimensioned to accommodate varying size branch vessels. The branch portion can be formed of any tubular shape to accommodate the branch vessel, including, oval or circular, for example.
In general, a wide variety of delivery systems and deployment methods may be used with the aforementioned stent embodiments. For example, a catheter system may be used for insertion and the stent may be balloon expandable or self-expandable, or the stent may be balloon expandable and the branch portion self-expandable, or vice versa. Once the stent is in position in the main vessel and the branch portion is aligned with the side branch the stent can be expanded. If the stent is balloon expandable, the stent may be expanded with a single expansion or multiple expansions. In particular, the stent can be deployed on a stent delivery system having a balloon catheter and side sheath as described, for example, in U.S. Pat. Nos. 6,325,826 and 6,210,429, the entire contents of which are incorporated herein by reference. In one preferred embodiment, a kissing balloon technique may be used, whereby one balloon is configured to expand the stent and the other balloon is configured to extend branch portion 30. After the main portion of the stent is expanded in the main vessel, the stent delivery system may be removed and a second balloon may be passed through the side hole in the branch portion and expanded to expand the branch portion of the stent. In an alternate embodiment, the same balloon may be inserted in the main vessel inflated, deflated, retracted and inserted into the branch vessel, and then reinflated to expand branch portion 30 and cause it to protrude into the branch vessel. Alternatively, the stent can be delivered on two balloons and the main portion and the branch portion can be expanded simultaneously. As needed, the branch portion can be further expanded with another balloon or balloons. Yet another alternative is to use a specially shaped balloon that is capable of expanding the main and branch portions simultaneously. The stent can also be deployed with other types of stent delivery systems. Alternatively, the stent, or portions of the stent, can be made of a self-expanding material, and expansion may be accomplished by using self-expanding materials for the stent or at least branch portion 30 thereof, such as Nitinol, Cobalt Chromium, or by using other memory alloys as are well known in the prior art.
The construction and operation of catheters suitable for the purpose of the present invention are further described in U.S. patent application Ser. No. 09/663,111, filed Sep. 15, 2000, which is a continuation-in-part of U.S. patent application Ser. No. 09/614,472, filed Jul. 11, 2000, which is a continuation-in-part of U.S. patent application Ser. No. 09/325,996, filed Jun. 4, 1999, and 09/455,299, filed Dec. 6, 1999, the disclosures of all of which are incorporated herein by reference. It should be noted that the catheters taught in the above applications are exemplary, and that other catheters that are suitable with the stents of the subject application are included within the scope of the present application. In alternative embodiments, catheters without balloons may be used. For example, if the stent is comprised of memory alloy such as Nitinol or Cobalt Chromium, or is a mechanically self-expanding stent, balloons are not necessarily included on the catheters. Furthermore, any other catheter, including ones that are not disclosed herein, may be used to position stents according to the present invention.
Referring now to
Referring now to
Referring to
In one embodiment, the balloon may be constructed of composite materials. For example, a combination of elastomeric and semi to non compliant materials such as urethane, silicone, and latex, (Elastomeric) polyethylene hytrel pebax polyarylethertherketone, polyoxymethylene, polyamide, polyester thermoplastic polyetheretherketone and polypropylene (semi to non compliant), may be used. The balloon may also be constructed by combining the above-mentioned materials with woven textiles such as Kevlar, silk cotton, wool, etc. In this construction, a textile is wound or woven onto a rod that has the shape of the desired herniated balloon and the polymer is then extruded or dip coated over the rod. The composite is cured, heat set or adhesively fused together. The rod is then removed and the remaining shape is a herniated balloon. The balloon can also be constructed by adding an appendage to a conventional balloon by using a molded collar or adhesively attaching an object to the surface of the balloon or by using a mound of adhesive to create the herniation or protruding portion. In an alternate embodiment, the balloon can be constructed by molding three small balloons and attaching them in tandem with the center balloon being round in shape. The balloon would share a common inflation port. When the balloon is inflated the center balloon becomes the herniation.
Referring again to
In an alternative method, the stent can be delivered using a herniated balloon and a dual lumen delivery system. This system can include a main catheter defining a first lumen with concentric guidewire lumen and balloon inflation lumen, a herniated balloon, as described above, on the main catheter, a side sheath with a guidewire lumen, and a stent. The stent is crimped over the main catheter, balloon and side sheath with the side sheath exiting the stent through a branch opening or side hole. The distal end of the side sheath is used for aligning the stent branch opening with the branch vessel 4.
In another embodiment, the appendage or herniation may be located on a second catheter or side sheath of the delivery system, such as the system 138 depicted in
Referring to
Stent 312 further includes a branch portion 330 located at some point along the length of stent 312. As described in previous embodiments, branch portion 330 comprises a section or portion of stent wall 314 that is configured to extend into the ostium of a branch vessel in a vessel bifurcation. In general, branch portion 330 is configured to be movable from an unextended position to an extended position. In the unextended position, branch portion 330 is disposed in the volume defined by the unexpanded stent 312, that is, the branch portion 330 does not protrude radially from stent wall 314. In the extended position, the branch portion 330 extends outwardly from stent wall 314 and branch portion 330 is extended into the branch vessel. As best seen in
As best seen in
Referring now to
Referring to
Referring to
Referring to
Referring to
As shown in
The stent can also be described as comprising a branch band 834 that includes the branch portion 830. The branch band 834 comprises a non-split portion wherein the struts and turns do not split, and a split portion 830 wherein the struts comprise split struts and the turns comprise split turns. In an unextended configuration, the split portion 830 defines a serpentine gap within the branch band. The split gap is entirely bounded by said branch band 834, and is not bounded by any connectors 26 that extend between adjacent serpentine bands 28.
As shown in
Referring to
The stents described herein may have one or more drugs coated thereon. An exemplary drug coating is described in WO 04/009771. One particular application for the use of a stent with a branch portion 30, 330, 430, 530, 630, 630, 830, 930, 1030 described above is for localized drug delivery.
One or more drug coatings may be present at any location in or on the walls of stents according to the present invention, including in or on the wall of the main vessel portion of the stents, or in or on the wall of the branch portion of stents. The position of depot(s) depends on desired site(s) of highest concentration of drug delivery.
Thus, the length, width, and thickness of a depot are variables that can be tailored according to the desired drug distribution and the size of the main and branch vessels to be treated. For example, a depot that is thick enough to impede fluid flow in a narrow vessel may be an optimal thickness for a larger vessel.
Stents according to the present invention can be used as vehicles for localized delivery of drugs to cells of the walls of both the main and branch vessels at the location of the stent. Drugs that are particularly suitable for treatment of cells in the immediate area of the stent include anti-restenosis and anti-thrombotic drugs. If desired, different concentrations of drugs, or different drugs, may be included in depot(s) located in or on different areas of the stent walls. For example, it may be desirable to treat the cells of the main vessel with a first drug, combination of drugs, and/or concentration of drug(s) and to treat the cells of the branch vessel with a second, different, drug, combination of drugs, and/or concentration of drug(s). As another example, it may be desirable to maintain a high concentration of anti-restenosis drug(s) near the bifurcation of the vessels. As yet another non-limiting example, it may be desirable to maintain a high concentration of anti-restenosis drug(s) at the three open ends (two on the main portion and one on the branch portion) of the stent. It will be appreciated by one skilled in the art upon reading the present disclosure that many combinations of two or more depots are possible within the spirit and scope of the present invention.
The present invention also provides kits comprising a stent or stents according to the present invention. In addition to a stent or stents, a kit according to the present invention may include, for example, delivery catheter(s), balloon(s), and/or instructions for use. In kits according to the present invention, the stent(s) may be mounted in or on a balloon or catheter. Alternatively, the stent(s) may be separate from the balloon or catheter and may be mounted therein or thereon prior to use.
While the invention has been described in conjunction with specific embodiments and examples thereof, it is evident that many alternatives, modifications and variations will be apparent to those skilled in the art upon reading the present disclosure. Accordingly, it is intended to embrace all such alternatives, modifications and variations that fall within the spirit and broad scope of the appended claims.
The present application is a continuation of and claims the benefit of U.S. application Ser. No. 11/145,223, filed Jun. 6, 2005, now U.S. Pat. No. 7,578,841, the entire contents of which is hereby incorporated herein by reference. U.S. application Ser. No. 11/145,223 claims the benefit of U.S. Provisional Application No. 60/577,579, filed Jun. 8, 2004. U.S. application Ser. No. 11/145,223 is also a continuation-in-part of U.S. patent application Ser. No. 10/644,550, filed Aug. 21, 2003, which claims the benefit of U.S. Provisional Application No. 60/404,756, filed Aug. 21, 2002, U.S. Provisional Application No. 60/487,226, filed Jul. 16, 2003, and U.S. Provisional Application No. 60/488,006, filed Jul. 18, 2003. The entire contents of the above references are incorporated herein by reference. U.S. application Ser. No. 11/145,223 is also a continuation-in-part of U.S. patent application Ser. No. 10/683,165, filed Oct. 10, 2003, which is a continuation of U.S. patent application Ser. No. 09/963,114, filed Sep. 24, 2001, now U.S. Pat. No. 6,706,062, issued Mar. 16, 2004. The entire contents of the above references are incorporated herein by reference.
Number | Name | Date | Kind |
---|---|---|---|
4309994 | Grunwald | Jan 1982 | A |
4769005 | Ginsburg et al. | Sep 1988 | A |
4774949 | Fogarty | Oct 1988 | A |
4896670 | Crittenden | Jan 1990 | A |
4905667 | Foerster et al. | Mar 1990 | A |
4906244 | Pinchuk et al. | Mar 1990 | A |
4935190 | Tennerstedt | Jun 1990 | A |
4994071 | MacGregor | Feb 1991 | A |
5037392 | Hillstead | Aug 1991 | A |
5053007 | Euteneuer | Oct 1991 | A |
5087246 | Smith | Feb 1992 | A |
5112900 | Buddenhagen et al. | May 1992 | A |
5147302 | Euteneuer et al. | Sep 1992 | A |
5163989 | Campbell et al. | Nov 1992 | A |
5209799 | Vigil | May 1993 | A |
5226887 | Farr et al. | Jul 1993 | A |
5306246 | Sahatjian et al. | Apr 1994 | A |
5318587 | Davey | Jun 1994 | A |
5342307 | Euteneuer et al. | Aug 1994 | A |
5342387 | Summers | Aug 1994 | A |
5348538 | Wang et al. | Sep 1994 | A |
5350361 | Tsukashima et al. | Sep 1994 | A |
5358475 | Mares et al. | Oct 1994 | A |
5387235 | Chuter | Feb 1995 | A |
5403340 | Wang et al. | Apr 1995 | A |
5447497 | Sogard et al. | Sep 1995 | A |
5456666 | Campbell et al. | Oct 1995 | A |
5456712 | Maginot | Oct 1995 | A |
5458572 | Campbell et al. | Oct 1995 | A |
5476471 | Shifrin et al. | Dec 1995 | A |
5478319 | Campbell et al. | Dec 1995 | A |
5487730 | Marcadis et al. | Jan 1996 | A |
5523092 | Hanson et al. | Jun 1996 | A |
5549552 | Peters et al. | Aug 1996 | A |
5550180 | Elsik et al. | Aug 1996 | A |
5556383 | Wang et al. | Sep 1996 | A |
5591228 | Edoga | Jan 1997 | A |
5607444 | Lam | Mar 1997 | A |
5609605 | Marshall et al. | Mar 1997 | A |
5609627 | Goicoechea et al. | Mar 1997 | A |
5613980 | Chauhan | Mar 1997 | A |
5617878 | Taheri | Apr 1997 | A |
5632762 | Myler | May 1997 | A |
5632763 | Glastra | May 1997 | A |
5632772 | Alcime et al. | May 1997 | A |
5636641 | Fariabi | Jun 1997 | A |
5669924 | Shaknovich | Sep 1997 | A |
5669932 | Fischell et al. | Sep 1997 | A |
5676697 | McDonald | Oct 1997 | A |
5683450 | Goicoechea et al. | Nov 1997 | A |
5697971 | Fischell et al. | Dec 1997 | A |
5707348 | Krogh | Jan 1998 | A |
5709713 | Evans et al. | Jan 1998 | A |
5718684 | Gupta | Feb 1998 | A |
5718724 | Goicoechea et al. | Feb 1998 | A |
5720735 | Dorros | Feb 1998 | A |
5746745 | Abele et al. | May 1998 | A |
5749825 | Fischell et al. | May 1998 | A |
5749890 | Shaknovich | May 1998 | A |
5755734 | Richter et al. | May 1998 | A |
5755735 | Richter et al. | May 1998 | A |
5755771 | Penn et al. | May 1998 | A |
5755773 | Evans et al. | May 1998 | A |
5755778 | Kleshinski | May 1998 | A |
5782906 | Marshall et al. | Jul 1998 | A |
5800520 | Fogarty et al. | Sep 1998 | A |
5810767 | Klein | Sep 1998 | A |
5824036 | Lauterjung | Oct 1998 | A |
5824040 | Cox et al. | Oct 1998 | A |
5827320 | Richter et al. | Oct 1998 | A |
5830182 | Wang et al. | Nov 1998 | A |
5833657 | Reinhardt et al. | Nov 1998 | A |
5843172 | Yan | Dec 1998 | A |
5851464 | Davila et al. | Dec 1998 | A |
5868777 | Lam | Feb 1999 | A |
5882334 | Sepetka et al. | Mar 1999 | A |
5891108 | Leone et al. | Apr 1999 | A |
5893887 | Jayaraman | Apr 1999 | A |
5906640 | Penn et al. | May 1999 | A |
5922020 | Klein et al. | Jul 1999 | A |
5922021 | Jang | Jul 1999 | A |
5951941 | Wang et al. | Sep 1999 | A |
5961548 | Shmulewitz | Oct 1999 | A |
5972017 | Berg et al. | Oct 1999 | A |
5972027 | Johnson | Oct 1999 | A |
6013054 | Jiun Yan | Jan 2000 | A |
6013055 | Bampos et al. | Jan 2000 | A |
6013091 | Ley et al. | Jan 2000 | A |
6017324 | Tu et al. | Jan 2000 | A |
6017363 | Hojeibane | Jan 2000 | A |
6030414 | Taheri | Feb 2000 | A |
6033380 | Butaric et al. | Mar 2000 | A |
6033433 | Ehr et al. | Mar 2000 | A |
6033434 | Borghi | Mar 2000 | A |
6033435 | Penn et al. | Mar 2000 | A |
6048361 | Von Oepen | Apr 2000 | A |
6056775 | Borghi et al. | May 2000 | A |
6059824 | Taheri | May 2000 | A |
6068655 | Seguin et al. | May 2000 | A |
6071285 | Lashinski et al. | Jun 2000 | A |
6071305 | Brown et al. | Jun 2000 | A |
6086611 | Duffy et al. | Jul 2000 | A |
6093203 | Uflacker | Jul 2000 | A |
6096070 | Ragheb et al. | Aug 2000 | A |
6096073 | Webster et al. | Aug 2000 | A |
6099497 | Adams et al. | Aug 2000 | A |
6113579 | Eidenschink et al. | Sep 2000 | A |
6117117 | Mauch | Sep 2000 | A |
6117156 | Richter et al. | Sep 2000 | A |
6123721 | Jang | Sep 2000 | A |
6126652 | McLeod et al. | Oct 2000 | A |
6129738 | Lashinski et al. | Oct 2000 | A |
6129754 | Kanesaka et al. | Oct 2000 | A |
6135982 | Campbell | Oct 2000 | A |
6142973 | Carleton et al. | Nov 2000 | A |
6143002 | Vietmeier | Nov 2000 | A |
6146356 | Wang et al. | Nov 2000 | A |
6159238 | Killion et al. | Dec 2000 | A |
6165195 | Wilson et al. | Dec 2000 | A |
6168621 | Vrba | Jan 2001 | B1 |
6171278 | Wang et al. | Jan 2001 | B1 |
6183509 | Dibie | Feb 2001 | B1 |
6190404 | Palmaz et al. | Feb 2001 | B1 |
6203568 | Lombardi et al. | Mar 2001 | B1 |
6206915 | Fagan et al. | Mar 2001 | B1 |
6206916 | Furst | Mar 2001 | B1 |
6210380 | Mauch | Apr 2001 | B1 |
6210429 | Vardi et al. | Apr 2001 | B1 |
6210433 | Larre | Apr 2001 | B1 |
6210436 | Weadock | Apr 2001 | B1 |
6231598 | Berry et al. | May 2001 | B1 |
6240616 | Yan | Jun 2001 | B1 |
6241762 | Shanley | Jun 2001 | B1 |
6253443 | Johnson | Jul 2001 | B1 |
6254593 | Wilson | Jul 2001 | B1 |
6254632 | Wu et al. | Jul 2001 | B1 |
6258115 | Dubrul | Jul 2001 | B1 |
6258116 | Hojeibane | Jul 2001 | B1 |
6258121 | Yang et al. | Jul 2001 | B1 |
6261305 | Marotta et al. | Jul 2001 | B1 |
6261316 | Shaolian et al. | Jul 2001 | B1 |
6261320 | Tam et al. | Jul 2001 | B1 |
6264662 | Lauterjung | Jul 2001 | B1 |
6264686 | Rieu et al. | Jul 2001 | B1 |
6273908 | Ndondo-Lay | Aug 2001 | B1 |
6273913 | Wright et al. | Aug 2001 | B1 |
6280413 | Clark et al. | Aug 2001 | B1 |
6287628 | Hossainy et al. | Sep 2001 | B1 |
6290673 | Shanley | Sep 2001 | B1 |
6293967 | Shanley | Sep 2001 | B1 |
6293968 | Taheri | Sep 2001 | B1 |
6325822 | Chouinard et al. | Dec 2001 | B1 |
6325826 | Vardi et al. | Dec 2001 | B1 |
6328925 | Wang et al. | Dec 2001 | B1 |
6334864 | Amplatz et al. | Jan 2002 | B1 |
6334870 | Ehr et al. | Jan 2002 | B1 |
6346089 | Dibie | Feb 2002 | B1 |
6348065 | Brown et al. | Feb 2002 | B1 |
6355060 | Lenker et al. | Mar 2002 | B1 |
6358552 | Mandralis et al. | Mar 2002 | B1 |
6361544 | Wilson et al. | Mar 2002 | B1 |
6361555 | Wilson | Mar 2002 | B1 |
6379381 | Hossainy et al. | Apr 2002 | B1 |
6383213 | Wilson et al. | May 2002 | B2 |
6395018 | Castaneda | May 2002 | B1 |
6395326 | Castro et al. | May 2002 | B1 |
6406457 | Wang et al. | Jun 2002 | B1 |
6423091 | Hojeibane | Jul 2002 | B1 |
6436104 | Hojeibane | Aug 2002 | B2 |
6436134 | Richter et al. | Aug 2002 | B2 |
6478816 | Kveen et al. | Nov 2002 | B1 |
6491666 | Santini, Jr. et al. | Dec 2002 | B1 |
6506437 | Harish et al. | Jan 2003 | B1 |
6508836 | Wilson et al. | Jan 2003 | B2 |
6517558 | Gittings et al. | Feb 2003 | B2 |
6520988 | Colombo et al. | Feb 2003 | B1 |
6527762 | Santini, Jr. et al. | Mar 2003 | B1 |
6527799 | Shanley | Mar 2003 | B2 |
6533808 | Thompson | Mar 2003 | B1 |
6537256 | Santini, Jr. et al. | Mar 2003 | B2 |
6540779 | Richter et al. | Apr 2003 | B2 |
6551351 | Smith et al. | Apr 2003 | B2 |
6551838 | Santini, Jr. et al. | Apr 2003 | B2 |
6558422 | Baker et al. | May 2003 | B1 |
6562065 | Shanley | May 2003 | B1 |
6579309 | Loos et al. | Jun 2003 | B1 |
6579312 | Wilson et al. | Jun 2003 | B2 |
6582394 | Reiss et al. | Jun 2003 | B1 |
6596020 | Vardi et al. | Jul 2003 | B2 |
6599316 | Vardi et al. | Jul 2003 | B2 |
6638302 | Curcio et al. | Oct 2003 | B1 |
6645242 | Quinn | Nov 2003 | B1 |
6656162 | Santini, Jr. et al. | Dec 2003 | B2 |
6669683 | Santini, Jr. et al. | Dec 2003 | B2 |
6689156 | Davidson et al. | Feb 2004 | B1 |
6692483 | Vardi et al. | Feb 2004 | B2 |
6695877 | Brucker et al. | Feb 2004 | B2 |
6699281 | Vallana et al. | Mar 2004 | B2 |
6706062 | Vardi et al. | Mar 2004 | B2 |
6709379 | Brandau et al. | Mar 2004 | B1 |
6709451 | Noble et al. | Mar 2004 | B1 |
6713119 | Hossainy et al. | Mar 2004 | B2 |
6730064 | Ragheb et al. | May 2004 | B2 |
6749628 | Callol et al. | Jun 2004 | B1 |
6758859 | Dang et al. | Jul 2004 | B1 |
6764507 | Shanley et al. | Jul 2004 | B2 |
6773429 | Sheppard, Jr. et al. | Aug 2004 | B2 |
6776793 | Brown et al. | Aug 2004 | B2 |
6783543 | Jang | Aug 2004 | B2 |
6790228 | Hossainy et al. | Sep 2004 | B2 |
6811566 | Penn et al. | Nov 2004 | B1 |
6827250 | Uhland et al. | Dec 2004 | B2 |
6835203 | Vardi et al. | Dec 2004 | B1 |
6858038 | Heuser | Feb 2005 | B2 |
6884258 | Vardi et al. | Apr 2005 | B2 |
6896699 | Wilson et al. | May 2005 | B2 |
6904658 | Hines | Jun 2005 | B2 |
6932837 | Amplatz et al. | Aug 2005 | B2 |
6946092 | Bertolino et al. | Sep 2005 | B1 |
6955687 | Richter et al. | Oct 2005 | B2 |
6955688 | Wilson et al. | Oct 2005 | B2 |
6962602 | Vardi et al. | Nov 2005 | B2 |
6989071 | Kocur et al. | Jan 2006 | B2 |
7018400 | Lashinski et al. | Mar 2006 | B2 |
7041130 | Santini, Jr. et al. | May 2006 | B2 |
7052488 | Uhland | May 2006 | B2 |
7056323 | Mareiro et al. | Jun 2006 | B2 |
7056338 | Shanley et al. | Jun 2006 | B2 |
7060091 | Killion et al. | Jun 2006 | B2 |
7070616 | Majercak et al. | Jul 2006 | B2 |
7160321 | Shanley et al. | Jan 2007 | B2 |
7169175 | Cottone, Jr. et al. | Jan 2007 | B2 |
7169179 | Shanley et al. | Jan 2007 | B2 |
7179288 | Shanley | Feb 2007 | B2 |
7179289 | Shanley | Feb 2007 | B2 |
7208010 | Shanley et al. | Apr 2007 | B2 |
7208011 | Shanley et al. | Apr 2007 | B2 |
7220275 | Davidson et al. | May 2007 | B2 |
20010003161 | Vardi et al. | Jun 2001 | A1 |
20010004706 | Hojeibane | Jun 2001 | A1 |
20010004707 | Dereume et al. | Jun 2001 | A1 |
20010012927 | Mauch | Aug 2001 | A1 |
20010016766 | Vardi et al. | Aug 2001 | A1 |
20010016767 | Wilson et al. | Aug 2001 | A1 |
20010016768 | Wilson et al. | Aug 2001 | A1 |
20010025195 | Shaolian et al. | Sep 2001 | A1 |
20010027291 | Shanley | Oct 2001 | A1 |
20010027338 | Greenberg | Oct 2001 | A1 |
20010029396 | Wilson et al. | Oct 2001 | A1 |
20010037116 | Wilson et al. | Nov 2001 | A1 |
20010037138 | Wilson et al. | Nov 2001 | A1 |
20010039448 | Dibie | Nov 2001 | A1 |
20010049552 | Richter et al. | Dec 2001 | A1 |
20010056297 | Hojeibane | Dec 2001 | A1 |
20020013618 | Marotta et al. | Jan 2002 | A1 |
20020013619 | Shanley | Jan 2002 | A1 |
20020022874 | Wilson | Feb 2002 | A1 |
20020026232 | Marotta et al. | Feb 2002 | A1 |
20020035392 | Wilson | Mar 2002 | A1 |
20020038146 | Harry | Mar 2002 | A1 |
20020042650 | Vardi et al. | Apr 2002 | A1 |
20020052648 | McGuckin, Jr. et al. | May 2002 | A1 |
20020072790 | McGuckin, Jr. et al. | Jun 2002 | A1 |
20020095208 | Gregorich et al. | Jul 2002 | A1 |
20020111675 | Wilson | Aug 2002 | A1 |
20020156516 | Vardi et al. | Oct 2002 | A1 |
20020156517 | Perouse | Oct 2002 | A1 |
20020163104 | Motsenbocker et al. | Nov 2002 | A1 |
20020165604 | Shanley | Nov 2002 | A1 |
20020173835 | Bourang et al. | Nov 2002 | A1 |
20020173840 | Brucker et al. | Nov 2002 | A1 |
20020183763 | Callol et al. | Dec 2002 | A1 |
20020193872 | Trout, III et al. | Dec 2002 | A1 |
20020193873 | Brucker et al. | Dec 2002 | A1 |
20030009209 | Hojeibane | Jan 2003 | A1 |
20030028233 | Vardi et al. | Feb 2003 | A1 |
20030050688 | Fischell et al. | Mar 2003 | A1 |
20030055378 | Wang et al. | Mar 2003 | A1 |
20030055483 | Gumm | Mar 2003 | A1 |
20030074047 | Richter | Apr 2003 | A1 |
20030083687 | Pallazza | May 2003 | A1 |
20030093109 | Mauch | May 2003 | A1 |
20030097169 | Brucker | May 2003 | A1 |
20030105511 | Welsh et al. | Jun 2003 | A1 |
20030114912 | Sequin et al. | Jun 2003 | A1 |
20030125791 | Sequin et al. | Jul 2003 | A1 |
20030125802 | Callol et al. | Jul 2003 | A1 |
20030135259 | Simso | Jul 2003 | A1 |
20030163157 | McMorrow et al. | Aug 2003 | A1 |
20030167085 | Shanley | Sep 2003 | A1 |
20030181923 | Vardi | Sep 2003 | A1 |
20030195606 | Davidson et al. | Oct 2003 | A1 |
20030199970 | Shanley | Oct 2003 | A1 |
20040006381 | Sequin et al. | Jan 2004 | A1 |
20040015227 | Vardi et al. | Jan 2004 | A1 |
20040044396 | Clerc et al. | Mar 2004 | A1 |
20040059406 | Cully et al. | Mar 2004 | A1 |
20040068161 | Couvillon, Jr. | Apr 2004 | A1 |
20040073294 | Diaz et al. | Apr 2004 | A1 |
20040088007 | Eidenschink | May 2004 | A1 |
20040093071 | Jang | May 2004 | A1 |
20040117003 | Ouriel et al. | Jun 2004 | A1 |
20040122505 | Shanley | Jun 2004 | A1 |
20040122506 | Shanley et al. | Jun 2004 | A1 |
20040127976 | Diaz | Jul 2004 | A1 |
20040127977 | Shanley | Jul 2004 | A1 |
20040133268 | Davidson et al. | Jul 2004 | A1 |
20040138732 | Suhr et al. | Jul 2004 | A1 |
20040138737 | Davidson et al. | Jul 2004 | A1 |
20040142014 | Livack et al. | Jul 2004 | A1 |
20040143321 | Livack et al. | Jul 2004 | A1 |
20040143322 | Livack et al. | Jul 2004 | A1 |
20040148006 | Davidson et al. | Jul 2004 | A1 |
20040148012 | Jang | Jul 2004 | A9 |
20040172121 | Eidenschink et al. | Sep 2004 | A1 |
20040186560 | Alt | Sep 2004 | A1 |
20040202692 | Shanley et al. | Oct 2004 | A1 |
20040204750 | Dinh | Oct 2004 | A1 |
20040215227 | McMorrow et al. | Oct 2004 | A1 |
20040220661 | Shanley et al. | Nov 2004 | A1 |
20040225345 | Fischell et al. | Nov 2004 | A1 |
20040236408 | Shanley | Nov 2004 | A1 |
20040249449 | Shanley et al. | Dec 2004 | A1 |
20040267352 | Davidson et al. | Dec 2004 | A1 |
20050004656 | Das | Jan 2005 | A1 |
20050010278 | Vardi et al. | Jan 2005 | A1 |
20050015108 | Williams et al. | Jan 2005 | A1 |
20050015135 | Shanley | Jan 2005 | A1 |
20050043816 | Datta et al. | Feb 2005 | A1 |
20050060027 | Khenansho et al. | Mar 2005 | A1 |
20050096726 | Sequin et al. | May 2005 | A1 |
20050102017 | Mattison | May 2005 | A1 |
20050102021 | Osborne | May 2005 | A1 |
20050102023 | Yadin et al. | May 2005 | A1 |
20050119731 | Brucker et al. | Jun 2005 | A1 |
20050125076 | Ginn | Jun 2005 | A1 |
20050131526 | Wong | Jun 2005 | A1 |
20050149161 | Eidenschink et al. | Jul 2005 | A1 |
20050154442 | Eidenschink et al. | Jul 2005 | A1 |
20050154444 | Quadri | Jul 2005 | A1 |
20050183259 | Eidenschink et al. | Aug 2005 | A1 |
20050187602 | Eidenschink | Aug 2005 | A1 |
20050187611 | Ding et al. | Aug 2005 | A1 |
20050192657 | Colen et al. | Sep 2005 | A1 |
20050209673 | Shaked | Sep 2005 | A1 |
20050222668 | Schaeffer et al. | Oct 2005 | A1 |
20050228483 | Kaplan et al. | Oct 2005 | A1 |
20050273149 | Tran et al. | Dec 2005 | A1 |
20060015134 | Trinidad | Jan 2006 | A1 |
20060034884 | Stenzel | Feb 2006 | A1 |
20060036315 | Yadin et al. | Feb 2006 | A1 |
20060041303 | Israel | Feb 2006 | A1 |
20060045901 | Weber | Mar 2006 | A1 |
20060079956 | Eigler et al. | Apr 2006 | A1 |
20060088654 | Ding et al. | Apr 2006 | A1 |
20060093643 | Stenzel | May 2006 | A1 |
20060100686 | Bolduc et al. | May 2006 | A1 |
20060122698 | Spencer et al. | Jun 2006 | A1 |
20060173528 | Feld et al. | Aug 2006 | A1 |
20060206188 | Weber et al. | Sep 2006 | A1 |
20060287712 | Eidenschink | Dec 2006 | A1 |
20070005126 | Tischler | Jan 2007 | A1 |
20070050016 | Gregorich et al. | Mar 2007 | A1 |
20070073376 | Krolik et al. | Mar 2007 | A1 |
20070073384 | Brown et al. | Mar 2007 | A1 |
20070100434 | Gregorich et al. | May 2007 | A1 |
20070173787 | Huang et al. | Jul 2007 | A1 |
20070173923 | Savage et al. | Jul 2007 | A1 |
Number | Date | Country |
---|---|---|
2220864 | Jul 1999 | CA |
9014845 | Feb 1991 | DE |
29701758 | Mar 1997 | DE |
29701883 | May 1997 | DE |
19921788 | Nov 2000 | DE |
0479730 | Oct 1991 | EP |
0565796 | Oct 1993 | EP |
0751752 | Jan 1997 | EP |
0783873 | Jul 1997 | EP |
0804907 | Nov 1997 | EP |
0479557 | Jul 1998 | EP |
0876805 | Nov 1998 | EP |
0880949 | Dec 1998 | EP |
0891751 | Jan 1999 | EP |
0895759 | Feb 1999 | EP |
0904745 | Mar 1999 | EP |
0937442 | Aug 1999 | EP |
0950386 | Oct 1999 | EP |
0347023 | Dec 1999 | EP |
1031328 | Aug 2000 | EP |
1031329 | Aug 2000 | EP |
0883384 | Dec 2000 | EP |
0862392 | Aug 2001 | EP |
0808140 | Dec 2001 | EP |
0884028 | Feb 2002 | EP |
1190685 | Mar 2002 | EP |
0897700 | Jul 2002 | EP |
0684022 | Feb 2004 | EP |
1157674 | Jul 2005 | EP |
1031330 | Nov 2005 | EP |
1070513 | Jun 2006 | EP |
2678508 | Jan 1993 | FR |
2740346 | Oct 1995 | FR |
2756173 | Nov 1996 | FR |
2337002 | May 1998 | GB |
8806026 | Aug 1988 | WO |
9423787 | Oct 1994 | WO |
9521592 | Aug 1995 | WO |
9629955 | Oct 1996 | WO |
9634580 | Nov 1996 | WO |
9641592 | Dec 1996 | WO |
9707752 | Mar 1997 | WO |
9715346 | May 1997 | WO |
9716217 | May 1997 | WO |
9726936 | Jul 1997 | WO |
9741803 | Nov 1997 | WO |
9745073 | Dec 1997 | WO |
9746174 | Dec 1997 | WO |
9819628 | May 1998 | WO |
9823228 | Jun 1998 | WO |
9836709 | Aug 1998 | WO |
9836784 | Aug 1998 | WO |
9837833 | Sep 1998 | WO |
9847447 | Oct 1998 | WO |
9848879 | Nov 1998 | WO |
9903426 | Jan 1999 | WO |
9904726 | Feb 1999 | WO |
9915103 | Apr 1999 | WO |
9915108 | Apr 1999 | WO |
9915109 | Apr 1999 | WO |
9923977 | May 1999 | WO |
9924104 | May 1999 | WO |
9929262 | Jun 1999 | WO |
9934749 | Jul 1999 | WO |
9936002 | Jul 1999 | WO |
9936015 | Jul 1999 | WO |
9944539 | Sep 1999 | WO |
9956661 | Nov 1999 | WO |
9965419 | Dec 1999 | WO |
0007523 | Feb 2000 | WO |
0010489 | Mar 2000 | WO |
0016719 | Mar 2000 | WO |
0027307 | May 2000 | WO |
0027463 | May 2000 | WO |
0028922 | May 2000 | WO |
0044307 | Aug 2000 | WO |
0044309 | Aug 2000 | WO |
0047134 | Aug 2000 | WO |
0048531 | Aug 2000 | WO |
0049951 | Aug 2000 | WO |
0051523 | Sep 2000 | WO |
0057813 | Oct 2000 | WO |
0067673 | Nov 2000 | WO |
0071054 | Nov 2000 | WO |
0771055 | Nov 2000 | WO |
0074595 | Dec 2000 | WO |
0117577 | Mar 2001 | WO |
0121095 | Mar 2001 | WO |
0121109 | Mar 2001 | WO |
0121244 | Mar 2001 | WO |
0126584 | Apr 2001 | WO |
0135715 | May 2001 | WO |
0135863 | May 2001 | WO |
0139697 | Jun 2001 | WO |
0139699 | Jun 2001 | WO |
0141677 | Jun 2001 | WO |
0143665 | Jun 2001 | WO |
0143809 | Jun 2001 | WO |
0145594 | Jun 2001 | WO |
0145785 | Jun 2001 | WO |
0149342 | Jul 2001 | WO |
0154621 | Aug 2001 | WO |
0154622 | Aug 2001 | WO |
0158385 | Aug 2001 | WO |
0160284 | Aug 2001 | WO |
0166036 | Sep 2001 | WO |
0170294 | Sep 2001 | WO |
0170299 | Sep 2001 | WO |
0174273 | Oct 2001 | WO |
0189409 | Nov 2001 | WO |
0191918 | Dec 2001 | WO |
0193781 | Dec 2001 | WO |
0200138 | Jan 2002 | WO |
02053066 | Jul 2002 | WO |
02068012 | Sep 2002 | WO |
03007842 | Jan 2003 | WO |
03055414 | Jul 2003 | WO |
03063924 | Aug 2003 | WO |
2004026174 | Apr 2004 | WO |
2004026180 | Apr 2004 | WO |
2005009295 | Feb 2005 | WO |
2005014077 | Feb 2005 | WO |
2005041810 | May 2005 | WO |
2005122959 | Dec 2005 | WO |
2006028925 | Mar 2006 | WO |
2006074476 | Jul 2006 | WO |
2006127127 | Nov 2006 | WO |
Number | Date | Country | |
---|---|---|---|
20090319030 A1 | Dec 2009 | US |
Number | Date | Country | |
---|---|---|---|
60577579 | Jun 2004 | US | |
60404756 | Aug 2002 | US | |
60487226 | Jul 2003 | US | |
60488006 | Jul 2003 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 11145223 | Jun 2005 | US |
Child | 12547350 | US | |
Parent | 09963114 | Sep 2001 | US |
Child | 10683165 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 10644550 | Aug 2003 | US |
Child | 11145223 | US | |
Parent | 10683165 | Oct 2003 | US |
Child | 10644550 | US |