Not Applicable
Not Applicable
1. Field of the Invention
In some embodiments this invention relates to implantable medical devices, their manufacture, and methods of use.
2. Description of the Related Art
A stent is a medical device introduced to a body lumen and is well known in the art. Typically, a stent is implanted in a blood vessel at the site of a stenosis or aneurysm endoluminally, i.e. by so-called “minimally invasive techniques” in which the stent in a radially reduced configuration, optionally restrained in a radially compressed configuration by a sheath and/or catheter, is delivered by a stent delivery system or “introducer” to the site where it is required. The introducer may enter the body from an access location outside the body, such as through the patient's skin, or by a “cut down” technique in which the entry blood vessel is exposed by minor surgical means.
Stents and similar devices such as stent, stent-grafts, expandable frameworks, and similar implantable medical devices, are radially expandable endoprostheses which are typically intravascular implants capable of being implanted transluminally and enlarged radially after being introduced percutaneously. Stents may be implanted in a variety of body lumens or vessels such as within the vascular system, urinary tracts, bile ducts, fallopian tubes, coronary vessels, secondary vessels, etc. They may be self-expanding, expanded by an internal radial force, such as when mounted on a balloon, or a combination of self-expanding and balloon expandable (hybrid expandable).
Stents may be created by methods including cutting or etching a design from a tubular stock, from a flat sheet which is cut or etched and which is subsequently rolled or from one or more interwoven wires or braids.
One technique which improves the effectiveness of stenotic procedures is to fill reservoirs on the implantable stent with therapeutic agents that are designed to be released in body lumens or vessels. Examples of drug eluting stents are found in U.S. Pat. Nos. 7,135,038 and 7,163,555, the entire contents of each being hereby incorporated by reference.
The art referred to and/or described above is not intended to constitute an admission that any patent, publication or other information referred to herein is “prior art” with respect to this invention. In addition, this section should not be construed to mean that a search has been made or that no other pertinent information as defined in 37 C.F.R §156(a) exists.
All U.S. patents and applications and all other published documents mentioned anywhere in this application are incorporated herein by reference in their entirety.
Without limiting the scope of the invention, a brief summary of some of the claimed embodiments of the invention is set forth below. Additional details of the summarized embodiments of the invention and/or additional embodiments of the invention may be found in the Detailed Description of the Invention below.
A brief abstract of the technical disclosure in the specification is provided for the purposes of complying with 37 C.F.R. §172.
In at least one embodiment, the invention is directed to a stent comprising a generally tubular body disposed about a longitudinal axis, the stent having a proximal end and a distal end. The stent comprises a plurality of circumferential serpentine bands having alternating peaks and troughs. Each serpentine band has a wavelength and an amplitude. The peaks of each serpentine band are substantially aligned with the peaks of each immediately adjacent serpentine band. The stent further comprises a plurality of connectors extending between immediately adjacent serpentine bands. The stent further comprises a plurality of tabs comprising peak tabs and trough tabs. Each peak tab and each trough tab have a first end and a second end wherein only the first end is engaged to a serpentine band. Each peak tab extends substantially parallel to the longitudinal axis from a peak on a serpentine band toward a peak on an immediately distal serpentine band. Each trough tab extends substantially parallel to the longitudinal axis from a trough on a serpentine band toward a trough on an immediately proximal serpentine band. Each serpentine band defines a plurality of holes, and each tab defines a plurality of holes Each hole on a serpentine band is located approximately a distance D1 from each immediately adjacent hole on the serpentine band. Each hole on a tab is located approximately distance D2 from each immediately adjacent hole on the tab. The holes are constructed and arranged to contain a therapeutic agent(s).
In some embodiments, distance D1 is substantially equal to distance D2.
In at least one embodiment, distance D1 is greater than distance D2.
In some embodiments, distance D1 is less than distance D2.
In at least one embodiment, each of the plurality of connectors extends from a trough on a serpentine band to a trough on an immediately proximal serpentine band.
In some embodiments, at least one of the plurality of tabs has a connected end and an unconnected end, and a first side and a second side. The first side and the second side extend between the connected end and the unconnected end. The first side and the second side define a width therebetween, the width being substantially constant along the length of the tab.
In at least one embodiment, at least one of the plurality of tabs has a connected end, an unconnected end, and a first side and a second side. The first side and the second side extend between the connected end and the unconnected end. The first side and the second side define a width therebetween, the width being variable along the length of the tab. At least one of the plurality of tabs comprises a first portion having a first width and a second portion having a second width, the second width being greater than the first width.
In some embodiments, at least one hole is positioned in the second portion.
In at least one embodiment, at least one of the plurality of tabs comprises a longitudinal axis, and the at least one hole has a center off of the longitudinal axis.
In some embodiments, each of the plurality of serpentine bands has the same wavelength and amplitude.
In at least one embodiment, each of the plurality of serpentine bands has the same amplitude.
In some embodiments, each of the plurality of serpentine bands has the same wavelength.
In at least one embodiment, each of the plurality of tabs has substantially the same length.
In at least one embodiment, the invention is directed to a stent which comprises a generally tubular body, a plurality of circumferential serpentine bands, a plurality of connectors, and a plurality of tabs. The generally tubular body is disposed about a longitudinal axis and has a proximal end and a distal end. Each serpentine band has alternating peaks and troughs, and each serpentine band comprises a plurality of struts. Each serpentine band has a wavelength and an amplitude. The peaks of each serpentine band are substantially aligned with the troughs of each immediately adjacent serpentine band. The connectors extend between immediately adjacent serpentine bands. The plurality of tabs comprises peak tabs and trough tabs, with each peak tab extending substantially parallel to the longitudinal axis from a peak on a serpentine band toward a trough on an immediately proximal serpentine band, and each trough tab extending substantially parallel to the longitudinal axis from a trough on a serpentine band toward a peak on an immediately distal serpentine band. At least one of the plurality of struts defines at least one hole, and at least one of the plurality of tabs defines at least one hole, the at least one hole constructed and arranged to contain a therapeutic agent.
In some embodiments, at least one of the plurality of connectors includes a hole.
In at least one embodiment, at least one of the plurality of connectors includes a curved region.
In at least one embodiment, the invention is directed to a stent which comprises a generally tubular body, a plurality of circumferential serpentine bands, a plurality of connectors, and at least one circumferential tab column. The generally tubular body is disposed about a longitudinal axis and has a proximal end and a distal end. Each serpentine band has alternating peaks and troughs, and each serpentine band comprises a plurality of struts. Each serpentine band has a wavelength and an amplitude. The peaks of each serpentine band are substantially aligned with the peaks of each immediately adjacent serpentine band. Each peak has a proximal surface and a distal surface and each tough has a proximal surface and distal surface. The distal surface of the peaks of a serpentine band define a peak circumferential plane, the proximal surface of the troughs of a serpentine band define a trough circumferential plane. The connectors extend between immediately adjacent serpentine bands. The at least one tab column is defined by the peak circumferential plane of a serpentine band and the trough circumferential plane of an immediately distal serpentine band. The at least one tab column comprises a plurality of tabs. The plurality of tabs comprises peak tabs and trough tabs, with each peak tab extending substantially parallel to the longitudinal axis from a peak on a serpentine band toward a peak on an immediately distal serpentine band, and each trough tab extending substantially parallel to the longitudinal axis from a trough on a serpentine band toward a trough on an immediately proximal serpentine band. At least one of the plurality of struts defines at least one hole, and at least one of the plurality of tabs defines at least one hole, the at least one hole constructed and arranged to contain a therapeutic agent.
In some embodiments, the proximal surface of the peaks of a serpentine band defines an inner peak circumferential plane, and the distal surface of the troughs of a serpentine band defines an inner trough circumferential plane. The peak tabs extend distally no further than the inner trough circumferential plane. In at least one embodiment, the trough tabs extend proximally no further than the inner peak circumferential plane.
These and other embodiments which characterize the invention are pointed out with particularity in the claims annexed hereto and forming a part hereof. However, for further understanding of the invention, its advantages and objectives obtained by its use, reference should be made to the drawings which form a further part hereof and the accompanying descriptive matter, in which there is illustrated and described embodiments of the invention.
A detailed description of the invention is hereafter described with specific reference being made to the drawings.
While this invention may be embodied in many different forms, there are described in detail herein specific preferred embodiments of the invention. This description is an exemplification of the principles of the invention and is not intended to limit the invention to the particular embodiments illustrated.
For the purposes of this disclosure, like reference numerals in the figures shall refer to like features unless otherwise indicated.
Referring now to
As shown in
The serpentine bands are longitudinally offset from one another along the longitudinal axis. Each serpentine band 20 includes alternating peaks 22 and troughs 24. It should be noted that the serpentine band 20 may be provided in any suitable arrangement, including patterns (or “waves”) characterized by sine and cosine functions as well as patterns which are not rigorously characterized by those functions, but nevertheless resemble such patterns. In a more general way, such patterns include those which are characterized as having one or more peaks and troughs. As an example, a pattern whose peaks and troughs are U shaped or bulbous is intended to be included. Also intended to be included are patterns which are more triangular in shape such as a saw-tooth patterns, or patterns whose peaks and troughs are rectangular. One of ordinary skill will recognize that there are numerous other patterns not mentioned specifically above which may define the serpentine bands.
As seen in
Serpentine bands 20 are comprised of struts 25. The struts 25 may be straight or may be curved, as is shown at 26. Whether straight or curved, the struts will hereinafter be referred to as struts 25. The struts are interconnected in such a way, as is known by those of ordinary skill in the art, to produce the serpentine bands 20.
Still referring to
Inventive stent 10 further includes at least one circumferential tab column 40 As depicted in
The circumferential tab column 40 comprises a plurality of tabs 50, as shown in
The peak tabs 52 extend distally from the peak 22 of a serpentine band toward the peak 22 of an immediately distal serpentine band. Peak tabs 52 have an end 55 connected to a serpentine band, and an unconnected end 56. In the embodiment shown in
The trough tabs 54 extend proximally from the troughs 54 of a serpentine band toward the troughs 54 of an immediately proximal serpentine band. Trough tabs 54 have an end connected to a serpentine band, and an unconnected end. In the embodiment shown in
In some embodiments the tabs 50 are confined substantially within their respective tab columns. In other embodiments the tabs 50 may extend beyond the peak and trough circumferential planes which define their respective tab columns. In some embodiments, a peak tab 52 may extend distally beyond a trough circumferential plane 44, but no further than an inner trough circumferential plane 45 defined by the distal surfaces 24″ of the troughs of a serpentine band. Similarly, a trough tab 54 may extend proximally beyond a peak circumferential plane 42. In some embodiments a trough tab 54 may extend proximally beyond an peak circumferential plane 42, but no further than an inner peak circumferential plane 46 defined by the proximal surfaces 22′ of the peaks of a serpentine band.
Still referring to
A therapeutic agent may be a drug or other pharmaceutical product such as non-genetic agents, genetic agents, cellular material, etc. Some examples of suitable non-genetic therapeutic agents include but are not limited to: anti-thrombogenic agents such as heparin, heparin derivatives, vascular cell growth promoters, growth factor inhibitors, Paclitaxel, etc. Where an agent includes a genetic therapeutic agent, such a genetic agent may include but is not limited to: DNA, RNA and their respective derivatives and/or components; hedgehog proteins, etc. Where a therapeutic agent includes cellular material, the cellular material may include but is not limited to: cells of human origin and/or non-human origin as well as their respective components and/or derivatives thereof. Where the therapeutic agent includes a polymer agent, the polymer agent may be a polystyrene-polyisobutylene-polystyrene triblock copolymer (SIBS), polyethylene oxide, silicone rubber and/or any other suitable substrate.
Referring again to
It should be clear that using the tabs as disclosed herein increases the overall surface area of the stent This is shown graphically in
This is in contrast to the inventive stent, shown in
By providing extra surface area to the inventive stent via the tabs, and by filling the holes on the tabs with therapeutic agents, the inventive stent also improves overall drug release coverage. Overall drug release is more uniform using the inventive stent because the open regions of the body lumen or vessel are reduced.
Other embodiments of the inventive stent 10 are shown in
Referring now to
Another important feature of the embodiment depicted in
Another feature of the embodiment in
It should be noted that it in some embodiments it may be desirable to construct stent 10 such that the peak and trough tabs are not substantially longitudinally aligned, but instead are offset longitudinally.
In some embodiments, it may be desirable to include another mechanism for the delivery of a therapeutic agent. Often the agent will be in the form of a coating or other layer (or layers) of material placed on a surface region of the stent, which is adapted to be released at the site of the stent's implantation or areas adjacent thereto.
In some embodiments the stent, the delivery system or other portion of the assembly may include one or more areas, bands, coatings, members, etc. that is (are) detectable by imaging modalities such as X-Ray, MRI, ultrasound, etc. In some embodiments at least a portion of the stent and/or adjacent assembly is at least partially radiopaque.
The above disclosure is intended to be illustrative and not exhaustive. This description will suggest many variations and alternatives to one of ordinary skill in this art. The various elements shown in the individual figures and described above may be combined or modified for combination as desired. All these alternatives and variations are intended to be included within the scope of the claims where the term “comprising” means “including, but not limited to”.
Further, the particular features presented in the dependent claims can be combined with each other in other manners within the scope of the invention such that the invention should be recognized as also specifically directed to other embodiments having any other possible combination of the features of the dependent claims. For instance, for purposes of claim publication, any dependent claim which follows should be taken as alternatively written in a multiple dependent form from all prior claims which possess all antecedents referenced in such dependent claim if such multiple dependent format is an accepted format within the jurisdiction (e.g. each claim depending directly from claim 1 should be alternatively taken as depending from all previous claims). In jurisdictions where multiple dependent claim formats are restricted, the following dependent claims should each be also taken as alternatively written in each singly dependent claim format which creates a dependency from a prior antecedent-possessing claim other than the specific claim listed in such dependent claim below.
This completes the description of the preferred and alternate embodiments of the invention. Those skilled in the art may recognize other equivalents to the specific embodiment described herein which equivalents are intended to be encompassed by the claims attached hereto.
Number | Name | Date | Kind |
---|---|---|---|
5843172 | Yan | Dec 1998 | A |
6340366 | Wijay | Jan 2002 | B2 |
6494889 | Fleischman et al. | Dec 2002 | B1 |
6511491 | Grudem et al. | Jan 2003 | B2 |
6511505 | Cox et al. | Jan 2003 | B2 |
6758859 | Dang et al. | Jul 2004 | B1 |
6764507 | Shanley et al. | Jul 2004 | B2 |
6790230 | Beyersdorf et al. | Sep 2004 | B2 |
7060093 | Dang et al. | Jun 2006 | B2 |
7090694 | Morris et al. | Aug 2006 | B1 |
7094255 | Penn et al. | Aug 2006 | B2 |
7135038 | Limon | Nov 2006 | B1 |
7144420 | Lenz | Dec 2006 | B2 |
7163555 | Dinn | Jan 2007 | B2 |
7208010 | Shanley et al. | Apr 2007 | B2 |
7247166 | Pienknagura | Jul 2007 | B2 |
7465315 | Morris et al. | Dec 2008 | B2 |
7527644 | Mangiardi et al. | May 2009 | B2 |
20020143386 | Davila et al. | Oct 2002 | A1 |
20020193871 | Beyersdorf et al. | Dec 2002 | A1 |
20040068316 | Schaeffer | Apr 2004 | A1 |
20040093066 | Durcan | May 2004 | A1 |
20040243217 | Andersen et al. | Dec 2004 | A1 |
20050070991 | Pienknagura | Mar 2005 | A1 |
20050149166 | Schaeffer et al. | Jul 2005 | A1 |
20050149168 | Gregorich | Jul 2005 | A1 |
20050171597 | Boatman et al. | Aug 2005 | A1 |
20050182479 | Bonsignore et al. | Aug 2005 | A1 |
20060224231 | Gregorich | Oct 2006 | A1 |
20060224234 | Jayaraman | Oct 2006 | A1 |
20070123974 | Park et al. | May 2007 | A1 |
20080033531 | Barthel et al. | Feb 2008 | A1 |
20080051868 | Cottone et al. | Feb 2008 | A1 |
20080132989 | Snow et al. | Jun 2008 | A1 |
20080147166 | Bates et al. | Jun 2008 | A1 |
20080195189 | Asgari | Aug 2008 | A1 |
20080234795 | Snow et al. | Sep 2008 | A1 |
20090163991 | Lenz et al. | Jun 2009 | A1 |
20090228088 | Lowe et al. | Sep 2009 | A1 |
20090240317 | Cottone et al. | Sep 2009 | A1 |
Number | Date | Country |
---|---|---|
2006020127 | Feb 2006 | WO |
2006099450 | Sep 2006 | WO |
Number | Date | Country | |
---|---|---|---|
20090281615 A1 | Nov 2009 | US |