The present invention relates to a stent for use in occlusive disease and particularly occlusive disease in an area of vessel which branches into a second vessel.
Occlusive diseases affecting the vasculature or other vessels are common. Such diseases include atherosclerosis which is characterised by a build up of plaque from cholesterol residues. The plaque build up subsequently thickens and hardens the vessel wall to create a stenosis. The resultant narrowing of the vessel has adverse effects on blood flow through the vessel.
Stenotic plaques may occur at any location along a vessel wall and in some cases may present at a junction between two vessels. This is commonly referred to as ostial stenosis or a narrowing of the opening of a vessel. In such cases, the plaque or area of stenosis may severely compromise the flow of blood to the “downstream” vessel.
Many vessels branch from a main vessel at approximately 90°. An example is the branching of the right and left renal arteries from the abdominal aorta. Ostial stenosis may occur at the junction between the aorta and the renal artery and may predispose the patient to atheroembolisation of the visceral and peripheral vascular beds in addition to impairing blood flow to the kidney.
Current medical practices employ both invasive and non-invasive procedures to address stenosis including ostial stenosis. While the disease may be medically treated, in severe cases surgical intervention may be required. The latter includes both balloon angioplasty to break up the stenotic plaque and the delivery of an intraluminal stent to bridge the stenotic lesion.
While both procedures are commonly used, the incidence of re-stenosis in patients treated by balloon angioplasty Is unacceptably high at an estimated 40% of cases. Bridging of the stenotic lesion with a stent significantly reduces the incidence of re-stenosis.
Conventional stents may be inserted percutaneously through a distal and connecting vessel to that in which the stent is to be used. For example, the device may be inserted through the femoral artery in a catheter, where the device is intended to be used in the treatment of a stenotic lesion. Upon release of the device from the catheter it may expand to a desirable size, and may extend above and below the lesion thereby bridging that lesion.
The delivery of a stent to an ostial stenosis is a difficult procedure. In the case of stenosis at the opening or ostium of the renal arteries, in order to bridge the stenosis, the stent is required to project around 1-2 mm into the aorta. As the majority of stents are a simple tubular mesh structure, they may shift from the desired position during the procedure. In such an event, the stent will either end up positioned too far into the renal artery or projecting too far into the aorta. Similar difficulties are experienced with the placement of a stent in other regions of ostial stenosis in visceral vessels such as the mesenteric arteries and iliac arteries.
The present invention aims to provide a stent which overcomes the abovementioned problems of the prior art
Any discussion of documents, acts, materials, devices, articles or the like which has been included in the present specification is solely for the purpose of providing a context for the present invention. It is not to be taken as an admission that any or all of these matters form part of the prior art base or were common general knowledge in the field relevant to the present invention as it existed before the priority date of each claim of this application.
Throughout this specification the word “comprise”, or variations such as “comprises” or “comprising”, will be understood to imply the inclusion of a stated element, integer or step, or group of elements, integers or steps, but not the exclusion of any other element, integer or step, or group of elements, integers or steps.
The present invention consists in an intraluminal stent comprising a tubular body extending from a proximal end to a distal end, said tubular body being capable of expanding or being expanded from a radially compressed state to a radially expanded state wherein, when at least in the radially expanded state, the tubular body includes at least a first flange member positioned at or adjacent to the proximal end of the tubular body and extending outwardly from said tubular body.
In one embodiment, the first flange member extends outwardly and away from the proximal end of the tubular body of the stent to give the tubular body a trumpet-like appearance.
The first flange member may be integral with the proximal end of the tubular body and may extend to an outer rim. The outer rim may form a lipped portion which may curve back in a general direction towards the distal end of the tubular body. Alternatively, the first flange member may be formed as a separate member to the remainder of the tubular body wherein the first flange member is subsequently connected to the tubular body
Preferably, the lipped portion is integral with the first flange member such that it forms a continuous curved structure extending initially outwardly and away from the proximal end of the tubular body before curving back in a general direction towards the distal end of the tubular body.
The first flange member is typically made from the same material as the remainder of the tubular body. Alternatively, the first flange member may be made from a different material from the material of the remainder of the stent.
In another embodiment, the intraluminal stent includes a second flange member positioned at or adjacent the distal end of the tubular body.
The second flange member preferably extends outwardly and away from the distal end of the tubular body of the stent.
The second flange member may be integral with the distal end of the tubular body and may extend to an outer rim. The outer rim may form a lipped portion which may curve back in a general direction towards the proximal end of the tubular body.
Preferably, the lipped portion is integral with the second flange member such that it forms a continuous curved structure extending initially outwardly and away from the distal end of the tubular body before curving back in a general direction towards the proximal end of the tubular body.
The second flange member is typically made from the same material as the remainder of the tubular body. Alternatively, the second flange member may be made from a different material than the material of the remainder of the stent. Additionally, the second flange member may be formed as a separate member to the remainder of the tubular body and subsequently connected to the tubular body.
Preferably, the first and second flange members are made during the manufacture of the intraluminal stent of the invention. The elected method for achieving such flanged members will primarily depend on the material selected to comprise the stent and the flange member although it is envisaged that both the tubular body of the stent and the flange member would be formed by laser cutting/etching of a suitable material such as stainless steel or Nitinol™. In this regard, the tubular body of the present invention may be made by providing a cylinder of the material to be used and laser cutting said material in the cylindrical form. The laser cutting typically results in the formation of a series of cells along the length of the circumference of the cylinder. The cells may be of the same size along the length of the cylinder or may vary in size along the length. This will be discussed in greater detail below.
In the embodiment wherein the tubular body is made from a shape memory material such as Nitinol™, the cylinder of material is laser cut to form the series of cells. The cylinder is then taken to the desired temperature to allow the material to achieve a “memory” of a certain expanded configuration. At this temperature, a template is used to push the area of the cylinder which is to become the at least first flange member outwardly relative to the remainder of the cylindrical tubular body. The material of the cylinder is then cooled from this temperature such that the material resumes a compressed substantially cylindrical shape without the flanged end. When the final stent made from this cylinder is inserted into a vessel of a patient, it is preferable that when the material is exposed to the body temperature of the patient it takes on its “memorised” shape, that is, a tubular body having at least a first flange member positioned at or adjacent to a proximal end of the tubular body.
In an embodiment wherein the material of the stent Is not a shape memory material, it is envisaged that a pre-formed tubular body having at least a first flange member positioned at least adjacent the proximal end of the tubular body is formed. The pre-formed tubular body may then be laser cut into a desired series of cells.
In a preferred embodiment, the cells of the tubular body may be of varying size and configuration along the length of the tubular body. For example, it is envisaged that the at least first flange member is made from a series of cells which are larger and/or more elongate than the remainder of the cells of the tubular body. Furthermore, it is preferred that the cells of the flange member in addition to being more elongate, are formed at an angle to the remainder of the cells of the tubular body.
The tubular body may further include a transition region adjacent the at least first flange member. The transition region is preferably made up of a series of cells which have a small pore size relative to the cells of the at least first flange member and the remainder of the tubular body. In this embodiment, the transition region provides an area of relatively high expansile strength. In cases where the stent is used in ostial stenosis, which will be discussed further below, the transition region has the advantage of “pinning back” an area of stenosis around the ostium of a vessel.
The at least first flange member may comprise two cells located on opposing walls of the tubular body. In this embodiment the two cells form strut members which have the effect of anchoring the stent in a vessel, particularly when the stent is used to treat ostial stenosis as further discussed below. It should be noted, however, that the present invention encompasses all possible cell patterns in the wall of the tubular body and including the at least first flange member.
While the tubular body of the stent may be formed of a thin biocompatible material such as Nitinol™ or stainless steel, other alloys such as tantalum or Elgiloy are also envisaged. The tubular body may be bare or may be coated with a material having an elastic property such that the coating material is capable of covering the tubular body in both the radially compressed state and the radially expanded state.
In a preferred embodiment of the invention, the tubular body may be formed from other suitable biocompatible materials, selected, for best results, on the basis of the material's capacity to withstand the compressive forces of the stenotic lesion and maintain patency of the vessel throughout the life of the stent.
Preferably, the intraluminal stent of the present invention is used in the treatment of ostial stenosis although it is equally envisaged that it could be used in any other form of stenosis. In ostial stenosis, the plaque or stenotic region is formed at the junction between a pre-branching vessel and a post-branching vessel. The stenotic plaque surrounds the ostium of the post-branching vessel which has the effect of narrowing the ostium of the post-branching vessel.
While the stent of the present invention may be used to treat ostial stenosis of the visceral arteries such as the renal and mesenteric arteries, the iliac artery, and the sub-clavian artery, it may also be used to treat stenotic lesions in the peripheral vasculature and the coronary circulation. However, the application of the invention for use in the treatment of stenotic disease is not to be understood as limited to the vascular system only. The stent may be used to treat stenotic lesions in other vessels including, for example, those comprising the hepato-biliary and genito-urinary tracts
In the treatment of ostial stenosis, the first flange member is preferably positioned within the pre-branching vessel. In this embodiment, the first flange member typically engages at least a portion of the wall of the pre-branching vessel which surrounds the ostium of the post-branching vessel. The remainder of the tubular body of the stent can extend into the post-branching vessel. Accordingly, the at least first flange member has the effect of anchoring the stent within the post-branching vessel thereby preventing longitudinal movement of the stent into the post-branching vessel. If such movement occurs, the stent moves away from the stenotic lesion and thereby does not have the desired function of bridging the stenotic lesion.
In the embodiment of the invention which includes a second flange member positioned adjacent the distal end of the tubular body, when the stent is used in the treatment of ostial stenosis, the second flange member is positioned within the post-branching vessel and preferably engages the wall of said post-branching vessel. This further secures the intraluminal stent within the post-branching vessel thereby preventing longitudinal movement of the stent in the vessel.
The tubular body of the stent may further include at least one engagement member. The at least one engagement member may be connected to or integral with a wall of the tubular body at a position located intermediate the proximal end and the distal end of the tubular body.
Preferably, the tubular body includes more than one engagement member which may comprise a number of spurs or other such members which extend outwardly from the tubular body of the stent. When the stent is in use, the spurs extend towards and engage with the wall of the vessel in which the stent is positioned. This has the function of further securing the stent within the vessel.
In a further embodiment, rather than a spur, the at least one engagement member may comprise a ridge or like area or a series of ridges of increased cross sectional diameter than those portions of the tubular body immediately proximal and distal each ridge. When the stent is in use, the ridge or like area or series of ridges extend(s) towards and engage(s) with the vessel wall thereby assisting in the securing of the stent in the vessel wall.
The at least one engagement member may be made from the same material as the remainder of the tubular body or may be made from a different material. It is envisaged that the at least one engagement member may be made from a shape memory material such as Nitinol™.
The connection between the at least one engagement member and the tubular body of the stent may be such that allows the at least one engagement member to occupy a first angular relationship with an adjacent part of the tubular body when the tubular body is in its compressed state wherein the at least one engagement member occupies a second and different angular relationship with the tubular body when the tubular body is in its expanded state.
The at least one engagement member is preferably created during the manufacture of the stent of the invention. Where the tubular body and the at least one engagement member are made from a shape memory material such as Nitinol™, a cylinder of Nitinol™ is taken to a desired temperature to allow the material to achieve a “memory” of a certain configuration. If the at least one engagement member is a ridge as described above, when the cylinder is taken to this temperature, a template is used to push the area of the cylinder which is to become the at least one engagement member outwardly from the remainder of the cylindrical tubular body. The material of the cylinder is then cooled from this temperature such that the material resumes its compressed and substantially cylindrical shape without the ridge. When the final stent made from this cylinder is inserted into a vessel of a patient, it is preferable that when the material is exposed to the body temperature of the patient it takes on its “memorised” shape, that is, a tubular body having at least one engagement member extending outwardly therefrom.
Alternatively, wherein the tubular body is made up of a series of cells, the at least one engagement member may comprise a number of cells linked to one another wherein said cells extend around the circumference of the tubular body. Each cell preferably has an area of weakness which upon expansion of the tubular body from the compressed state to the expanded state buckles thereby forming a rib or a series of ribs for engagement with the vessel. This embodiment may be useful wherein the tubular body is made from a material such as stainless steel.
In a further embodiment, the at least one engagement member may be made up of a series of connector members which connect the cells on either side of the at least one engagement member. In this regard, the connector members may be relatively straight members and may connect every second cell on either side of the at least one engagement member. In this embodiment, when the tubular body moves from the radially compressed state to the radially expanded state, the free ends of every second cell which are not connected by the connector members turn outwardly away from the tubular body and engage with the vessel wall.
The tubular body may be coated with materials to promote adhesion of cells or cell growth to assist in securing the device tubular body in place in the post-branching vessel It is further envisaged that the tubular body may be coated with any of a number of pharmaceutical agents.
In a preferred embodiment, during use of the intraluminal stent of the present invention, the tubular body is initially in the radially compressed state to enable delivery of the stent through an introducer catheter. Upon deployment of the stent into a selected vessel, the tubular body may be caused to expand, or may be allowed to self-expand into the expanded state.
There are at least three preferred mechanisms whereby the tubular body may change from the radially compressed state to the radially expanded state. For instance, the tubular body may be expanded by the force of an inflating balloon within the tubular body or by some other mechanically applied force.
Alternatively, the tubular body may be made from a shape memory material as mentioned above wherein the patient's body temperature causes the temperature of the tubular body to move towards the same temperature, thereby enabling the tubular body to self-expand and take on its “memorised” shape.
In a further embodiment, the tubular body may self expand following deployment of the tubular body from an introducer catheter used to introduce the stent invention into the body of a patient. This particular embodiment relies upon spring expansion of the material of the tubular body following release of the compressive force of the introducer catheter.
The first and/or the second flange member may expand by a different mechanism to the mechanism of expansion of the remainder of the tubular body. For example the flange member(s) may be made from a shape memory material such as Nitinol™ whereas the remainder of the tubular body may be made from a spring expandable material such as stainless steel. In this case, upon deployment of the stent within a vessel, the flange members would take on their “memorised” shape and the remainder of the body would spring into shape having been compressed in the delivery catheter. Various combination of the above mechanisms are envisaged.
In a second aspect, the invention relates to a method of positioning an intraluminal stent according to the first aspect of the invention in a vessel of a patient, the method comprising the steps of:
(i) introducing a catheter or other delivery device into a vein, artery or other vessel in the body of a patient when the tubular body of the intraluminal stent is in the radially compressed state;
(ii) causing the intraluminal stent to be carried through the catheter or other delivery device to a target. site of stenosis at a bifurcation between a first pre-branching vessel and a second post-branching vessel;
(iii) causing or allowing the tubular body of the intraluminal stent to expand such that the at least first flange member is positioned at least partially within the pre-branching vessel and the remainder of the tubular body of the stent extends into the post-branching vessel; and
(iv) withdrawing the catheter or other delivery device along with any other apparatus used to introduce the intraluminal device into the vessel from the body of the patient.
The length and radially expanded diameter of the tubular body may be determined by the individual circumstances of the application to which the intraluminal device is to be put. Typically, the bifurcating vessel is assessed by X-ray or other similar examination and a suitably dimensioned device selected for that application.
The Intraluminal stent may have radio-opaque markers incorporated into the tubular body to enable a surgeon to view the position of the stent within the vessels.
In a third aspect, the present invention provides a delivery system for the delivery of the intraluminal stent of the first aspect to a target vessel, said delivery system comprising an introducer catheter having an elongate tubular body to allow the passage therethrough of a placement catheter, said placement catheter having an elongate body which extends from a proximal end to a distal end and which carries the stent of the first aspect of the invention at a position intermediate said proximal end and said distal end, the delivery system further comprising a membrane which engages a portion of the tubular body of the intraluminal stent not comprising the at least first flange member and wherein said membrane acts to maintain said portion of the tubular body in its radially compressed state.
In a fourth aspect, the present invention provides a method of delivering the intraluminal stent of the first aspect using the delivery system of the third aspect, said method comprising the steps of:
(i) introducing the introducer catheter into a vein, artery or other vessel in the body of a patient wherein the tubular body of the intraluminal stent is in the radially compressed state;
(ii) causing the intraluminal stent, the placement catheter and the membrane to be carried through the introducer catheter to a target site of stenosis at a bifurcation between a first pre-branching vessel and a second post-branching vessel;
(iii) introducing the distal end of the placement catheter into the post-branching vessel from the pre-branching vessel until substantially only the at least first flange member is still positioned within the pre-branching vessel;
(iv) withdrawing the introducer catheter to expose the at least first flange member of the intraluminal stent;
(v) causing or allowing the at least first flange member to move from its radially compressed state to its radially expanded state such that it is caused to abut with at least a portion of the wall of the pre-branching vessel which surrounds the opening of the post-branching vessel;
(vi) advancing the placement catheter and the membrane further into the post-ranching vessel such that the compression on the portion of the tubular body substantially surrounded by the membrane, by said membrane is released, allowing said portion of the tubular body to move from its radially compressed state to its radially expanded state and into abutment with at least a portion of the wall of the post-branching vessel; and
(vii) withdrawing the placement catheter together with the membrane through the expanded tubular body.
In a fifth aspect the present invention provides a delivery system for the delivery of an intraluminal stent to a target vessel, said delivery system comprising an introducer catheter having an elongate tubular body to allow the passage therethrough of a placement catheter, said placement catheter having an elongate body which extends from a proximal end to a distal end and which carries the intraluminal stent at a position intermediate said proximal end and said distal end; the delivery system further including a membrane which engages at least a portion of the intraluminal stent such that said portion of the stent is prevented from moving from a first radially compressed state to a second radially expanded state.
In this fifth aspect the stent can have the features of the stent according to the first aspect of the invention defined herein.
Preferably, the intraluminal stent is made from a shape memory material such as Nitinol™. In this embodiment, where the first flange member is present and when the introducer catheter is withdrawn to expose the at least first flange member of the intraluminal stent, said first flange member is exposed to the body temperature of the patient whereupon it moves to its “memorised” position, that is, flaring outwardly from the remainder of the tubular body of the stent. In the treatment of ostial stenosis, this forms the anchor for the stent as the flange member engages with the wall of the pre-branching vessel around the ostium of the post-ranching vessel.
To ensure that the stent is appropriately positioned before the introducer catheter is withdrawn, the at least first flange member may have radio-opaque markers incorporated in its structure. Accordingly, in this embodiment, the surgeon would be able to determine the exact positioning of the at least first flange member within a vessel(s) of the patient. Not until the at least first flange member was positioned within the pre-branching vessel at an area adjacent the opening of the post-branching vessel and the remainder of the tubular body extending into the post-branching vessel would the introducer catheter be withdrawn.
As discussed above, the remainder of the tubular body of the stent which is positioned within the post-branching vessel is typically engaged by the membrane. In this regard, the membrane may extend around the circumference of the tubular body.
The membrane is preferably made from a suitably strong material to act as a compressive force upon the tubular body thereby preventing the tubular body from moving into the radially expanded state.
The membrane may be made of a biodegradable material and could therefore be left within the body of the patient although preferably, the membrane is also withdrawn with the placement catheter. Whichever arrangement is chosen, the effect is to release the pressure exerted on the tubular body such that it can move to its radially expanded state.
In the case of use of the stent in the treatment of ostial stenosis, the membrane preferably engages with all of the tubular body of the stent apart from the at least first flange member. Accordingly, when the introducer catheter is withdrawn, the at least first flange member is free to move from its radially compressed state to its radially expanded state. In this embodiment, it is envisaged that the membrane around the at least one portion of the tubular body may be broken to enable the at least one portion of the tubular body to move from its radially compressed state to its radially expanded state.
In one embodiment, the placement catheter may include a balloon member positioned at least partially internal the tubular body of the intraluminal stent. Upon inflation of the balloon member, the intraluminal stent is forced radially outwardly which has the effect of breaking the membrane. With the membrane broken, the at least one portion of the tubular body is free to move into its radially expanded state. It is further envisaged that the membrane may include a frangible region which breaks upon the exertion of pressure caused by the inflation of the balloon member.
It is also further envisaged that the membrane may not break but rather the membrane is caused to radially expand with the radial expansion of the tubular body of the intraluminal stent. Such radial expansion may result from the force exerted by the inflation of the balloon member.
As discussed above, the membrane may be biodegradable in which case, upon placement of the tubular body in a target vessel, the membrane may degrade thereby allowing the tubular body to move to its radially expanded state.
The membrane can deliver any of a number of pharmaceutical agents to a target vessel. In this embodiment, the membrane may be coated with such agents. Furthermore, the membrane may comprise a number of layers carrying different pharmaceutical agents. Each layer may be biodegradable to expose another layer.
In a sixth aspect, the present invention provides a delivery system for the delivery of an intraluminal stent to a target vessel, said intraluminal stent being movable from a first radially compressed state to a second radially expanded state at a target site within the vessel, said delivery system comprising a catheter which in turn comprises an elongate body which extends from a proximal end to a distal end wherein the elongate body extends through an internal lumen of the intraluminal stent such that said intraluminal stent substantially surrounds a portion of the catheter; the delivery system further comprising at least one compression member which holds the intraluminal stent in its first radially compressed state and a release member which causes release of the compression member and allows the intraluminal stent to move to its second radially expanded state.
It is preferred that the delivery system is used to deliver a self expanding intraluminal stent to a target site.
In one embodiment, the compression member of the sixth aspect forms a membrane around the intraluminal stent. In this regard, the membrane is made from a suitably strong yet flexible material to compress the intraluminal stent and prevent said stent moving from its first radially compressed state to its second radially expanded state.
In a further embodiment, it is envisaged that the compression member includes a tie member or a series of tie members which hold the intraluminal stent around the catheter and prevent the intraluminal stent moving from its first compressed state to its second expanded state. For example, the tie member(s) may be sutures which have a pre-determined breaking strength. The sutures may be bonded to the intraluminal stent such that they do not form free particles during and after the deployment of said stent.
Alternatively, the compression member may comprise one or more of a collar, ring or spiral wrap or combinations thereof around the intraluminal stent.
The advantage of the delivery system of the sixth aspect is that the self expanding intraluminal stent may be delivered to a target site without the requirement of a bulky introducer catheter to hold the intraluminal stent in its first radially compressed state. In this regard, the compression member of the delivery system holds the intraluminal stent in its radially compressed state until the stent is advanced on the catheter to the target site.
When the intraluminal stent reaches the target site, the release member may be activated to release the compressive force of the compression member on the intraluminal stent. In this regard, the release member may comprise a balloon member positioned along the length of the elongate body of the catheter. The balloon member may form the portion of the elongate body of the catheter which is substantially surrounded by the intraluminal stent. The balloon member may move from a deflated state during delivery of the catheter to a target site, to an inflated state at said target site. Movement of the balloon member to the inflated state may release the compressive force of the compression member.
Particularly, where the compression member is a membrane which surrounds the intraluminal stent, it is preferred that said membrane includes at least one frangible region such that when the balloon member moves from its deflated to inflated state, the frangible region(s) is broken and the intraluminal stent allowed to move to its second radially expanded state. In this regard, in a preferred embodiment wherein the intraluminal stent is a self expanding stent, breaking the compression member at the frangible region(s) allows said stent to spring to its second radially expanded state, that is, the balloon member is typically inflated only a sufficient degree to break the engagement between compression member and stent and need not be inflated further to cause the intraluminal stent to move from its first radially compressed state to its second radially expanded state. In one embodiment, said frangible region may comprise one or more perforations, such as a line of perforations, in the body of the membrane.
In the embodiment wherein the compression member comprises a number of sutures, as mentioned above, the sutures holding the intraluminal stent to the catheter have a predetermined breaking strength. Accordingly, when the balloon member moves from its deflated state to its inflated state, the sutures break thereby allowing the intraluminal stent to move to its second radially expanded state.
Similarly, in further embodiments, the movement of the balloon member from its deflated to its inflated state may cause said one or more of the collar, ring or spiral wrap to release their compressive force.
In another embodiment, where the compression member forms a membrane around the intraluminal stent, it is envisaged that said membrane has a perforation along at least a portion of its length. The release member in this embodiment may be a pull suture which is aligned with and/or threaded through the perforation of the membrane. The pull suture typically extends to a location outside the body or is connected to an actuator member located outside the body such that when the intraluminal stent is in position at a target site, the pull suture is drawn in a direction towards the proximal end of the intraluminal stent such that the perforation is broken and the compressive force of the membrane released from the intraluminal stent which may then move to its radially expanded state.
In a further embodiment of this aspect, the compression member is an expandable membrane, The membrane can be sealed around the stent. In this aspect, the release member comprises a fluid that can be delivered to the sealed membrane and so expand the membrane.
In one embodiment, the fluid can be delivered into the sealed membrane by the catheter through apertures therein.
In a preferred embodiment, the membrane breaks into one or more portions on undergoing a predetermined degree of expansion. Said one or more portions of the membrane can be connected to the catheter and are withdrawable from the target vessel on withdrawal of the catheter therefrom.
In a further embodiment, the membrane can contain or include one or more pharmaceutical agents. In another embodiment, one or more pharmaceutical agents can be delivered with the fluid from the catheter arid into the pocket formed by the sealed membrane.
In a further embodiment, the stent can be a self-expanding stent that expands on expansion of the membrane. In another embodiment, the stent is a passive stent that requires expansion by a secondary mechanism, such as a balloon catheter.
b is a magnified view of part of the structure depicted in
a is a view of the cell structure of the intraluminal stent depicted in
b is a view of the cell structure of the intraluminal stent depicted in
a is a view of the cell structure of the intraluminal stent depicted in
b is a view of the cell structure of the intraluminal stent depicted in
a is a view of the cell structure of the intraluminal stent depicted in
b is a view of the cell structure of the intraluminal stent depicted in
a to 12d depict placement of the intraluminal stent according to the present invention in a vessel using the delivery catheter shown in
a, 13b and 13c are cross-sectional views of further embodiments of the delivery catheter shown in
a, 14b and 14c are views of further embodiments of the present invention.
d shows the cells structure of the embodiment of the invention depicted in
a and 15b show schematic views of a delivery system of further aspect of the invention.
c is a cross-sectional view showing the intraluminal stent and compression member of the delivery system depicted in
a and 17b are schematic views of a further embodiment of a delivery system according to the present invention.
a and 18b are schematic views of a still further embodiment of a delivery system according to the present invention.
The intraluminal stent of the present invention is generally depicted as 10 in the accompanying drawings.
Preferably, the intraluminal stent of the present invention is used in the treatment of ostial stenosis although it is equally envisaged that it could be used in the treatment of any other form of stenosis. In ostial stenosis, the plaque or stenotic region 9 is formed at the junction between a pre-branching vessel 21 such as the aorta and a post-branching vessel 20 such as the renal artery which has the effect of narrowing the opening (ostium) of the post-branching vessel 20.
The intraluminal stent 10 comprises a tubular body 11 extending from a proximal end 12 to a distal end 13. The tubular body 11 is capable of expanding or being expanded from a radially compressed state (as depicted In
The first flange member 15 extends outwardly and away from the proximal end 12 of the tubular body 11 giving the stent a trumpet-like shape as depicted in
The first flange member 15 is shown as forming a continuous, integral structure with the tubular body 11 and is typically made from the same material as the remainder of the tubular body 11.
During use of the intraluminal stent 10 (in the present case, the term “use” refers to the treatment of ostial stenosis), the tubular body 11 is initially in the radially compressed state to enable delivery of the stent 10 through an introducer catheter. Upon deployment of the stent 10 into a selected vessel, the tubular body may be caused to expand, or may be allowed to self-expand into the expanded state. The first flange member 15 is positioned at least partially within pre-branching vessel 21 and the remainder of the tubular body of the stent extends into the post-branching vessel 20.
In use, the first flange member 15 is positioned in the pre-branching vessel 21, such as, for example, the aorta. The first flange member 15 typically engages at least a portion of the pre-branching vessel wall surrounding the ostium of the post-branching vessel 20 with the remainder of the tubular body 11 extending Into the post-branching vessel 20. Accordingly, the first flange member 15 has the effect of anchoring the stent 10 within the post-branching vessel 20 thereby preventing longitudinal movement of the stent into the post-branching vessel 20.
While the tubular body 11 of the stent may be formed of a thin biocompatible material such as Nitinol™ or stainless steel, other alloys such as tantalum or Elgiloy may be used. In the examples depicted, the stent is made from Nitinol™.
As depicted in
In an embodiment wherein the material of the stent is not a shape memory material, it is envisaged that a pre-formed tubular body having at least a first flange member positioned at least adjacent the proximal end of the tubular body is formed. The pre-formed tubular body may then be laser cut into a desired series of cells.
As depicted in the figures, the cells 22 of the tubular body 11 may be of varying size or configurations along the length of the tubular body 11. In each of the figures, the first flange member 15 is made up of a series of elongate cells 23 which are angled from the remainder of the cells of the tubular body. This region is generally depicted as (1) in the drawings. The region adjacent the first flange member 15 is depicted as (2). As can be seen, the cells of this region are generally of a large “bat-wing” shape which confer the desired flexibility while at the same time a certain degree of rigidity to the stent 10. In
Where the tubular body 11 is made from a shape memory material such as Nitinol™, a cylinder of Nitinol™ is taken to a desired temperature to allow the material to achieve a “memory” of a certain configuration. If a ridge 31 as depicted in
In a further embodiment of the invention as depicted in
In another embodiment of the invention as depicted in
In one embodiment as depicted In
In a particularly preferred embodiment of the invention as depicted in
As depicted in
The engagement member 30 depicted in
In a further embodiment depicted in
As mentioned above, the stent 10 of the present invention is used in the treatment of ostial stenosis including ostial stenosis of the visceral arteries such as the renal and mesenteric arteries, the iliac artery and the sub-clavian artery. Further, in addition to the treatment of stenotic lesions in the peripheral vasculature, the stent 10 may be used in the treatment of vessels comprising the coronary circulation.
When the intraluminal stent 10 is to be used to bridge an ostial stenosis, it is introduced as follows:
Step 1: the introducer catheter 41 is introduced by way of a vein, artery or other vessel into the pre-branching vessel 21 of a patent. It should be noted that the tubular body of the intraluminal stent is in its radially compressed state;
Step 2: the distal end 44 of the placement catheter 42 is introduced into the post-branching vessel 20 from the pre-branching vessel 21 until substantially only the first flange member 15 is still positioned within the pre-branching vessel 21;
Step 3: the introducer catheter 41 is pulled back to expose the first flange member 15 of the intraluminal stent 10;
Step 4: the first flange member 15 moves from its radially compressed state to its radially expanded state such that it abuts with at least a portion of the wall of the pre-branching vessel 21 which surrounds the ostium of the post-branching vessel 20. It should be noted that in the example depicted, the stent is made from Nitinol™. Accordingly, in its first radially compressed state, the first flange member 15 simply forms part of the cylinder (as shown in
Step 5: the placement catheter 42 and the membrane 45 are advanced downstream into the post-branching vessel 20 such that the portion of tubular body previously compressed by the membrane 45 is caused or allowed to move from its radially compressed state to its radially expanded state such that it is caused to abut with at least a portion of the wall of the post-branching vessel 20;
Step 6: withdrawing the placement catheter 42 together with the membrane 45 through the expanded tubular body 11. In this regard, it is preferred that the membrane 45 is spring connected to the placement catheter such that it is biased against the placement catheter 42. This has the advantage that the membrane 45 is held against the placement catheter 42 during withdrawal of the placement catheter 42 thereby preventing snagging of the membrane on the radially expanded stent 10.
To ensure that the stent 10 is appropriately positioned before the introducer catheter 41 is withdrawn, the first flange member 15 may have radio-opaque markers Incorporated in its structure. Accordingly, the surgeon, would be able to determine the exact positioning of the first flange member 15 within the vessel of the patient. Not until the at least first flange member 15 is positioned within the pre-branching vessel 21 at an area adjacent the opening of the post-branching vessel 20 would the introducer catheter 41 be withdrawn.
In a further embodiment of the invention as depicted in
In the embodiment depicted in
The delivery system of a further aspect of the invention is generally depicted as 100 in
As depicted, the intraluminal stent 101 is movable from a first radially compressed state (see
The delivery system 100 includes a catheter 102 comprising an elongate body which extends from a proximal end 104 to a distal end 105. The elongate body extends through an internal lumen of the intraluminal stent 101 such that the intraluminal stent 101 substantially surrounds a portion of the catheter 102.
The delivery system 100 further includes a compression member which holds the intraluminal stent 101 in its first radially compressed state and a release member 107 which causes release of the compression member and allows the intraluminal stent to move to its second radially expanded state.
The delivery system 100 is used to deliver a self-expanding intraluminal stent to a target site.
As shown in
The release member 107 comprises a balloon member 108 positioned along the length of the elongate body of the catheter 102. The balloon member 108 is substantially surrounded by the intraluminal stent 101 and when the balloon member 108 is inflated the intraluminal stent is forced radially outward.
The membrane 109 includes a series of perforations along its. length which are broken upon inflation of the balloon member 108 (as shown in
The delivery system of
In this embodiment, the sutures 111 holding the intraluminal stent 101 to the catheter 102 have a predetermined breaking strength. Accordingly, when the balloon member 108 moves from its deflated state to its inflated state, the sutures 111 break thereby allowing the intraluminal stent 101 to move to its second radially expanded state.
Another embodiment of a delivery system is depicted in
In the embodiment of the delivery system depicted in
The release member comprises a fluid that can be delivered to the sealed membrane 121 and so expand the membrane 121. The fluid is delivered into the sealed membrane 121 by the catheter 102 through apertures 122 therein.
The membrane 121 breaks into one or more portions 121a and 121b on undergoing a predetermined degree of expansion. In the depicted embodiment, the proximal end 123 of the portions are connected to the catheter 102 and are withdrawable from the target vessel on withdrawal of the catheter 102 therefrom.
In this embodiment, the membrane 121 can contain or include one or more pharmaceutical agents. In another embodiment, one or more pharmaceutical agents can be delivered with the fluid from the catheter 102 and into the pocket formed by the sealed membrane 121.
In the depicted embodiment, the stent 101 is a self-expanding stent that expands in the direction depicted by arrows A on expansion of the membrane 121. It will be appreciated that in another embodiment, the stent can be a passive stent that requires expansion by a secondary mechanism, such as a balloon catheter.
It will be appreciated by persons skilled in the art that numerous variations and/or modifications may be made to the invention as shown in the specific embodiments without departing from the spirit or scope of the invention as broadly described. The present embodiments are, therefore, to be considered in all respects as illustrative and not restrictive.
Number | Date | Country | Kind |
---|---|---|---|
PR 7488 | Sep 2001 | AU | national |
Filing Document | Filing Date | Country | Kind |
---|---|---|---|
PCT/AU02/01225 | 9/4/2002 | WO |