The present invention relates to vision systems. More specifically, the present invention relates to a stereo-based video odometry method and system for obtaining a pose of an object from a sequence of images.
A variety of applications rely on the use of navigation systems, both civilian and military, such as in personal location and route planning assistance, autonomous robot navigation, unknown environment map building, naval and aeronautic tactical fighting systems, land surveys, etc. Unfortunately, many existing navigation systems do not function very well under certain circumstances. For example, GPS (Global Positioning System) is widely used in many of the aforementioned applications. In certain circumstances, however, GPS cannot work reliably if the satellite signals upon which it is based are blocked or unavailable as often occurs in indoor environments, in forests, and in urban areas. Even when it works well, GPS can only provide the location of the user, which is usually not sufficient to assist the user during navigation. For example, when a group of warfighters is performing a military task in an unknown environment, in addition to a warfighter needing to know where each of the other war fighters is located, it would be desirable to see what each of the other warfighters is seeing to foster better cooperation and coordination.
A vision-based navigation system can meet these challenges. Specifically, a vision-based navigation system does not require expensive equipment and can independently estimate 3D position and orientation (pose) accurately by using image streams captured from one, two or more inexpensive video cameras. Vision-based navigation systems can be integrated with GPS and inertial measurement unit (IMU) systems to robustly recover both the location and the 3D gaze or orientation of a user under a wide range of environments and situations. In addition, detailed information and imagery of an environment can be recorded in real time. The imagery can be shared and analyzed to assist the user in reporting what is seen.
A variety of efforts have been made to build a navigation system using vision approaches in the past few decades. In most approaches using computer vision techniques, a set of stationary feature points in the scene is tracked over a sequence of images. The position and orientation change of a camera is determined using the image locations of the tracked feature points. The motion estimation can be done use monocular, binocular (stereo) or multi-camera configurations. In stereo or multi-camera configurations, the 3D location of scene points can be estimated by the binocular disparity of the feature points. The estimated 3D point locations may then be used to solve the motion of the camera by a 3D/2D motion estimation. In a monocular configuration, both the relative motion of the camera and the 3D locations are estimated simultaneously. The latter technique has problems with stability, therefore, visual odometry systems based on stereo have been favored over monocular-based visual odometry systems.
A visual odometry system can often drift over time due to errors associated with stereo calibration or image quantization, poor-quality images, inaccurate feature positions, outliers, and instability of motion estimation using noisy correspondences. Most existing stereo-based visual odometry systems compute the pose between each pair of image frames separately, which is referred to as the frame-by-frame approach. Compared to traditional frame-by-frame approaches, experiments have shown up to a 27.7% reduction in navigation error when multi-frame tracking is performed. However, prior art multi-frame tracking approaches lack a metric to stop tracking when the tracked feature points become insufficient for pose estimation in terms of either quantity or spatial distribution.
Most of the stereo-based visual odometry systems in the prior art estimate pose from established 3D/2D feature correspondences. Since 3D coordinates of each feature point are reconstructed using the stereo-based triangulation, error introduced during 3D reconstruction needs to be minimized. However, in some stereo-based visual odometry systems, during stereo matching, no stereo geometric constraints are utilized to reduce the search region and a large amount of false stereo matches results.
Scenes to be monitored frequently contain moving objects such as walking persons, moving vehicles, waving trees, etc. If features in moving objects are selected during pose estimation, these features can negatively affect the accuracy of the resulting pose unless they are detected and discarded as outliers. In a nearly polar opposite scenario, there are situations where accuracy may degrade due to lack of features in the scene. For instance, the field-of-view of cameras may be occupied by a non-texture surface where feature detection is largely inhibited.
Accordingly, what would be desirable, but has not yet been provided, is stereo-based video odometry method for obtaining a pose of an object from a sequence of images which overcomes many of the problems described above in the prior art.
Disclosed is a method and system describing a visual odometry technique for estimating pose from a sequence of images, which includes the steps of detecting at least three feature points in both the left image and right image of a first pair of stereo images at a first point in time; matching the at least three feature points in the left image to the at least three feature points in the right image to obtain at least three two-dimensional feature correspondences; calculating the three-dimensional coordinates of the at least three two-dimensional feature correspondences to obtain at least three three-dimensional reference feature points; tracking the at least three feature points in one of the left image and right image of a second pair of stereo images at a second point in time different from the first point in time to obtain at least three two-dimensional reference feature points; and calculating a pose based on the at least three three-dimensional reference feature points and its corresponding two-dimensional reference feature points in the stereo images.
The pose is found by minimizing projection residuals of a set of 3D reference feature points in an image plane. Feature points correspond to Harris corners. The at least three three-dimensional feature points are found by triangulating the at least three two-dimensional feature correspondence from both the left image and the right image. Tracking of the at least three feature points is accomplished by detecting at least three feature points in both the left image and right image of the second pair of stereo images at the second point of time and matching the at least three feature points in one of the left image and right image of the first pair of stereo images to a corresponding one of the left image and the right image of the second stereo pair.
Tracking feature points and recalculating the pose is repeated for subsequent time intervals until the number of tracked features tracked in the subsequent time intervals relative to the first time interval falls below a predetermined number of features. The predetermined number of features is determined based on a spatial distribution metric.
The following embodiments are intended as exemplary, and not limiting. In keeping with common practice, figures are not necessarily drawn to scale.
Referring now to
The system 10 can also include a digital video capture system 18 and a computing platform 20. The digital video capturing system 18 processes streams of digital video, or converts analog video to digital video, to a form which can be processed by the computing platform 20. The digital video capturing system may be stand-alone hardware, or cards 21 such as Firewire cards which can plug-in directly to the computing platform 20. The computing platform 20 may include a personal computer or work-station (e.g., a Pentium-M 1.8 GHz PC-104 or higher) comprising one or more processors 22 which includes a bus system 24 which is fed by video data streams 26 via the processor or directly to a computer-readable medium 28. The computer readable medium 28 can also be used for storing the instructions of the system 10 to be executed by the one or more processors 22, including an operating system, such as the Windows or the Linux operating system. The computer readable medium 28 can include a combination of volatile memory, such as RAM memory, and non-volatile memory, such as flash memory, optical disk(s), and/or hard disk(s). In one embodiment, the non-volatile memory can include a RAID (redundant array of independent disks) system configured at level 0 (striped set) that allows continuous streaming of uncompressed data to disk without frame-drops. In such a system, a processed video data stream 30 can be stored temporarily in the computer readable medium 28 for later output. In alternative embodiments, the processed video data stream 30 can be fed in real time locally or remotely via an optional transmitter 32 to a monitor 34. The monitor 34 can display processed video data stream 30 showing a scene 36 with which can be accompanied by text and/or numerical coordinates, such as GPS coordinates, IMU measurements, and pose calculations.
Referring now to
At block 48, stereo matching is used to find 2D stereo feature correspondences 50 by matching the extracted set of potential feature points 42, 44 between left and right images of a stereo pair. The 3D coordinates of each of the 2D stereo feature correspondences 50 are obtained in the 3D reconstruction block 52 by triangulation. The 3D coordinates thereby obtained serve as the 3D reference feature points 53 for pose computation in block 54 when a new pair of stereo images 56, 58 arrives at time T+1.
The next step is to perform feature tracking with the new pair of stereo images 56, 58 at time interval T+1. Once the new pair of stereo images 56, 58 is captured, a set of 2D reference feature points 64 is tracked in the left image 56 or the right image 58 individually. More specifically, the tracking is done with a very similar technique as in stereo matching: feature detection at block 60 followed by reference feature point matching at block 62. For example, either the left image 56 or the right image 58 is examined. If the left image 56 is chosen, left image processing is followed in subsequent steps and time intervals (and likewise right image processing is chosen if the right image is selected). Assuming the left images 38, 56 are chosen, in order to track the 2D reference feature points 64 of a new stereo pair, Harris corners are first extracted from the new left image 56 to provide a set of potential feature points 59 for matching in block 62. Then, each of the set of 2D reference feature points 64 is tracked by matching the extracted Harris corner feature points 59 in block 62 between the left images 38, 56 of the stereo pairs at time T and T+1, respectively. After the set of 2D reference feature points 64 are tracked, a set of 3D/2D feature correspondences can be established between the set of 3D reference feature points 53 from time T with the set of 2D reference feature points 64 from time T+1 in block 54. Using the set of 3D/2D correspondences and a pose calculation algorithm to be described hereinbelow, the relative pose 68 between these two pairs of stereo images can be estimated from the set of established 3D/2D feature correspondences.
The feature tracking steps, i.e., extracting Harris corner feature points and performing tracking of feature points in the left (right) image at later time intervals to the feature points extracted at time T, are repeated for subsequent time intervals T+2, T+3 etc. At each new time interval T+2, T+3, the relative pose is recomputed from the remaining tracked feature points. However, if the system of the present invention moves by a large motion step, most of the set of reference feature points 64 move out of the field-of-view of the cameras. This is illustrated in
Precise and robust feature detection and tracking in images is needed to maintain accurate pose estimation. This requires that feature detection and tracking errors be kept to a minimum. Extracting a set of reliable features for each pose computation can be challenging due to such factors as motion of a camera, changes in a scene background, changes in a camera's viewpoint, changes in illumination, and occlusion. In addition, as a camera moves, some features move out of the field-of-view of the camera and new features move into the field-of view. The new and surviving features need to be detected and tracked in subsequent frames. Techniques of the present invention to maintain accurate feature detection, feature tracking, and feature matching are considered in more detail hereinbelow.
To handle the appearance and disappearance of the features, feature detection and matching are performed in each image frame. Since Harris corners are relatively stable under small to moderate image distortions, Harris corner extraction is performed in every frame and the extracted Harris corners will serve as the 2D feature points for the pose computation. Once a set of feature points are extracted from each frame, they are matched to subsequent frames to find their correspondences. The matching procedure used can be found in D. Nister, O. Naroditsky and J. Bergen, “Visual Odometry,” IEEE Conference on CVPR, 2004. which is incorporated herein by reference in its entirety. A summary of the feature matching procedure is as follows: For each feature point xi in the first frame, a region in the second image around the location xi is searched for its correspondence xi. The search is based on the similarity of the local image patches centered on the feature points. Normalized correlation over an 11×11-pixel window is used to measure the similarity. Finally, a feature that produces the highest similarity score is considered a match.
Given a pair of stereo images, the task of stereo feature matching is to match the extracted feature points between the left and right images. In practice, the viewpoints of the left and right cameras in a stereo system are different so that the image appearances of a same feature point may be significantly different in the left and right images. On the other hand, since all the feature points are corners, it is also very common for them to look similar to each other. As a result, false stereo matches may occur when using a large search region.
To reduce or eliminate possible false stereo matches, a techniques called constrained stereo feature matching is employed. Two types of geometric constraints can be applied to reduce search space during stereo feature matching. These are epipolar geometry constraint and disparity constraint, which are described in R. Hartley and A. Zisserman, “Multiple View Geometry in Computer Vision,” Cambridge University Press, 2003, pp. 239-258, which is incorporated herein by reference in its entirety. With the use of these two constraints, most of the geometrically infeasible feature matches are eliminated.
Once a set of stereo feature point matches are obtained a each stereo pair, the 3D coordinates of each matched feature are reconstructed by triangulation. The resulting 3D coordinates serve as 3D reference points during pose computation. These 3D reference feature points need to be tracked in the subsequent image frames. Similar to stereo matching, feature tracking is performed with the Harris corner detection and matching technique. However, different from the stereo matching, feature matching is performed between the left images or the right images of two different stereo pairs. Since the relative pose between these two stereo pairs is not known, there are no geometric constraints that can be used during matching. As a result, falsely tracked features may occur. In order to discard those falsely tracked reference feature points, a dynamic local landmark tracking technique is used.
Referring again to
Referring now to
To estimate pose given the set of 3D/2D correspondences (Xi,xi) of n of reference features, a rotation matrix and the translation vector that maps the world coordinate system to the camera coordinate system is found. In general, the pose is found by minimizing the projection residuals of a set of 3D reference feature points in the image plane as follows:
where ri=∥xi−xi∥ and xi=Proj(RXi+T) (Proj denotes the camera projection function, and n>=3, wherein the reference features correspond to the at least three tracked features. R is a rotation matrix and T is the translation vector that maps the world coordinate system to the coordinate system of the stereo pair of images. xi is the 2D coordinates of a feature point in the image. Xi is its corresponding 3D coordinates in the world coordinate system. Note that, in order to estimate the pose parameters R and T from the image projection equation xi=Proj(RXi+T), at least three known feature points are required to solve the equation. This also puts the same minimum of 3 requirement on the number of tracked features, feature correspondences, etc. (n>=3). More details can be found in the following paper: R. Haralick, C. Lee, K. Ottenberg and M. Nolle, “Review and Analysis of Solutions of the Three Point Perspective Pose Estimation Problem”, International Journal of Computer Vision, 13(3):331-356, 1994, which is incorporated herein by reference in its entirety.
Since the 3D coordinates in a 3D/2D feature correspondence are computed through the 3D reconstruction from the reference stereo pair, each feature may have a 3D reconstruction error. To minimize the effect of the 3D reconstruction error on the pose estimation, t the 3D position of each feature needs be reconstructed as accurately as possible. To accomplish this, a dynamic 3D reference selection technique is used to select the stereo pair that produces the least 3D reconstruction error caused by depth as the reference during pose computation. In addition, since the above pose estimation technique considers all the features during minimization, a single outlier can have a large effect on the estimated pose. In practice, the scene is not completely stationary so that it is common that some features will be located in the moving objects. Together with falsely matched features, outliers can affect the resulting pose significantly. Therefore, an outlier removal technique can be incorporated into the method of estimating pose of the present invention.
During 3D reconstruction, uncertainty in the reconstructed 3D coordinates of a feature point varies with the depth. Usually, the points with larger depth will have larger uncertainty. Hence, as a point moves away from the camera, its associated 3D reconstruction error will become larger and larger. Depending on the moving speed and the motion type of the system, during the forward running-truck case, the distance of the camera between the selected stereo pairs can be several meters away in depth. Therefore, when the same feature point is reconstructed in both stereo pairs, the 3D reconstructed error in each stereo pair can be considerably different. Normally, the stereo pair at later time intervals during pose computation is selected temporally, which means that the old stereo pair at time T is always selected as the reference pair. Therefore, for the above forward running-truck case, the 3D reconstruction error is larger than the error that would be produced if the stereo pair at a later time interval is selected as reference for 3D reconstruction.
As a result, during the pose computation (and not during the tracking procedure), the reference stereo pair needs to be selected dynamically in order to reduce the 3D reconstruction error introduced by depth. One technique is to dynamically select the reference stereo pair via the motion type of the system. In practice, for the 3D reconstruction, the points close to the camera will be more accurate. Specifically, for the forward motion, a later stereo pair is selected as the reference frame, since a camera moving towards the points in the scene produces less 3D reconstruction error in later stereo frames. For the backward motion, the older stereo pair is selected as the reference frame, since a camera moving away from the points in the scene, produces less 3D reconstruction error in an older frame. The dynamic reference frame selection is only for the pose computation, and does not change the local landmark tracking process, since local landmark tracking provides the set of points for pose computation.
In order to detect and reject the outliers in a set of 3D/2D feature correspondences, a Least Median of Squares (LMedS) approach is used. Specifically, a set of initial pose parameters is estimated as follows:
Once the set of initial pose parameters Pmin is obtained, the standard deviation {circumflex over (σ)} is computed from the obtained minimal median Mrmin as follows:
{circumflex over (σ)}=1.4826×[1+3/n]√
where 1.4826 is a coefficient to achieve the same efficiency as a least-squares in the presence of only Gaussian noise, and 3/n is for compensating for the effect of a small data set. Subsequently, the outlier rejection is done with the use of the standard deviation {circumflex over (σ)} Specifically, the feature points whose residuals are more than 2{circumflex over (σ)} under the estimated pose parameter set Pmin are rejected as outliers.
Finally, on the set of remaining 3D/2D feature correspondences, a pose refinement procedure with the use of nonlinear optimization technique starting from the estimated pose parameter set Pmin is applied to more accurately estimate pose. More specifically, the Levenberg-Marquardt technique is used and the detailed algorithm can be found in R. Hartley and A. Zisserman, “Multiple View Geometry in Computer Vision,” Cambridge University Press, 2003, pp. 569-528, which is incorporated herein by reference in its entirety.
To increase the accuracy and robustness of the system and to reduce long-term drift of pose estimation as much as possible, the visual odometry system of the present invention can be integrated with a MEMS (Microelectromechanical Systems) based IMU and a GPS unit using an extended Kalman filter (EKF) framework. A “constant velocity, constant angular velocity” model is chosen for filter dynamics. The state vector comprises 13 elements: T, 3-vector representing position in navigation coordinates, q, unit quaternion (4-vector) for attitude representation in navigation coordinates, ν, 3-vector for translational velocity in body coordinates, and ω, 3-vector for rotational velocity in body coordinates. Quaternion representation for attitude has several practical properties. Each component of the rotation matrix in quaternion is algebraic, eliminating the need for transcendental functions. It is also free of the singularities that are present with other representations and the prediction equations are treated linearly. Based on this, the process model we adopted is given by
and is used to denote the quaternion product operation. Above, ρ is the rotation vector (representing the rotation axis) in the body frame, R(q) is the rotation matrix determined by the attitude quaternion q in the navigation frame, and q(ρ) is the quaternion obtained from the rotation vector ρ. Undetermined accelerations in both translational and angular velocity components are modeled by zero mean white Gaussian noise processes {nν,k} and {nω,k}.
It has been observed that throughout most data sequences where the images contain features that are accurately tracked, there is a very high degree of agreement between the angular velocities computed by visual odometry alone and those available from angular rate sensors (gyros) in the IMU. Therefore, raw gyro readings can be chosen from the IMU directly as measurements in the Kalman filter. The observations from visual odometry, IMU and GPS are used according to the following measurement model:
Tkgps=Tk+nkgps
νkvo=νk+nν,kvo
ωkvo=ωk+nω,kvo
ωkimu=ωk+nν,kimu
Here, νkvo and ωkvo are translational and angular velocity measurements provided by visual odometry (vo), ωkimu is the gyro output provided by the IMU and Tkgps is the position measurement provided by the GPS unit. Uncertainty in the visual odometry pose estimates, represented by the noise components nν,kvo and nω,kvo is estimated based on the reprojection error covariance of image features through backward propagation. The gyro noise errors are modeled with fixed standard deviation values that are much higher than those corresponding to the visual odometry noise when the pose estimates are good (which is the most common case in an outdoor situation) and are comparable in value or sometimes even less when vision based pose estimation is difficult due to brief instances which is mostly common in an indoor situation. This allows the filter to effectively combine the two measurements at each time update, relying more on the sensor with the better noise characteristics. In addition, to control the amount of vertical drift, elevation measurements are used that are assumed to be constant except when there is staircase climbing. This assumes the ground plane to be flat which is a good assumption except when the user moves from one floor to another inside a building. To accommodate local violations from this planar motion assumption due to kneeling, crouching, etc., a 1 meter standard deviation for the measurement noise nkh is used:
hk=Tk(2)+nkh
In order to obtain the initial position and attitude of the camera in navigation coordinates, roll and pitch outputs from an IMU are used directly and heading is obtained by the aid of the first two GPS readings that are sufficiently spread apart. During filter operation, bad measurements from all sensors are rejected using validation mechanisms based on Chi-square tests on the Kalman innovations. In addition, those measurements from visual odometry causing large accelerations are also discarded.
The present invention has many advantages over prior art visual odometry systems and methods for estimating pose. For example, prior art multi-frame tracking approaches lack a metric to stop tracking when the tracked feature points become insufficient for pose estimation in terms of either quantity or spatial distribution. In the present invention, a dynamic local landmark tracking technique is disclosed which automatically selects an optimal set of tracked feature points across image frames for pose estimation. In the present invention, epipolar-geometry and disparity constraints are applied to reduce search region for matching so that the 3D reconstruction error caused by false stereo matches can be minimized. In order to further reduce 3D reconstruction error caused by depth, a dynamic 3D reference selection technique is also disclosed to dynamically select the frame that produces fewer 3D reconstruction error as the reference frame during pose computation. To reduce errors associated with scenes containing moving objects during pose estimation, the present invention provides an outlier removal procedure. In order to reduce drift due to lack of features in a scene, the present invention integrates data from non-visual sensors such as GPS, Inertial Measurement Units (IMU) and orientation sensors. An Extended Kalman Filter (EKF) framework integrates both IMU and GPS measurements with the visual odometry measurements.
It is to be understood that the exemplary embodiments are merely illustrative of the invention and that many variations of the above-described embodiments may be devised by one skilled in the art without departing from the scope of the invention. It is therefore intended that all such variations be included within the scope of the following claims and their equivalents.
This application claims the benefit of U.S. Provisional Patent Application No. 60/837,707 filed Aug. 15, 2006, the disclosure of which is incorporated herein by reference in its entirety.
This invention was made with U.S. government support under contract number NBCHC050078. The U.S. government has certain rights in this invention.
Number | Name | Date | Kind |
---|---|---|---|
6873713 | Okazaki et al. | Mar 2005 | B2 |
7158656 | Covell et al. | Jan 2007 | B2 |
20030218672 | Zhang et al. | Nov 2003 | A1 |
20070031037 | Blake et al. | Feb 2007 | A1 |
Number | Date | Country | |
---|---|---|---|
20080144925 A1 | Jun 2008 | US |
Number | Date | Country | |
---|---|---|---|
60837707 | Aug 2006 | US |