The above-mentioned features of the invention will become more clearly understood from the following detailed description of the invention read together with the drawings in which:
A combination of a sterile drape 106 and an agitator 104 for making surgical slush and an apparatus 400 for manufacturing such a combination is disclosed.
The drape 106 is attached to the agitator 104 and extends along the sides of the basin 112 and over the top of the stirrer 102 and down the sides of the stirrer 102. When the agitator 104 is reciprocating up and down, the portion of the drape 106 attached to the agitator 104 and in contact with the top of the agitator 104 moves in concert with the agitator 104. Ideally, the portion of the drape 106 between the side of the agitator 104 and the walls of the basin 112 flexes as the agitator 104 reciprocates. It is desirable for the portion of the drape 106 along the side of the basin 112 to not form an air-tight seal with the basin 112 in order for air to flow between outside the basin 112 and the bottom of the basin 112 near the agitator 104. Otherwise, as the agitator 104 moves up and attempts to increase the volume under the agitator 104, a vacuum or low pressure volume will be formed, thereby sucking or pulling the drape 106 down between the bottom of the agitator 104 and the basin 112. Accordingly, the drape 106 must be stiff enough to not completely conform to the shape of the basin 112 and not form an air tight seal around the upper circumference of the basin 112.
Oftentimes during the operation of the slush stirrer 102, it is necessary for a medical practitioner to lift up on the drape 106 in order to prevent an air-tight seal forming. Also, if the refrigeration is cycled on and off, condensation may form on the inside surface of the basin 112 and then freeze, thereby adhering the drape 106 to the walls of the basin 112. Lifting the drape 106 and allowing the condensation to frost before lowering the drape 104 prevents the drape 104 from forming an air-tight seal with the walls of the basin 112. Lifting the drape 106, particularly when it holds a quantity of slush 204, applies stress to the bonded portion 108 of the drape 106/agitator 104 combination. If the person lifting the drape 106 is not careful, the drape 106 can pull away and separate from the agitator 104 if the bonded area 108 is not sufficiently strong, such as is the case when an adhesive is used to attach the drape 106 to the agitator 104. Additionally, if the drape 106 has been weakened by its attachment to the agitator 104, the drape 106 will tear, which not only contaminates the slush 204, but also allows the slush 204 to enter the basin 112 and potentially damage the agitation mechanism of the stirrer 102.
Above the fixed base 402 is a heated die, or stamp, 404. On one surface of the die 404, which is adjacent to the drape 106, has a raised pattern 414 that corresponds to the shape of the fused areas 302. The die 404 includes a heater that heats the raised pattern 414 to a specified temperature. The opposite end of the die 404 is attached to the piston 406 of a cylinder 408 that is supported by an arm 410. The cylinder 408 receives a pressurized fluid and the piston 406 moves linearly 416 in relation to that pressurized fluid. The movement 416 of the piston 406 is normal, or substantially perpendicular, to the plane of the top surface of the agitator 104 such that the raised surface 414 makes full contact with equal pressure over its full surface area with the drape 106 and the agitator 104 when the piston 406 is in the extended position. When the piston 406 is in the retracted position, there is sufficient clearance between the raised surface 414 of the die 404 and the drape 106 to allow the drape 106 and agitator 104 to be removed from the apparatus 400.
The arm 410 provides support to the cylinder 408 when the cylinder 408 is being actuated. In various embodiments, the arm 410 is articulated or otherwise repositionable such that the die 404 is able to be positioned or moved out of the way to aid in the placement and removal of the agitator 104 and drape 106.
The apparatus 400 includes a controller 418 that is in communication with the cylinder 408 and the heater that controls the temperature of the raised pattern 414 on the die 404. The controller 418 provides the signals that cause the cylinder 408 to actuate and move the piston 406 and attached die 404 between a first and second position. The controller 418 also maintains the temperature of the raised area 414 of the die at the selected temperature.
To create a fused, or bonded, connection 108, an agitator 104 is placed on the fixed base 402 and a drape 106 is positioned over the top surface of the agitator 104. When the cylinder 408 is actuated, the piston 406 moves down 416 in a direction normal (or perpendicular) to the plane of the drape 106 and the top surface of the agitator 104, thereby forcing the raised pattern 414 against the drape 106 and the agitator 104 with a selected pressure or force. The drape 106 and the agitator 104 are compressed between the die 404 and the fixed base 402. In various embodiments, the compression may or may not be accompanied by a reduction of thickness of the drape 106 and/or the agitator 104. The raised pattern portion 414 of the die 404 is maintained at a selected temperature, such that when the die 404 is forced against the drape 106 for a selected time at the selected pressure, the fused areas 302 are formed. In order to make the fused areas 302, three factors have to be considered: time, temperature, and pressure. Control of these three factors results in a bonded area 108 having the desired properties.
In one embodiment, the fused areas 302 have a shear strength substantially equal to or greater than the tensile strength of the drape 106 by itself. That is, by fusing the drape 106 to the agitator 104, the resulting bonded area 108 has at least substantially the same strength as the material of the drape 106. Further, the tensile strength of the boundary between the fused area 302 and the remainder of the drape 106 is not substantially reduced from the tensile strength of the material of the drape 106. In one embodiment, the temperature, time, and force are such that the area adjacent the fused area 302 on the drape 106 has a slight thinning and/or weakening such that the failure mode is for the drape 106 to rupture at or near the boundary of the fused area 302.
In one embodiment, the drape 106 is a urethane material and the agitator 104 is a polycarbonate material. In one prototype, the temperature of the raised pattern 414 on the die 404 is a nominal 450 degrees Fahrenheit, that is, the temperature ranges between 450 and 460 degrees Fahrenheit. The cylinder 408 is a pneumatic cylinder with a piston 406 having a 4 inch diameter surface subjected to 38 pounds per square inch gauge (psig) pressure upon actuation. The raised pattern 414 has a surface area of approximately 2 square inches resulting in a bonded area 108 of approximately 2 square inches. The force applied by the raised patter 414 to the drape 106 and agitator 104 is approximately 240 pounds per square inch force. The cylinder 408 is actuated for a nominal 6 seconds to fuse the drape 106 to the agitator 104. Nominal values are those values that are designated or desired, but the actual value may vary an insignificant amount from the specified nominal value.
With another prototype, the temperature of the raised pattern 414 on the die 404 is a nominal 450 degrees Fahrenheit and the cylinder 408 has a piston 406 with a 3½ inch diameter head subjected to 44 psig upon actuation. With the same raised pattern 414 surface area, the force applied to the drape 106 and agitator 104 is just over 200 pounds per square inch force.
With these prototypes, the fused areas 302 were tested to have a shear strength no less than the tensile strength of the material of the drape 106. The test was performed by holding the agitator 104 in a fixed position and applying a pulling force to the drape 106 in the plane of the top surface of the agitator 104. The material of the drape 106 was observed to deform by stretching adjacent to the boundary of the bonded area 108 followed by separation of the one section of the drape 106 from another section, typically adjacent to or near the boundary of the fused areas 302. The testing indicates that there may have been a slight thinning or weakening of the drape 106 adjacent the fused areas 302, but that the thinning or weakening was not substantial.
In another test, the agitator 104 was held in a fixed position and the drape 106 was pulled in a direction normal to the plane of the top surface of the agitator 106. This test determined the tensile strength of the fused areas 302 relative to the drape 106. The material of the drape 106 was observed to deform by stretching adjacent the boundary of the bonded area 108 followed by separation of the drape 106 from the agitator 104 at the fused areas 302. It is noted that the fused area 302 can be considered a brittle material because of the rigidity of the agitator 302 in the direction of the pull force compared to the pliable nature of the material of the drape 106. The failure mode of the fused areas 302 was separation whereas the failure mode of the drape 106 is deformation followed by rupture. This testing indicates that the tensile strength of the fused areas 302 was almost as great as the tensile strength of the material of the drape 106.
Other prototypes of the fused drape 106 and agitator 104 were made with the temperature, force, and time varied from the nominal values specified above. For example, one set of prototypes was made by varying the temperature of the die 404 greater than plus and minus 15 degrees from the nominal 450 degree Fahrenheit temperature, that is, less than 435 and greater than 465 degrees Fahrenheit. Testing of these prototypes indicated that the fused areas 302 either had reduced strength or weakened the drape 106 adjacent the fused areas 302.
From the foregoing description, it will be recognized by those skilled in the art that an apparatus 400 for fabricating an agitator 104 with an attached drape 106 for containing a slush solution 204 in a medical stirrer 102 has been provided. Also, it will be recognized by those skilled in the art that a method of fabricating an agitator 104 with an attached drape 106 for containing a slush solution 204 in a medical stirrer 102 has been provided. It will also be by those skilled in the art that an agitator 104 with an attached drape 106 for containing a slush solution 204 in a medical stirrer 102 has been provided.
While the present invention has been illustrated by description of several embodiments and while the illustrative embodiments have been described in considerable detail, it is not the intention of the applicant to restrict or in any way limit the scope of the appended claims to such detail. Additional advantages and modifications will readily appear to those skilled in the art. The invention in its broader aspects is therefore not limited to the specific details, representative apparatus and methods, and illustrative examples shown and described. Accordingly, departures may be made from such details without departing from the spirit or scope of applicant's general inventive concept.