The present disclosure relates generally to stopcocks. More particularly, the present disclosure relates to stopcocks in which the stagnation of fluid flowing therethrough is minimized.
In the clinical setting, there is frequently a need to monitor and evaluate a patient's blood chemistry. One of the most common methods of obtaining a blood sample from a patient is through the use of a sharpened cannula. According to this method, a sharpened cannula is inserted into a vein or artery of the patient. Thereafter, a blood sample is obtained, for example, the patient's blood can enter into a collection vile under its own pressure, or the blood can be extracted by a syringe. Once the appropriate volume of blood has been obtained, the sharpened cannula is removed from the patient and disposed of.
During the treatment of certain conditions, some patients may require blood sampling as many as twelve times per day. Such frequent sampling potentially exposes the patient to airborne bacteria and viruses which can enter the bloodstream through the opening made by the sharpened cannula. Moreover, each handling of a sharpened cannula presents the risk of an inadvertent needlestick by a clinician. The problem of infection, accidental needle sticks and the ubiquitous danger of contracting blood-borne diseases, such as HIV and/or hepatitis, prompted the medical field to seek alternative blood sampling methods.
One such method is to obtain multiple blood samples from a catheter inserted into the patient. Examples of catheters include central venous line catheters which, for example, can be placed into the right subclavian vein, or arterial line catheters which can be inserted into an artery. Typically, the injection sites for arterial and central venous line catheters are used for drug infusion and pressure monitoring, in addition to blood sampling.
In order to avoid sampling blood mixed with infusion fluid, early blood sampling via arterial and central venous line catheters required a two-step process. In the first step, a first volume of fluid (generally between about 3-10 mL) was withdrawn into a first syringe. As the first volume of fluid was known to include some infusion fluid, it was generally considered unreliable for blood chemistry measurements, and therefore was discarded. After the first volume of fluid had been cleared, in the second step, a second syringe was connected to the catheter and a second volume of fluid was withdrawn from the artery or vein for evaluation.
In addition to the unnecessary loss of blood, the connection and disconnection of the first and second syringes of the two-step process had the potential of introducing air and contaminants into the blood supply. Accordingly, blood sampling systems in which the first volume of fluid could be temporarily stored and reinjected into the patient after the second step was developed.
Referring to
Referring to
Referring to
Referring to
Through use of such conventional blood sampling systems 32, it has been found that blood and other fluid has a tendency to stagnate within portions of conventional blood sampling systems 32. The stagnated blood can, among other things, present a breeding ground for bacteria. Within conventional blood sampling systems 32, the most likely place for blood stagnation to occur is within the sampling port assembly 39.
Embodiments of the present disclosure present stopcocks and sampling ports designed to reduce or eliminate the occurrence of blood stagnation through the widening of flow channels, the elimination of dead spaces and corners, and the use of angled and/or split partitions to create a more even flow of blood within the stopcocks and sampling ports.
One embodiment of the present disclosure provides a stopcock and sampling port device configured to reduce the occurrence of stagnation of fluid flowing therethrough. The stopcock and sampling port device can include a housing, elastomeric element, cap, handle, and septum. The housing can define a housing internal fluid passageway having a first port, a second port, and third port. The elastomeric element can define an elastomeric element internal fluid passageway and an aperture. The elastomeric element can be configured to bias the aperture closed in a relaxed position, and bias the aperture open in a compressed position. The cap can be configured to operably couple the elastomeric element to the housing. The handle can be rotatably position within the housing internal fluid passageway and can be configured to selectively enable flow between the first port and the second port via the elastomeric element internal fluid passageway. The septum can be operably coupled to the housing within the third port and can extend into the elastomeric element internal fluid passageway. The septum can be configured to encourage fluid passing through the third port to flow through the elastomeric element internal fluid passageway, thereby reducing the occurrence of stagnation of fluid within the elastomeric element internal fluid passageway.
In one embodiment, the septum is divided so as to encourage turbulence in fluid passing through the third port. In one embodiment, at least one of the septum and/or a divider defined by the handle can be shaped and/or angled so as to impart a swirling motion of fluid passing through the third port. In one embodiment at least a portion of the third port is partially occluded so as to impart turbulence a fluid passing therethrough. In one embodiment, the elastomeric element internal fluid passageway and the third port of the housing are shaped and sized to create a smooth transition therebetween. In one embodiment, the elastomeric element internal fluid passageway has a diameter larger than a diameter of at least one of the first port and the second port.
Another embodiment of the present disclosure provides a stopcock and sampling port device configured to reduce the occurrence of stagnation of fluid flowing therethrough. The stopcock and sampling port device can include a housing, elastomeric element, cap, handle, and divided septum. The housing can define a housing internal fluid passageway having a first port, a second port, and a third port. The elastomeric element can define an elastomeric element internal fluid passageway and an aperture. The elastomeric element can be configured to bias the aperture closed in a relaxed position, and bias the aperture open in a compressed position. The cap can be configured to operably couple the elastomeric element to the housing. The handle can be rotatably positioned within the housing internal fluid passageway and can be configured to selectively enable flow between the first port and the second port via the elastomeric element internal fluid passageway. The divided septum can be operably coupled to the housing within the third port. The divided septum can be configured to encourage turbulence of fluid passing through the third port, thereby reducing the occurrence of stagnation of fluid within the elastomeric element internal fluid passageway.
In one embodiment, the divided septum can extend into the elastomeric element internal fluid passageway. In one embodiment at least one of the septum and/or a divider defined by the handle can be shaped and/or angled so as to impart a swirling motion of fluid passing through the third port. In one embodiment, at least a portion of the third port is partially included so as to impart turbulence of fluid passing therethrough. In one embodiment, the elastomeric element internal fluid passageway and the third port of the housing are shaped and sized to create a smooth transition therebetween. In one embodiment, the elastomeric element internal fluid passageway has a diameter larger than a diameter of at least one of the first port and the second port.
Another embodiment of the present disclosure provides a stopcock and sampling port device configured to reduce the occurrence of stagnation of fluid flowing therethrough. The stopcock and sampling port device can include a housing, elastomeric element, cap, handle, and pair of fluid guide vanes. The housing can define a housing internal passageway having a first port, a second port, and a third port. The elastomeric element can define an elastomeric element internal fluid passageway and an aperture. The elastomeric element can be configured to bias the aperture closed in a relaxed position, and bias the aperture open in a compressed position. The cap can be configured to operably couple the elastomeric element to the housing. The handle can be rotatably position within the housing internal fluid passageway, and can be configured to selectively enable flow between the first port and the second port via the elastomeric element internal fluid passageway. The pair of fluid guide vanes can be operably coupled to the housing within the third port. The pair of fluid guide vanes can be configured to impart a swirling motion of fluid passing through the third port, thereby reducing the occurrence of stagnation of fluid within the elastomeric element internal fluid passageway.
In one embodiment, the pair of fluid guide vanes extend into the elastomeric element internal fluid passageway. In one embodiment, the elastomeric element internal fluid passageway and the third port of the housing are shaped and sized to create a smooth transition therebetween. In one embodiment, the elastomeric element internal fluid passageway has a diameter larger than a diameter of at least one of the first port and the second port. In one embodiment, the elastomeric element internal fluid passageway includes a tapered wall, such that a diameter of the elastomeric element internal fluid passageway decreases in proximity to the aperture.
Another embodiment of the present disclosure provides a stopcock and sampling port device configured to reduce the occurrence of stagnation of fluid flowing therethrough. The stopcock and sampling port device can include a housing, elastomeric element, cap, and handle. The housing can include a housing wall defining a housing internal fluid passageway having a first port, second port, and third port. The elastomeric element can include an elastomeric element wall defining an elastomeric element internal fluid passageway and an aperture. The elastomeric element can be configured to bias the aperture closed in a relaxed position, and bias the aperture open in a compressed position. The cap can be configured to couple the elastomeric element to the housing. The handle can be rotatably position within the housing internal fluid passageway and can be configured to selectively enable flow between the first port and the second port via the elastomeric element internal fluid passageway. The elastomeric element wall defining the elastomeric element internal fluid passageway and the housing wall defining the third port can be shaped and sized to create a smooth transition between the elastomeric element internal fluid passageway and the third port, thereby reducing the occurrence of stagnation of fluid within the elastomeric element internal fluid passageway.
In one embodiment, the elastomeric element internal fluid passageway can have a diameter larger than a diameter of at least one of the first port and the second port. In one embodiment, the elastomeric element wall can be tapered, such that a diameter of the elastomeric element internal fluid passageway decreases in proximity to the aperture.
The summary above is not intended to describe each illustrated embodiment or every implementation of the present disclosure. The figures and the detailed description that follow more particularly exemplify these embodiments.
The disclosure can be more completely understood in consideration of the following detailed description of various embodiments of the disclosure, in connection with the accompanying drawings, in which:
While embodiments of the disclosure are amenable to various modifications and alternative forms, specifics thereof are shown by way of example in the drawings and will be described in detail. It should be understood, however, that the intention is not to limit the disclosure to the particular embodiments described. On the contrary, the intention is to cover all modifications, equivalents, and alternatives falling within the spirit and scope of the disclosure as defined by the appended claims.
Referring to
Referring to
In one embodiment, the housing 102 can define a housing internal fluid passageway 112. Housing internal fluid passageway 112 can be configured as a conduit or channel configured to enable a flow of fluid therethrough. The housing internal fluid passageway 112 can define a first port 114, a second port 116, and a third port 118.
In one embodiment, the housing internal fluid passageway 112 can be substantially cylindrical and can be configured to receive a portion 109 of the handle element 108, such that the handle element 108 can rotate relative to the housing 102. The portion 109 can define a pair of channels or grooves 126a/b, with a divider 127 positioned therebetween. In some embodiments, the divider 127 can be scalloped to enable the passage of fluid between groove 126a and groove 126b when the divider 127 is positioned against a contiguous surface.
The elastomeric element 104 can define an elastomeric element internal fluid passageway 120. The elastomeric element internal fluid passageway 120 can be in fluid communication with the housing internal fluid passageway 112, for example via third port 118. An aperture 122 defined within the elastomeric element 104 can be positioned at one end of the housing internal fluid passageway 112.
The elastomeric element 104 can be constructed of a resilient material, in order to enable the elastomeric element 104 to transition between a relaxed position (as depicted in
The cap 106 can operably couple the elastomeric element 104 to the housing 102. For example, in one embodiment, the cap 106 at least partially surrounds the elastomeric element 104 and is fixedly coupled to the housing 102 via ultrasonic welding, adhesive, or the like. In one embodiment, the cap 106 can include a female Luer lock coupling 124.
The septum 110 can optionally be operably coupled to the housing 102, within the third port 118, thereby at least partially dividing the third port 118 into a first portion 118a and a second portion 118b. As depicted in
In one embodiment, the handle element 108 is rotatable between a first position, a second position, a third position (as depicted in
Referring to
Referring to
Referring to
Referring to
Referring to
In one embodiment, the internal wall 142 defining the third port 118 can be shaped and sized to create a substantially smooth transition with the internal wall 140 of a standard sized elastomeric element internal fluid passageway 120. In one embodiment, the internal wall 140 defining the elastomeric element internal fluid passageway 120 can be shaped and sized to create a substantially smooth transition with the internal wall 142 defining the third port 118. Accordingly, any step and/or corners between the elastomeric element internal fluid passageway 120 and the third port 118 where stagnation is most likely to occur, can be reduced or eliminated, thereby enabling a smooth flow and a reduction in the occurrence stagnation within the stopcock and sampling port device 100.
In one embodiment, the internal wall 140 and/or internal wall 142 can be shaped to further reduce the occurrence of stagnation. For example, in one embodiment, the internal wall 142 defining the third port 118 can be flush with and/or positioned tangentially to the internal wall 140 of the internal fluid passageway 120, so as to enhance flow. In another embodiment, internal walls 140 and/or 142 can include a plurality of turbulent inducing knobs. In another embodiment, internal walls 140 and/or 142 can include one or more angled ribs and/or threaded textures or patterns to promote a swirling of fluid flowing therethrough.
Examples of catheters include central venous line catheters which, for example, can be placed into the right subclavian vein, or arterial line catheters which can be inserted into an artery. Various example embodiments of catheters are described herein for use in accessing the subclavian veins and arteries of the patient or subject. It is to be appreciated, however, that the example embodiments described herein can alternatively be used to access veins and other blood vessels on a patient. It is additionally to be appreciated that the term “clinician” refers to any individual that can perform the medical and/or blood collection procedure with any of the example embodiments described herein or alternative combinations thereof. Similarly, the term “patient” or “subject” as used herein, is understood to refer to an individual or an object in which the catheter is to be inserted, whether human, animal, or inanimate. Various descriptions are made herein, for the sake of convenience, with respect to the procedures being performed by the clinicians to access the vein of the subject, while the disclosure is not limited in this respect.
Persons of ordinary skill in the relevant arts will recognize that embodiments may comprise fewer features than illustrated in any individual embodiment described above. The embodiments described herein are not meant to be an exhaustive presentation of the ways in which the various features may be combined. Accordingly, the embodiments are not mutually exclusive combinations of features; rather, embodiments can comprise a combination of different individual features selected from different individual embodiments, as understood by persons of ordinary skill in the art. Moreover, elements described with respect to one embodiment can be implemented in other embodiments even when not described in such embodiments unless otherwise noted. Although a dependent claim may refer in the claims to a specific combination with one or more other claims, other embodiments can also include a combination of the dependent claim with the subject matter of each other dependent claim or a combination of one or more features with other dependent or independent claims. Such combinations are proposed herein unless it is stated that a specific combination is not intended. Furthermore, it is intended also to include features of a claim in any other independent claim even if this claim is not directly made dependent to the independent claim.
Moreover, reference in the specification to “one embodiment,” “an embodiment,” or “some embodiments” means that a particular feature, structure, or characteristic, described in connection with the embodiment, is included in at least one embodiment of the teaching. The appearances of the phrase “in one embodiment” in various places in the specification are not necessarily all referring to the same embodiment.
Any incorporation by reference of documents above is limited such that no subject matter is incorporated that is contrary to the explicit disclosure herein. Any incorporation by reference of documents above is further limited such that no claims included in the documents are incorporated by reference herein. Any incorporation by reference of documents above is yet further limited such that any definitions provided in the documents are not incorporated by reference herein unless expressly included herein.
For purposes of interpreting the claims, it is expressly intended that the provisions of Section 112, sixth paragraph of 35 U.S.C. are not to be invoked unless the specific terms “means for” or “step for” are recited in a claim.
The present application claims the benefit of U.S. Provisional Application No. 62/485,016 filed Apr. 13, 2017, which is hereby incorporated herein in its entirety by reference.
Number | Date | Country | |
---|---|---|---|
62485016 | Apr 2017 | US |