This disclosure relates to cooling in storage device testing systems.
Storage device manufacturers typically test manufactured storage devices for compliance with a collection of requirements. Test equipment and techniques exist for testing large numbers of storage devices serially or in parallel. Manufacturers tend to test large numbers of storage devices simultaneously. Storage device testing systems typically include one or more racks having multiple test slots that receive storage devices for testing.
During the manufacture of disk drives or other storage devices, it is common to control the temperature of the storage devices, e.g., to ensure that the storage devices are functional over a predetermined temperature range. For this reason, the testing environment immediately around the storage devices can be varied under program control. In some known testing systems, sometimes called “batch testers,” the temperature of plural storage devices is adjusted by using cooling or heating air which is common to all of the storage devices.
Batch testers generally require all storage device tests to be at substantially the same temperature, and require all storage devices to be inserted or removed from the test system at substantially the same time. Storage devices generally vary substantially in both the time required to test them and the amount of time that each test requires a particular ambient temperature. Because of these variations, batch testers tend to inefficiently use available testing capacity. There are also known testing systems that allow separate control of the insertion, removal, and temperature of each storage device. These test systems tend to more efficiently use the available testing capacity, but require duplication of temperature control components across every test slot, or sharing of those components among a small number of test slots.
Some storage device test systems use heated or cooled air to heat or cool the storage device. For separate thermal control of each storage device, a separate closed-loop air flow is sometimes used, with heaters or coolers disposed in the air flow. In some examples, the storage device is allowed to self-heat, and thus only a cooler is used. Heating may also be enhanced by reducing or otherwise controlling the flow of the air, and cooling may also be enhanced by increasing the air flow. In some examples of separate thermal control of each storage device, air is drawn from ambient air outside of the tester, rather than through a cooler that draws heat from a closed loop air flow.
Disadvantages of systems with separate thermal controls for each test slot include the need for many separate thermal control components for each test slot (e.g., heaters, coolers, fans, and/or controllable baffles). In addition, efficient use of energy generally requires each test slot to have a closed loop air flow system during at least some of the operating time. A closed loop air flow system typically requires ducting for the air to flow in both directions, to complete a loop, which requires additional space for the air return path. In addition, coolers may create condensation when operating below the dew point of the air. The formation of condensation may be avoided at the cost of reduced cooling performance, by limiting the coolant temperature. Alternatively, the formation of condensation may be avoided controlling and/or removing the moisture content in the air.
The present disclosure provides a storage device testing system that reduces the number of temperature control components generally required, while still allowing separate control of the temperature of each test slot, thus achieving greater test slot density and lower cost. The storage device testing system provides separate thermal control for each storage device test slot, with relatively fewer thermal control components, and without a separate closed loop air flow path for each test slot. The thermal control for a storage device testing system results in substantially no condensation forming in or near the test slot, without having to manage the moisture content of the air. The storage device testing system uses a common reservoir of cooled air, which is cooled by relatively few heat exchangers. Condensation formed on the heat exchangers is concentrated in relatively few locations and may be removed by conventional methods, such as evaporators or drains. Alternatively, the heat exchangers may be controlled to operate above the dew point. Air from the common reservoir is drawn though each test slot using a separate controllable air mover for each test slot. The amount of cooling may be controlled by the speed of the air mover. To heat a storage device received in a test slot, a heater may be placed in an inlet air path to the test slot, a direct contact heater may be placed on the received storage device, or the storage device may be allowed to self heat by reducing or shutting off the air flow through the test slot. In some implementations, the reservoir of cooled air is formed by the shape of the storage device testing system, rather than by a separate enclosure. The cooling air may also be used to cool other electronics disposed with in the storage device testing system.
One aspect of the disclosure provides a storage device transporter that includes a transporter body having first and second body portions. The first body portion is configured to be engaged by automated machinery for manipulation of the storage device transporter. The second body portion is configured to receive and support a storage device. The first body portion is configured to receive and direct an air flow over one or more surfaces of a storage device supported in the second body portion.
Implementations of the disclosure may include one or more of the following features.
In some implementations, the first body portion includes an air director having one or more air entrances for receiving air into the first body portion and directing air into the second body portion. The one or more air entrances can be configured to be engaged by automated machinery for manipulation of the storage device transporter.
In some examples, the second body portion includes first and second sidewalls arranged to receive a storage device therebetween.
In some cases, the first body portion can include one or more vision fiducials.
The storage device transporter can include a clamping mechanism that is operable to clamp a storage device within the second body portion.
In some implementations, the first body portion is configured to direct air over top and bottom surfaces of a storage device supported in the second body portion.
In certain implementations, the first body portion can include an air director having one or more air entrances for receiving air into the first body portion and directing air into the second body portion. The one or more air entrances can be arranged to register the storage device transporter in X, Y, and rotational directions when the storage device transporter is engaged by automated machinery.
In some examples, the second body portion defines a substantially U-shaped opening which allows air to flow over a bottom surface of a storage device supported in the storage device transporter.
Another aspect of the disclosure provides a test slot assembly that includes a storage device transporter and a test slot. The storage device transporter includes a transporter body having first and second body portions. The first body portion is configured to be engaged by automated machinery for manipulation of the storage device transporter, and the second body portion is configured to receive and support a storage device. The first body portion is configured to receive and direct an air flow over one or more surfaces of a storage device supported in the second body portion. The test slot includes a housing. The housing defines a test compartment for receiving and supporting the storage device transporter, and an open end that provides access to the test compartment for insertion and removal of the disk drive transporter.
Implementations of the disclosure may include one or more of the following features. In some implementations, the storage device transporter is completely removable from the test compartment.
In certain implementations, the storage device transporter is connected to the test slot in such a manner as to form a drawer for receiving a storage device.
Another aspect of the disclosure provides a storage device testing system that includes automated machinery and a storage device transporter. The storage device transporter includes a transporter body having first and second body portions. The first body portion is configured to be engaged by automated machinery for manipulation of the storage device transporter. The second body portion is configured to receive and support a storage device. The first body portion is configured to receive and direct an air flow over one or more surfaces of a storage device supported in the second body portion.
Implementations of the disclosure may include one or more of the following features.
In some implementations, the first body portion includes an air director having one or more air entrances for receiving air into the first body portion and directing air into the second body portion, and the one or more air entrances are configured to be engaged by the automated machinery for manipulation of the storage device transporter.
In certain implementations, the automated machinery includes a mechanical actuator adapted to engage the one or more air entrances.
In some implementations, the first body portion includes one or more vision fiducials, and the automated machinery includes an optical system for detecting the vision fiducials.
In certain implementations, the automated machinery includes posts and the first body portion includes one or more air entrances for receiving air into the first body portion and directing air into the second body portion. The air entrances are arranged to be engaged by the posts to register the storage device transporter in X, Y, and rotational directions when the storage device transporter is engaged by the automated machinery.
In some implementations, the first body portion includes a pair of slots, and the automated machinery includes a pair of claws operable to engage the slots.
In certain implementations, the storage device testing system includes a clamping mechanism that is operable to clamp a storage device within the second body portion. The automated machinery is operable to actuate the clamping mechanism.
In some implementations, the automated machinery includes a robotic arm and a manipulator attached to the robotic arm. The manipulator is configured to engage the storage device transporter.
The details of one or more implementations of the disclosure are set forth in the accompanying drawings and the description below. Other features, objects, and advantages will be apparent from the description and drawings, and from the claims.
Like reference symbols in the various drawings indicate like elements.
Temperature regulation of a storage device can be an important factor during testing (e.g., validation, qualification, functional testing, etc.) of a storage device. One method of performing temperature regulation includes moving air over and/or about the storage device during testing. As will be discussed in detail, the volume, temperature, and flow path of the air moved with respect to the storage device during testing, inter alia, can each be factors in providing reliable, effective, and efficient temperature control of the storage device.
A storage device, as used herein, includes disk drives, solid state drives, memory devices, and any device that benefits from asynchronous testing for validation. A disk drive is generally a non-volatile storage device which stores digitally encoded data on rapidly rotating platters with magnetic surfaces. A solid-state drive (SSD) is a data storage device that uses solid-state memory to store persistent data. An SSD using SRAM or DRAM (instead of flash memory) is often called a RAM-drive. The term solid-state generally distinguishes solid-state electronics from electromechanical devices.
Referring to
The robotic arm 200 is configured to independently service each test slot 330 to provide a continuous flow of storage devices 500 through the testing system 100. A continuous flow of individual storage devices 500 through the testing system 100 allows varying start and stop times for each storage device 500, whereas other systems that require batches of storage devices 500 to be run all at once as an entire testing load must all have the same start and end times. Therefore, with continuous flow, storage devices 500 of different capacities can be run at the same time and serviced (loaded/unloaded) as needed.
Referring to
In implementations that employ storage device transporters 800 (
Referring to
As illustrated in
Referring to
The round holes 832a allow posts 244 on the gripper 242 to register the storage device transporter 800 in the X and Y dimensions, as well as rotationally since multiple holes are used for registration. The rectangular cutout 832a contains internal slots 834 for claws 246a, 246b of the gripper 242 to engage and pull the storage device transporter 800 to a registration point on the face of the gripper 242 in the Z dimension.
As illustrated in
In some examples, the storage device transporter 800 includes a heater 860 that either provides conductive heating by direct contact with a received storage device 500 or convective heating by heating air flowing into and/or over the storage device transporter 800 and the received storage device 500. A detailed description of the heater 860 and other details and features combinable with those described herein may be found in the following U.S. patent application Ser. No. 12/503,593, filed on Jul. 15, 2009, the entire contents of which are hereby incorporated by reference.
Some storage devices 500 can be sensitive to vibrations. Fitting multiple storage devices 500 in a single test rack 330 and running the storage devices 500 (e.g., during testing), as well as the insertion and removal of the storage device transporters 800, each optionally carrying a storage device 500, from the various test slots 330 in the test rack 300 can be sources of undesirable vibration. In some cases, for example, one of the storage devices 500 may be operating under test within one of the test slots 330, while others are being removed and inserted into adjacent test slots 330 in the same rack 300. Clamping the storage device transporter 800 to the test slot 330 after the storage device transporter 800 is fully inserted into the test slot 330 can help to reduce or limit vibrations by limiting the contact and scraping between the storage device transporters 800 and the test slots 330 during insertion and removal of the storage device transporters 800.
In some implementations, the manipulator 210 is configured to initiate actuation of a clamping mechanism 840 disposed in the storage device transporter 800. This allows actuation of the clamping mechanism 840 before the storage device transporter 800 is moved to and from the test slot 330 to inhibit movement of the storage device 500 relative to the storage device transporter 800 during the move. Prior to insertion in the test slot 330, the manipulator 210 can again actuate the clamping mechanism 840 to release the storage device 500 within the transporter body 800. This allows for insertion of the storage device transporter 800 into one of the test slots 330, until the storage device 500 is in a test position engaged with the test slot 330 (e.g., a storage device connector 532 (e.g., electrical connector) of the storage device 500 (
In the examples illustrated in
Each rack 300 includes an air conduit 304 (also shown in
In the example shown in
Referring to
Referring to FIGS. 7C and 8A-8C, each test slot 330 includes a test slot housing 340 for receipt by the rack 300 or a test slot receptacle 324 of a test slot carrier 320. The test slot housing 340 has first and second portions 342, 344. The first portion 342 of the test slot housing 340 defines a device opening 346 sized to receive a storage device 500 and/or a storage device transporter 800 carrying the storage device 500. The second portion 344 of the test slot housing 340 includes an air exit 348, electronics 390 (e.g., circuit board(s)), and an optional air mover 900. The electronics 390 are in communication with a test slot connector 392, which is configured to receive and establish electrical communication with a storage device connector 532 of the storage device 500. The electronics 390 also include a slot-rack connector 394 for establishing electrical communication with the rack 300. Air moved through the test slot 300 can be directed over the electronics 390.
FIGS. 7C and 10A-10B illustrate a flow path 305 of air through test slots 330 and a rack 300 for regulating the temperature of a storage device 500 received in the storage device testing system 100. The air mover 900 of each test slot 330 housed in the rack 300 moves a flow of air from an exterior space of the rack 300 into at least one entrance 832 of the air director 830 of a storage device transporter 800 received in the test slot 330. The air flow is directed substantially simultaneously over at least top and bottom surfaces 512, 514 of the storage device 500 received in the storage device transporter 800.
In some examples, the air mover 900 pulls the air into the air director 830 of storage device transporter 800, which directs the air flow 305 over at least the top and bottom surfaces 512, 514 of the storage device 500. The air mover 900 receives the flow of air from over the received storage device 500 along a first direction and delivers the air flow from the air mover 900 to the exit 348 of the test slot 330 along a second direction substantially perpendicular to the first direction.
In the examples shown, the storage device transporter 800 provides closure of the device opening 346 of the test slot housing 340 once received therein. As the air mover 900 moves the air to circulate along the air path 305, the air moves from the first portion 342 of the test slot housing 340 along a common direction to the second portion 344 of the test slot housing 340 while traversing the entire length of the received storage device 500. Since the air moves substantially concurrently along at least the top and bottom surfaces 512, 514 of the storage device 500, the air provides substantially even cooling of the storage device 500. If the air was routed along one side of the storage device first, such as the top surface 512, and then directed along another side sequentially second, such as the bottom surface 514, the air would become preheated after passing over the first side of the storage device 500 before passing over any additional sides of the storage device, thereby providing relatively less efficient cooling than flowing air over two or more sides of the storage device 500 substantially concurrently and/or without recirculation over the storage device 500 before passing through the air heat exchanger 350.
A method of performing storage device testing includes presenting one or more storage devices 500 to a storage device testing system 100 for testing at a source location (e.g., a loading/unloading station 600, storage device tote 700, test slot(s) 330, etc.) and actuating an automated transporter 200 (e.g. robotic arm) to retrieve one or more storage devices 500 from the source location and deliver the retrieved storage device(s) 500 to corresponding test slots 330 disposed on a rack 300 of the storage device testing system 100. The method includes actuating the automated transporter 200 to insert each retrieved storage device 500 in its respective test slot 330, and performing a test (e.g., functionality, power, connectivity, etc.) on the storage devices 500 received by the test slot 330. The method may also include actuating the automated transporter 200 to retrieve the tested storage device(s) 500 from the test slot(s) 330 and deliver the tested storage device(s) 500 to a destination location (e.g., another test slot 330, a storage device tote 700, a loading/unloading station 600, etc).
A method of regulating the temperature of a storage device 500 received in a storage device testing system 100 includes moving a flow of air into an air entrance 346 of a test slot housing 340 of a test slot 330 of a rack 300, moving the air flow over a storage device 500 received in the test slot 330, moving the air out an air exit 348 of the test slot housing 340 of the test slot 330, and releasing the air exteriorly of the rack 300. This method may be executed on a storage device testing system 100 to reduce the relative number of temperature control components generally required, while still allowing separate control of the temperature of each test slot 330. The method allows the storage device testing system 100 to have separate thermal control for each storage device test slot 330, with relatively fewer thermal control components, and without a separate closed loop air flow path for each test slot 330. In some examples, the method results in substantially no condensation forming in or near the test slot(s) 330, without having to manage the moisture content of the air.
In some implementations, the method includes using a common reservoir of cooled air, which may cooled by one or more air heat exchangers 350. Condensation formed on the air heat exchanger(s) 350 is concentrated in relatively few locations and may be removed by conventional methods, such as evaporators or drains. Alternatively, the heat exchanger(s) 350 may be controlled to operate above the dew point. Air from the common reservoir is drawn though each test slot 330 using a separate controllable air mover 900 for each test slot 330. The amount of cooling may be controlled by the speed of the air mover 900. To heat a storage device 500 received in a test slot 330, a heater 860 may be disposed so as to heat the received storage device 500 either directly or indirectly. For example, the heater 860 maybe placed in the inlet air path 346 to the test slot 330 and/or in direct contact with the received storage device. In some examples, the method includes allowing the received storage device 500 to self heat by reducing or shutting off the air flow through the test slot 300. In some implementations, the reservoir of cooled air is formed by the shape of the storage device testing system 100, rather than by a separate enclosure. The cooling air may also be used to cool other electronics disposed with in the storage device testing system 100.
In some examples, the air is moved to flow substantially simultaneously over at least the top and bottom surfaces 512, 514 of the storage device 500 received in the test slot 330. In some implementations, the method includes pulling air exterior of the rack 300 into a first portion 342 of the test slot housing 340 with an air mover 900 disposed in the test slot housing 340 and then moving the air through a second portion 344 of the test slot housing 340 over electronics 350 disposed in the second portion 344 and out an air exit 348 of the test slot housing 340. The method may include receiving the flow of air into the air mover 900 along a first direction 904 and moving the flow to the air exit 906 of the air mover 900 along a second direction 908 substantially perpendicular to the first direction 904. In some examples, the method includes delivering the air flow out of the air mover 900 at an air flow rate of up to about 0.122 m3/min (4.308 CFM) and an air pressure of up to about 20.88 mmH2O (0.822 inchH2O).
The method may include moving the air flow through an air director 830 of a storage device transporter 800 holding the storage device 500 and received in the test slot 330. The air director 830 defines one or more air entrances 832 that receive and direct the flow of air over at least the top and bottom surfaces 512, 514 of the storage device 500. The storage device transporter 800 includes a body 800 having first and second portions 802, 804. In some examples, the method includes receiving the storage device 500, which has top, bottom, front, rear, right, and left side surfaces 512, 514, 516, 518, 520, 522, in the storage device transporter 800 such that the rear surface 518 substantially faces the first body portion 802 of the storage device transporter body 800.
In some implementations, the method includes moving the flow of air from the test slot 330 to an air heat exchanger 350 through an air conduit 304 that provides pneumatic communication therebetween. The air heat exchanger 350, in some examples, includes an air mover 358 that pulls the air from the air conduit 304 into the entrance 351 of the air heat exchanger housing 352 over the cooling elements 354 and moves the air out of the air heat exchanger housing exit 353 and out of the rack 300. The method may also include pumping condensation of the air heat exchanger 350 to an evaporator 360 disposed on the rack 300 or pumping to a drain, or allowing the condensate to drain through gravity.
A number of implementations have been described. Nevertheless, it will be understood that various modifications may be made without departing from the spirit and scope of the disclosure. For example, the air may flow in the opposite direction from that given in the exemplary embodiments. Air may also flow over only one side of the storage device, instead of over both the top and bottom surfaces. In systems with one air mover per test slot, the test slot air mover may be disposed in a number of locations, some not physically connected to the slot. Thermal control of the test slot may include means of heating the air by the addition of a heater in the inlet stream of the test slot. While implementations described above included a storage device transporter in the form of a removable carrier that is entirely removable from a test slot, in some implementations the storage device transporter is not entirely removable from the test slot, but instead remains connected to the test slot in the form of a drawer. For example,
As illustrated in
In some implementations, the air director 1830 includes a plenum 1836 disposed in the cavity 1831 for directing at least a portion of the air received through the air entrance 1832 out through the first air exit 1834 and over at least the bottom surface 514 of the received storage device 500. In some implementations, the air director 1830 is weighted to stabilize the storage device transporter 1800 against vibration. For example, the plenum 1836 can be weighted or fabricated of a material having a suitable weight. Air entering into the air cavity 1831 can also flow over a partition 1838 (above which is the second air exit 1835) to flow over at least the top surface 512 of the storage device 500. With the storage device 500 received within the transporter body 1810, the storage device transporter 1810 and the storage device 500 together can be moved by the automated transporter 200 (
Some storage devices 500 can be sensitive to vibrations. Fitting multiple storage devices 500 in a single test rack 300 and running the storage devices 500 (e.g., during testing), as well as the insertion and removal of the storage device transporters 550, each optionally carrying a storage device 500, from the various test slots 1330 in the test rack 300 can be sources of undesirable vibration. In some cases, for example, one of the storage devices 500 may be operating under test within one of the test slots 1330, while others are being removed and inserted into adjacent test slots 1330 in the same rack 300. Clamping the storage device transporter 1800 to the test slot 1330 after the storage device transporter 550 is fully inserted into the test slot 1330 can help to reduce or limit vibrations by limiting the contact and scraping between the storage device transporters 1800 and the test slots 1330 during insertion and removal of the storage device transporters 1800.
In some implementations, the manipulator 210 (see, e.g.,
Referring again to
In the examples shown, the storage device transporter 1800 provides closure of the device opening 1346 of the test slot housing 1340 once received therein. The air director 1830 of the storage device transporter 1800 and the air mover 1930 are situated near the inlet of the device opening 1346 of the test slot housing 1340. As the air mover 1930 moves the air to circulate along the air path 1950, the air moves from the first portion 1342 of the test slot housing 1340 along a common direction to the second portion 1344 of the test slot housing 1340 while traversing the entire length of the received storage device 500. Since the air moves substantially concurrently along at least the top and bottom surfaces 512, 514 of the storage device 500, the air provides substantially even cooling of the storage device 500. If the air was routed along once side of the storage device first, such as the top surface 512, and then directed along another side sequentially second, such as the bottom surface 514, the air would become preheated after passing over the first side of the storage device 500 before passing over any additional sides of the storage device, thereby providing relatively less efficient cooling than flowing air over two or more sides of the storage device 500 substantially concurrently and/or without recirculation over the storage device 500 before passing through the air cooler 1920.
A method of performing storage device testing includes presenting one or more storage devices 500 to a storage device testing system 100 for testing at a source location (e.g., a loading/unloading station 600, storage device tote 700, test slot(s) 310, etc.) and actuating an automated transporter 200 (e.g. robotic arm) to retrieve one or more storage devices 500 from the source location and deliver the retrieved storage device(s) 500 to corresponding test slots 1330 disposed on a rack 300 of the storage device testing system 100. The method includes actuating the automated transporter 200 to insert each retrieved storage device 500 in its respective test slot 1330, and performing a test (e.g., functionality, power, connectivity, etc.) on the storage devices 500 received by the test slot 1330. The method may also include actuating the automated transporter 200 to retrieve the tested storage device(s) 500 from the test slot(s) 310 and deliver the tested storage device(s) 500 to a destination location (e.g., another test slot 310, a storage device tote 700, a loading/unloading station 600, etc).
A method of regulating the temperature of a storage device 500 received in a storage device testing system 100 includes delivering a flow of air into an air entrance 1346 of a test slot housing 1340 and directing the air flow substantially simultaneously over at least the top and bottom surfaces 512, 514 of the storage device 500. The method may include delivering the air flow to an air director 1830 that directs the air flow over at least the top and bottom surfaces 512, 514 of the storage device 500. In some implementations, the method includes supporting the storage device 500 in a storage device transporter 1800 received in the test slot housing 1340. The storage device transporter 1800 includes a body 1810 having first and second portions 1802, 1804. The first storage device transporter body portion 1802 includes the air director 1830 and the second storage device transporter body portion 1804 is configured to receive the storage device 500. The storage device 500 has top, bottom, front, rear, right, and left side surfaces 512, 514, 516, 518, 520, 522 and is received with its rear surface 518 substantially facing the first body portion 1802 of the storage device transporter body 1810. The method may include weighting the air director 1830, in some examples the plenum 1836) to reduce movement of the storage device transporter while received by the storage device testing system.
In some implementations, the method includes delivering the air flow into an air entrance 1832 of the air director 1830. The air director 1830 directs the air received through the air entrance 1832 out first and second air exits 1834, 1835 of the air director 1830. The first air exit 1834 directs air over at least the bottom surface 514 of the received storage device 500 and the second air exit 1835 directs air over at least the top surface 512 of the received storage device 500. The air director 1830 may define a cavity 1831 in pneumatic communication with the air entrance 1832 and air exits 1834, 1835 of the air director 1830. The air director 1830 includes a plenum 1836 disposed in the cavity 1831 for directing at least a portion of the air received in the cavity 1831 out of the first air exit 1834. In some examples, the method includes weighting the plenum 1836 to reduce movement of the storage device transporter 1800 while received by the storage device testing system 100 (e.g., while received in the test slot 1330).
In some implementations, the method includes directing the flow of air to an air mover 1930 in pneumatic communication with the air entrance 1325 of the test slot housing 1340. The air mover 1930 delivers the flow of air into the air entrance 1326 of a test slot housing 320 with the air flow moving along a closed loop path 950 (
Accordingly, other implementations are within the scope of the following claims.
This U.S. patent application is a continuation-in-part of, and claims priority under 35 U.S.C. §120 from, U.S. patent application Ser. No. 12/698,575, filed on Feb. 2, 2010. This application is a continuation-in-part of, and claims priority under 35 U.S.C. §120 from, U.S. application Ser. No. 12/503,567, filed Jul. 15, 2009 now U.S. Pat. No. 7,920,380, now pending. The disclosures of both of these prior applications is considered part of the disclosure of this application and are incorporated herein by reference in their entirety.
| Number | Name | Date | Kind |
|---|---|---|---|
| 557186 | Cahill | Mar 1896 | A |
| 2224407 | Passur | Dec 1940 | A |
| 2380026 | Clarke | Jul 1945 | A |
| 2631775 | Gordon | Mar 1953 | A |
| 2635524 | Jenkins | Apr 1953 | A |
| 3120166 | Lyman | Feb 1964 | A |
| 3360032 | Sherwood | Dec 1967 | A |
| 3364838 | Bradley | Jan 1968 | A |
| 3517601 | Courchesne | Jun 1970 | A |
| 3845286 | Aronstein et al. | Oct 1974 | A |
| 4147299 | Freeman | Apr 1979 | A |
| 4233644 | Hwang et al. | Nov 1980 | A |
| 4336748 | Martin et al. | Jun 1982 | A |
| 4379259 | Varadi et al. | Apr 1983 | A |
| 4477127 | Kume | Oct 1984 | A |
| 4495545 | Dufresne et al. | Jan 1985 | A |
| 4526318 | Fleming et al. | Jul 1985 | A |
| 4620248 | Gitzendanner | Oct 1986 | A |
| 4648007 | Garner | Mar 1987 | A |
| 4654732 | Mesher | Mar 1987 | A |
| 4665455 | Mesher | May 1987 | A |
| 4683424 | Cutright et al. | Jul 1987 | A |
| 4685303 | Branc et al. | Aug 1987 | A |
| 4688124 | Scribner et al. | Aug 1987 | A |
| 4713714 | Gatti et al. | Dec 1987 | A |
| 4739444 | Zushi et al. | Apr 1988 | A |
| 4754397 | Varaiya et al. | Jun 1988 | A |
| 4768285 | Woodman, Jr. | Sep 1988 | A |
| 4778063 | Ueberreiter | Oct 1988 | A |
| 4801234 | Cedrone | Jan 1989 | A |
| 4809881 | Becker | Mar 1989 | A |
| 4817273 | Lape et al. | Apr 1989 | A |
| 4817934 | McCormick et al. | Apr 1989 | A |
| 4851965 | Gabuzda et al. | Jul 1989 | A |
| 4881591 | Rignall | Nov 1989 | A |
| 4888549 | Wilson et al. | Dec 1989 | A |
| 4911281 | Jenkner | Mar 1990 | A |
| 4967155 | Magnuson | Oct 1990 | A |
| 5012187 | Littlebury | Apr 1991 | A |
| 5045960 | Eding | Sep 1991 | A |
| 5061630 | Knopf et al. | Oct 1991 | A |
| 5119270 | Bolton et al. | Jun 1992 | A |
| 5122914 | Hanson | Jun 1992 | A |
| 5127684 | Klotz et al. | Jul 1992 | A |
| 5128813 | Lee | Jul 1992 | A |
| 5136395 | Ishii et al. | Aug 1992 | A |
| 5158132 | Guillemot | Oct 1992 | A |
| 5168424 | Bolton et al. | Dec 1992 | A |
| 5171183 | Pollard et al. | Dec 1992 | A |
| 5173819 | Takahashi et al. | Dec 1992 | A |
| 5176202 | Richard | Jan 1993 | A |
| 5205132 | Fu | Apr 1993 | A |
| 5206772 | Hirano et al. | Apr 1993 | A |
| 5207613 | Ferchau et al. | May 1993 | A |
| 5210680 | Scheibler | May 1993 | A |
| 5237484 | Ferchau et al. | Aug 1993 | A |
| 5263537 | Plucinski et al. | Nov 1993 | A |
| 5269698 | Singer | Dec 1993 | A |
| 5295392 | Hensel et al. | Mar 1994 | A |
| 5309323 | Gray et al. | May 1994 | A |
| 5325263 | Singer et al. | Jun 1994 | A |
| 5349486 | Sugimoto et al. | Sep 1994 | A |
| 5368072 | Cote | Nov 1994 | A |
| 5374395 | Robinson et al. | Dec 1994 | A |
| 5379229 | Parsons et al. | Jan 1995 | A |
| 5398058 | Hattori | Mar 1995 | A |
| 5412534 | Cutts et al. | May 1995 | A |
| 5414591 | Kimura et al. | May 1995 | A |
| 5426581 | Kishi et al. | Jun 1995 | A |
| 5469037 | McMurtrey, Sr. et al. | Nov 1995 | A |
| 5477416 | Schkrohowsky et al. | Dec 1995 | A |
| 5484012 | Hiratsuka | Jan 1996 | A |
| 5486681 | Dagnac et al. | Jan 1996 | A |
| 5491610 | Mok et al. | Feb 1996 | A |
| 5543727 | Bushard et al. | Aug 1996 | A |
| 5546250 | Diel | Aug 1996 | A |
| 5557186 | McMurtrey, Sr. et al. | Sep 1996 | A |
| 5563768 | Perdue | Oct 1996 | A |
| 5570740 | Flores et al. | Nov 1996 | A |
| 5593380 | Bittikofer | Jan 1997 | A |
| 5601141 | Gordon et al. | Feb 1997 | A |
| 5604662 | Anderson et al. | Feb 1997 | A |
| 5610893 | Soga et al. | Mar 1997 | A |
| 5617430 | Angelotti et al. | Apr 1997 | A |
| 5644705 | Stanley | Jul 1997 | A |
| 5646918 | Dimitri et al. | Jul 1997 | A |
| 5654846 | Wicks et al. | Aug 1997 | A |
| 5673029 | Behl et al. | Sep 1997 | A |
| 5694290 | Chang | Dec 1997 | A |
| 5718627 | Wicks | Feb 1998 | A |
| 5718628 | Nakazato et al. | Feb 1998 | A |
| 5731928 | Jabbari et al. | Mar 1998 | A |
| 5751549 | Eberhardt et al. | May 1998 | A |
| 5754365 | Beck et al. | May 1998 | A |
| 5761032 | Jones | Jun 1998 | A |
| 5793610 | Schmitt et al. | Aug 1998 | A |
| 5811678 | Hirano | Sep 1998 | A |
| 5812761 | Seki et al. | Sep 1998 | A |
| 5819842 | Potter et al. | Oct 1998 | A |
| 5831525 | Harvey | Nov 1998 | A |
| 5851143 | Hamid | Dec 1998 | A |
| 5859409 | Kim et al. | Jan 1999 | A |
| 5859540 | Fukumoto | Jan 1999 | A |
| 5862037 | Behl | Jan 1999 | A |
| 5870630 | Reasoner et al. | Feb 1999 | A |
| 5886639 | Behl et al. | Mar 1999 | A |
| 5890959 | Pettit et al. | Apr 1999 | A |
| 5912799 | Grouell et al. | Jun 1999 | A |
| 5913926 | Anderson et al. | Jun 1999 | A |
| 5914856 | Morton et al. | Jun 1999 | A |
| 5927386 | Lin | Jul 1999 | A |
| 5956301 | Dimitri et al. | Sep 1999 | A |
| 5959834 | Chang | Sep 1999 | A |
| 5999356 | Dimitri et al. | Dec 1999 | A |
| 5999365 | Hasegawa et al. | Dec 1999 | A |
| 6000623 | Blatti et al. | Dec 1999 | A |
| 6005404 | Cochran et al. | Dec 1999 | A |
| 6005770 | Schmitt | Dec 1999 | A |
| 6008636 | Miller et al. | Dec 1999 | A |
| 6008984 | Cunningham et al. | Dec 1999 | A |
| 6011689 | Wrycraft | Jan 2000 | A |
| 6031717 | Baddour et al. | Feb 2000 | A |
| 6034870 | Osborn et al. | Mar 2000 | A |
| 6042348 | Aakalu et al. | Mar 2000 | A |
| 6045113 | Itakura | Apr 2000 | A |
| 6055814 | Song | May 2000 | A |
| 6066822 | Nemoto et al. | May 2000 | A |
| 6067225 | Reznikov et al. | May 2000 | A |
| 6069792 | Nelik | May 2000 | A |
| 6084768 | Bolognia | Jul 2000 | A |
| 6094342 | Dague et al. | Jul 2000 | A |
| 6104607 | Behl | Aug 2000 | A |
| 6115250 | Schmitt | Sep 2000 | A |
| 6122131 | Jeppson | Sep 2000 | A |
| 6122232 | Schell et al. | Sep 2000 | A |
| 6124707 | Kim et al. | Sep 2000 | A |
| 6130817 | Flotho et al. | Oct 2000 | A |
| 6144553 | Hileman et al. | Nov 2000 | A |
| 6166901 | Gamble et al. | Dec 2000 | A |
| 6169413 | Pack et al. | Jan 2001 | B1 |
| 6169930 | Blachek et al. | Jan 2001 | B1 |
| 6177805 | Pih | Jan 2001 | B1 |
| 6178835 | Orriss et al. | Jan 2001 | B1 |
| 6181557 | Gatti | Jan 2001 | B1 |
| 6185065 | Hasegawa et al. | Feb 2001 | B1 |
| 6185097 | Behl | Feb 2001 | B1 |
| 6188191 | Frees et al. | Feb 2001 | B1 |
| 6192282 | Smith et al. | Feb 2001 | B1 |
| 6193339 | Behl et al. | Feb 2001 | B1 |
| 6209842 | Anderson et al. | Apr 2001 | B1 |
| 6227516 | Webster, Jr. et al. | May 2001 | B1 |
| 6229275 | Yamamoto | May 2001 | B1 |
| 6231145 | Liu | May 2001 | B1 |
| 6233148 | Shen | May 2001 | B1 |
| 6236563 | Buican et al. | May 2001 | B1 |
| 6247944 | Bolognia et al. | Jun 2001 | B1 |
| 6249824 | Henrichs | Jun 2001 | B1 |
| 6252769 | Tullstedt et al. | Jun 2001 | B1 |
| 6262863 | Ostwald et al. | Jul 2001 | B1 |
| 6272007 | Kitlas et al. | Aug 2001 | B1 |
| 6272767 | Botruff et al. | Aug 2001 | B1 |
| 6281677 | Cosci et al. | Aug 2001 | B1 |
| 6282501 | Assouad | Aug 2001 | B1 |
| 6285524 | Boigenzahn et al. | Sep 2001 | B1 |
| 6289678 | Pandolfi | Sep 2001 | B1 |
| 6297950 | Erwin | Oct 2001 | B1 |
| 6298672 | Valicoff, Jr. | Oct 2001 | B1 |
| 6302714 | Bolognia et al. | Oct 2001 | B1 |
| 6304839 | Ho et al. | Oct 2001 | B1 |
| 6307386 | Fowler et al. | Oct 2001 | B1 |
| 6327150 | Levy et al. | Dec 2001 | B1 |
| 6330154 | Fryers et al. | Dec 2001 | B1 |
| 6351379 | Cheng | Feb 2002 | B1 |
| 6354792 | Kobayashi et al. | Mar 2002 | B1 |
| 6356409 | Price et al. | Mar 2002 | B1 |
| 6356415 | Kabasawa | Mar 2002 | B1 |
| 6384995 | Smith | May 2002 | B1 |
| 6388437 | Wolski et al. | May 2002 | B1 |
| 6388875 | Chen | May 2002 | B1 |
| 6388878 | Chang | May 2002 | B1 |
| 6389225 | Malinoski et al. | May 2002 | B1 |
| 6411584 | Davis et al. | Jun 2002 | B2 |
| 6421236 | Montoya et al. | Jul 2002 | B1 |
| 6434000 | Pandolfi | Aug 2002 | B1 |
| 6434498 | Ulrich et al. | Aug 2002 | B1 |
| 6434499 | Ulrich et al. | Aug 2002 | B1 |
| 6464080 | Morris et al. | Oct 2002 | B1 |
| 6467153 | Butts et al. | Oct 2002 | B2 |
| 6473297 | Behl et al. | Oct 2002 | B1 |
| 6473301 | Levy et al. | Oct 2002 | B1 |
| 6476627 | Pelissier et al. | Nov 2002 | B1 |
| 6477044 | Foley et al. | Nov 2002 | B2 |
| 6477442 | Valerino, Sr. | Nov 2002 | B1 |
| 6480380 | French et al. | Nov 2002 | B1 |
| 6480382 | Cheng | Nov 2002 | B2 |
| 6487071 | Tata et al. | Nov 2002 | B1 |
| 6489793 | Jones et al. | Dec 2002 | B2 |
| 6494663 | Ostwald et al. | Dec 2002 | B2 |
| 6525933 | Eland | Feb 2003 | B2 |
| 6526841 | Wanek et al. | Mar 2003 | B1 |
| 6535384 | Huang | Mar 2003 | B2 |
| 6537013 | Emberty et al. | Mar 2003 | B2 |
| 6544309 | Hoefer et al. | Apr 2003 | B1 |
| 6546445 | Hayes | Apr 2003 | B1 |
| 6553532 | Aoki | Apr 2003 | B1 |
| 6560107 | Beck et al. | May 2003 | B1 |
| 6565163 | Behl et al. | May 2003 | B2 |
| 6566859 | Wolski et al. | May 2003 | B2 |
| 6567266 | Ives et al. | May 2003 | B2 |
| 6570734 | Ostwald et al. | May 2003 | B2 |
| 6577586 | Yang et al. | Jun 2003 | B1 |
| 6577687 | Hall et al. | Jun 2003 | B2 |
| 6618254 | Ives | Sep 2003 | B2 |
| 6626846 | Spencer | Sep 2003 | B2 |
| 6628518 | Behl et al. | Sep 2003 | B2 |
| 6635115 | Fairbairn et al. | Oct 2003 | B1 |
| 6640235 | Anderson | Oct 2003 | B1 |
| 6644982 | Ondricek et al. | Nov 2003 | B1 |
| 6651192 | Viglione et al. | Nov 2003 | B1 |
| 6654240 | Tseng et al. | Nov 2003 | B1 |
| 6679128 | Wanek et al. | Jan 2004 | B2 |
| 6693757 | Hayakawa et al. | Feb 2004 | B2 |
| 6741529 | Getreuer | May 2004 | B1 |
| 6746648 | Mattila et al. | Jun 2004 | B1 |
| 6751093 | Hsu et al. | Jun 2004 | B1 |
| 6791785 | Messenger et al. | Sep 2004 | B1 |
| 6791799 | Fletcher | Sep 2004 | B2 |
| 6798651 | Syring et al. | Sep 2004 | B2 |
| 6798972 | Ito et al. | Sep 2004 | B1 |
| 6801834 | Konshak et al. | Oct 2004 | B1 |
| 6806700 | Wanek et al. | Oct 2004 | B2 |
| 6811427 | Garrett et al. | Nov 2004 | B2 |
| 6826046 | Muncaster et al. | Nov 2004 | B1 |
| 6830372 | Liu et al. | Dec 2004 | B2 |
| 6832929 | Garrett et al. | Dec 2004 | B2 |
| 6861861 | Song et al. | Mar 2005 | B2 |
| 6862173 | Konshak et al. | Mar 2005 | B1 |
| 6867939 | Katahara et al. | Mar 2005 | B2 |
| 6892328 | Klein et al. | May 2005 | B2 |
| 6904479 | Hall et al. | Jun 2005 | B2 |
| 6908330 | Garrett et al. | Jun 2005 | B2 |
| 6928336 | Peshkin et al. | Aug 2005 | B2 |
| 6937432 | Sri-Jayantha et al. | Aug 2005 | B2 |
| 6957291 | Moon et al. | Oct 2005 | B2 |
| 6965811 | Dickey et al. | Nov 2005 | B2 |
| 6974017 | Oseguera | Dec 2005 | B2 |
| 6976190 | Goldstone | Dec 2005 | B1 |
| 6980381 | Gray et al. | Dec 2005 | B2 |
| 6982872 | Behl et al. | Jan 2006 | B2 |
| 7006325 | Emberty et al. | Feb 2006 | B2 |
| 7039924 | Goodman et al. | May 2006 | B2 |
| 7054150 | Orriss et al. | May 2006 | B2 |
| 7070323 | Wanek et al. | Jul 2006 | B2 |
| 7076391 | Pakzad et al. | Jul 2006 | B1 |
| 7077614 | Hasper et al. | Jul 2006 | B1 |
| 7088541 | Orriss et al. | Aug 2006 | B2 |
| 7092251 | Henry | Aug 2006 | B1 |
| 7106582 | Albrecht et al. | Sep 2006 | B2 |
| 7123477 | Coglitore et al. | Oct 2006 | B2 |
| 7126777 | Flechsig et al. | Oct 2006 | B2 |
| 7130138 | Lum et al. | Oct 2006 | B2 |
| 7134553 | Stephens | Nov 2006 | B2 |
| 7139145 | Archibald et al. | Nov 2006 | B1 |
| 7164579 | Muncaster et al. | Jan 2007 | B2 |
| 7167360 | Inoue et al. | Jan 2007 | B2 |
| 7181458 | Higashi | Feb 2007 | B1 |
| 7203021 | Ryan et al. | Apr 2007 | B1 |
| 7203060 | Kay et al. | Apr 2007 | B2 |
| 7206201 | Behl et al. | Apr 2007 | B2 |
| 7216968 | Smith et al. | May 2007 | B2 |
| 7219028 | Bae et al. | May 2007 | B2 |
| 7219273 | Fisher et al. | May 2007 | B2 |
| 7227746 | Tanaka et al. | Jun 2007 | B2 |
| 7232101 | Wanek et al. | Jun 2007 | B2 |
| 7243043 | Shin | Jul 2007 | B2 |
| 7248467 | Sri-Jayantha et al. | Jul 2007 | B2 |
| 7259966 | Connelly, Jr. et al. | Aug 2007 | B2 |
| 7273344 | Ostwald et al. | Sep 2007 | B2 |
| 7280353 | Wendel et al. | Oct 2007 | B2 |
| 7289885 | Basham et al. | Oct 2007 | B2 |
| 7304855 | Milligan et al. | Dec 2007 | B1 |
| 7315447 | Inoue et al. | Jan 2008 | B2 |
| 7349205 | Hall et al. | Mar 2008 | B2 |
| 7353524 | Lin et al. | Apr 2008 | B1 |
| 7385385 | Magliocco et al. | Jun 2008 | B2 |
| 7395133 | Lowe | Jul 2008 | B2 |
| 7403451 | Goodman et al. | Jul 2008 | B2 |
| 7421623 | Haugh | Sep 2008 | B2 |
| 7437212 | Farchmin et al. | Oct 2008 | B2 |
| 7447011 | Wade et al. | Nov 2008 | B2 |
| 7457112 | Fukuda et al. | Nov 2008 | B2 |
| 7467024 | Flitsch | Dec 2008 | B2 |
| 7476362 | Angros | Jan 2009 | B2 |
| 7483269 | Marvin, Jr. et al. | Jan 2009 | B1 |
| 7505264 | Hall et al. | Mar 2009 | B2 |
| 7554811 | Scicluna et al. | Jun 2009 | B2 |
| 7568122 | Mechalke et al. | Jul 2009 | B2 |
| 7570455 | Deguchi et al. | Aug 2009 | B2 |
| 7573715 | Mojaver et al. | Aug 2009 | B2 |
| 7584851 | Hong et al. | Sep 2009 | B2 |
| 7612996 | Atkins et al. | Nov 2009 | B2 |
| 7625027 | Kiaie et al. | Dec 2009 | B2 |
| 7630196 | Hall et al. | Dec 2009 | B2 |
| 7643289 | Ye et al. | Jan 2010 | B2 |
| 7646596 | Ng | Jan 2010 | B2 |
| 7729107 | Atkins et al. | Jun 2010 | B2 |
| 20010006453 | Glorioso et al. | Jul 2001 | A1 |
| 20010044023 | Johnson et al. | Nov 2001 | A1 |
| 20010046118 | Yamanashi et al. | Nov 2001 | A1 |
| 20010048590 | Behl et al. | Dec 2001 | A1 |
| 20020030981 | Sullivan et al. | Mar 2002 | A1 |
| 20020044416 | Harmon, III et al. | Apr 2002 | A1 |
| 20020051338 | Jiang et al. | May 2002 | A1 |
| 20020071248 | Huang et al. | Jun 2002 | A1 |
| 20020079422 | Jiang | Jun 2002 | A1 |
| 20020090320 | Burow et al. | Jul 2002 | A1 |
| 20020116087 | Brown | Aug 2002 | A1 |
| 20020135350 | Wolski et al. | Sep 2002 | A1 |
| 20020161971 | Dimitri et al. | Oct 2002 | A1 |
| 20020172004 | Ives et al. | Nov 2002 | A1 |
| 20030035271 | Lelong et al. | Feb 2003 | A1 |
| 20030043550 | Ives | Mar 2003 | A1 |
| 20030206397 | Allgeyer et al. | Nov 2003 | A1 |
| 20040165489 | Goodman et al. | Aug 2004 | A1 |
| 20040230399 | Shin | Nov 2004 | A1 |
| 20040236465 | Butka et al. | Nov 2004 | A1 |
| 20040264121 | Orriss et al. | Dec 2004 | A1 |
| 20050004703 | Christie | Jan 2005 | A1 |
| 20050007691 | Orriss et al. | Jan 2005 | A1 |
| 20050010836 | Bae et al. | Jan 2005 | A1 |
| 20050018397 | Kay et al. | Jan 2005 | A1 |
| 20050055601 | Wilson et al. | Mar 2005 | A1 |
| 20050057849 | Twogood et al. | Mar 2005 | A1 |
| 20050069400 | Dickey et al. | Mar 2005 | A1 |
| 20050109131 | Wanek et al. | May 2005 | A1 |
| 20050116702 | Wanek et al. | Jun 2005 | A1 |
| 20050131578 | Weaver | Jun 2005 | A1 |
| 20050179457 | Min et al. | Aug 2005 | A1 |
| 20050207059 | Cochrane | Sep 2005 | A1 |
| 20050219809 | Muncaster et al. | Oct 2005 | A1 |
| 20050225338 | Sands et al. | Oct 2005 | A1 |
| 20050270737 | Wilson et al. | Dec 2005 | A1 |
| 20060010353 | Haugh | Jan 2006 | A1 |
| 20060023331 | Flechsig et al. | Feb 2006 | A1 |
| 20060028802 | Shaw et al. | Feb 2006 | A1 |
| 20060066974 | Akamatsu et al. | Mar 2006 | A1 |
| 20060130316 | Takase et al. | Jun 2006 | A1 |
| 20060190205 | Klein et al. | Aug 2006 | A1 |
| 20060227517 | Zayas et al. | Oct 2006 | A1 |
| 20060250766 | Blaalid et al. | Nov 2006 | A1 |
| 20060269384 | Kiaie et al. | Nov 2006 | A1 |
| 20070034368 | Atkins et al. | Feb 2007 | A1 |
| 20070035874 | Wendel et al. | Feb 2007 | A1 |
| 20070035875 | Hall et al. | Feb 2007 | A1 |
| 20070053154 | Fukuda et al. | Mar 2007 | A1 |
| 20070082907 | Canada et al. | Apr 2007 | A1 |
| 20070127202 | Scicluna et al. | Jun 2007 | A1 |
| 20070127206 | Wade et al. | Jun 2007 | A1 |
| 20070195497 | Atkins | Aug 2007 | A1 |
| 20070248142 | Rountree et al. | Oct 2007 | A1 |
| 20070253157 | Atkins et al. | Nov 2007 | A1 |
| 20070286045 | Onagi et al. | Dec 2007 | A1 |
| 20080007865 | Orriss et al. | Jan 2008 | A1 |
| 20080030945 | Mojaver et al. | Feb 2008 | A1 |
| 20080112075 | Farquhar et al. | May 2008 | A1 |
| 20080239564 | Farquhar et al. | Oct 2008 | A1 |
| 20080282275 | Zaczek et al. | Nov 2008 | A1 |
| 20080282278 | Barkley | Nov 2008 | A1 |
| 20090028669 | Rebstock | Jan 2009 | A1 |
| 20090082907 | Stuvel et al. | Mar 2009 | A1 |
| 20090122443 | Farquhar et al. | May 2009 | A1 |
| 20090142169 | Garcia et al. | Jun 2009 | A1 |
| 20090153992 | Garcia et al. | Jun 2009 | A1 |
| 20090153993 | Garcia et al. | Jun 2009 | A1 |
| 20090153994 | Merrow | Jun 2009 | A1 |
| 20090175705 | Nakao et al. | Jul 2009 | A1 |
| 20090261047 | Merrow | Oct 2009 | A1 |
| 20090261228 | Merrow | Oct 2009 | A1 |
| 20090261229 | Merrow | Oct 2009 | A1 |
| 20090262444 | Polyakov et al. | Oct 2009 | A1 |
| 20090262445 | Noble et al. | Oct 2009 | A1 |
| 20090262454 | Merrow | Oct 2009 | A1 |
| 20090262455 | Merrow | Oct 2009 | A1 |
| 20090265032 | Toscano et al. | Oct 2009 | A1 |
| 20090265043 | Merrow | Oct 2009 | A1 |
| 20090265136 | Garcia et al. | Oct 2009 | A1 |
| 20090297328 | Slocum, III | Dec 2009 | A1 |
| Number | Date | Country |
|---|---|---|
| 583716 | May 1989 | AU |
| 1177187 | Mar 1998 | CN |
| 2341188 | Sep 1999 | CN |
| 1114109 | Jul 2003 | CN |
| 1192544 | Mar 2005 | CN |
| 3786944 | Nov 1993 | DE |
| 69111634 | May 1996 | DE |
| 69400145 | Oct 1996 | DE |
| 19701548 | Aug 1997 | DE |
| 19804813 | Sep 1998 | DE |
| 69614460 | Jun 2002 | DE |
| 69626584 | Dec 2003 | DE |
| 19861388 | Aug 2007 | DE |
| 0210497 | Jul 1986 | EP |
| 0242970 | Oct 1987 | EP |
| 0 277 634 | Aug 1988 | EP |
| 0356977 | Aug 1989 | EP |
| 0442642 | Feb 1991 | EP |
| 0466073 | Jul 1991 | EP |
| 0776009 | Nov 1991 | EP |
| 0582017 | Feb 1994 | EP |
| 0617570 | Sep 1994 | EP |
| 0635836 | Jan 1995 | EP |
| 741508 | Nov 1996 | EP |
| 0757320 | Feb 1997 | EP |
| 0757351 | Feb 1997 | EP |
| 0840476 | May 1998 | EP |
| 1 045 301 | Oct 2000 | EP |
| 1209557 | May 2002 | EP |
| 1422713 | May 2004 | EP |
| 1234308 | May 2006 | EP |
| 1760722 | Mar 2007 | EP |
| 1612798 | Nov 2007 | EP |
| 2241118 | Aug 1991 | GB |
| 2276275 | Sep 1994 | GB |
| 2299436 | Oct 1996 | GB |
| 2312984 | Nov 1997 | GB |
| 2328782 | Mar 1999 | GB |
| 2439844 | Jul 2008 | GB |
| 61-115279 | Jun 1986 | JP |
| 62-177621 | Aug 1987 | JP |
| 62-239394 | Oct 1987 | JP |
| 62-251915 | Nov 1987 | JP |
| 63-002160 | Jan 1988 | JP |
| 63-004483 | Jan 1988 | JP |
| 63-016482 | Jan 1988 | JP |
| 63-062057 | Mar 1988 | JP |
| 63-201946 | Aug 1988 | JP |
| 63-214972 | Sep 1988 | JP |
| 63-269376 | Nov 1988 | JP |
| 63-195697 | Dec 1988 | JP |
| 64-089034 | Apr 1989 | JP |
| 2-091565 | Mar 1990 | JP |
| 2-098197 | Apr 1990 | JP |
| 2-185784 | Jul 1990 | JP |
| 2-199690 | Aug 1990 | JP |
| 2-278375 | Nov 1990 | JP |
| 2-297770 | Dec 1990 | JP |
| 3-008086 | Jan 1991 | JP |
| 3-078160 | Apr 1991 | JP |
| 3-105704 | May 1991 | JP |
| 3-207947 | Sep 1991 | JP |
| 3-210662 | Sep 1991 | JP |
| 3-212859 | Sep 1991 | JP |
| 3-214490 | Sep 1991 | JP |
| 3-240821 | Oct 1991 | JP |
| 3-295071 | Dec 1991 | JP |
| 4-017134 | Jan 1992 | JP |
| 4-143989 | May 1992 | JP |
| 4-172658 | Jun 1992 | JP |
| 4-214288 | Aug 1992 | JP |
| 4-247385 | Sep 1992 | JP |
| 4-259956 | Sep 1992 | JP |
| 4-307440 | Oct 1992 | JP |
| 4-325923 | Nov 1992 | JP |
| 5-035053 | Feb 1993 | JP |
| 5-035415 | Feb 1993 | JP |
| 5-066896 | Mar 1993 | JP |
| 5-068257 | Mar 1993 | JP |
| 5-073566 | Mar 1993 | JP |
| 5-073803 | Mar 1993 | JP |
| 5-101603 | Apr 1993 | JP |
| 5-173718 | Jul 1993 | JP |
| 5-189163 | Jul 1993 | JP |
| 5-204725 | Aug 1993 | JP |
| 5-223551 | Aug 1993 | JP |
| 6-004220 | Jan 1994 | JP |
| 6-004981 | Jan 1994 | JP |
| 6-162645 | Jun 1994 | JP |
| 6-181561 | Jun 1994 | JP |
| 6-215515 | Aug 1994 | JP |
| 6-274943 | Sep 1994 | JP |
| 6-314173 | Nov 1994 | JP |
| 7-007321 | Jan 1995 | JP |
| 7-029364 | Jan 1995 | JP |
| 7-037376 | Feb 1995 | JP |
| 7-056654 | Mar 1995 | JP |
| 7-111078 | Apr 1995 | JP |
| 7-115497 | May 1995 | JP |
| 7-201082 | Aug 1995 | JP |
| 7-226023 | Aug 1995 | JP |
| 7-230669 | Aug 1995 | JP |
| 7-257525 | Oct 1995 | JP |
| 1982246 | Oct 1995 | JP |
| 7-307059 | Nov 1995 | JP |
| 8007994 | Jan 1996 | JP |
| 8-030398 | Feb 1996 | JP |
| 8-030407 | Feb 1996 | JP |
| 8-079672 | Mar 1996 | JP |
| 8-106776 | Apr 1996 | JP |
| 8-110821 | Apr 1996 | JP |
| 8-167231 | Jun 1996 | JP |
| 8-212015 | Aug 1996 | JP |
| 8-244313 | Sep 1996 | JP |
| 8-263525 | Oct 1996 | JP |
| 8-263909 | Oct 1996 | JP |
| 8-297957 | Nov 1996 | JP |
| 2553315 | Nov 1996 | JP |
| 9-044445 | Feb 1997 | JP |
| 9-064571 | Mar 1997 | JP |
| 9-082081 | Mar 1997 | JP |
| 2635127 | Jul 1997 | JP |
| 9-306094 | Nov 1997 | JP |
| 9-319466 | Dec 1997 | JP |
| 10-040021 | Feb 1998 | JP |
| 10-049365 | Feb 1998 | JP |
| 10-064173 | Mar 1998 | JP |
| 10-098521 | Apr 1998 | JP |
| 2771297 | Jul 1998 | JP |
| 10-275137 | Oct 1998 | JP |
| 10-281799 | Oct 1998 | JP |
| 10-320128 | Dec 1998 | JP |
| 10-340139 | Dec 1998 | JP |
| 2862679 | Mar 1999 | JP |
| 11-134852 | May 1999 | JP |
| 11-139839 | May 1999 | JP |
| 2906930 | Jun 1999 | JP |
| 11-203201 | Jul 1999 | JP |
| 11-213182 | Aug 1999 | JP |
| 11-327800 | Nov 1999 | JP |
| 11-353128 | Dec 1999 | JP |
| 11-353129 | Dec 1999 | JP |
| 2000-056935 | Feb 2000 | JP |
| 2000-066845 | Mar 2000 | JP |
| 2000-112831 | Apr 2000 | JP |
| 2000-113563 | Apr 2000 | JP |
| 2000-114759 | Apr 2000 | JP |
| 2000-125290 | Apr 2000 | JP |
| 3052183 | Apr 2000 | JP |
| 2000-132704 | May 2000 | JP |
| 2000-149431 | May 2000 | JP |
| 2000-228686 | Aug 2000 | JP |
| 2000-235762 | Aug 2000 | JP |
| 2000-236188 | Aug 2000 | JP |
| 2000-242598 | Sep 2000 | JP |
| 2000-278647 | Oct 2000 | JP |
| 3097994 | Oct 2000 | JP |
| 2000-305860 | Nov 2000 | JP |
| 2001-005501 | Jan 2001 | JP |
| 2001-023270 | Jan 2001 | JP |
| 2001-100925 | Apr 2001 | JP |
| 2002-42446 | Feb 2002 | JP |
| 2007-87498 | Apr 2007 | JP |
| 2007-188615 | Jul 2007 | JP |
| 2007-220184 | Aug 2007 | JP |
| 2007-293936 | Nov 2007 | JP |
| 2007-305206 | Nov 2007 | JP |
| 2007-305290 | Nov 2007 | JP |
| 2007-328761 | Dec 2007 | JP |
| 2008-503824 | Feb 2008 | JP |
| 10-1998-0035445 | Aug 1998 | KR |
| 10-0176527 | Nov 1998 | KR |
| 10-0214308 | Aug 1999 | KR |
| 10-0403039 | Oct 2003 | KR |
| 45223 | Jan 1998 | SG |
| 387574 | Apr 2000 | TW |
| WO 8901682 | Aug 1988 | WO |
| WO 9706532 | Feb 1997 | WO |
| WO 0049487 | Feb 2000 | WO |
| WO 0067253 | Nov 2000 | WO |
| WO 0109627 | Feb 2001 | WO |
| WO 0141148 | Jun 2001 | WO |
| WO 03013783 | Feb 2003 | WO |
| WO 03021597 | Mar 2003 | WO |
| WO 03021598 | Mar 2003 | WO |
| WO 03067385 | Aug 2003 | WO |
| WO 2004006260 | Jan 2004 | WO |
| WO 2004114286 | Dec 2004 | WO |
| WO 2005024830 | Mar 2005 | WO |
| WO 2005024831 | Mar 2005 | WO |
| WO 2005109131 | Nov 2005 | WO |
| WO 2006030185 | Mar 2006 | WO |
| WO 2006048611 | May 2006 | WO |
| WO 2006100441 | Sep 2006 | WO |
| WO 2006100445 | Sep 2006 | WO |
| WO 2007031729 | Mar 2007 | WO |
| WO 2008142752 | Nov 2008 | WO |
| Number | Date | Country | |
|---|---|---|---|
| 20110064546 A1 | Mar 2011 | US |
| Number | Date | Country | |
|---|---|---|---|
| Parent | 12698575 | Feb 2010 | US |
| Child | 12815140 | US | |
| Parent | 12503567 | Jul 2009 | US |
| Child | 12698575 | US |