Storage device testing system cooling

Information

  • Patent Grant
  • 8116079
  • Patent Number
    8,116,079
  • Date Filed
    Monday, June 14, 2010
    15 years ago
  • Date Issued
    Tuesday, February 14, 2012
    13 years ago
Abstract
A storage device transporter includes a transporter body having first and second body portions. The first body portion is configured to be engaged by automated machinery for manipulation of the storage device transporter. The second body portion is configured to receive and support a storage device. The first body portion is configured to receive and direct an air flow over one or more surfaces of a storage device supported in the second body portion.
Description
TECHNICAL FIELD

This disclosure relates to cooling in storage device testing systems.


BACKGROUND

Storage device manufacturers typically test manufactured storage devices for compliance with a collection of requirements. Test equipment and techniques exist for testing large numbers of storage devices serially or in parallel. Manufacturers tend to test large numbers of storage devices simultaneously. Storage device testing systems typically include one or more racks having multiple test slots that receive storage devices for testing.


During the manufacture of disk drives or other storage devices, it is common to control the temperature of the storage devices, e.g., to ensure that the storage devices are functional over a predetermined temperature range. For this reason, the testing environment immediately around the storage devices can be varied under program control. In some known testing systems, sometimes called “batch testers,” the temperature of plural storage devices is adjusted by using cooling or heating air which is common to all of the storage devices.


Batch testers generally require all storage device tests to be at substantially the same temperature, and require all storage devices to be inserted or removed from the test system at substantially the same time. Storage devices generally vary substantially in both the time required to test them and the amount of time that each test requires a particular ambient temperature. Because of these variations, batch testers tend to inefficiently use available testing capacity. There are also known testing systems that allow separate control of the insertion, removal, and temperature of each storage device. These test systems tend to more efficiently use the available testing capacity, but require duplication of temperature control components across every test slot, or sharing of those components among a small number of test slots.


Some storage device test systems use heated or cooled air to heat or cool the storage device. For separate thermal control of each storage device, a separate closed-loop air flow is sometimes used, with heaters or coolers disposed in the air flow. In some examples, the storage device is allowed to self-heat, and thus only a cooler is used. Heating may also be enhanced by reducing or otherwise controlling the flow of the air, and cooling may also be enhanced by increasing the air flow. In some examples of separate thermal control of each storage device, air is drawn from ambient air outside of the tester, rather than through a cooler that draws heat from a closed loop air flow.


Disadvantages of systems with separate thermal controls for each test slot include the need for many separate thermal control components for each test slot (e.g., heaters, coolers, fans, and/or controllable baffles). In addition, efficient use of energy generally requires each test slot to have a closed loop air flow system during at least some of the operating time. A closed loop air flow system typically requires ducting for the air to flow in both directions, to complete a loop, which requires additional space for the air return path. In addition, coolers may create condensation when operating below the dew point of the air. The formation of condensation may be avoided at the cost of reduced cooling performance, by limiting the coolant temperature. Alternatively, the formation of condensation may be avoided controlling and/or removing the moisture content in the air.


SUMMARY

The present disclosure provides a storage device testing system that reduces the number of temperature control components generally required, while still allowing separate control of the temperature of each test slot, thus achieving greater test slot density and lower cost. The storage device testing system provides separate thermal control for each storage device test slot, with relatively fewer thermal control components, and without a separate closed loop air flow path for each test slot. The thermal control for a storage device testing system results in substantially no condensation forming in or near the test slot, without having to manage the moisture content of the air. The storage device testing system uses a common reservoir of cooled air, which is cooled by relatively few heat exchangers. Condensation formed on the heat exchangers is concentrated in relatively few locations and may be removed by conventional methods, such as evaporators or drains. Alternatively, the heat exchangers may be controlled to operate above the dew point. Air from the common reservoir is drawn though each test slot using a separate controllable air mover for each test slot. The amount of cooling may be controlled by the speed of the air mover. To heat a storage device received in a test slot, a heater may be placed in an inlet air path to the test slot, a direct contact heater may be placed on the received storage device, or the storage device may be allowed to self heat by reducing or shutting off the air flow through the test slot. In some implementations, the reservoir of cooled air is formed by the shape of the storage device testing system, rather than by a separate enclosure. The cooling air may also be used to cool other electronics disposed with in the storage device testing system.


One aspect of the disclosure provides a storage device transporter that includes a transporter body having first and second body portions. The first body portion is configured to be engaged by automated machinery for manipulation of the storage device transporter. The second body portion is configured to receive and support a storage device. The first body portion is configured to receive and direct an air flow over one or more surfaces of a storage device supported in the second body portion.


Implementations of the disclosure may include one or more of the following features.


In some implementations, the first body portion includes an air director having one or more air entrances for receiving air into the first body portion and directing air into the second body portion. The one or more air entrances can be configured to be engaged by automated machinery for manipulation of the storage device transporter.


In some examples, the second body portion includes first and second sidewalls arranged to receive a storage device therebetween.


In some cases, the first body portion can include one or more vision fiducials.


The storage device transporter can include a clamping mechanism that is operable to clamp a storage device within the second body portion.


In some implementations, the first body portion is configured to direct air over top and bottom surfaces of a storage device supported in the second body portion.


In certain implementations, the first body portion can include an air director having one or more air entrances for receiving air into the first body portion and directing air into the second body portion. The one or more air entrances can be arranged to register the storage device transporter in X, Y, and rotational directions when the storage device transporter is engaged by automated machinery.


In some examples, the second body portion defines a substantially U-shaped opening which allows air to flow over a bottom surface of a storage device supported in the storage device transporter.


Another aspect of the disclosure provides a test slot assembly that includes a storage device transporter and a test slot. The storage device transporter includes a transporter body having first and second body portions. The first body portion is configured to be engaged by automated machinery for manipulation of the storage device transporter, and the second body portion is configured to receive and support a storage device. The first body portion is configured to receive and direct an air flow over one or more surfaces of a storage device supported in the second body portion. The test slot includes a housing. The housing defines a test compartment for receiving and supporting the storage device transporter, and an open end that provides access to the test compartment for insertion and removal of the disk drive transporter.


Implementations of the disclosure may include one or more of the following features. In some implementations, the storage device transporter is completely removable from the test compartment.


In certain implementations, the storage device transporter is connected to the test slot in such a manner as to form a drawer for receiving a storage device.


Another aspect of the disclosure provides a storage device testing system that includes automated machinery and a storage device transporter. The storage device transporter includes a transporter body having first and second body portions. The first body portion is configured to be engaged by automated machinery for manipulation of the storage device transporter. The second body portion is configured to receive and support a storage device. The first body portion is configured to receive and direct an air flow over one or more surfaces of a storage device supported in the second body portion.


Implementations of the disclosure may include one or more of the following features.


In some implementations, the first body portion includes an air director having one or more air entrances for receiving air into the first body portion and directing air into the second body portion, and the one or more air entrances are configured to be engaged by the automated machinery for manipulation of the storage device transporter.


In certain implementations, the automated machinery includes a mechanical actuator adapted to engage the one or more air entrances.


In some implementations, the first body portion includes one or more vision fiducials, and the automated machinery includes an optical system for detecting the vision fiducials.


In certain implementations, the automated machinery includes posts and the first body portion includes one or more air entrances for receiving air into the first body portion and directing air into the second body portion. The air entrances are arranged to be engaged by the posts to register the storage device transporter in X, Y, and rotational directions when the storage device transporter is engaged by the automated machinery.


In some implementations, the first body portion includes a pair of slots, and the automated machinery includes a pair of claws operable to engage the slots.


In certain implementations, the storage device testing system includes a clamping mechanism that is operable to clamp a storage device within the second body portion. The automated machinery is operable to actuate the clamping mechanism.


In some implementations, the automated machinery includes a robotic arm and a manipulator attached to the robotic arm. The manipulator is configured to engage the storage device transporter.


The details of one or more implementations of the disclosure are set forth in the accompanying drawings and the description below. Other features, objects, and advantages will be apparent from the description and drawings, and from the claims.





DESCRIPTION OF DRAWINGS


FIG. 1 is a perspective view of a storage device testing system having racks arranged in a substantially circular configuration.



FIG. 2 is a top view of the storage device testing system shown in FIG. 1.



FIG. 3 is a perspective view of a storage device testing system and a transfer station.



FIG. 4 is a perspective view of a manipulator.



FIG. 5A is a side perspective view of a storage device transporter.



FIG. 5B is a front perspective views of the storage device transporter shown in FIG. 4A.



FIG. 5C is a bottom perspective views of a storage device transporter carrying a storage device.



FIG. 5D is a side perspective view of a storage device transporter receiving a storage device.



FIG. 5E is perspective view of a front panel of the storage device transporter.



FIGS. 6A and 6B are perspective views of a rack receiving a test slot carrier holding test slots.



FIG. 7A is a perspective views of a test slot carrier holding test slots, one of which is receiving a storage device transporter carrying a storage device.



FIG. 7B is a rear perspective views of the test slot carrier of FIG. 7A.



FIG. 7C is a sectional view of a test slot carrier along line 6C-6C in FIG. 6A.



FIGS. 8A and 8B are perspective views of a test slot receiving a storage device transporter carrying a storage device.



FIG. 8C is a rear perspective view of a test slot.



FIG. 9 is a perspective view of an air mover.



FIGS. 10A and 10B are perspective views of a rack of a storage device testing system showing an air flow path through the rack and test slots housed by the rack.



FIG. 11A is an exploded perspective view of a test slot assembly including a storage device transporter.



FIG. 11B is a perspective view of the test slot assembly of FIG. 11A including a storage device transporter in the form of a drawer assembled with a test slot.



FIGS. 12A and 12B are perspective views of a storage device transporter carrying a storage device being received inserted into a test slot of a storage device testing system.



FIG. 13 is a sectional view of a test slot along line 13-13 in FIG. 12A.



FIG. 14 is a side perspective view of a storage device transporter.



FIG. 15 is a front perspective view of a storage device transporter.



FIG. 16 is a bottom perspective view of a storage device transporter.



FIG. 17 is a perspective view of a storage device transporter receiving a storage device.



FIG. 18 is a perspective view of a test slot and a test slot cooling system in a rack of a storage device testing system.



FIG. 19 is a perspective view of an air cooler.



FIG. 20 is a perspective view of an air mover.



FIG. 21 is a top view of a test slot and a test slot cooling system in a rack of a storage device testing system showing an air flow path through the test slot and a test slot cooling system.



FIG. 22 is a side sectional view of a test slot showing an air flow path over the top and bottom surfaces of a storage device received in the test slot.





Like reference symbols in the various drawings indicate like elements.


DETAILED DESCRIPTION

Temperature regulation of a storage device can be an important factor during testing (e.g., validation, qualification, functional testing, etc.) of a storage device. One method of performing temperature regulation includes moving air over and/or about the storage device during testing. As will be discussed in detail, the volume, temperature, and flow path of the air moved with respect to the storage device during testing, inter alia, can each be factors in providing reliable, effective, and efficient temperature control of the storage device.


A storage device, as used herein, includes disk drives, solid state drives, memory devices, and any device that benefits from asynchronous testing for validation. A disk drive is generally a non-volatile storage device which stores digitally encoded data on rapidly rotating platters with magnetic surfaces. A solid-state drive (SSD) is a data storage device that uses solid-state memory to store persistent data. An SSD using SRAM or DRAM (instead of flash memory) is often called a RAM-drive. The term solid-state generally distinguishes solid-state electronics from electromechanical devices.


Referring to FIGS. 1-3, in some implementations, a storage device testing system 100 includes at least one automated transporter 200 (e.g. robot, robotic arm, gantry system, or multi-axis linear actuator) defining a first axis 205 (see FIG. 3) substantially normal to a floor surface 10. In the examples shown, the automated transporter 200 comprises a robotic arm 200 operable to rotate through a predetermined arc about the first axis 205 and to extend radially from the first axis 205. The robotic arm 200 is operable to rotate approximately 360° about the first axis 205 and includes a manipulator 210 disposed at a distal end 202 of the robotic arm 200 to handle one or more storage devices 500 and/or storage device transporters 800 to carry the storage devices 500 (see e.g., FIGS. 5A-5E). Multiple racks 300 are arranged around the robotic arm 200 for servicing by the robotic arm 200. Each rack 300 houses multiple test slots 330 configured to receive storage devices 500 for testing. The robotic arm 200 defines a substantially cylindrical working envelope volume 220, with the racks 300 being arranged within the working envelope 220 for accessibility of each test slot 330 for servicing by the robotic arm 200. The substantially cylindrical working envelope volume 220 provides a compact footprint and is generally only limited in capacity by height constraints. In some examples, the robotic arm 200 is elevated by and supported on a pedestal or lift 250 on the floor surface 10. The pedestal or lift 250 increases the size of the working envelope volume 220 by allowing the robotic arm 200 to reach not only upwardly, but also downwardly to service test slots 330. The size of the working envelope volume 220 can be further increased by adding a vertical actuator to the pedestal or lift 250. A controller 400 (e.g., computing device) communicates with each automated transporter 200 and rack 300. The controller 400 coordinates servicing of the test slots 330 by the automated transporter(s) 200.


The robotic arm 200 is configured to independently service each test slot 330 to provide a continuous flow of storage devices 500 through the testing system 100. A continuous flow of individual storage devices 500 through the testing system 100 allows varying start and stop times for each storage device 500, whereas other systems that require batches of storage devices 500 to be run all at once as an entire testing load must all have the same start and end times. Therefore, with continuous flow, storage devices 500 of different capacities can be run at the same time and serviced (loaded/unloaded) as needed.


Referring to FIGS. 1-3, the storage device testing system 100 includes a transfer station 600 configured for bulk feeding of storage devices 500 to the robotic arm 200. The robotic arm 200 independently services each test slot 330 by transferring a storage device 500 between the transfer station 600 and the test slot 330. The transfer station 600 houses one or more totes 700 carrying multiple storage devices 500 presented for servicing by the robotic arm 200. The transfer station 600 is a service point for delivering and retrieving storage devices 500 to and from the storage device testing system 100. The totes 700 allow an operator to deliver and retrieve a collection of storage devices 500 to and from the transfer station 600. In the example shown in FIG. 3, each tote 700 is accessible from respective tote presentation support systems 720 in a presentation position and may be designated as a source tote 700 for supplying a collection of storage devices 500 for testing or as a destination tote 700 for receiving tested storage devices 500 (or both). Destination totes 700 may be classified as “passed return totes” or “failed return totes” for receiving respective storage devices 500 that have either passed or failed a functionality test, respectively.


In implementations that employ storage device transporters 800 (FIGS. 5A-5E) for manipulating storage devices 500, the robotic arm 200 is configured to remove a storage device transporter 800 from one of the test slots 330 with the manipulator 210, then pick up a storage device 500 from one the totes 700 presented at the transfer station 600 or other presentation system (e.g., conveyor, loading/unloading station, etc.) with the storage device transporter 800, and then return the storage device transporter 800, with a storage device 500 therein, to the test slot 330 for testing of the storage device 500. After testing, the robotic arm 200 retrieves the tested storage device 500 from the test slot 330, by removing the storage device transporter 800 carrying the tested storage device 500 from the test slot 330 (i.e., with the manipulator 210), carrying the tested storage device 500 in the storage device transporter 800 to the transfer station 600, and manipulating the storage device transporter 800 to return the tested storage device 500 to one of the totes 700 at the transfer station 600 or other system (e.g., conveyor, loading/unloading station, etc.).


Referring to FIG. 4, the manipulator 210 may include an optical system 212 and a mechanical actuator 240. The optical system 212 may include a camera 220 and a light source 230. A storage device 500 may be carried by the storage device transporter 800 (FIGS. 5A-5E) that is gripped by the manipulator 210 via the mechanical actuator 240.


As illustrated in FIGS. 5A-5E, the storage device transporter 800 includes a transporter body 810 having first and second portions 802, 804. The first portion 802 of the transporter body 810 includes a manipulation feature 812 (e.g., indention, protrusion, aperture, etc.) configured to receive or otherwise be engaged by the manipulator 210 for transporting. The second portion 804 of the transporter body 810 is configured to receive a storage device 500. In some examples, the second transporter body portion 804 defines a substantially U-shaped opening 820 formed by first and second sidewalls 822, 824 and a base plate 826 of the transporter body 810. The storage device 500 is received in the U-shaped opening 820. FIGS. 5C-5D illustrate an exemplary storage device 500 that includes a housing 510 having top, bottom, front, rear, left and right surfaces 512, 514, 516, 518, 520, 522. The U-shaped opening 820 allows air moving through the test sot 330 to flow over the bottom surface 514 of the storage device 500. The storage device 500 is typically received with its rear surface 518 substantially facing the first portion 802 of the storage device transporter body 810. The first portion 802 of the transporter body 810 includes an air director 830 (front panel) that receives and directs air substantially simultaneously (e.g., in parallel) over at least the top and bottom surfaces 512, 514 of the storage device 500 received in the storage device transporter 800. The air director 830 defines one or more air entrances 832a-c (e.g., aperture(s), slot(s), etc.) for receiving air into the first portion 802 of the transporter body 810 and directing it out into the second portion 804 of the transporter body 800, such that the air can move over at least the top and bottom surfaces 512, 514 of the received storage device 500. In some implementations, the air director 830 includes a guide (e.g., diverter, fin, plenum, etc.) for guiding the air over the received storage device 500.


Referring to FIG. 5A, there is seemingly no area left to include an additional mechanical protrusion or cavity for a gripper 242 (FIG. 4) of the mechanical actuator 240 to engage. But, by designing the gripper 242, such as illustrated in FIG. 4, such that it exploits cavities, rather than protrusions, it is possible to combine the functionality of the air entrances with the gripper 242 of the mechanical actuator 240. In this example, (shown in close up in FIG. 5E), the gripper 242 can engage with the center rectangular cutout 832a and with the two round holes 832b, allowing the air entrances to serve also as engagement features.


The round holes 832a allow posts 244 on the gripper 242 to register the storage device transporter 800 in the X and Y dimensions, as well as rotationally since multiple holes are used for registration. The rectangular cutout 832a contains internal slots 834 for claws 246a, 246b of the gripper 242 to engage and pull the storage device transporter 800 to a registration point on the face of the gripper 242 in the Z dimension.


As illustrated in FIGS. 5A and 5C, sufficient area remains for mechanical rigidity and to place two fiducial marks 836 for the optical system 212 (FIG. 3) to detect. Alternatively or additionally, the air entrances 832a-c themselves may be used as vision fiducials.


In some examples, the storage device transporter 800 includes a heater 860 that either provides conductive heating by direct contact with a received storage device 500 or convective heating by heating air flowing into and/or over the storage device transporter 800 and the received storage device 500. A detailed description of the heater 860 and other details and features combinable with those described herein may be found in the following U.S. patent application Ser. No. 12/503,593, filed on Jul. 15, 2009, the entire contents of which are hereby incorporated by reference.


Some storage devices 500 can be sensitive to vibrations. Fitting multiple storage devices 500 in a single test rack 330 and running the storage devices 500 (e.g., during testing), as well as the insertion and removal of the storage device transporters 800, each optionally carrying a storage device 500, from the various test slots 330 in the test rack 300 can be sources of undesirable vibration. In some cases, for example, one of the storage devices 500 may be operating under test within one of the test slots 330, while others are being removed and inserted into adjacent test slots 330 in the same rack 300. Clamping the storage device transporter 800 to the test slot 330 after the storage device transporter 800 is fully inserted into the test slot 330 can help to reduce or limit vibrations by limiting the contact and scraping between the storage device transporters 800 and the test slots 330 during insertion and removal of the storage device transporters 800.


In some implementations, the manipulator 210 is configured to initiate actuation of a clamping mechanism 840 disposed in the storage device transporter 800. This allows actuation of the clamping mechanism 840 before the storage device transporter 800 is moved to and from the test slot 330 to inhibit movement of the storage device 500 relative to the storage device transporter 800 during the move. Prior to insertion in the test slot 330, the manipulator 210 can again actuate the clamping mechanism 840 to release the storage device 500 within the transporter body 800. This allows for insertion of the storage device transporter 800 into one of the test slots 330, until the storage device 500 is in a test position engaged with the test slot 330 (e.g., a storage device connector 532 (e.g., electrical connector) of the storage device 500 (FIG. 7C) is engaged with a test slot connector 392 (FIG. 7C) (e.g., electrical connector) of the test slot 330). The clamping mechanism 840 may also be configured to engage the test slot 330, once received therein, to inhibit movement of the storage device transporter 800 relative to the test slot 330. In such implementations, once the storage device 500 is in the test position, the clamping mechanism 840 is engaged again (e.g., by the manipulator 210) to inhibit movement of the storage device transporter 800 relative to the test slot 330. The clamping of the storage device transporter 800 in this manner can help to reduce vibrations during testing. In some examples, after insertion, the storage device transporter 800 and storage device 500 carried therein are both clamped or secured in combination or individually within the test slot 330. A detailed description of the storage device transporter 800 and other details and features combinable with those described herein may be found in U.S. patent application Ser. No. 12/503,687, filed on Jul. 15, 2009, and in U.S. patent application Ser. No. 12/503,567, filed on Jul. 15, 2009. These applications are hereby incorporated by reference in their entireties.


In the examples illustrated in FIGS. 6A and 6B, each rack 300 includes one or more carrier receptacles 310 each configured to receive a test slot carrier 320 that carries one or more test slots 330. The test slot carrier 320 provides a collection of test slots 330 that allows for bulk loading of test slots 330 into a rack 300. The rack 300 can be quickly serviced to change out different types of test slots 330 by removing one test slot carrier 320 having one type of test slots 330 from its respective carrier receptacle 310 and loading another carrier 320 having a different type or assortment of test slots 330 without having to modify the rack 300 to accommodate a particular mounting spacing for each type of test slot 330. Some carrier receptacles 310 may have a common standard size for receiving complementary standard sized test slot carriers 320. The number of test slot receptacles 324 any particular test slot carrier 320 carries may vary depending upon the type(s) of test slots 330 received therein. For example, a test slot carrier 320 will accommodate fewer relatively larger test slots 330 four receiving relatively larger storage devices 500 as compared to relatively smaller (thinner) test slots 300 for relatively smaller storage devices 500.


Each rack 300 includes an air conduit 304 (also shown in FIGS. 10A and 10B) that provides pneumatic communication between each test slot 330 of the respective rack 300 and an exit 353 of the rack 300. In some implementations, the air conduit 304 is formed by a space between the test slots 330 and a rear wall 303 of the rack 300. The air conduit 304 can also be attached to an exterior of the rack 300, such as the wedge shaped conduit 304 shown in FIG. 6B. In some implementations, as shown in FIG. 3, the air conduit 304 is in pneumatic communication with a system air mover 190 (e.g., via a common system air conduit 345) and/or air exterior to the rack 300, for moving air between the rack 300 and the environment around the rack 300. In this case, the system air mover 190 can be pneumatically connected to every air conduit 304 in the storage device testing system 100 (e.g., via the common system air conduit 345, which may include a bottom portion of the racks 300 below the test slots 330) to move air through each of the air conduits. The system air mover 190 moves air exterior of the racks 300 through the test slots 330 into the air conduits 304 and back out of the racks 300.


In the example shown in FIG. 6B, the air conduit 304 (also shown in FIGS. 10A and 10B) provides pneumatic communication between each test slot 330 of the respective rack 300 and an air heat exchanger 350. The air heat exchanger 350 is disposed below the carrier receptacles 310 remote to received test slots 330. The air heat exchanger 350 includes an air heat exchanger housing 352 defining an entrance 351, an exit 353, and an air flow path 305 therebetween. In some implementations, cooling elements 354 are disposed in the housing 352 in the air flow path 305 and a pump 356 delivers condensation accumulated from the air heat exchanger 350 to an evaporator 360, which may be disposed on the respective rack 300 of the air heat exchanger 350 (e.g., above the carrier receptacles 310), or to a drain. The air heat exchanger 350 may include an air mover 358 that pulls the air from the air conduit 304 into the entrance 351 of the air heat exchanger housing 352 over the cooling elements 354, if implemented, and moves the air out of the air heat exchanger housing exit 353 and out of the rack 300.


Referring to FIGS. 7A-7C, each test slot carrier 320 includes a body 322 having test slot receptacles 324 that are each configured to receive a test slot 330. Each test slot 330 is configured to receive a storage device transporter 800, which is configured to receive the storage device 500 and be handled by the manipulator 210 of the robotic arm 200. In use, one of the storage device transporters 800 is removed from or delivered to one of the test slots 330 by the robotic arm 200. Each test slot receptacle 324 may include one or more isolators 326 (e.g., rubber grommet) to dampen or isolate vibrations between the carrier body 322 and a received storage device 500. A detailed description of the test slot carrier 320 and other details and features combinable with those described herein may be found in the following U.S. patent applications filed Feb. 2, 2010, entitled “Test Slot Carriers”, inventors: Brian Merrow et al., and having assigned Ser. No. 12/698,605, the entire contents of which are hereby incorporated by reference.


Referring to FIGS. 7C and 8A-8C, each test slot 330 includes a test slot housing 340 for receipt by the rack 300 or a test slot receptacle 324 of a test slot carrier 320. The test slot housing 340 has first and second portions 342, 344. The first portion 342 of the test slot housing 340 defines a device opening 346 sized to receive a storage device 500 and/or a storage device transporter 800 carrying the storage device 500. The second portion 344 of the test slot housing 340 includes an air exit 348, electronics 390 (e.g., circuit board(s)), and an optional air mover 900. The electronics 390 are in communication with a test slot connector 392, which is configured to receive and establish electrical communication with a storage device connector 532 of the storage device 500. The electronics 390 also include a slot-rack connector 394 for establishing electrical communication with the rack 300. Air moved through the test slot 300 can be directed over the electronics 390.



FIG. 9 illustrates an exemplary air mover 900 which has an air entrance 902 that receives air along a first direction 904 and an air exit 906 that delivers air along a second direction 908 substantially perpendicular to the first direction. Changing the direction of air movement within the air mover 900 eliminates the efficiency loss of changing the air flow direction within a conduit, thereby increasing the cooling efficiency of the storage device testing system 100. In some implementations, the air mover 900 includes an impeller 910 rotating at about 7100 revolutions per minute (rpm) to produce an air flow rate of up to about 0.122 m3/min (4.308 CFM) (at zero static pressure) and an air pressure of up to about 20.88 mmH2O (0.822 inch H2O) (at zero air flow). In some instances, the air mover 900 is the largest component of a cooling system for a test slot 330. The substantially horizontal placement of the air mover 900 within the storage device testing system 100 allows for a relatively lower overall height of the test slot 330 (allowing greater test slot density in the rack 300 and/or test slot carrier 320).


FIGS. 7C and 10A-10B illustrate a flow path 305 of air through test slots 330 and a rack 300 for regulating the temperature of a storage device 500 received in the storage device testing system 100. The air mover 900 of each test slot 330 housed in the rack 300 moves a flow of air from an exterior space of the rack 300 into at least one entrance 832 of the air director 830 of a storage device transporter 800 received in the test slot 330. The air flow is directed substantially simultaneously over at least top and bottom surfaces 512, 514 of the storage device 500 received in the storage device transporter 800. FIG. 7C provides a side sectional view of the test slot 330 and the air flow path 305 over the top and bottom surfaces 512, 514 of the received storage device 500. The air may also flow over other surfaces of the storage device 500 (e.g., front, back, left and right sides 516, 518, 520, 522). If no storage device 500 or storage device transporter 800 is received in the test slot 330, the air can flow directly through the first portion 342 of the test housing 340 to the air mover 900. The air mover 900 moves the air through the second portion 344 of the test slot housing 340 and out an air exit 348 (FIG. 7B) of the test slot 330 into the air conduit 304. The air moves through the air conduit 304 to the air heat exchanger 350 or the environment exterior to the rack 300. After passing through the air heat exchanger 350 the air is released back into the exterior space of the rack 300.


In some examples, the air mover 900 pulls the air into the air director 830 of storage device transporter 800, which directs the air flow 305 over at least the top and bottom surfaces 512, 514 of the storage device 500. The air mover 900 receives the flow of air from over the received storage device 500 along a first direction and delivers the air flow from the air mover 900 to the exit 348 of the test slot 330 along a second direction substantially perpendicular to the first direction.


In the examples shown, the storage device transporter 800 provides closure of the device opening 346 of the test slot housing 340 once received therein. As the air mover 900 moves the air to circulate along the air path 305, the air moves from the first portion 342 of the test slot housing 340 along a common direction to the second portion 344 of the test slot housing 340 while traversing the entire length of the received storage device 500. Since the air moves substantially concurrently along at least the top and bottom surfaces 512, 514 of the storage device 500, the air provides substantially even cooling of the storage device 500. If the air was routed along one side of the storage device first, such as the top surface 512, and then directed along another side sequentially second, such as the bottom surface 514, the air would become preheated after passing over the first side of the storage device 500 before passing over any additional sides of the storage device, thereby providing relatively less efficient cooling than flowing air over two or more sides of the storage device 500 substantially concurrently and/or without recirculation over the storage device 500 before passing through the air heat exchanger 350.


A method of performing storage device testing includes presenting one or more storage devices 500 to a storage device testing system 100 for testing at a source location (e.g., a loading/unloading station 600, storage device tote 700, test slot(s) 330, etc.) and actuating an automated transporter 200 (e.g. robotic arm) to retrieve one or more storage devices 500 from the source location and deliver the retrieved storage device(s) 500 to corresponding test slots 330 disposed on a rack 300 of the storage device testing system 100. The method includes actuating the automated transporter 200 to insert each retrieved storage device 500 in its respective test slot 330, and performing a test (e.g., functionality, power, connectivity, etc.) on the storage devices 500 received by the test slot 330. The method may also include actuating the automated transporter 200 to retrieve the tested storage device(s) 500 from the test slot(s) 330 and deliver the tested storage device(s) 500 to a destination location (e.g., another test slot 330, a storage device tote 700, a loading/unloading station 600, etc).


A method of regulating the temperature of a storage device 500 received in a storage device testing system 100 includes moving a flow of air into an air entrance 346 of a test slot housing 340 of a test slot 330 of a rack 300, moving the air flow over a storage device 500 received in the test slot 330, moving the air out an air exit 348 of the test slot housing 340 of the test slot 330, and releasing the air exteriorly of the rack 300. This method may be executed on a storage device testing system 100 to reduce the relative number of temperature control components generally required, while still allowing separate control of the temperature of each test slot 330. The method allows the storage device testing system 100 to have separate thermal control for each storage device test slot 330, with relatively fewer thermal control components, and without a separate closed loop air flow path for each test slot 330. In some examples, the method results in substantially no condensation forming in or near the test slot(s) 330, without having to manage the moisture content of the air.


In some implementations, the method includes using a common reservoir of cooled air, which may cooled by one or more air heat exchangers 350. Condensation formed on the air heat exchanger(s) 350 is concentrated in relatively few locations and may be removed by conventional methods, such as evaporators or drains. Alternatively, the heat exchanger(s) 350 may be controlled to operate above the dew point. Air from the common reservoir is drawn though each test slot 330 using a separate controllable air mover 900 for each test slot 330. The amount of cooling may be controlled by the speed of the air mover 900. To heat a storage device 500 received in a test slot 330, a heater 860 may be disposed so as to heat the received storage device 500 either directly or indirectly. For example, the heater 860 maybe placed in the inlet air path 346 to the test slot 330 and/or in direct contact with the received storage device. In some examples, the method includes allowing the received storage device 500 to self heat by reducing or shutting off the air flow through the test slot 300. In some implementations, the reservoir of cooled air is formed by the shape of the storage device testing system 100, rather than by a separate enclosure. The cooling air may also be used to cool other electronics disposed with in the storage device testing system 100.


In some examples, the air is moved to flow substantially simultaneously over at least the top and bottom surfaces 512, 514 of the storage device 500 received in the test slot 330. In some implementations, the method includes pulling air exterior of the rack 300 into a first portion 342 of the test slot housing 340 with an air mover 900 disposed in the test slot housing 340 and then moving the air through a second portion 344 of the test slot housing 340 over electronics 350 disposed in the second portion 344 and out an air exit 348 of the test slot housing 340. The method may include receiving the flow of air into the air mover 900 along a first direction 904 and moving the flow to the air exit 906 of the air mover 900 along a second direction 908 substantially perpendicular to the first direction 904. In some examples, the method includes delivering the air flow out of the air mover 900 at an air flow rate of up to about 0.122 m3/min (4.308 CFM) and an air pressure of up to about 20.88 mmH2O (0.822 inchH2O).


The method may include moving the air flow through an air director 830 of a storage device transporter 800 holding the storage device 500 and received in the test slot 330. The air director 830 defines one or more air entrances 832 that receive and direct the flow of air over at least the top and bottom surfaces 512, 514 of the storage device 500. The storage device transporter 800 includes a body 800 having first and second portions 802, 804. In some examples, the method includes receiving the storage device 500, which has top, bottom, front, rear, right, and left side surfaces 512, 514, 516, 518, 520, 522, in the storage device transporter 800 such that the rear surface 518 substantially faces the first body portion 802 of the storage device transporter body 800.


In some implementations, the method includes moving the flow of air from the test slot 330 to an air heat exchanger 350 through an air conduit 304 that provides pneumatic communication therebetween. The air heat exchanger 350, in some examples, includes an air mover 358 that pulls the air from the air conduit 304 into the entrance 351 of the air heat exchanger housing 352 over the cooling elements 354 and moves the air out of the air heat exchanger housing exit 353 and out of the rack 300. The method may also include pumping condensation of the air heat exchanger 350 to an evaporator 360 disposed on the rack 300 or pumping to a drain, or allowing the condensate to drain through gravity.


OTHER IMPLEMENTATIONS

A number of implementations have been described. Nevertheless, it will be understood that various modifications may be made without departing from the spirit and scope of the disclosure. For example, the air may flow in the opposite direction from that given in the exemplary embodiments. Air may also flow over only one side of the storage device, instead of over both the top and bottom surfaces. In systems with one air mover per test slot, the test slot air mover may be disposed in a number of locations, some not physically connected to the slot. Thermal control of the test slot may include means of heating the air by the addition of a heater in the inlet stream of the test slot. While implementations described above included a storage device transporter in the form of a removable carrier that is entirely removable from a test slot, in some implementations the storage device transporter is not entirely removable from the test slot, but instead remains connected to the test slot in the form of a drawer. For example, FIGS. 11A and 11B illustrate an implementation of a test slot assembly in which the storage device transporter 800′ includes projections 805 which slide within recessed slots 335 in the walls of the test slot 330′. Forward movement and complete removal of the storage device transporter 800′ is impeded (e.g., prevented) by the end position of the recessed slots 335. Thus, in this example, the storage device transporter 800′ operates as a drawer that is slidable relative to the test slot 330′ allowing insertion and removal of storage devices to and from the test slot 330′.



FIGS. 12A-22 illustrate another implementation of a test slot that may be employed in storage device testing systems, such as described above. In the example illustrated in FIGS. 12A-13, each test slot 1330 is configured to receive the storage device transporter 1800. The storage device transporter 1800 is configured to receive the storage device 500 and be handled by the manipulator 210 (FIG. 4) of the robotic arm 200 (FIG. 1). In use, one of the storage device transporters 1800 is removed from or delivered to one of the test slots 1330 by the robotic arm 200. Each test slot 1330 includes a test slot housing 1340 received by the rack 300 and having first and second portions 1342, 1344. The first portion 1342 of the test slot housing 1340 defines a device opening 1346 sized to receive a storage device 500 and/or a storage device transporter 1800 carrying the storage device 500 as well as a first air opening 1326 (i.e., air entrance). The second portion 1344 of the test slot housing 1340 defines a second air opening 1348 (i.e., air exit) and houses electronics 1390.


As illustrated in FIGS. 14-17, the storage device transporter 1800 includes a transporter body 1810 having first and second portions 1802, 1804. The first portion 1802 of the transporter body 1810 includes a manipulation feature 1812 (e.g., indention, protrusion, etc.) configured to receive or otherwise be engaged by the manipulator 210 for transporting. The second portion 1804 of the transporter body 1810 is configured to receive a storage device 500. In some examples, the second transporter body portion 1804 defines a substantially U-shaped opening 1820 formed by first and second sidewalls 1822, 1824 and a base plate 1826 of the transporter body 1810. The storage device 1500 is received in the U-shaped opening 1820 and supported by at least the base plate 1826. FIG. 17 illustrates an exemplary storage device 500 that includes a housing 510 having top, bottom, front, rear, left and right surfaces 512, 514, 516, 518, 520, 522. The storage device 500 is typically received with its rear surface 518 substantially facing the first portion 802 of the storage device transporter body 1800. The first portion 1802 of the transporter body 1810 includes an air director 1830 that receives and directs air substantially simultaneously (e.g., in parallel) over at least the top and bottom surfaces 512, 514 of the storage device 500 received in the storage device transporter 1800. The air director 1830 defines an air cavity 1831 having an air entrance 1832 and first and second air exits 1834, 1835. The air director 1830 directs air received through its air entrance 1832 out of the first and second air exits 1834, 1835. The first air exit 1834 directs air over the top surface 512 of the received storage device 1800 and the second air exit 1835 directs air over the bottom surface 514 of the received storage device 500.


In some implementations, the air director 1830 includes a plenum 1836 disposed in the cavity 1831 for directing at least a portion of the air received through the air entrance 1832 out through the first air exit 1834 and over at least the bottom surface 514 of the received storage device 500. In some implementations, the air director 1830 is weighted to stabilize the storage device transporter 1800 against vibration. For example, the plenum 1836 can be weighted or fabricated of a material having a suitable weight. Air entering into the air cavity 1831 can also flow over a partition 1838 (above which is the second air exit 1835) to flow over at least the top surface 512 of the storage device 500. With the storage device 500 received within the transporter body 1810, the storage device transporter 1810 and the storage device 500 together can be moved by the automated transporter 200 (FIG. 1) for placement within one of the test slots 310.


Some storage devices 500 can be sensitive to vibrations. Fitting multiple storage devices 500 in a single test rack 300 and running the storage devices 500 (e.g., during testing), as well as the insertion and removal of the storage device transporters 550, each optionally carrying a storage device 500, from the various test slots 1330 in the test rack 300 can be sources of undesirable vibration. In some cases, for example, one of the storage devices 500 may be operating under test within one of the test slots 1330, while others are being removed and inserted into adjacent test slots 1330 in the same rack 300. Clamping the storage device transporter 1800 to the test slot 1330 after the storage device transporter 550 is fully inserted into the test slot 1330 can help to reduce or limit vibrations by limiting the contact and scraping between the storage device transporters 1800 and the test slots 1330 during insertion and removal of the storage device transporters 1800.


In some implementations, the manipulator 210 (see, e.g., FIGS. 2 & 4) is configured to initiate actuation of a clamping mechanism 1840 disposed in the storage device transporter 1800. This allows actuation of the clamping mechanism 1840 before the storage device transporter 1800 is moved to and from the test slot 1330 to inhibit movement of the storage device 500 relative to the storage device transporter 1800 during the move. Prior to insertion in the test slot 1330, the manipulator 210 can again actuate the clamping mechanism 1840 to release the storage device 500 within the transporter body 1810. This allows for insertion of the storage device transporter 1800 into one of the test slots 1330, until the storage device 500 is in a test position engaged with the test slot 1330 (e.g., a storage device connector 532 of the storage device 500 (FIG. 17) is engaged with a test slot connector 1392 (FIG. 18) of the test slot 1330). The clamping mechanism 1840 may also be configured to engage the test slot 1330, once received therein, to inhibit movement of the storage device transporter 1800 relative to the test slot 1330. In such implementations, once the storage device 500 is in the test position, the clamping mechanism 1840 is engaged again (e.g., by the manipulator 210) to inhibit movement of the storage device transporter 1800 relative to the test slot 1330. The clamping of the storage device transporter 1800 in this manner can help to reduce vibrations during testing. In some examples, after insertion, the storage device transporter 1800 and storage device 500 carried therein are both clamped or secured in combination or individually within the test slot 1330.


Referring again to FIGS. 12A-13 as well as FIG. 18, the rack 300 includes a test slot cooling system 1900 disposed adjacent to each test slot 1330. The test slot cooling system 1900 includes a housing 1910 having first and second air openings 1912, 1914 (i.e., air exit and air entrance). The housing 1910 receives air from the test slot 1330 through the second air opening 1914 and directs the air through an air cooler 1920 to an air mover 1930 (e.g., blower, fan, etc.). In the example shown in FIG. 19, the air cooler 1920 includes an air cooler body 1922 having one or more fins or plates 1924 disposed thereon. The air cooler 1920 is coupled or attached to a cooling tube 1926 through which a chilled liquid (e.g., water) flows. The chilled cooling tube 1926 conducts heat from the air cooler 1920 which receives heat through convection from air flowing over the fins 1924. The air mover 1930 moves the air through the first air opening 1912 back into the test slot 1330 through its first air opening 1326. The first air opening 1326 of the test slot housing 1340 is substantially aligned with the first air opening 1912 of the test slot cooling system housing 1900, and the second air opening 1348 of the test slot housing 1340 is substantially aligned with the second air opening 1914 of the test slot cooling system housing 1900. In examples using the storage device transporter 1800, the first air opening 1326 of the test slot housing 1340 is substantially aligned with the air entrance 1832 of the transporter body 1810 for delivering temperature controlled air over a storage device 500 carried by the storage device transporter 1800.



FIG. 20 illustrates an exemplary air mover 1930 which has an air entrance 1932 that receives air along a first direction 1934 and an air exit 1936 that delivers air along a second direction 1938 substantially perpendicular to the first direction. Changing the direction of air movement within the air mover 1930 eliminates the efficiency loss of changing the air flow direction within a conduit, thereby increasing the cooling efficiency of the test slot cooling system 1900. In some implementations, the air mover 1930 includes an impeller 1935 rotating at about 7100 revolutions per minute (rpm) to produce an air flow rate of up to about 0.122 m3/min (4.308 CFM) (at zero static pressure) and an air pressure of up to about 20.88 mmH2O (0.822 inchH2O) (at zero air flow). In some instances, the air mover 1930 is largest component of the test slot cooling system 1900 and therefore dictates the size of the test slot cooling system 1900. In some implementations, the air mover 1930 has length L of about 45 mm, a width W of about 45 mm, and a height H of about 10 mm, such as DC Blower BFB04512HHA-8A60 provided by Delta Electronics, Inc., Taoyuan Plant, 252 Shang Ying Road, Kuei San Industrial Zone, Yaoyuan Shien, Taiwan R.O.C. The substantially horizontal placement of the air mover 1930 within the test slot cooling system 1900 allows for a relatively lower overall height of the test slot cooling system 1900, and therefore a relatively lower overall height of an associated test slot 1330 (allowing greater test slot density in the rack 300). The ability of the air mover 1930 to redirect the air flow path 1950 (FIG. 21) reduces air resistance in the air flow path 1950, thereby lowering the power consumption of the air mover 1930 to maintain a threshold air flow rate.



FIG. 21 provides a top view of the rack 300 and illustrates the air flow path 1950 through the test slot cooling system 1900 and the test slot 1330. FIG. 22 provides a side sectional view of the test slot 1330 and the air flow path 1950 over the top and bottom surfaces 512, 514 of the received storage device 500. The air may also flow over other surfaces of the storage device 500 (e.g., front, back, left and right sides 516, 518, 520, 522). The air mover 1930 delivers air through the first air opening 1912 (i.e., air entrance) of the test slot cooling system housing 1900 and the first air opening 1326 (i.e., air entrance) of the test slot housing 1340 into the air director 1830 of the storage device transporter body 1810. The air flows through the air entrance 1832 of the air director 1830 in to the air cavity 1831. The air flows out of the first air exit 1834 of the air director 1830 (e.g., as directed by the plenum 1836) and over at least the bottom surface 514 of the storage device 500. The air also flows through the second air exit 1835 (e.g., over the partition 1838) and over at least the top surface 512 of the storage device 500. The air moves from the first portion 1342 of the test slot housing 1340 to the second portion 1344 of the test slot housing 1340. The air may move over the electronics 1390 in the second portion 1344 of the test slot housing 1340. The air exits the test slot housing 1340 through its second air opening 1348 (i.e., air exit) into the second air opening 1914 (i.e., air entrance) of the test slot cooling system housing 1900. The air travels over the air cooler 1920 (e.g., over the air cooler fins 1924) which is disposed in or adjacent to the air flow path 1950 and then back into the air entrance 1932 of the air mover 1930.


In the examples shown, the storage device transporter 1800 provides closure of the device opening 1346 of the test slot housing 1340 once received therein. The air director 1830 of the storage device transporter 1800 and the air mover 1930 are situated near the inlet of the device opening 1346 of the test slot housing 1340. As the air mover 1930 moves the air to circulate along the air path 1950, the air moves from the first portion 1342 of the test slot housing 1340 along a common direction to the second portion 1344 of the test slot housing 1340 while traversing the entire length of the received storage device 500. Since the air moves substantially concurrently along at least the top and bottom surfaces 512, 514 of the storage device 500, the air provides substantially even cooling of the storage device 500. If the air was routed along once side of the storage device first, such as the top surface 512, and then directed along another side sequentially second, such as the bottom surface 514, the air would become preheated after passing over the first side of the storage device 500 before passing over any additional sides of the storage device, thereby providing relatively less efficient cooling than flowing air over two or more sides of the storage device 500 substantially concurrently and/or without recirculation over the storage device 500 before passing through the air cooler 1920.


A method of performing storage device testing includes presenting one or more storage devices 500 to a storage device testing system 100 for testing at a source location (e.g., a loading/unloading station 600, storage device tote 700, test slot(s) 310, etc.) and actuating an automated transporter 200 (e.g. robotic arm) to retrieve one or more storage devices 500 from the source location and deliver the retrieved storage device(s) 500 to corresponding test slots 1330 disposed on a rack 300 of the storage device testing system 100. The method includes actuating the automated transporter 200 to insert each retrieved storage device 500 in its respective test slot 1330, and performing a test (e.g., functionality, power, connectivity, etc.) on the storage devices 500 received by the test slot 1330. The method may also include actuating the automated transporter 200 to retrieve the tested storage device(s) 500 from the test slot(s) 310 and deliver the tested storage device(s) 500 to a destination location (e.g., another test slot 310, a storage device tote 700, a loading/unloading station 600, etc).


A method of regulating the temperature of a storage device 500 received in a storage device testing system 100 includes delivering a flow of air into an air entrance 1346 of a test slot housing 1340 and directing the air flow substantially simultaneously over at least the top and bottom surfaces 512, 514 of the storage device 500. The method may include delivering the air flow to an air director 1830 that directs the air flow over at least the top and bottom surfaces 512, 514 of the storage device 500. In some implementations, the method includes supporting the storage device 500 in a storage device transporter 1800 received in the test slot housing 1340. The storage device transporter 1800 includes a body 1810 having first and second portions 1802, 1804. The first storage device transporter body portion 1802 includes the air director 1830 and the second storage device transporter body portion 1804 is configured to receive the storage device 500. The storage device 500 has top, bottom, front, rear, right, and left side surfaces 512, 514, 516, 518, 520, 522 and is received with its rear surface 518 substantially facing the first body portion 1802 of the storage device transporter body 1810. The method may include weighting the air director 1830, in some examples the plenum 1836) to reduce movement of the storage device transporter while received by the storage device testing system.


In some implementations, the method includes delivering the air flow into an air entrance 1832 of the air director 1830. The air director 1830 directs the air received through the air entrance 1832 out first and second air exits 1834, 1835 of the air director 1830. The first air exit 1834 directs air over at least the bottom surface 514 of the received storage device 500 and the second air exit 1835 directs air over at least the top surface 512 of the received storage device 500. The air director 1830 may define a cavity 1831 in pneumatic communication with the air entrance 1832 and air exits 1834, 1835 of the air director 1830. The air director 1830 includes a plenum 1836 disposed in the cavity 1831 for directing at least a portion of the air received in the cavity 1831 out of the first air exit 1834. In some examples, the method includes weighting the plenum 1836 to reduce movement of the storage device transporter 1800 while received by the storage device testing system 100 (e.g., while received in the test slot 1330).


In some implementations, the method includes directing the flow of air to an air mover 1930 in pneumatic communication with the air entrance 1325 of the test slot housing 1340. The air mover 1930 delivers the flow of air into the air entrance 1326 of a test slot housing 320 with the air flow moving along a closed loop path 950 (FIG. 15). The method may 1340 receiving the flow of air into the air mover 1930 along a first direction 1934 and delivering the air flow to the air entrance 1326 of the test slot housing 1340 along a second direction 1938 substantially perpendicular to the first direction 1934. The method includes directing the flow of air over an air cooler 1920 disposed in the air flow path 1950 upstream of the air mover 1930. In some examples, the method includes delivering the air flow into the air entrance 1326 of the test slot housing 1340 (e.g., via the air mover 1930) at an air flow rate of up to about 0.122 m3/min (4.308 CFM) and an air pressure of up to about 20.88 mmH2O (0.822 inchH2O).


Accordingly, other implementations are within the scope of the following claims.

Claims
  • 1. A storage device transporter comprising: A) a transporter body comprising: i) a first body portion configured to be engaged by automated machinery for manipulation of the storage device transporter; andii) a second body portion configured to receive and support a storage device,wherein the first body portion is configured to receive and direct an air flow over one or more surfaces of a storage device supported in the second body portion.
  • 2. The storage device transporter of claim 1, wherein the first body portion includes an air director having one or more air entrances for receiving air into the first body portion and directing air into the second body portion.
  • 3. The storage device transporter of claim 2, wherein the one or more air entrances are configured to be engaged by automated machinery for manipulation of the storage device transporter.
  • 4. The storage device transporter of claim 1, wherein the second body portion comprises first and second sidewalls arranged to receive a storage device therebetween.
  • 5. The storage device transporter of claim 1, wherein the first body portion comprises one or more vision fiducials.
  • 6. The storage device transporter of claim 1, further comprising a clamping mechanism operable to clamp a storage device within the second body portion.
  • 7. The storage device transporter of claim 1, wherein the first body portion is configured to direct air over top and bottom surfaces of a storage device supported in the second body portion.
  • 8. The storage device transporter of claim 1, wherein the first body portion includes an air director having one or more air entrances for receiving air into the first body portion and directing air into the second body portion, and wherein the one or more air entrances are arranged to register the storage device transporter in X, Y, and rotational directions when the storage device transporter is engaged by automated machinery.
  • 9. The storage device transporter of claim 1, wherein the second body portion defines a substantially U-shaped opening which allows air to flow over a bottom surface of a storage device supported in the storage device transporter.
  • 10. A test slot assembly comprising: A) a storage device transporter comprising i) a transporter body comprising: a) a first body portion configured to be engaged by automated machinery for manipulation of the storage device transporter; andb) a second body portion configured to receive and support a storage device, wherein the first body portion is configured to receive and direct an air flow over one or more surfaces of a storage device supported in the second body portion.B) a test slot comprising: i) a housing defining: a) a test compartment for receiving and supporting the storage device transporter, andb) an open end providing access to the test compartment for insertion and removal of the disk drive transporter.
  • 11. The test slot assembly of claim 10, wherein the storage device transporter is completely removable from the test compartment.
  • 12. The test slot assembly of claim 10, wherein the storage device transporter is connected to the test slot in such a manner as to form a drawer for receiving a storage device.
  • 13. A storage device testing system comprising: A) automated machinery; andB) A storage device transporter comprising: i) a transporter body comprising: a) a first body portion configured to be engaged by the automated machinery for manipulation of the storage device transporter; andb) a second body portion configured to receive and support a storage device, wherein the first body portion is configured to receive and direct an air flow over one or more surfaces of a storage device supported in the second body portion.
  • 14. The storage device testing system of claim 13, wherein the first body portion includes an air director having one or more air entrances for receiving air into the first body portion and directing air into the second body portion, and wherein the one or more air entrances are configured to be engaged by the automated machinery for manipulation of the storage device transporter.
  • 15. The storage device testing system of claim 14, wherein the automated machinery includes a mechanical actuator adapted to engage the one or more air entrances.
  • 16. The storage device testing system of claim 13, wherein the first body portion comprises one or more vision fiducials, and wherein the automated machinery includes an optical system for detecting the vision fiducials.
  • 17. The storage device testing system of claim 13, wherein the automated machinery includes posts, and wherein the first body portion includes one or more air entrances for receiving air into the first body portion and directing air into the second body portion, the air entrances being arranged to be engaged by the posts to register the storage device transporter in X, Y, and rotational directions when the storage device transporter is engaged by the automated machinery.
  • 18. The storage device testing system of claim 13, wherein the first body portion includes a pair of slots, and wherein the automated machinery includes a pair of claws operable to engage the slots.
  • 19. The storage device testing system of claim 13, further comprising a clamping mechanism operable to clamp a storage device within the second body portion, wherein the automated machinery is operable to actuate the clamping mechanism.
  • 20. The storage device testing system of claim 13, wherein the automated machinery comprises a robotic arm and a manipulator attached to the robotic arm, the manipulator being configured to engage the storage device transporter.
CROSS REFERENCE TO RELATED APPLICATIONS

This U.S. patent application is a continuation-in-part of, and claims priority under 35 U.S.C. §120 from, U.S. patent application Ser. No. 12/698,575, filed on Feb. 2, 2010. This application is a continuation-in-part of, and claims priority under 35 U.S.C. §120 from, U.S. application Ser. No. 12/503,567, filed Jul. 15, 2009 now U.S. Pat. No. 7,920,380, now pending. The disclosures of both of these prior applications is considered part of the disclosure of this application and are incorporated herein by reference in their entirety.

US Referenced Citations (387)
Number Name Date Kind
557186 Cahill Mar 1896 A
2224407 Passur Dec 1940 A
2380026 Clarke Jul 1945 A
2631775 Gordon Mar 1953 A
2635524 Jenkins Apr 1953 A
3120166 Lyman Feb 1964 A
3360032 Sherwood Dec 1967 A
3364838 Bradley Jan 1968 A
3517601 Courchesne Jun 1970 A
3845286 Aronstein et al. Oct 1974 A
4147299 Freeman Apr 1979 A
4233644 Hwang et al. Nov 1980 A
4336748 Martin et al. Jun 1982 A
4379259 Varadi et al. Apr 1983 A
4477127 Kume Oct 1984 A
4495545 Dufresne et al. Jan 1985 A
4526318 Fleming et al. Jul 1985 A
4620248 Gitzendanner Oct 1986 A
4648007 Garner Mar 1987 A
4654732 Mesher Mar 1987 A
4665455 Mesher May 1987 A
4683424 Cutright et al. Jul 1987 A
4685303 Branc et al. Aug 1987 A
4688124 Scribner et al. Aug 1987 A
4713714 Gatti et al. Dec 1987 A
4739444 Zushi et al. Apr 1988 A
4754397 Varaiya et al. Jun 1988 A
4768285 Woodman, Jr. Sep 1988 A
4778063 Ueberreiter Oct 1988 A
4801234 Cedrone Jan 1989 A
4809881 Becker Mar 1989 A
4817273 Lape et al. Apr 1989 A
4817934 McCormick et al. Apr 1989 A
4851965 Gabuzda et al. Jul 1989 A
4881591 Rignall Nov 1989 A
4888549 Wilson et al. Dec 1989 A
4911281 Jenkner Mar 1990 A
4967155 Magnuson Oct 1990 A
5012187 Littlebury Apr 1991 A
5045960 Eding Sep 1991 A
5061630 Knopf et al. Oct 1991 A
5119270 Bolton et al. Jun 1992 A
5122914 Hanson Jun 1992 A
5127684 Klotz et al. Jul 1992 A
5128813 Lee Jul 1992 A
5136395 Ishii et al. Aug 1992 A
5158132 Guillemot Oct 1992 A
5168424 Bolton et al. Dec 1992 A
5171183 Pollard et al. Dec 1992 A
5173819 Takahashi et al. Dec 1992 A
5176202 Richard Jan 1993 A
5205132 Fu Apr 1993 A
5206772 Hirano et al. Apr 1993 A
5207613 Ferchau et al. May 1993 A
5210680 Scheibler May 1993 A
5237484 Ferchau et al. Aug 1993 A
5263537 Plucinski et al. Nov 1993 A
5269698 Singer Dec 1993 A
5295392 Hensel et al. Mar 1994 A
5309323 Gray et al. May 1994 A
5325263 Singer et al. Jun 1994 A
5349486 Sugimoto et al. Sep 1994 A
5368072 Cote Nov 1994 A
5374395 Robinson et al. Dec 1994 A
5379229 Parsons et al. Jan 1995 A
5398058 Hattori Mar 1995 A
5412534 Cutts et al. May 1995 A
5414591 Kimura et al. May 1995 A
5426581 Kishi et al. Jun 1995 A
5469037 McMurtrey, Sr. et al. Nov 1995 A
5477416 Schkrohowsky et al. Dec 1995 A
5484012 Hiratsuka Jan 1996 A
5486681 Dagnac et al. Jan 1996 A
5491610 Mok et al. Feb 1996 A
5543727 Bushard et al. Aug 1996 A
5546250 Diel Aug 1996 A
5557186 McMurtrey, Sr. et al. Sep 1996 A
5563768 Perdue Oct 1996 A
5570740 Flores et al. Nov 1996 A
5593380 Bittikofer Jan 1997 A
5601141 Gordon et al. Feb 1997 A
5604662 Anderson et al. Feb 1997 A
5610893 Soga et al. Mar 1997 A
5617430 Angelotti et al. Apr 1997 A
5644705 Stanley Jul 1997 A
5646918 Dimitri et al. Jul 1997 A
5654846 Wicks et al. Aug 1997 A
5673029 Behl et al. Sep 1997 A
5694290 Chang Dec 1997 A
5718627 Wicks Feb 1998 A
5718628 Nakazato et al. Feb 1998 A
5731928 Jabbari et al. Mar 1998 A
5751549 Eberhardt et al. May 1998 A
5754365 Beck et al. May 1998 A
5761032 Jones Jun 1998 A
5793610 Schmitt et al. Aug 1998 A
5811678 Hirano Sep 1998 A
5812761 Seki et al. Sep 1998 A
5819842 Potter et al. Oct 1998 A
5831525 Harvey Nov 1998 A
5851143 Hamid Dec 1998 A
5859409 Kim et al. Jan 1999 A
5859540 Fukumoto Jan 1999 A
5862037 Behl Jan 1999 A
5870630 Reasoner et al. Feb 1999 A
5886639 Behl et al. Mar 1999 A
5890959 Pettit et al. Apr 1999 A
5912799 Grouell et al. Jun 1999 A
5913926 Anderson et al. Jun 1999 A
5914856 Morton et al. Jun 1999 A
5927386 Lin Jul 1999 A
5956301 Dimitri et al. Sep 1999 A
5959834 Chang Sep 1999 A
5999356 Dimitri et al. Dec 1999 A
5999365 Hasegawa et al. Dec 1999 A
6000623 Blatti et al. Dec 1999 A
6005404 Cochran et al. Dec 1999 A
6005770 Schmitt Dec 1999 A
6008636 Miller et al. Dec 1999 A
6008984 Cunningham et al. Dec 1999 A
6011689 Wrycraft Jan 2000 A
6031717 Baddour et al. Feb 2000 A
6034870 Osborn et al. Mar 2000 A
6042348 Aakalu et al. Mar 2000 A
6045113 Itakura Apr 2000 A
6055814 Song May 2000 A
6066822 Nemoto et al. May 2000 A
6067225 Reznikov et al. May 2000 A
6069792 Nelik May 2000 A
6084768 Bolognia Jul 2000 A
6094342 Dague et al. Jul 2000 A
6104607 Behl Aug 2000 A
6115250 Schmitt Sep 2000 A
6122131 Jeppson Sep 2000 A
6122232 Schell et al. Sep 2000 A
6124707 Kim et al. Sep 2000 A
6130817 Flotho et al. Oct 2000 A
6144553 Hileman et al. Nov 2000 A
6166901 Gamble et al. Dec 2000 A
6169413 Pack et al. Jan 2001 B1
6169930 Blachek et al. Jan 2001 B1
6177805 Pih Jan 2001 B1
6178835 Orriss et al. Jan 2001 B1
6181557 Gatti Jan 2001 B1
6185065 Hasegawa et al. Feb 2001 B1
6185097 Behl Feb 2001 B1
6188191 Frees et al. Feb 2001 B1
6192282 Smith et al. Feb 2001 B1
6193339 Behl et al. Feb 2001 B1
6209842 Anderson et al. Apr 2001 B1
6227516 Webster, Jr. et al. May 2001 B1
6229275 Yamamoto May 2001 B1
6231145 Liu May 2001 B1
6233148 Shen May 2001 B1
6236563 Buican et al. May 2001 B1
6247944 Bolognia et al. Jun 2001 B1
6249824 Henrichs Jun 2001 B1
6252769 Tullstedt et al. Jun 2001 B1
6262863 Ostwald et al. Jul 2001 B1
6272007 Kitlas et al. Aug 2001 B1
6272767 Botruff et al. Aug 2001 B1
6281677 Cosci et al. Aug 2001 B1
6282501 Assouad Aug 2001 B1
6285524 Boigenzahn et al. Sep 2001 B1
6289678 Pandolfi Sep 2001 B1
6297950 Erwin Oct 2001 B1
6298672 Valicoff, Jr. Oct 2001 B1
6302714 Bolognia et al. Oct 2001 B1
6304839 Ho et al. Oct 2001 B1
6307386 Fowler et al. Oct 2001 B1
6327150 Levy et al. Dec 2001 B1
6330154 Fryers et al. Dec 2001 B1
6351379 Cheng Feb 2002 B1
6354792 Kobayashi et al. Mar 2002 B1
6356409 Price et al. Mar 2002 B1
6356415 Kabasawa Mar 2002 B1
6384995 Smith May 2002 B1
6388437 Wolski et al. May 2002 B1
6388875 Chen May 2002 B1
6388878 Chang May 2002 B1
6389225 Malinoski et al. May 2002 B1
6411584 Davis et al. Jun 2002 B2
6421236 Montoya et al. Jul 2002 B1
6434000 Pandolfi Aug 2002 B1
6434498 Ulrich et al. Aug 2002 B1
6434499 Ulrich et al. Aug 2002 B1
6464080 Morris et al. Oct 2002 B1
6467153 Butts et al. Oct 2002 B2
6473297 Behl et al. Oct 2002 B1
6473301 Levy et al. Oct 2002 B1
6476627 Pelissier et al. Nov 2002 B1
6477044 Foley et al. Nov 2002 B2
6477442 Valerino, Sr. Nov 2002 B1
6480380 French et al. Nov 2002 B1
6480382 Cheng Nov 2002 B2
6487071 Tata et al. Nov 2002 B1
6489793 Jones et al. Dec 2002 B2
6494663 Ostwald et al. Dec 2002 B2
6525933 Eland Feb 2003 B2
6526841 Wanek et al. Mar 2003 B1
6535384 Huang Mar 2003 B2
6537013 Emberty et al. Mar 2003 B2
6544309 Hoefer et al. Apr 2003 B1
6546445 Hayes Apr 2003 B1
6553532 Aoki Apr 2003 B1
6560107 Beck et al. May 2003 B1
6565163 Behl et al. May 2003 B2
6566859 Wolski et al. May 2003 B2
6567266 Ives et al. May 2003 B2
6570734 Ostwald et al. May 2003 B2
6577586 Yang et al. Jun 2003 B1
6577687 Hall et al. Jun 2003 B2
6618254 Ives Sep 2003 B2
6626846 Spencer Sep 2003 B2
6628518 Behl et al. Sep 2003 B2
6635115 Fairbairn et al. Oct 2003 B1
6640235 Anderson Oct 2003 B1
6644982 Ondricek et al. Nov 2003 B1
6651192 Viglione et al. Nov 2003 B1
6654240 Tseng et al. Nov 2003 B1
6679128 Wanek et al. Jan 2004 B2
6693757 Hayakawa et al. Feb 2004 B2
6741529 Getreuer May 2004 B1
6746648 Mattila et al. Jun 2004 B1
6751093 Hsu et al. Jun 2004 B1
6791785 Messenger et al. Sep 2004 B1
6791799 Fletcher Sep 2004 B2
6798651 Syring et al. Sep 2004 B2
6798972 Ito et al. Sep 2004 B1
6801834 Konshak et al. Oct 2004 B1
6806700 Wanek et al. Oct 2004 B2
6811427 Garrett et al. Nov 2004 B2
6826046 Muncaster et al. Nov 2004 B1
6830372 Liu et al. Dec 2004 B2
6832929 Garrett et al. Dec 2004 B2
6861861 Song et al. Mar 2005 B2
6862173 Konshak et al. Mar 2005 B1
6867939 Katahara et al. Mar 2005 B2
6892328 Klein et al. May 2005 B2
6904479 Hall et al. Jun 2005 B2
6908330 Garrett et al. Jun 2005 B2
6928336 Peshkin et al. Aug 2005 B2
6937432 Sri-Jayantha et al. Aug 2005 B2
6957291 Moon et al. Oct 2005 B2
6965811 Dickey et al. Nov 2005 B2
6974017 Oseguera Dec 2005 B2
6976190 Goldstone Dec 2005 B1
6980381 Gray et al. Dec 2005 B2
6982872 Behl et al. Jan 2006 B2
7006325 Emberty et al. Feb 2006 B2
7039924 Goodman et al. May 2006 B2
7054150 Orriss et al. May 2006 B2
7070323 Wanek et al. Jul 2006 B2
7076391 Pakzad et al. Jul 2006 B1
7077614 Hasper et al. Jul 2006 B1
7088541 Orriss et al. Aug 2006 B2
7092251 Henry Aug 2006 B1
7106582 Albrecht et al. Sep 2006 B2
7123477 Coglitore et al. Oct 2006 B2
7126777 Flechsig et al. Oct 2006 B2
7130138 Lum et al. Oct 2006 B2
7134553 Stephens Nov 2006 B2
7139145 Archibald et al. Nov 2006 B1
7164579 Muncaster et al. Jan 2007 B2
7167360 Inoue et al. Jan 2007 B2
7181458 Higashi Feb 2007 B1
7203021 Ryan et al. Apr 2007 B1
7203060 Kay et al. Apr 2007 B2
7206201 Behl et al. Apr 2007 B2
7216968 Smith et al. May 2007 B2
7219028 Bae et al. May 2007 B2
7219273 Fisher et al. May 2007 B2
7227746 Tanaka et al. Jun 2007 B2
7232101 Wanek et al. Jun 2007 B2
7243043 Shin Jul 2007 B2
7248467 Sri-Jayantha et al. Jul 2007 B2
7259966 Connelly, Jr. et al. Aug 2007 B2
7273344 Ostwald et al. Sep 2007 B2
7280353 Wendel et al. Oct 2007 B2
7289885 Basham et al. Oct 2007 B2
7304855 Milligan et al. Dec 2007 B1
7315447 Inoue et al. Jan 2008 B2
7349205 Hall et al. Mar 2008 B2
7353524 Lin et al. Apr 2008 B1
7385385 Magliocco et al. Jun 2008 B2
7395133 Lowe Jul 2008 B2
7403451 Goodman et al. Jul 2008 B2
7421623 Haugh Sep 2008 B2
7437212 Farchmin et al. Oct 2008 B2
7447011 Wade et al. Nov 2008 B2
7457112 Fukuda et al. Nov 2008 B2
7467024 Flitsch Dec 2008 B2
7476362 Angros Jan 2009 B2
7483269 Marvin, Jr. et al. Jan 2009 B1
7505264 Hall et al. Mar 2009 B2
7554811 Scicluna et al. Jun 2009 B2
7568122 Mechalke et al. Jul 2009 B2
7570455 Deguchi et al. Aug 2009 B2
7573715 Mojaver et al. Aug 2009 B2
7584851 Hong et al. Sep 2009 B2
7612996 Atkins et al. Nov 2009 B2
7625027 Kiaie et al. Dec 2009 B2
7630196 Hall et al. Dec 2009 B2
7643289 Ye et al. Jan 2010 B2
7646596 Ng Jan 2010 B2
7729107 Atkins et al. Jun 2010 B2
20010006453 Glorioso et al. Jul 2001 A1
20010044023 Johnson et al. Nov 2001 A1
20010046118 Yamanashi et al. Nov 2001 A1
20010048590 Behl et al. Dec 2001 A1
20020030981 Sullivan et al. Mar 2002 A1
20020044416 Harmon, III et al. Apr 2002 A1
20020051338 Jiang et al. May 2002 A1
20020071248 Huang et al. Jun 2002 A1
20020079422 Jiang Jun 2002 A1
20020090320 Burow et al. Jul 2002 A1
20020116087 Brown Aug 2002 A1
20020135350 Wolski et al. Sep 2002 A1
20020161971 Dimitri et al. Oct 2002 A1
20020172004 Ives et al. Nov 2002 A1
20030035271 Lelong et al. Feb 2003 A1
20030043550 Ives Mar 2003 A1
20030206397 Allgeyer et al. Nov 2003 A1
20040165489 Goodman et al. Aug 2004 A1
20040230399 Shin Nov 2004 A1
20040236465 Butka et al. Nov 2004 A1
20040264121 Orriss et al. Dec 2004 A1
20050004703 Christie Jan 2005 A1
20050007691 Orriss et al. Jan 2005 A1
20050010836 Bae et al. Jan 2005 A1
20050018397 Kay et al. Jan 2005 A1
20050055601 Wilson et al. Mar 2005 A1
20050057849 Twogood et al. Mar 2005 A1
20050069400 Dickey et al. Mar 2005 A1
20050109131 Wanek et al. May 2005 A1
20050116702 Wanek et al. Jun 2005 A1
20050131578 Weaver Jun 2005 A1
20050179457 Min et al. Aug 2005 A1
20050207059 Cochrane Sep 2005 A1
20050219809 Muncaster et al. Oct 2005 A1
20050225338 Sands et al. Oct 2005 A1
20050270737 Wilson et al. Dec 2005 A1
20060010353 Haugh Jan 2006 A1
20060023331 Flechsig et al. Feb 2006 A1
20060028802 Shaw et al. Feb 2006 A1
20060066974 Akamatsu et al. Mar 2006 A1
20060130316 Takase et al. Jun 2006 A1
20060190205 Klein et al. Aug 2006 A1
20060227517 Zayas et al. Oct 2006 A1
20060250766 Blaalid et al. Nov 2006 A1
20060269384 Kiaie et al. Nov 2006 A1
20070034368 Atkins et al. Feb 2007 A1
20070035874 Wendel et al. Feb 2007 A1
20070035875 Hall et al. Feb 2007 A1
20070053154 Fukuda et al. Mar 2007 A1
20070082907 Canada et al. Apr 2007 A1
20070127202 Scicluna et al. Jun 2007 A1
20070127206 Wade et al. Jun 2007 A1
20070195497 Atkins Aug 2007 A1
20070248142 Rountree et al. Oct 2007 A1
20070253157 Atkins et al. Nov 2007 A1
20070286045 Onagi et al. Dec 2007 A1
20080007865 Orriss et al. Jan 2008 A1
20080030945 Mojaver et al. Feb 2008 A1
20080112075 Farquhar et al. May 2008 A1
20080239564 Farquhar et al. Oct 2008 A1
20080282275 Zaczek et al. Nov 2008 A1
20080282278 Barkley Nov 2008 A1
20090028669 Rebstock Jan 2009 A1
20090082907 Stuvel et al. Mar 2009 A1
20090122443 Farquhar et al. May 2009 A1
20090142169 Garcia et al. Jun 2009 A1
20090153992 Garcia et al. Jun 2009 A1
20090153993 Garcia et al. Jun 2009 A1
20090153994 Merrow Jun 2009 A1
20090175705 Nakao et al. Jul 2009 A1
20090261047 Merrow Oct 2009 A1
20090261228 Merrow Oct 2009 A1
20090261229 Merrow Oct 2009 A1
20090262444 Polyakov et al. Oct 2009 A1
20090262445 Noble et al. Oct 2009 A1
20090262454 Merrow Oct 2009 A1
20090262455 Merrow Oct 2009 A1
20090265032 Toscano et al. Oct 2009 A1
20090265043 Merrow Oct 2009 A1
20090265136 Garcia et al. Oct 2009 A1
20090297328 Slocum, III Dec 2009 A1
Foreign Referenced Citations (197)
Number Date Country
583716 May 1989 AU
1177187 Mar 1998 CN
2341188 Sep 1999 CN
1114109 Jul 2003 CN
1192544 Mar 2005 CN
3786944 Nov 1993 DE
69111634 May 1996 DE
69400145 Oct 1996 DE
19701548 Aug 1997 DE
19804813 Sep 1998 DE
69614460 Jun 2002 DE
69626584 Dec 2003 DE
19861388 Aug 2007 DE
0210497 Jul 1986 EP
0242970 Oct 1987 EP
0 277 634 Aug 1988 EP
0356977 Aug 1989 EP
0442642 Feb 1991 EP
0466073 Jul 1991 EP
0776009 Nov 1991 EP
0582017 Feb 1994 EP
0617570 Sep 1994 EP
0635836 Jan 1995 EP
741508 Nov 1996 EP
0757320 Feb 1997 EP
0757351 Feb 1997 EP
0840476 May 1998 EP
1 045 301 Oct 2000 EP
1209557 May 2002 EP
1422713 May 2004 EP
1234308 May 2006 EP
1760722 Mar 2007 EP
1612798 Nov 2007 EP
2241118 Aug 1991 GB
2276275 Sep 1994 GB
2299436 Oct 1996 GB
2312984 Nov 1997 GB
2328782 Mar 1999 GB
2439844 Jul 2008 GB
61-115279 Jun 1986 JP
62-177621 Aug 1987 JP
62-239394 Oct 1987 JP
62-251915 Nov 1987 JP
63-002160 Jan 1988 JP
63-004483 Jan 1988 JP
63-016482 Jan 1988 JP
63-062057 Mar 1988 JP
63-201946 Aug 1988 JP
63-214972 Sep 1988 JP
63-269376 Nov 1988 JP
63-195697 Dec 1988 JP
64-089034 Apr 1989 JP
2-091565 Mar 1990 JP
2-098197 Apr 1990 JP
2-185784 Jul 1990 JP
2-199690 Aug 1990 JP
2-278375 Nov 1990 JP
2-297770 Dec 1990 JP
3-008086 Jan 1991 JP
3-078160 Apr 1991 JP
3-105704 May 1991 JP
3-207947 Sep 1991 JP
3-210662 Sep 1991 JP
3-212859 Sep 1991 JP
3-214490 Sep 1991 JP
3-240821 Oct 1991 JP
3-295071 Dec 1991 JP
4-017134 Jan 1992 JP
4-143989 May 1992 JP
4-172658 Jun 1992 JP
4-214288 Aug 1992 JP
4-247385 Sep 1992 JP
4-259956 Sep 1992 JP
4-307440 Oct 1992 JP
4-325923 Nov 1992 JP
5-035053 Feb 1993 JP
5-035415 Feb 1993 JP
5-066896 Mar 1993 JP
5-068257 Mar 1993 JP
5-073566 Mar 1993 JP
5-073803 Mar 1993 JP
5-101603 Apr 1993 JP
5-173718 Jul 1993 JP
5-189163 Jul 1993 JP
5-204725 Aug 1993 JP
5-223551 Aug 1993 JP
6-004220 Jan 1994 JP
6-004981 Jan 1994 JP
6-162645 Jun 1994 JP
6-181561 Jun 1994 JP
6-215515 Aug 1994 JP
6-274943 Sep 1994 JP
6-314173 Nov 1994 JP
7-007321 Jan 1995 JP
7-029364 Jan 1995 JP
7-037376 Feb 1995 JP
7-056654 Mar 1995 JP
7-111078 Apr 1995 JP
7-115497 May 1995 JP
7-201082 Aug 1995 JP
7-226023 Aug 1995 JP
7-230669 Aug 1995 JP
7-257525 Oct 1995 JP
1982246 Oct 1995 JP
7-307059 Nov 1995 JP
8007994 Jan 1996 JP
8-030398 Feb 1996 JP
8-030407 Feb 1996 JP
8-079672 Mar 1996 JP
8-106776 Apr 1996 JP
8-110821 Apr 1996 JP
8-167231 Jun 1996 JP
8-212015 Aug 1996 JP
8-244313 Sep 1996 JP
8-263525 Oct 1996 JP
8-263909 Oct 1996 JP
8-297957 Nov 1996 JP
2553315 Nov 1996 JP
9-044445 Feb 1997 JP
9-064571 Mar 1997 JP
9-082081 Mar 1997 JP
2635127 Jul 1997 JP
9-306094 Nov 1997 JP
9-319466 Dec 1997 JP
10-040021 Feb 1998 JP
10-049365 Feb 1998 JP
10-064173 Mar 1998 JP
10-098521 Apr 1998 JP
2771297 Jul 1998 JP
10-275137 Oct 1998 JP
10-281799 Oct 1998 JP
10-320128 Dec 1998 JP
10-340139 Dec 1998 JP
2862679 Mar 1999 JP
11-134852 May 1999 JP
11-139839 May 1999 JP
2906930 Jun 1999 JP
11-203201 Jul 1999 JP
11-213182 Aug 1999 JP
11-327800 Nov 1999 JP
11-353128 Dec 1999 JP
11-353129 Dec 1999 JP
2000-056935 Feb 2000 JP
2000-066845 Mar 2000 JP
2000-112831 Apr 2000 JP
2000-113563 Apr 2000 JP
2000-114759 Apr 2000 JP
2000-125290 Apr 2000 JP
3052183 Apr 2000 JP
2000-132704 May 2000 JP
2000-149431 May 2000 JP
2000-228686 Aug 2000 JP
2000-235762 Aug 2000 JP
2000-236188 Aug 2000 JP
2000-242598 Sep 2000 JP
2000-278647 Oct 2000 JP
3097994 Oct 2000 JP
2000-305860 Nov 2000 JP
2001-005501 Jan 2001 JP
2001-023270 Jan 2001 JP
2001-100925 Apr 2001 JP
2002-42446 Feb 2002 JP
2007-87498 Apr 2007 JP
2007-188615 Jul 2007 JP
2007-220184 Aug 2007 JP
2007-293936 Nov 2007 JP
2007-305206 Nov 2007 JP
2007-305290 Nov 2007 JP
2007-328761 Dec 2007 JP
2008-503824 Feb 2008 JP
10-1998-0035445 Aug 1998 KR
10-0176527 Nov 1998 KR
10-0214308 Aug 1999 KR
10-0403039 Oct 2003 KR
45223 Jan 1998 SG
387574 Apr 2000 TW
WO 8901682 Aug 1988 WO
WO 9706532 Feb 1997 WO
WO 0049487 Feb 2000 WO
WO 0067253 Nov 2000 WO
WO 0109627 Feb 2001 WO
WO 0141148 Jun 2001 WO
WO 03013783 Feb 2003 WO
WO 03021597 Mar 2003 WO
WO 03021598 Mar 2003 WO
WO 03067385 Aug 2003 WO
WO 2004006260 Jan 2004 WO
WO 2004114286 Dec 2004 WO
WO 2005024830 Mar 2005 WO
WO 2005024831 Mar 2005 WO
WO 2005109131 Nov 2005 WO
WO 2006030185 Mar 2006 WO
WO 2006048611 May 2006 WO
WO 2006100441 Sep 2006 WO
WO 2006100445 Sep 2006 WO
WO 2007031729 Mar 2007 WO
WO 2008142752 Nov 2008 WO
Related Publications (1)
Number Date Country
20110064546 A1 Mar 2011 US
Continuation in Parts (2)
Number Date Country
Parent 12698575 Feb 2010 US
Child 12815140 US
Parent 12503567 Jul 2009 US
Child 12698575 US