This invention relates in general to computed radiography systems using storage phosphors to record radiographic images and more particularly to a technique for erasing a storage phosphor so that it can be reused.
In a storage phosphor computed radiography system, a storage phosphor, also known as a stimulable phosphor, is exposed to an x-ray image of an object, such as a body part of a patient, to record a latent radiographic image in the storage phosphor. The latent radiographic image is read out by stimulating the storage phosphor with stimulating radiation of a first wavelength, such as red or infra-red radiation, produced by a laser. Upon stimulation, the storage phosphor emits stimulated radiation of a second wavelength, such as blue radiation. To produce a signal useful in electronic image processing the storage phosphor is scanned in a raster pattern by a laser beam deflected across one dimension of the storage phosphor by a reciprocating or rotating mirror. The stimulated radiographic image is detected by a photodetector to produce an electronic radiographic image which is digitized and stored, transmitted or output on a display or as a radiographic film.
The storage phosphor is then erased so that it can be reused. Successful erasure results in removal of any residual image and any background image noise. Many techniques have been used to erase storage phosphors.
U.S. Pat. No. 6,528,812 B1, issued Mar. 4, 2003, inventors LeBlanc et al., discloses a radiation image read-out method and apparatus including an enclosure in which is positioned a photostimulable phosphor screen, a source of stimulating light, an array of transducer elements, and a linear erasing light source, such as an array of 50 to 2000 LEDs. The erasing light source is transported in a sub-scanning direction and illuminates a line of the image after it has been subjected to readout.
U.S. Pat. No. 4,849,630, issued Jul. 18, 1989, inventors Fukai et al., discloses a cassette and erasure device for a stimulable phosphor sheet. The erasure device can include a matrix of LEDs on substantially the overall surface of the bottom of a casing containing a read-out stimulable phosphor sheet.
U.S. Pat. No. 4,786,808, issued Nov. 22, 1988, inventor Saito, discloses a residual image erasing apparatus for a stimulable phosphor sheet. The apparatus includes a detector for detecting the distribution of residual radiation in a predetermined direction. An erasing apparatus controlled by the residual radiation detected can include a linear array of point light sources (LEDs), a nonuniform area array of point light emitting elements, or a uniform area array of light emitting elements which are independently controlled by a drive control circuit.
U.S. Pat. No. 5,051,587, issued Sep. 24, 1991, inventors Hara et al., discloses a radiation image readout method in which the background region is determined and erased before image readout of the image region.
U.S. Pat. No. 6,140,663, issued Oct. 31, 2000, inventors Neary et al., discloses a technique for erasing a storage phosphor wherein the storage phosphor is first erased using a sodium vapor light source and then using an infrared light source.
U.S. Pat. No. 4,496,838, issued Jan. 29, 1985, inventors Umemoto et al., discloses an area noise erasing apparatus for a stimulable phosphor sheet including an array of white fluorescent lamps.
U.S. Pat. No. 5,665,976, issued Sep. 9, 1997, inventor Arakawa, discloses a radiation image readout and erasing method and apparatus. After readout, a stimulable phosphor sheet is passed to a first erasing section wherein the first erasing light contains no light component in a wavelength range that can be detected by the readout photodetector. The sheet is then exposed to a second erasing light having a component in the detectable wavelength range as the sheet is moved back towards the readout section.
US Patent Application Publication No. 2001/0012386 A1, published Aug. 9, 2001, inventors Struye, et al., discloses a method for readout of a stimulable phosphor screen wherein a pulsed light source is used for stimulation and the stimulating period and readout period do not overlap.
U.S. Pat. No. 6,773,160 B2, issued Aug. 10, 2004, inventors Evans et al.; U.S. Pat. No. 6,339,225, issued Jan. 15, 2002, inventor Funabashi; US Patent Application Publication No. 2005/0012057 A1, published Jan. 20, 2005, inventors Smith et al.; and U.S. Pat. No. 4,584,482, issued Apr. 22, 1986, inventors Suzuki et al. disclose storage phosphor erase apparatus. US Patent Application Publication No. 2002/0070681 A1, published Jun. 13, 2002, inventors Shimizu et al. discloses an LED lamp.
None of these references disclose the capability of selectively erasing storage phosphors of different dimensions. There is thus a need for an erasure technique that is low in cost, has long life, compact size, mechanical rigidity, and which can selectively erase storage phosphors of different dimensions.
According to the present invention, there is provided a solution to the problems and a fulfillment of the needs of known erasure techniques.
According to one aspect of the present invention, there is provided storage phosphor erase apparatus for selectively erasing storage phosphors having different lateral dimensions transported along a first direction, comprising: an array of point sources of erasing radiation spanning at least the greatest lateral dimension of a storage phosphor to be erased; and a control for actuating the array of point sources when a storage phosphor of the greatest lateral dimension is to be erased, and for actuating less than all of said array of point sources when a storage phosphor of a lateral dimension less than said greatest lateral dimension is to be erased.
The invention is advantageous in that it is low in cost, compact in size, has long life, has mechanical rigidity, and can selectively erase storage phosphors of different dimensions.
The foregoing and other objects, features, and advantages of the invention will be apparent from the following more particular description of the embodiments of the invention, as illustrated in the accompanying drawings. The elements of the drawings are not necessarily to scale relative to each other.
Referring now to
According to the present invention, there is provided a storage phosphor erase apparatus and method that can selectively erase storage phosphors of different dimensions. The invention is low in cost, compact in size, has long life and mechanical rigidity. As shown in
Erase assembly 38 produces erase radiation 40 during a period when the image readout laser is off during retrace or the like. This is graphically illustrated in
According to the invention, the erase radiation is turned on during retrace of each scanned line or between each scanned line. The radiation can be pulsed to deliver anywhere from 0-300% of allowable electrical energy to the LEDs to erase the storage phosphor during retrace. According to another aspect of the invention, in addition to the erasure method above, if, at the end of image acquisition, a latent image still exists, all LEDs are turned on to continue the erase, preferably as the storage phosphor is reversed in direction.
The invention has been described in detail with particular reference to certain preferred embodiments thereof, but it will be understood that variations and modifications can be effected within the spirit and scope of the invention.
This application is a continuation-in-part application of U.S. patent application Ser. No. 10/625,923, filed Jul. 24, 20003, inventors Trzcinski et al.
Number | Date | Country | |
---|---|---|---|
Parent | 10625923 | Jul 2003 | US |
Child | 11320040 | Dec 2005 | US |