1. Field of the Invention
The present invention is a high efficiency, high energy slurry mixer used primarily to mix oil field cement in a recirculating system for cementing the casing in oil and gas wells. The cement mixer mixes dry powder with water and recirculated slurry to create the cement mixture. The cement mixer employs a straight through design that that is easier to wash up than previous designs and which can be seen straight through when the connection at the dry powder inlet is removed from the mixer. The cement mixer also has increased number and volume of alternating annular water flow openings and recirculation openings which allows for more water and slurry flow with less erosion to the mixer surface than previous designs. The previous design did not allow for more recirculation and water jets because there was not room to add them. The new design allows the mixer surfaces to be manufactured with lesser expensive materials without sacrificing performance and life, thereby reducing the cost of the equipment by approximately half. The present design eliminates most of the wear problems experienced in earlier designs resulting in the equipment lasting longer before repair or replacement is required.
2. Description of the Related Art
The discussion regarding related art appearing in U.S. Pat. No. 6,749,330 is hereby included by reference. The cement mixer design taught in U.S. Pat. No. 6,749,330 had several problems. First, the earlier mixer was not of a straight through type. That earlier mixer included 1st and 2nd elbows (associated with reference numerals 114 and 116 in the patent) in the central recirculation line 54, and included a curved inlet 52 for the dry bulk cement. Because of this design, it was more difficult to flush out and clean the inside of the mixer. Also, it was not possible to see straight through the mixer by breaking open the piping connection at the inlet 52, thus making it more difficult to see inside the mixer to troubleshoot or determine if it was clean when doing maintenance.
Further, the central recirculation line of that earlier mixer was just one additional surface which could be eroded by the abrasive recirculated cement slurry contained within its interior.
Also, the four annular water jets of the earlier mixer had less flow capacity, resulting in higher velocity of liquid streams within the mix chamber to obtain comparable flow rates and thus more erosion of the interior mixer surfaces due to the abrasion caused by the abrasive sand in dirty mix water. Additionally, the earlier mixer employed a somewhat complicated design having multiple passageways, all of which are susceptible to erosion by the dirty mix water. This erosion caused the earlier mixer to have erosion problems resulting in more equipment maintenance and shorter equipment life. In an attempt to protect the earlier mixer from erosion, some of the surfaces were either hard coated or constructed of heat treated stainless steel which added to the cost of the equipment.
The present invention addresses each of these problems.
One object of the present invention is to provide a straight through design without any internal centrally located recirculation or water jet pipes that that is less inclined to foul and easier to clean than previous designs. Also, this straight design allows the mix chamber of the present invention to be viewed when the connection at the dry powder inlet is broken.
A second object of the present invention is to eliminate the need for a central recirculation line by having more complete coverage in the mixing chamber by employing more annular jets.
An additional object of the present invention is to provide a mixer that employs equal numbers with the recirculation jets and water jets and so that each water jet is located on an opposite side of the mixing chamber from its associated recirculation jet. This feature requires odd numbers of recirculation and water jets and is preferred. Even numbers of these jets is also possible but will not produce the same mixing results.
A further object of the present mixer is to increase the number and capacity of the annular water flow openings that alternate with the annular recirculation openings to thereby allowing greater water flows with less velocity. The path of recirculation and water flows is such that they do not impact the mixer sides and they provide less erosion to the mixer surface than with previous designs. Another object of the present invention is to provide a high performance mixer that has less internal erosion.
A further object of the present invention is to provide a mixer that can be manufactured with lesser expensive materials to thereby reduce the manufacturing cost of the mixer.
Still a further object of the present invention is to provide a mixer that, due to the reduced erosion, will have a longer life and required less maintenance than previous designs. Also disassembly and repair is much simpler with this design.
Another object of the present invention is to provide a smaller, more compact and lighter weight cement mixer.
An additional object of the present invention is to provide a five jet design which allows for more recirculation jets and more water jets than previous designs, resulting in more thorough mixing and better wetting of the cement powder.
An additional object is to have the recirculation jets extending into the dry bulk chamber so as to form a star shape in the bulk inlet chamber which serves to help break up or disperse the incoming dry powder.
These and other objects will become more apparent upon further review of the referenced drawings, detailed description, and claims submitted herewith.
The present invention is a cement mixing method and q mixer used in that method for mixing cement that will be used in cementing oil wells casing. The mixer is of the “recirculating” type with variable high pressure water jets. Typically, this type of mixer discharges cement slurry from its outlet end into a diffuser and then into a mixing tank. A recirculation pump is attached to the mixing tank that circulates the already mixed slurry contained in the mixing tank back to recirculation flow inlets provided on the mixer to provide more mixing energy and to provide an opportunity to sample the slurry density. Also typically a mix water pump is connected to a supply of mix water and pumps mix water to a mix water inlet provided on the mixer. The mix water inlet supplies mix water to water jets in the mixer. The water jets control the mixing rate and add mixing energy. Also, bulk cement is added at the dry bulk cement inlet of the mixer. In general, most of the currently used cement slurry mixers have the above characteristics, some doing a better job than others. The present invention is for use in the same type of environment and in association with the same type of equipment as the mixer taught in U.S. Pat. No. 6,749,330 and the teaching regarding associated equipment from that patent is hereby included by reference.
Beginning at the inlet end of the mixer and moving toward the outlet end of the mixer, the mixer is provided at its inlet end with a straight bulk cement inlet for admitting dry powder cement into a mixing chamber that is located internally within the mixer housing.
Adjacent to the dry bulk cement inlet, the mixer is provided with two recirculation flow inlets that both communicate with a recirculation manifold. The recirculation manifold supplies recirculated cement slurry to five annular recirculation jets that are located around the inside of the mixing chamber. For purposes of clarity, the interior of the mixer will be described as being divided into two areas. The first area is the bulk inlet chamber which extends from the inlet to the recirculation jets. The second area is the mixing chamber which extends from the recirculation jets to the outlet of the mixer. Each recirculation jet or outlet is defined by two surfaces within the mixer. One surface is the common wall that separates the bulk inlet chamber from the recirculation jets and the other surface is the common wall that separates the recirculation jets from the mix water manifold. The recirculation outlets discharge at an angle into the mixing chamber.
Adjacent to the recirculation flow inlet, the mixer is provided with a mix water inlet. The mix water inlet communicates with a water manifold that supplies water to five annular water jet orifices provided within the mixing chamber. The mix water manifold is defined by three surfaces within the mixer. One surface is the common wall that separates the recirculation jets from the mix water manifold. A second surface is the outer housing for the mixer, and a third surface is the rotatable orifice plate. Grooves are provided in the surfaces that are adjacent to the rotatable water metering valve element to accommodate pressure face seals to contain water pressure within the mix water manifold. A groove is also provided in the fixed plate for a radial seal to secure the fixed plate to the mixer housing so that fluid does not leak out of the mixing chamber at the junction where the fixed plate is secured to the housing.
As shown in
The fixed plate and the rotatable plate cooperate to control the flow of water through the water jet orifices. The position of the movable orifice plate relative to the fixed plate controls the flow of water through the five annular water jets by more fully aligning the cut away openings of the movable plate with the metering slots of the fixed plate, or alternately, by moving the openings more completely out of alignment with the slots. As the movable orifice plate is rotated in a counter clockwise direction, the cut away openings of the moveable plate move so that they align longitudinally within the mixer more completely with their corresponding annular water jet orifices provided in the fixed plate to allow more water to pass from the water manifold through the openings and slots in the movable and fixed plates and out the annular water jet orifices into the mixing chamber of the mixer. Alternately, when the moveable orifice plate is rotated in a clockwise direction, the cut away openings of the moveable plate move out of alignment longitudinally within the mixer with their corresponding annular water jet orifices provided in the fixed plate to allow less water to pass from the water manifold through the movable and fixed plates and out the annular water jet orifices into the mixing chamber of the mixer.
The water jet orifices are angled in orientation so that their discharge is directed inwardly towards the mixing chamber. All of the existing technology with annular adjustable orifices is aligned in an axial direction. These axial designs require the flow direction to be “turned” or deflected beyond the jet to hit the desired mixing chamber location. The turning of high velocity flow causes high wear on mixer parts.
Also, the water jets are located downstream of the recirculation jets. This allows for more compact construction, much lower production cost, and easier maintenance.
The five annular recirculation jets are located in alternating longitudinal alignment within the mixing chamber relative to the five annular water jet so that they alternate with and are evenly spaced relative to the annular flow recirculation outlets. The five jet design allows for more recirculation jets and more water jets than previous designs, resulting in more thorough mixing (better wetting of powder).
The mixer employs equal numbers of recirculation jets and water jets and so that each water jet is located on an opposite side of the mixing chamber from its associated recirculation jet. Although odd numbers of recirculation and water jets is preferred, even numbers of these jets are also possible.
The evenly spaced water jets deliver mix water annularly to the mixing chamber and alternate with the recirculation jets which also deliver recirculation flow annularly to the mixing chamber. This arrangement is important for several reasons. The location of the water jets is such that they oppose or intersect each of the recirculation flow jets when odd numbers of water jets and recirculation jets are employed, thus enhancing mixing. Existing technology with annular adjustable orifices alternate rather than intersect the discharge from the recirculation jet flow. Also, the arrangement is important as it puts the flow from each water jet on the opposite side of the mixing chamber from the flow from one of the recirculation jets. This aides in mixing and also tends to protect the internal surfaces of the mixing chamber from abrasion by the sand and grit contained in the recirculated cement slurry flowing out of the recirculation jets or by sand contained in unclean water flowing out of the water jets when the water source is unclean.
Finally, an outlet for the mixer is provided at the outlet end of the mixer. The mixture of cement leaves the mixing chamber of the mixer through the outlet.
Referring now to the drawings and initially to
As explained in detail in U.S. Pat. 6,749,330, typically a cement mixer discharges from its outlet end into a diffuser and subsequently into a mixing tank.
A recirculation pump is attached to the mixing tank and recirculates the contents of the mixing tank to recirculation flow inlets provided on the mixer. And, typically a mix water pump is connected to a supply of mix water and pumps that mix water to a mix water inlet provided on the mixer. Also, bulk cement is pneumatically delivered to the dry bulk cement inlet of the mixer. It is the cement mixer 20 that is the subject of the present invention. A preferred embodiment of the invention is shown in the attached drawings and will be more fully described hereafter.
Referring to
The water manifold 4 has a mix water adjustment output means consist of a fixed plate 14 containing the annular water jet orifices 5A, 5B, 5C, 5D and 5E and a rotatable or movable water meter valve element or orifice plate 8 with cut away openings 12A, 12B, 12C, 12D and 12E therethrough. The movable orifice plate 8 is provided with a handle 9 for rotating it in order to control the flow of mix water passing through the five annular water jets 5A, 5B, 5C, 5D and 5E. At an outlet end 16 of the mixer 20 is an outlet 7 that discharges the cement mixture from the mixing chamber 6 of the mixer 20. The details of all of these features will be described in more detail hereafter beginning at the inlet end 15 of the mixer 20 and moving toward the opposite outlet end 16 of the mixer 20.
Beginning at the inlet end 15 of the mixer 20, the mixer 20 is provided with a straight bulk cement inlet 1 for admitting dry powder cement into the mixing chamber 6 that is located internally within the mixer housing 13. The straight bulk cement inlet 1 permits an unobstructed view inside and through both the bulk inlet chamber 19 and the mixing chamber 6 of the mixer 20 when piping that is normally connected with the inlet is disconnected therefrom, as best illustrated in
Referring now to
Referring to
The mix water inlet 11 communicates with the water manifold 4 that supplies water to five annular water jet orifices 5A, 5B, 5C, 5D and 5E provided within the mixing chamber 6.
Referring to
As shown in
The fixed plate 14 and the rotatable plate 9 cooperate to control the flow of water through the water jet orifices 5A, 5B, 5C, 5D and 5E. The position of the movable orifice plate 8 relative to the fixed plate 14 controls the flow of water through the five annular water jets 5A, 5B, 5C, 5D and 5E by more fully aligning the cut away openings 12A, 12B, 12C, 12D and 12E of the movable plate 8 with the metering slots 5A, 5B, 5C, 5D and 5E of the fixed plate 14, or alternately, by moving the cut away openings 12A, 12B, 12C, 12D and 12E more completely out of alignment with the slots 5A, 5B, 5C, 5D and 5E. As the movable orifice plate 8 is rotated in a counter clockwise direction, as indicated by Arrow B in
The five annular recirculation jets 3A, 3B, 3C, 3D and 3E are located in alternating longitudinal alignment within the mixing chamber 6 relative to the five annular water jet 5A, 5B, 5C, 5D and 5E so that they alternate with and are evenly spaced relative to the water jets 5A, 5B, 5C, 5D and 5E. The evenly spaced and alternating water jets 5A, 5B, 5C, 5D and 5E deliver mix water annularly to the mixing chamber 6 and the recirculation jets 3A, 3B, 3C, 3D and 3E also deliver recirculation flow annularly to the mixing chamber 6. This arrangement is important as it puts the flow from each water jet 5A, 5B, 5C, 5D and 5E on the opposite side of the mixing chamber 6 from the flow from one of the recirculation jets 3A, 3B, 3C, 3D and 3E. This aides in mixing and also tends to protect the internal surfaces of the mixing chamber 8 from abrasion by the sand and grit contained in the recirculated cement slurry flowing out of the recirculation jets 3A, 3B, 3C, 3D and 3E and sand from dirty water flowing out of the water jets 5A, 5B, 5C, 5D, and 5E when a dirty water source is employed.
Referring to
Finally, as shown in
Although the invention has been described as having five recirculation jets 3A, 3B, 3C, 3D and 3E and five water jets 5A, 5B, 5C, 5D and 5E, the invention is not so limited. In fact the invention can be provided with only three recirculation jets and only three water jets, or alternately, with seven of each. The important thing is that each water jet is located on an opposite side of the mixing chamber 6 from an associated recirculation jets so that the flow from the water jet intersects with the flow from its associated recirculation jet. The preferred arrangement is where there is the same number of recirculation jets as water jets and where there are odd numbers of each type of jets, i.e. three, five, seven, etc. of each of the recirculation jets and water jets. For example, a smaller mixer might employ only three recirculation jets and three water jets, while a larger mixer might employ seven recirculation jets and seven water jets.
Dry bulk cement powder is pneumatically blown straight into the mixer 20 at straight dry bulk cement inlet 1. As the dry bulk cement passes through the mixer's internal mixing chamber 6, it is intercepted by flow of recirculated cement slurry flowing from the five recirculation jets 3A, 3B, 3C, 3D and 3E. The interception of the dry bulk cement by the recirculated slurry is the first step in wetting the cement powder. A short distance later (milliseconds in time) and downstream within the mixing chamber 6, the five water jets 5A, 5B, 5C, 5D and 5E intersect the partially wetted cement. The mixing energy imparted by the recirculation jets 3A, 3B, 3C, 3D and 3E and the water jets 5A, 5B, 5C, 5D and 5E is very high. The high energy of all ten jets, i.e. five recirculation jets 3A, 3B, 3C, 3D and 3E and five water jets 5A, 5B, 5C, 5D and 5E, creates well mixed slurry where all particles are wetted. The recirculation rate is constant and typically 20 bbl/min. The water flow is adjusted by rotating the orifice plate 8.
Although the invention has been described for use in mixing cement for oil or gas wells, the invention is not so limited and can be used to mix a variety of bulk powders into a solution. Also, the usage of this invention is not limited to the oil and gas industry, but could be used in other industries where dry bulk powders must be mixed into a solution, such as for example the food preparation industry.
While the invention has been described with a certain degree of particularity, it is manifest that many changes may be made in the details of construction and the arrangement of components without departing from the spirit and scope of this disclosure. It is understood that the invention is not limited to the embodiments set forth herein for the purposes of exemplification, but is to be limited only by the scope of the attached claim or claims, including the full range of equivalency to which each element thereof is entitled.
Applicant is the sole inventor of U.S. Pat. No. 6,749,330 that issued on Jun. 15, 2004 for Cement Mixing System for Oil Well Cementing. Applicant is also one if the co-inventors of U.S. Pat. No. 5,046,855 that issued on Sep. 10, 1991 for Mixing Apparatus; one of the co-inventors of U.S. Pat. No. 5,355,951 that issued on Oct. 18, 1994 for Method of Evaluating Oil or Gas Well Fluid Process; and the sole inventor of U.S. Pat. No. 5,571,281 that issue on Nov. 5, 1996 for Automatic Cement Mixing and Density Simulator and Control System and Equipment for Oil Well Cementing.