BACKGROUND OF THE INVENTION
1. Field of the Invention
The present invention relates generally to the field of eye drop dispensing devices. The present invention relates more specifically to devices for facilitating the proper positioning of an eye drop dispensing device and the automated dispensing of a fixed quantity of sterile eye drop solution. The present invention also relates more specifically to improvements in an eye drop delivery system including individual dose sterile ampoules, drop delivery confirmation, variable bottle size accommodation, and improved cushioned orbital lobe contact surfaces.
2. Description of the Related Art
Devices for dispensing eye drop solutions are known. Generally, a bottle of eye drop solution includes a drop dispenser that is built into the exit orifice of the container. To dispense the solution, the user squeezes the bottle forcing solution out of the exit orifice and into his or her eye. Many users have trouble with dispensing eye drops from standard dispensing bottles. The user has a tendency to blink when the drop is about to enter the eye, causing the drop to miss the eye and land on a closed lid or to one side of the eye. Therefore, eye drop solution is frequently wasted due to the user blinking during the attempted application and the user ends up with eye drop solution streaming down his or her face. Problems also occur when the user dispenses too much eye drop solution (too many drops) accidentally. The user may also think that they have dispensed a drop of solution properly when they may not have. Normally, the eye will only hold about 0.6 of a drop. Therefore, some of the drop will typically go onto the eyelid. It is extremely difficult for the user to know whether the proper 60% of the drop actually landed in the eye. In addition, the size of a drop for a given solution may vary significantly in size.
Besides improper usage and subsequent inadequate treatment, waste is another consideration with currently available eye drop administration. While some eye drop solutions are sufficiently inexpensive that manufacturers can plan on some waste by the user while designing packaging for the product and fixing a selling price, other eye drop solutions, being much more expensive, can dramatically increase the cost of eye care if sufficient measures are not taken to reduce the waste normally associated with the administration of eye drop solutions.
There are, in addition, a number of problems associated with maintaining the sterility of solutions that are dispensed from a large container through a dropper tip that may become contaminated by exposure or contact. All multi dose vials sold in the U.S. contain antiseptic compounds to protect the solution against bacterial and viral contamination. Moreover, organic antiseptics do not kill all bacteria or viruses. These antiseptics are often irritating and may be toxic to the sensitive tissues surrounding and within the eye. For these reasons, individual dosages of sterile eye drop solutions may be preferable to a simple container holding a quantity of eye drop solution that may be physically difficult to dispense and subject to waste, and may also be subject to contamination once the eye drop bottle is opened. Further bacterial growth may occur.
A number of efforts have attempted to resolve the contamination problem. Thomas Keen, in his U.S. Pat. No. 4,543,096, discloses a dispenser with an eyelid opening device. The user is required to place a pair of lid spreading legs on the edge of the eyelids dangerously close to the eye and then press a lever arm to keep the eyelids apart. It is nearly impossible to exert enough pressure on the edge of the eyelid to keep the eye open without injuring the eye. Thomas Sherman, in his U.S. Pat. No. 6,371,945, discloses an attachment for a bottle that includes a ring intended to help align the bottle with the eye. However, no attempt is made to hold the eyelids open. Gary Campagna, in his U.S. Pat. No. 3,934,590, shows a tripod like device for aligning the solution bottle over the user's eye. No attempt is made to hold the lid open. James Davidian, in his U.S. Pat. No. 6,595,970, shows a device for dispensing g eye drops. He proposes a dispensing arm, one side of which includes an indentation that receives the user's nose, the other side of which accepts a dispensing bottle. The bottle includes a pair of arms which, when squeezed, impinge on the side walls of the bottle forcing solution out of the bottle and into the user's eye. No attempt is made to hold the user's eyelid open. U.S. Pat. No. 7,191,916 issued to Julia Clifford et al. shows a dispenser that attempts to control the amount of drops that exit a solution holding bottle. The bottle has retractable apertures that capture and release a drop of solution. The devices disclosed in U.S. Pat. No. 4,927,062 (Walsh); U.S. Pat. No. 6,041,978 (Hagele); U.S. Pat. No. 6,010,488 (Deas); and U.S. Pat. No. 4,834,727 (Cope) as well as U.S. Pat. No. 5,902,292 (Feldman), all attempt to position an eye drop bottle in a correct location above a person's eye, but none include a means to help hold the user's eyelid spread apart in an open position. U.S. Pat. No. 4,321,916 (McKee) discloses an eyelid retractor that is used during ocular surgery or the like. It is not designed to be used with the dispensing of eye drop solution.
None of the above cited devices safely holds the user's eyelids open while dispensing 6 eye drops from a standard eye drop bottle. Additionally, none of the above mentioned patents describe a device that allows the user to dispense a specified amount of eye drop solution in an automatic and repeatable fashion. None of the above cited inventions dispenses a precise amount of eye drop solution and simultaneously holds the user's eyelids open while doing so. There has been little, if any, effort in the prior art to provide an efficient means for dispensing single doses of sterile eye drop solution accurately and completely into the user's eye. What systems that have been developed are generally expensive and involve a one-time use, where the complex device must be disposed of after the individual dose has been dispensed. None of the above references provide an automated mechanism for dispensing a series of individual measured doses of eye drop solution under sterile or near sterile conditions into the user's eye accurately and completely along with direct confirmation of the appropriate dispensing action.
Various efforts have been made to provide confirmation of eye drop delivery to the eye. In the simplest form the user holds a bottle over the open eye, squeezes the bottle, and hopes that a drop finds its way onto the eyeball. Recent improvements to eye drop delivery are provided by the system disclosed by the same Applicant of the present invention in the various Related Applications cross referenced above. The Automated Incremental Eye Drop Delivery System with Eyelid Retracting Legs of the referenced disclosures provides elements to assist with keeping the eye open, and an electromechanical drive system for automated activation of the delivery system. The system is designed to utilize existing eye drop bottles that may vary slightly in size. The present disclosure also provides a number of improvements that help assure not only that a single drop or a known number of drops are dispensed from the bottle and the eye remains open, but also that the eye drop(s) landing on the eye can be confirmed.
SUMMARY OF THE INVENTION
It is therefore a primary object of the present invention to provide an automated eye drop delivery system that incorporates eyelid retracting legs and a replaceable bandolier loop cartridge containing individually measured doses of an eye drop solution. The eye drop solution is kept sterile until it is ready to be dispensed. It is also an object of the present invention to provide an eye drop dispensing device with a lid spreading structure with its legs based on the orbit, allowing the user to accurately position the dispensing device over the eye and maintain the eyelids open to receive the dispensed eye drop. Another object of the present invention is to provide a mechanism that delivers individual measured doses of an eye drop solution from a sterile ampoule packet contained on a multi-ampoule packet band within the dispensing device.
Another object of the present invention is to provide an eye drop dispensing device that automatically detects whether the user has properly positioned the dispensing device over the eye before activating the automatic dispensing system. It is a further object of the present invention to provide an eye drop dispensing device that alerts the user to the proper positioning of the device and further facilitates the maintenance of the eyelids in an open condition during the dispensing action.
It is a further object of the present invention to provide an eye drop dispensing device that utilizes a removable and replaceable cartridge containing a number of individual dosage ampoules of the eye drop solution. It is a further object of the present invention to provide an eye drop dispensing device with a replaceable cartridge containing individually measured doses of an eye drop solution that is easy for the user to position within the device, and additionally easy for the user to remove and replace the cartridge component after a cartridge has been used entirely.
It is a further object of the present invention to provide an eye drop dispensing device having visible and audible alerts directed to the user to confirm proper placement, positioning, and battery status of the device, during the operation and use of the device by the user. It is a further object of the present invention to provide an electromechanical eye drop delivery system that operates in conjunction with a movable bandolier loop cartridge containing a number of individually packaged and positioned eye drop solution ampoules so as to automatically advance each ampoule into position for dispensing of the solution as directed by the user, and to direct the dispensing of the eye drop solution by a separate electromechanical means directing the compressing of the ampoule, so as to force the single dose of solution through a nozzle structured to dispense the eye drop solution into the user's eye.
In fulfillment of the above and further objectives, the present invention provides an automated eye drop delivery system comprising an enclosure housing electronic and electromechanical components for the automated dispensing of an eye drop solution from a number of individually measured and sterile packaged eye drop solution ampoules. The dispensing device includes an activation button as well as a number of LED indicators to facilitate the user's recognition of the condition of the device and of the eye drop dispensing action. The main body of the eye drop delivery device includes a battery power supply, as well as electronic control circuitry for carrying out the method of eye drop dispensing. A sprocket drive motor directs the advancement of a loop cartridge comprising an oval band containing a number of eye drop solution ampoules so as to move each of the ampoules one at a time into position for dispensing. A cam drive motor rotates a cam which strikes a push rod that directs a dispensing hammer onto the flexible wall of the individual ampoule reservoir that is in position for dispensing. The cartridge component containing the bandolier shaped (oval) band retaining the individual ampoule packets is positioned within and covered by a cartridge cover which fits over the delivery device housing, and engages the appropriate sprocket drive and cam drive components. The entire device is configured with an eyelid retracting leg assembly that includes two J-shaped flex eyelid retracting legs covered with cushioned skin engaging material. The user holds the eye drop delivery device in one hand, compressing the eyelid leg assembly together, then places the cushioned skin contacting material on the orbital ridge above and below the user's eye, and then releases the spring loaded eyelid retracting legs to facilitate the maintenance of the eye in an open condition. The device initially detects whether it is appropriately oriented to ensure that the eye drop falls into the eye, then automatically advances the bandolier cartridge component to the next full eye drop ampoule for dispensing. While holding the device in the proper position, the user pushes the activation button with a finger of his free hand. The programmed control electronics direct the rotation of the cam component to move an ampoule dispensing hammer which compresses the ampoule aligned for dispensing and thereby discharging a dose of solution from the device. Various additional condition indicators are provided within the system to facilitate the user's operation of the device and the accurate and complete dispensing of the eye drop solution into the user's eye.
The present invention also provides an improved eye drop delivery system that helps to assure that: (1) a single drop or a known number of drops are dispensed from the bottle; (2) the eye drop(s) fall on the eyeball by providing eyelid retracting legs to keep the eye open; and (3) the eye drop on the eye can be confirmed using a drop dispensing sensor and a surface of the eye sensor. In addition, it is desirable that any device used to assist in keeping the eye open be cushioned and comfortable to the user. Finally, it would be desirable if an eye drop delivery system could easily accommodate a variety of different sized eye drop bottles without losing its single drop sensitivity.
BRIEF DESCRIPTION OF THE DRAWINGS
The drawings constitute a part of this specification and include exemplary embodiments of the invention, which may be embodied in various forms. It is to be understood that in some instances various aspects of the invention may be shown exaggerated or enlarged to facilitate an understanding of the invention.
FIG. 1 is a perspective view of a preferred embodiment of the eye drop delivery system of the present invention shown fully assembled.
FIG. 2 is a front elevational view of the preferred embodiment of the eye drop delivery system of the present invention fully assembled.
FIG. 3 is a side elevational view of the preferred embodiment of the eye drop delivery system of the present invention fully assembled.
FIG. 4 is an exploded assembly view of the preferred embodiment of the eye drop delivery system of the present invention.
FIG. 5 is a front elevational view of the preferred embodiment of the eye drop delivery system of the present invention shown without the cartridge cover and ampoule strip in place.
FIG. 6 is a partial cross-sectional side view of the preferred embodiment of the eye drop delivery system of the present invention showing the internal electronic and electromechanical components.
FIG. 7 is an exploded assembly view of a portion of the preferred embodiment of the eye drop delivery system of the present invention showing the electromechanical components.
FIG. 8A is a detailed front plan view of the preferred embodiment of the ampoule strip of the present invention shown in an initial position with the caps of the ampoules positioned on the ampoule nozzles.
FIG. 8B is a detailed front plan view of the preferred embodiment of the ampoule strip of the present invention shown rotated into a dispensing position with one of the ampoule caps off
FIG. 9 is a detailed partial cross-sectional view of the preferred embodiment of the ampoule strip of the present invention.
FIG. 10 is a detailed cross-sectional view of the preferred embodiment of a single ampoule of the present invention shown with the cap off and the ampoule wall compressed.
FIG. 11 is a flowchart of the eye drop dispensing method associated with the system of the present invention.
FIG. 12 is a perspective view of a preferred method of use of the device of the present invention.
FIG. 13 is a front perspective view of the eye drop delivery confirmation system of the present invention with the bottle door closed and the device ready for use.
FIG. 14 is a front perspective view of the eye drop delivery confirmation system of the present invention with the bottle door open showing the inserted bottle and the automated dispensing components.
FIG. 15 is a cross-sectional view through the middle of the device of the present invention showing the placement of the bottle, the positioning of the electromechanical components used to squeeze the bottle, and the sensor systems.
FIG. 16 is a front elevational view of a further alternate preferred embodiment of the eye drop delivery system of the present invention shown with a curved band ampoule strip in place.
FIG. 17A is a top plan view of a first version of the curved band ampoule strip appropriate for use in connection with the eye drop delivery system shown in FIG. 16.
FIG. 17B is a top plan view of a second version of the curved band ampoule strip appropriate for use in connection with the eye drop delivery system shown in FIG. 16.
FIG. 17C is a top plan view of a third version of the curved band ampoule strip appropriate for use in connection with the eye drop delivery system shown in FIG. 16.
FIGS. 18A & 18B are detailed side views of the rotating cam and ampoule push rod structures for use with the ampoule strip shown in FIG. 17A.
FIGS. 19A &19B are detailed side views of the rotating cam and ampoule push bar structures for use with the ampoule strip shown in FIG. 17B.
FIGS. 20A & 20B are detailed side views of the rotating cam and ampoule push rod structures for use with the ampoule strip shown in FIG. 17C.
FIG. 21A is a detailed partial cross-sectional view of a further alternate preferred embodiment of the ampoule strip of the present invention used with the device shown in FIG. 16.
FIG. 21B is a detailed cross-sectional view of the further alternate preferred embodiment of a single ampoule of the present invention shown with the cap off and the ampoule wall compressed.
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS
Reference is made first to FIG. 1 for a perspective view of a preferred embodiment of the eye drop delivery system of the present invention in a fully assembled configuration. Eye drop delivery device 10 is shown to comprise main housing 12 with cartridge cover 14 positioned thereon. The dispensing assembly is positioned on an eyelid retracting assembly made up primarily of first flex leg 16a and second flex leg 16b. Each of the flex legs 16a & 16b extend and terminate in first and second eyelid retracting feet 18a & 18b. This eyelid retracting assembly structure is comprised of a pair of curved bands of resilient, semi-rigid, plastic material that serve to support the housing components described above and to facilitate the retention of the eyelids in an open condition ready to receive the drop of eye drop solution from an individual ampoule within the device. The eyelid retracting structure accomplishes this by providing flexible, but resilient legs that terminate in soft cushioned feet that are positioned on the upper and lower orbital rim sites of the user's eye.
As shown in FIG. 1, first flex leg 16a and second flex leg 16b extend from near a common point of attachment (away from their point of attachment) to the housing components of eye drop delivery device 10. Each flex leg 16a & 16b extends downward to terminate in a “J” shaped eyelid retracting foot. First eyelid retracting foot 18a terminates first flex leg 16a, while second eyelid retracting foot 18b terminates second flex leg 16b. As shown, each of the eyelid retracting feet 18a & 18b are covered on at least one face with soft, resilient cushioned material so as to gently engage the skin of the user at the upper and lower orbital sites against which the device and delivery system is placed.
The terms “first” and “second” when referring to the flex legs and eyelid retracting feet, are arbitrary designations herein and do not reflect a specific orientation of the device. The device is designed to be utilized in conjunction with either eye and with either hand of the user. The upper curved sections of flex legs 16a & 16b, on either side of main housing 12, provide the necessary spring resiliency to the eyelid retracting structure so as to allow the user to squeeze the first and second eyelid retracting feet 18a & 18b together for placement of the device against the face about the eye and thereafter release the legs slightly so as to allow for the expansion of the eyelid retracting structure and the corresponding opening of, or retention of the open condition of, the eye of the user. Various electronic and electromechanical components are associated with the operation of eye drop delivery device 10 as described in more detail below. In the view of FIG. 1, activation button 20 is shown as a surface mounted button positioned on top of main housing 12. Cartridge cover 14 is shown positioned on and attached to main housing 12 by way of cartridge cover clips 24, one on each side of main housing 12.
Reference is next made to FIG. 2 for a detailed description of a front elevational view of the preferred embodiment of the present invention, again shown assembled, with cartridge cover 14 in place over the main housing (not seen in this view). In the view of FIG. 2, the profile structures of the eyelid spreading components (first and second flex legs 16a & 16b, and first and second eyelid retracting feet 18a & 18b) can be seen. The manner in which resiliency is imparted to these components can also be seen, given the curved structures that extend from the base of eye drop delivery device 10 which are positioned and oriented to facilitate the placement of the device. The legs are first compressed and the feet positioned just inside the upper and lower orbital ridges. The legs are gently released and allowed to spread, while the rest of the device is kept in place. Activation button 20 is again shown at a top position on eye drop delivery device 10 accessible for the user to activate the system when delivery device 10 has been properly positioned and oriented over the user's eye. When properly oriented as shown, the user is provided with a view of LED drop indicator 22, as well as an LED battery indicator (not shown), positioned on the bottom of eye drop delivery device 10. The manner of the function of these LED indicators visible to the user while the device is positioned over the eye is described in more detail below.
FIG. 3 is a side elevational view of the preferred embodiment of the eye drop delivery system of the present invention, again shown in a fully assembled configuration. eyedrop Eye drop delivery device 10 is made up primarily of main housing 12 with cartridge cover 14 positioned thereon and attached by means of cartridge cover clips 24. In the view of FIG. 3, only first flex leg 16a and first eyelid retracting foot 18a are visible. Positioned on the bottom of main housing 12 are LED drop indicator 22 and LED battery indicator 26.
As can be seen in the views of FIGS. 1-3, the device of the present invention provides a very simple and straightforward set of indicators and controls to the user. After the user has properly positioned and placed the device against the face over the eye in the manner described above, both visible and audible indicators provide information regarding the proper orientation and battery condition of the device. Operation of the device is then a simple matter of the user pressing activation button 20 with a finger of the hand that is not holding the eye drop delivery device 10 against the face. One goal of the present invention is to make the delivery of a single drop (or a fixed incremental quantity) of eye drop solution to the eye in a definitive manner that leaves no doubt in the user that the drop has been delivered to the proper place on the surface of the eye, thereby eliminating the need for re-administration of an eye drop that may not have been properly administered.
Reference is next made to FIG. 4, which is an exploded assembly view of eye drop delivery device 10 showing the manner in which the user may remove cartridge cover 14 and then remove and replace ampoule strip 42. This assembly view of FIG. 4 also discloses some of the mechanical components that serve to advance the individual eye drop solution dosages contained on ampoule strip 42. The oval or bandolier shaped strip is pre-packaged with individual ampoule reservoirs 50 filled with the appropriate dosage of eye drop solution. In FIG. 4, main housing 12 of eye drop delivery device 10 is shown with cartridge cover 14 removed. The eyelid retracting components are again shown to be integrated into the structure of main housing 12 to facilitate the placement and positioning of the device over the user's eye. Dispensing gate 41 represents a cutout in the curved structure of the eyelid retracting assembly to the user's eye that permits the movement of a dispensed drop from the dispensing assembly to the user's eye in a manner described in more detail below.
Main housing 12 is again shown to comprise activation button 20 positioned at a top oriented external point. With cartridge cover 14 removed, cartridge cover clips 24 are shown to be released from cover clip recesses 40 on either side of main housing 12. Underneath cartridge cover 14 on main housing 12 are a number of components that serve to partially retain and guide ampoule strip 42 during operation of the eye drop delivery device 10. Mechanism cover 34 serves to isolate the ampoule strip cartridge system from the internal electromechanical workings of the device within main housing 12. Strip guide base 35 supports ampoule strip guide 28 and defines an oval circumference channel within which ampoule strip 42 rotates or moves. The perimeter of ampoule strip guide 28 is formed with strip installation alignment cutouts 36 that correspond to each of the individual ampoules 50 positioned on ampoule strip 42. Drive sprocket 30 extends through one side of ampoule strip guide 28 and retains a number of sprocket posts 32 which engage ampoule strip sprocket teeth 48 on ampoule strip 42. When ampoule strip 42 is positioned over ampoule strip guide 28 around strip guide base 35 the ampoule strip is free to rotate or move as controlled and driven by drive sprocket 30 in a manner described in more detail below.
Also shown in the view of FIG. 4 are the individual ampoule reservoirs 50 positioned on the inside face of ampoule strip 42, as well as ampoule caps 46 which cover dispensing nozzles (not seen in this view) until a particular ampoule is positioned and ready for dispensing. Tethered ampoule caps 46 are removed from these dispensing nozzles one at a time as the selected ampoule moves into position over dispensing gate 41. The removal of each ampoule cap 46 is carried out one at a time by hook arm 38. The manner of dislodging ampoule cap 46 in order to expose the ampoule dispensing nozzle is described in more detail below.
Reference is next made to FIG. 5 which is a front elevational view of the preferred embodiment of the eye drop delivery system of the present invention shown without the cartridge cover and ampoule strip in place. eye drop delivery device 10 in this view is again shown to be structured primarily of main housing 12 integrated with the eyelid retracting structures comprising first and second flex leg 16a & 16b, as well as first and second eyelid retracting feet 18a & 18b. In this view, dispensing gate 41 is shown positioned between the two sides of the eyelid retracting assembly. LED drop indicator 22 is shown positioned adjacent dispensing gate 41 where it is visible to the user while the dispensing device is being used.
Main housing 12 is, in this view, covered by mechanism cover 34 positioned behind ampoule strip guide 28. Drive sprocket 30 extends through ampoule strip guide 28 and presents sprocket posts 32 in a forward orientation so as to engage the ampoule strip sprocket teeth on the ampoule strip (not shown). Hook arm 38 is shown in profile in this view, positioned to appropriately engage the ampoule caps positioned around the perimeter of the ampoule strip.
FIG. 6 provides a partial cross-sectional side view of the preferred embodiment of the eye drop delivery system of the present invention, disclosing in greater detail both the electro-mechanical components of the device, and the manner in which the dispensing of a single dosage of eye drop solution is achieved. Eye drop delivery device 10 as shown in FIG. 6 again comprises main housing 12 fitted with cartridge cover 14. The eyelid retracting components are shown integrated into the lower edge of main housing 12, and in this view are represented by second flex leg 16b and second eyelid retracting foot 18b. Within main housing 12 are positioned and secured a variety of electronic and electromechanical devices that serve to carry out the operation of the system of the present invention. Activation button 20 is shown to extend through the upper wall of main housing 12 where it engages activation switch 62. Switch 62 is preferably a momentary switch that signals the processor circuitry on PC board 66 that the user intends to activate the device. The functionality associated with this initial pressing of activation button 20 and the start of the process for delivering a quantity of eye drop solution is described in more detail below.
Sprocket drive motor 60 is shown within main housing 12 oriented so as to extend sprocket drive shaft 70 forward to retain drive sprocket 30 which directs and controls the rotation of drive sprocket 30, thereby rotating or advancing the ampoule strip. Also positioned within main housing 12 are batteries 64 which in the preferred embodiment comprise three AAA replaceable batteries. These batteries provide the electrical power necessary to not only run the system electronics, but also to power sprocket drive motor 60 and cam drive motor 68. Cam drive motor 68 is connected by way of a cam shaft to cam 72 seen from the side in this view. Cam 72 rotates on and engages the top of a push rod, which in the view of FIG. 6 is surrounded by push rod spring 74. The bottom or hammer end of the push rod engages the top of one of the ampoule reservoirs 50 positioned on the interior circumferential surface of the ampoule strip.
PC board 66, shown positioned adjacent cam drive motor 68 in the view of FIG. 6, is connected to LED battery indicator 26 and LED drop indicator 22. Microprocessor 67 programmed for carrying out the functionality of the present invention is also positioned on PC board 66 which receives power from batteries 64, directs the necessary signal current to the LED indicators, and the necessary drive current to each of the drive motors contained within main housing 12. When fully assembled in the manner shown in FIG. 6, the system of the present invention advances the ampoule strip incrementally around an oval track, positioning in turn each of the individual ampoules on the ampoule strip at a bottom orientation whereby the rotation of cam 72 and the movement of the push rod downward directs the dispensing of a quantity of eye drop solution from a single ampoule through the dispensing nozzle for that ampoule and out from the housing.
Reference is next made to FIG. 7, which provides an assembly view of a sub-assembly of the eye drop delivery device 10 designated here as 10A, since the ampoule strip and the cartridge cover are not shown in this view. In the view of FIG. 7, main housing 12 is again shown to position activation button 20 at a top orientation thereof, and to have cover clip recesses 40 positioned on either side to receive and retain the cartridge cover (not shown). Positioned within main housing 12 are sprocket drive motor 60 and cam drive motor 68. Sprocket drive shaft 70 extends from sprocket drive motor 60 and cam shaft 82 extends from cam drive motor 68. Batteries 64 are shown positioned between the two drive motors.
Mechanism cover 34 is shown to be an oval plate that may be fixed in position over main housing 12 with a pair of apertures through which the sprocket drive shaft 70 and cam shaft 82 are allowed to operationally extend through mechanism cover 34 to their point of attachment with drive sprocket 30 and cam 72 respectively. Positioned on a lower side of mechanism cover 34 is push rod guide 84 which slidingly retains, and allows the up and down movement of, push rod 86 against the return force of push rod spring 74. When fully assembled, push rod spring 74 holds push rod 86 captive between the top surface of push rod guide 84 and the rotating edge of cam 72. In the view of FIG. 7, the operation of cam 72 can be seen in more detail. The rotation of cam shaft 82 directs the rotation of oblong shaped cam 72 in a manner that allows push rod 86 to raise and lower and thereby direct the hammer end of push rod 86 into the aligned ampoule for dispensing of the eye drop solution.
Positioned over mechanism cover 34 is ampoule strip guide 28 with strip guide base 35. As can be seen in FIG. 7, one end of ampoule strip guide 28 defines a large round aperture through which drive sprocket 30, having sprocket posts 32, may extend. When drive sprocket 30 is attached to sprocket drive shaft 70, sprocket posts 32 are positioned so as to extend slightly above (forward from) the surface of ampoule strip guide 28. In this manner, the ampoule strip sprocket teeth may slide along the forward facing surface of ampoule strip guide 28 while engaging in turn sprocket posts 32 positioned on rotating drive sprocket 30. This arrangement provides a positive engagement between the ampoule strip and the drive sprocket such that controlled rotation of drive sprocket 30 directs the movement of the ampoule strip in increments to align individual ampoules for dispensing.
Sprocket drive motor 60 and cam drive motor 68, again as shown in FIG. 7 are, in the preferred embodiment, DC stepping motors that allow for precise incremental rotation of their respective drive shafts for precise rotation of either drive sprocket 30 or cam 72. The incremental operation of sprocket drive motor 60 is necessary in order to provide just the right rotation of drive sprocket 30 and therefore just the right rotation and advancement of the ampoule strip so as to sequentially orient and position one ampoule dispensing nozzle after the other in the proper orientation for eye drop dispensing action. This process of orientation and the manner of moving the ampoule strip into position is described in more detail below. Likewise, cam drive motor 68 is a DC stepping motor that incrementally rotates cam 72 from its two extreme positions; where push rod 86 is fully elevated under the force of push rod spring 74 or fully depressed when cam 72 forces it downward against push rod spring 74. Here again, precise incremental rotation of cam shaft 82 as driven by cam drive motor 68 is essential for the proper operation and full dispensing action of the device.
FIGS. 8A & 8B are detailed front views of the dispensing port components of the preferred embodiment of the ampoule strip of the present invention shown first in an initial position with each of the ampoule caps in place (FIG. 8A), each ampoule cap sealed airtight, and second in a dispensing position with one of the ampoule caps removed for dispensing (FIG. 8B). In these figures, a small portion of main housing 12 is shown near the bottom, or dispensing end, of the device. Dispensing gate 41 is oriented so as to allow for the passage of the eye drop solution out from the device into the user's eye in the manner described above. Positioned under the cartridge cover and around the appropriate ampoule strip guide components as described above, ampoule strip 42 advances a number of individual eye drop solution ampoules one at a time into position for dispensing. In the views of FIGS. 8A & 8B, three representative ampoules are shown. Ampoule strip 42 is comprised of a flat band through which are positioned a number of ampoule reservoirs 50 and dispensing nozzles 88, as well as corresponding ampoule strip sprocket teeth 48. Once again, the sprocket teeth 48 are provided to engage the sprocket posts of the drive sprocket, not seen in the views of FIGS. 8A & 8B. On the outside of ampoule strip 42 are positioned corresponding dispensing nozzles (covered in the view of FIG. 8A) onto which are positioned a number of ampoule caps 46.
In FIG. 8A, a first ampoule cap 46a is shown positioned as it is initially placed over and retained on the associated dispensing nozzle when the ampoule strip is first inserted into the dispensing device. In the initial condition where eye drop solution is contained within each of the ampoule reservoirs 50, the ampoule strip 42 is placed within the device and oriented so that ampoule sprocket teeth 48 appropriately engage the posts of the drive sprocket and a single one of the ampoules is oriented in the lowest downward dispensing position. In FIG. 8A, this position is held by second ampoule cap 46b as shown, although the ampoule cap has not been removed (as would be typically when ampoule strip 42 is first installed) and therefore further incremental rotation of the strip is required before dispensing can occur. Hook arm 38 is shown in FIG. 8A to initially engage the Nth ampoule cap 46n in a manner that begins the cap removal function. As ampoule strip 42 advances according to the directional arrows shown in FIGS. 8A & 8B, individual ampoule caps 46 are removed to allow the dispensing of the eye drop solution from the specific ampoule 50.
FIG. 8B shows the next step in the process, where hook arm 38 has dislodged the Nth ampoule cap 46n from the dispensing nozzle 88n now in a position to appropriately dispense the eye drop solution from its ampoule reservoir 50 when the system directs the push rod (not shown) down onto ampoule reservoir 50 in the manner described. Further advancement of ampoule strip 42, as directed by the drive sprocket, positions hook arm 38 appropriately for removal of the next ampoule cap, in this case the Nth+1 ampoule cap 46n+1. In this manner, the operation of the device progresses, although it is anticipated that the user directs the delivery of one dose eye drop solution from a single ampoule during each use. Once the device has been activated, and a dose of eye drop solution has been dispensed, the system remains in the position shown in FIG. 8B until the user next activates the device, which thereafter directs the removal of the next ampoule cap and the rotation of the next dispensing nozzle into position.
FIGS. 9 & 10 show in greater detail the preferred embodiment of the ampoule strip construction of the present invention. FIGS. 9 & 10 are detailed cross-sectional views of a portion of the ampoule strip showing the construction of the ampoule reservoirs and the ampoule caps that are progressively removed for dispensing. FIG. 9 represents three such ampoule components laid out flat for clarity. First and second ampoule reservoirs 50a & 50b are shown in line followed by a third or Nth ampoule reservoir 50n, all positioned on the inside surface of ampoule strip 42. Likewise, first ampoule strip sprocket tooth 48a is followed by second ampoule strip sprocket tooth 48b followed by Nth ampoule strip sprocket tooth 48n.
On the outward face of ampoule strip 42 are positioned first, second and Nth dispensing nozzles, 88a, 88b & 88n. Each of these dispensing nozzles has a drop aperture represented in this view by first drop aperture 86a, second drop aperture 86b, and Nth drop aperture 86n. In the view of FIG. 9, each of the nozzles is covered by its own ampoule cap comprising first ampoule cap 46a, second ampoule cap 46b, and Nth ampoule cap 46n. Each ampoule cap is configured with a recess comprising a cap catch represented here by first cap catch 90a, second cap catch 90b, and Nth cap catch 90n. The structure of ampoule strip 42 shown in FIG. 9 would be the configuration of the ampoule strip when it is purchased and inserted for the first time into the device of the present invention ready for its first use. This loading of the device may involve the placement of the ampoule strip 42 followed by the placement and positioning of the cartridge cover over the strip. Alternately, the ampoule strip may be loosely held (but accurately positioned) within the cartridge cover so that the loading process may occur in a single step.
FIG. 10 discloses in greater detail the specific action by which a measured dose of an eye drop solution is dispensed from an individual ampoule. In this detailed cross-sectional view, ampoule reservoir 50 is shown being compressed by dispensing hammer 96 which in the preferred embodiment represents the lower end of the push rod associated with the cam drive mechanism of the device. Dispensing hammer 96 is directed into the bubble shaped wall of ampoule reservoir 50 in a manner that forces the liquid solution from the reservoir through the dispensing nozzle 88 out through drop aperture 86. This arrangement allows the eye drop solution contained within the ampoule reservoir 50 to be maintained in a generally sterile condition up to the point when ampoule cap 46 is removed as described above. In the detailed view of FIG. 10, ampoule cap 46 is shown to comprise cap catch 90, as well as retainer strap 94 which is attached to the outer surface of ampoule strip 42. Retainer strap 94 is designed to have a shape memory such that once ampoule cap 46 is released from its position over dispensing nozzle 88, it removes ampoule cap 46 sufficiently out of the way to allow dispensing drop 98 to easily fall from drop aperture 86 and out from the device. Ampoule cap 46 is initially retained with an airtight sterile seal on dispensing nozzle 88 against this shape memory of retainer strap 94 by way of retention ridge 92 positioned circumferentially around dispensing nozzle 88 and associated internally to the structure of ampoule cap 46.
Reference is next made to FIG. 11, which provides a brief overview flowchart of the method of operation of the dispensing device system of the present invention. Once the user has appropriately positioned the device against the face, with the legs squeezed and the feet placed just inside the superior and inferior orbital ridges, and has operated the flexible eyelid retracting components, automated operation of the system may begin. This automated operation is initiated at Step 102 when the user presses the start button (the activation button in the structural diagrams described above). At Step 104, a first LED flashes to show that the unit has been turned on. An audio signal sounds a short beep to again confirm activation. At Step 106, the microprocessor determines whether the appropriate battery power level and tilt angle are present.
At decision Step 108, if the battery and tilt angle are appropriate, then the microprocessor starts the drive motor for the ampoule strip. If at Step 112 the correct tilt angle is not present, than an audio signal beeps in short bursts until the correct angle is achieved. This ensures that when a quantity of eye drop solution is dispensed from an ampoule, it falls by gravity through the opening in the main housing of the device into the user's eye and not to the side. At Step 110, if the microprocessor determines that battery power is low, the low battery LED turns on (visible to the user) and an audio signal beeps once. In the preferred embodiment of the present invention, the device will not operate beyond the indicator steps when the battery is low. Clearly, proper positioning of the ampoule strip and proper rotation of the dispensing cam are essential to the accurate and complete dispensing of the proper quantity of eye drop solution from an ampoule.
Once again, at Step 108, if the microprocessor determines that the battery and tilt angle are appropriate, it initiates the drive motor. The drive motor rotates the ampoule strip one increment and stops at Step 114. As the ampoule strip rotates, at Step 116 a cover cap positioned near the base of the device is removed from an individual ampoule as it moves into its dispensing position. Then at Step 118, the dispensing cam motor starts and the cam causes the push rod to impact and press on the top of an individual ampoule. One dosage drop is expressed from that ampoule at Step 120, and because of the appropriate tilt angle, exits the device and is directed properly into the eye of the user. At Step 122, the plunger (push rod) re-sets to its start position (under the force of the return spring) and the device shuts down, this deactivation being indicated at Step 124 when the LED indicator turns off.
Reference is now made to FIG. 12 for a description of the manner in which the eye drop delivery device 10 of the invention is utilized in order to accurately dispense a drop of solution into the user's eye. Oriented in the manner shown in FIG. 12, the user holds the device with the thumb 130 and forefinger 132 engaging first flex leg 16a and second flex leg 16b respectively in a manner that allows the user to initially squeeze the flex legs towards each other and then allow them to return to an extended position once the device has been placed against the skin of the user above the inferior orbital ridge and below the superior orbital ridge of the eye. Operation of the device of the present invention is facilitated by the user reclining in a horizontal position as shown in FIG. 12 and holding the device in the right hand as shown with the thumb and forefinger engaging the first and second flex legs. As the user holds the device as described above and squeezes the flex legs together, the cushioned surfaces of first eyelid retracting foot 18a and second eyelid retracting foot 18b are placed into contact with the skin of the user just below the superior orbital ridge 136 and just above the inferior orbital ridge 134 of the eyelid portion of the skin surrounding the eye. Once in contact with the skin's surface, the user then gently loosens the compressive force between the thumb and forefinger, all the while keeping the device engaged against the skin. This action of releasing the compressive force allows the eyelid retracting leg assembly to spring back to its original configuration with flex legs 16a and 16b moving outward. As the first and second flex legs move outward, while the eyelid retracting feet remain in gentle contact with the skin of the user about the eye, the eyelids are opened further and/or are retained open by the outward force exerted by the flex legs tending to return to their original configuration. In this manner, the device of the present invention imitates the action of a user that might utilize a thumb and forefinger to hold open the eyelids around the eye while a drop is being dispensed. This use of the present device, however, allows the user a free hand to actually control the dispensing of the eye drop rather than being required to hold open the eye with one hand in a typically inadequate manner.
The device of the present invention as described above is configured in a sufficiently compact form as to allow the user to push the activation button on the device with the hand that is not holding the device. In any case, once properly positioned and oriented, the user pushes the activation button and causes the device to accurately dispense a single dose of solution into the eye while the eyelids are being retained in an open position by way of the spring force in the flex leg components.
Reference is made next to FIG. 13 which is a perspective view of the device and system of the present invention showing certain further improvements to the Automated Eye Drop Delivery System described in the above cross referenced Related Applications. FIG. 13 shows eye drop delivery device 210 as being structured to include flexible leg section 212 and eye drop bottle housing 214. Flexible leg section 212 comprises an eyelid retracting assembly made up of retracting legs 216 & 218. Eye drop bottle housing 214 is structured and fixed at a mid-point on eyelid retracting assembly of flexible leg section 212 as shown. The dispensing tip of the eye drop bottle (not shown in FIG. 13) extends through an aperture (also not shown in FIG. 13) in the mid-section of eyelid retracting assembly of flexible leg section 212. Bottle cap 234 is shown positioned over the dispensing tip of the eye drop bottle as it would be placed when the device 210 is not being used.
Housing 214 is generally made up of an electromechanical system for directing the dispensing of one or more eye drops from the eye drop bottle inserted within the housing. As described in the related Application, internal electromechanical components within housing 214 serve to squeeze the inserted eye drop bottle in an incremental manner so as to dispense one or more eye drops at a time from the device. Housing 214 generally comprises bottle enclosure 224 and electromechanical enclosure 226. Access to the interior of eye drop bottle enclosure 224 is provided by way of access door 230 positioned on hinge 228.
The device of the invention as shown in FIG. 13 is activated by pressing on dispense button 232 which directs the electronic circuitry of the device to activate an electric motor (not shown in FIG. 13) and rotate a cam (also not shown in FIG. 13) that impinges upon the side of the eye drop bottle so as to direct the dispensing of one or more eye drops. Also shown in FIG. 13 are sensor arms 236 & 238 that extend down on either side of the tip of the eye drop bottle (as covered with the bottle cap 234) and terminate in a number of photoelectric sensors that are used to both detect the passage of a drop of liquid between the sensors and to detect the appropriate landing of the eye drop on the surface of the eye. A first pair of sensors 240 & 242 direct an interruptible beam (such as an IR beam, a visible light beam, or other EM wave beam. The sensor structure is preferably a combination of a photodiode transmitter and receiver that directs a beam across a path 248 interrupted by the drop and detected by the interruption of the signal at the receiver.
A second pair of sensors 244 & 246 are directed downwards at an angle towards the position where the eye of the user would be placed in a manner that bounces a beam (preferably IR or ultrasonic in this case) onto the eye of the user and reflect back (as shown by path 252) to a receiving sensor 244 where the presence of the eye drop on the eye may be sensed. In each case, it is a change in the sensed signal at the receiving sensors that indicates either the passage of the eye drop in the first instance or the landing of the eye drop on the eye in the second instance. Signal interruption or signal strength modification is sufficient in each case to confirm drop passage or drop placement. Alternate to the positioning of the above described sensor structures on special arm extensions as shown in FIG. 13, the sensor elements may be placed within the structure of the flexible leg eyelid spreader leg structures of the eyelid retracting assembly.
The three fundamental improvements made in the device of the present invention to those structures previously described in the Related Application (the International Publication mentioned above) are the structure of the eye drop bottle access door 230 (especially the internal structure described in more detail below), the sensor systems extending below the device towards the eye for both the detecting of the passing of a drop from the dispensing bottle tip and the landing of the drop on the surface of the eye, and finally, the improved composition in structure to the eyelid retracting leg pads 220 & 222 positioned so as to make contact with the orbital ridges of the user in a manner that allows the eyelid to be retracted and the eye to remain open. In the present invention eyelid retracting leg pads 220 & 222 are preferably made from thermoplastic elastomer (TPE) materials such as those produced by GLS (PolyOne Corporation). These materials provide a very soft cushioned contact surface for placement against the very sensitive skin areas around the eye, in particular against the orbital ridge.
Reference is next made to FIG. 14 which focuses on the structure of the improvement related to the eye drop bottle enclosure access door and its internal components designed to accommodate a variety of different eye drop bottle sizes. In FIG. 14, door 230, which is opened on hinge 228, is shown to include frame 266 positioned on the inside of door 230 and insert 268 positioned on frame 266. As described above, the hinged door can be opened by the user to allow the user to remove and replace the bottle of eye drop solution. The bottle may come in a variety of different diameters depending upon how many ounces or drops are contained within the bottle. To accommodate the differences in bottle diameter, various sizes of insert 268 fill the distance between the inside of the main housing (as measured from closed door 230) and the side surface of the bottle 260. Insert 268 is snapped into frame 266 which is integral with or mounted to the inside surface of door 230. A variety of different sized inserts 268 are provide in a kit that comes with the device to allow the user to switch out the insert to match the size of the eye drop bottle being used. In this manner the eye drop bottle is fit snugly within the enclosure so that activation of the device and the rotation of the cam produces a consistent squeezing of the bottle without any shifting within the enclosure.
Reference is next made to FIG. 15 which is a partial cross-sectional view of the device 210 of the present invention showing not only the placement of eye drop bottle 260 but also the electromechanical components therein that, once activated, will direct the dispensing of one or more drops from the eye drop bottle. In this view, insert 268 positioned on frame 266 on the inside of door 230 is shown to contact the side of eye drop bottle 260 and hold it in place against the pressure exerted by cam 262 driven by electric motor 264. Activation button 232 is shown in its position above the assembly where the user may easily access the button and direct the dispensing of the eye drop.
The legs of insert 268 are in contact with the outer surface of bottle 260 so that when offset cam 262 driven by motor 264 impinges on the side of bottle 260 as shown by dashed line 270, the insert 268 prevents the bottle from being pushed away from the cam 262. Different inserts 268 having different leg lengths may be snapped into frame 266 depending upon the diameter of the bottle 260 to be used. One half of the sensor pairs are also shown in FIG. 15 with dispense sensor 240 shown above landing sensor 244 (positioned at an angle).
Electronics contained within the electromechanical enclosure 226 provide the necessary circuitry to: (1) receive the signal from the activation button to direct the dispensing of the eye drop; (2) monitor the drop passage dispensing sensor pair to confirm that a drop has been dispensed (and to count the drops if necessary); and (3) monitor the drop landing sensor pair to confirm that a drop has properly landed on the surface of the eye of the user. Various indicators are anticipated for confirming to the user each of the functions of this system.
Reference is next made to FIG. 16 and the figures following therefrom for a detailed description of an alternate preferred embodiment of the eye drop delivery system of the present invention. eye drop delivery device 310 in this alternate embodiment is smaller, more compact, and configured to operate with a strip cartridge instead of the bandolier closed loop cartridge. In this embodiment, main housing 314 can remain closed while the user loads and discharges a curved band ampoule strip 342. The basic process for opening and dispensing the ampoules, other than being configured into a more compact enclosure and reducing the size of the removable ampoule strip, in the alternate embodiment shown in FIG. 16 is much the same as the first preferred embodiment described above. As with the first preferred embodiment, the eye drop delivery system includes eyelid retracting components made up of first flex leg 316a, second flex leg 316b, first eyelid retracting foot 318a, and second eyelid retracting foot 318b. These lid spreading components are critical to the proper operation of both embodiments of the eye drop delivery system.
The device shown in FIG. 16 is activated in the same manner as the first preferred embodiment with the user positioning the eyelid retracting feet on the orbital ridges of the eye and releasing tension on the feet to spread the eyelids. The ampoule strip 342 is loaded into the main housing 314 through ampoule strip inlet port 332. Ampoule strip 342 may contain one or more individual ampoules, either pre-loaded or loaded by the user as described in more detail below. As each ampoule is progressively used, ampoule strip 342 moves through main housing 314 past dispensing gate 341 and eventually out of main housing 314 through ampoule strip outlet port 334.
Various mechanisms for advancing ampoule strip 342 are anticipated. As described in more detail below, a preferred structure for the ampoule strip shown in FIGS. 17A-17C incorporates a film strip type configuration where apertures positioned along one side of the strip are engaged by teeth on a gear that is connected internally to the DC stepping motor that is activated with the user pushing the activation button 320. In addition to appropriately advancing ampoule strip 342, the process of pushing activation button 320 initiates the timed rotation of rotating cam 372 which engages upon ampoule push rod 386 to contact the back side of an individual ampoule positioned on ampoule strip 342. Again, the mechanism for opening an individual ampoule using hook arm 338 is essentially the same as that described above with the bandolier version of the eye drop delivery system. Similar ancillary structures are also presented to the user, such as LED drop indicator 322. Control mechanisms, including the rechargeable battery power supply and other automation elements to the system are also as described above in connection with the bandolier version of the system.
Reference is next made to FIGS. 17A-17C which provide three alternate structures for the curved band ampoule strip for use with the system shown in FIG. 16. The objective in each case is to provide a thirty day supply of eye drops pre-packaged by the manufacturer (or alternately loaded by the user) within an ampoule strip that the user may feed into the delivery system shown. In FIG. 17A curved band ampoule strip 342 again incorporates along one edge a series of square cog wheel apertures 344 in the manner of a film strip for engaging the strip advancement mechanism described above. Positioned through the thin strip of the device is an array 346 of individual ampoules. In the version shown in FIG. 17A the array 346 comprises a three by ten array and requires the use of three separate push rods 386a-386c to engage each row of ten ampoules. FIGS. 18A & 18B described below provide the manner of operating the sequential cams and push rods for this type of ampoule strip.
FIG. 17B eliminates the need for multiple push rods and instead incorporates a push bar 386 that, depending upon the position of ampoule strip 342 (advanced using square shaped cog wheel apertures 344), serves to engage only a single ampoule at a time despite extending across the entire width of the ampoule strip. This requires a greater dispersion of the ampoules on the strip, but still provides a relatively simple mechanism for a compact thirty day supply of pre-packaged (or user loaded) eye drop ampoules. While still positioned in three rows of ten, each row is extended along the length of the strip such that an array 346 of three ampoules may be sequentially engaged by push rod 386 as the strip is advanced one increment at a time within the delivery system.
FIG. 17C provides yet another ampoule strip 342, again with cog wheel apertures 344 positioned along one edge of the strip for purposes of advancing the strip through the enclosure. A single ampoule push rod 386 independently engages each of the thirty individual ampoules 346 that are lined up immediately adjacent to each other along nearly the entire length of ampoule strip 342. The mechanism for operating this simplest of ampoule strip structures is shown and described in connection with FIGS. 20A & 20B below.
Each of the three versions of the curved band ampoule strip shown in FIGS. 17A-17C has its own advantages and disadvantages. FIG. 17A, for example, can provide a shorter strip, although it requires a more complex push rod system for activating each of the three ampoules within a single column on the three by ten array. FIG. 17B simplifies the activation system into an ampoule push bar, but requires uses of a longer strip to accommodate the same thirty individual ampoules. FIG. 17C shows a version that again requires a much longer strip, but allows for a narrower strip than that shown in FIG. 17B.
Once again, FIGS. 18A & 18B are detailed side views of the rotating cam and ampoule push rod structures for the ampoule strip shown in FIG. 17A. In this more complicated design, there are three rotating cams 372a-372c oriented one hundred twenty degrees one from the other (see FIG. 18B) in a manner that allows each rotating cam in turn to engage the adjacent push rod. In this version there are three push rods 386a-386c. As shown, each push rod is progressively pushed against the force of a return spring typically within a push rod guide as described above in the first preferred embodiment. In this manner, each of the individual ampoules in a single column shown in FIG. 17A may be activated, and the eye drops dispensed therefrom.
FIGS. 19A & 19B show the ampoule push bar 386 that extends across the width of the ampoule strip and is engaged by rotating cam 372 as required by the ampoule strip shown in FIG. 17B. In this instance, there are preferably two spring loaded push bar guides 388a & 388b to keep push bar 386 aligned as it moves up and down to impact down on the offset series of ampoules of the embodiment shown in FIG. 17B.
Finally, in the simplest configuration, FIGS. 20A & 20B disclose a single rotating cam 372 that impacts upon a single ampoule push rod 386, again operating against the force of a return spring, and as with each embodiment is controlled by the timed rotation of the cam shaft driven by a geared connection to the DC electric motor.
The ampoule strips shown in FIGS. 17A-17C and in alternate configurations having as few as one and as many as the thirty ampoules, can be implemented with pre-loaded ampoules, or in this alternate embodiment, may be structured to be filled individually by the user. When pre-loaded by the manufacturer, the curved band ampoule strip is produced in much the same manner as the first preferred embodiment described above. In the views of FIGS. 21A & 21B, three representative ampoules are shown. Ampoule strip 342 comprises a flat band through which are positioned a number of ampoule reservoirs 346 and dispensing nozzles 348, as well as other ampoule components similar to the first preferred embodiment. The advancement mechanism in this case is not seen in the cross-sectional detailed view as it comprises simply the line of apertures along the far edge of the ampoule strip. On the lower side of ampoule strip 342 are positioned corresponding dispensing nozzles 347a-347n (each covered in the view of FIG. 21A) over which are positioned a number of ampoule caps 349a-349n, each with hook arm engagement slots 390a-390n.
Once again, in the pre-loaded version of the short ampoule strip or stick, the individual ampoules include the nozzles and caps as shown, and further include a single backing layer into which the individual eye drops may be pre-loaded and retained. Again, this pre-loaded configuration is essentially the same as that described above in the first preferred embodiment. FIG. 21A, however, shows an alternate manner of allowing the user to individually load each ampoule on ampoule strip 342. Although the nozzles and caps are essentially the same, individual ampoules utilize individual back covers that are initially provided removed from the ampoule strip substrate. The rightmost ampoule shown in FIG. 21A, for example, shows an individual domed ampoule cap removeably positioned over the ampoule nozzle with a removable adhesive interlayer tab 343 that allows the user to open, load, and then seal the individual ampoule. By providing a layer or layers of adhesive, on the domed cap and/or on the substrate of the ampoule strip, the user may remove interlayer 343 from both the ampoule strip substrate and from the domed cap to expose one or two adhesive coated layers 341. The user may then load the ampoule with a drop of liquid from a standard eyedropper, or dispensing bottle, and then close the ampoule by placing the dome cap over the ampule nozzle on the ampoule strip allowing the adhesive surfaces to bond.
The center and leftmost ampoules shown in FIG. 21A provide such individual ampoules already loaded with a single dose of the eye drop ready for dispensing. Although it is anticipated that a portion of the enclosed space is taken up with air, the seal around the perimeter for each ampoule is airtight, such that when the push rod impacts the dome, the liquid positioned in the nozzle by force of gravity, is pushed out in the manner shown in FIG. 21B by the combination of the air pressure within the ampoule and the direct pressure on the liquid by the push rod through the ampoule cap.
Any number of individual ampoules that can be loaded by the user may be configured on the ampoule strip or stick. Depending upon the type of eye drops, and the dosage requirements, the user may, for example, load a simple three ampoule strip all at once, anticipating that the three doses would be used within a twenty-four hour period of time. In 24 hours, there is not enough time for significant bacterial growth. Again, different types of eye drops may come with recommendations to pre-load only one, or as many as thirty, individual ampoules at a time depending upon the rate at which they are dispensed and the need to use the eye drops within a shorter period of time.
Operation of the alternate preferred embodiment device is carried out using the same types of electric DC stepping motors and gear arrangements to control and advance the ampoule strip within the enclosure. Similar rechargeable batteries along with microcontrollers positioned on a circuit board within the enclosure are anticipated. Use of an LED indicator for informing the user of the readiness of the dispenser may similarly be implemented. The individual components of the dispensing system, including a number of pre-loaded or unloaded ampoule strips, may preferably be contained within a sealed box or other enclosure until opened for use.
Although the structure of the user loadable ampoule shown in the preferred embodiment incorporates chemical adhesive surfaces, other types of bonding such as heating may be utilized, especially when adapted for pre-loading by an eye drop manufacturer. In addition, although the embodiment shown in FIG. 21A uses a removable cap, it is also possible to structure a user loadable ampoule strip wherein the nozzle portion of the ampoule is removable against a continuous backing strip made up of dome-shaped reservoirs. In other words, the adhesive layers could appear on the front of the ampoule strip (the nozzle side) rather than on the back. Various other structures for configuring a user loadable ampoule are anticipated.
Although the present invention has been described in conjunction with certain preferred embodiments, those skilled in the art will recognize that modifications to those embodiments that do not alter the fundamental characteristics of the improvements still fall within the spirit and scope of the spirit of the invention. Although the improvements described in the present application have been shown in connection with a specific automated electromechanical eye drop dispensing device, those skilled in the art will recognize that these same improvements may be implemented in conjunction with a variety of different eye drop dispensing devices and are thus not tied directly to the function of the embodiment shown. The sensor systems, for example, may serve to operate in conjunction with an eye drop dispensing system that incorporates no electromechanical drive elements. These sensor elements could function in association with the appropriate electronic sensor circuitry to respond to the passage of a drop and the landing of the drop on the eye regardless of what motivated the dispensing of the drop from the bottle. In like manner, the improvements to the cushioned feet on the flexible legs of the eyelid retracting assembly of the present invention might be utilized in conjunction with a variety of different eye drop dispensing devices that incorporate the eyelid retracting assembly. Other variations in the preferred embodiment, such as may relate to size or material composition of the overall enclosure and the eyelid retracting assembly, are anticipated and do not necessarily fall outside the spirit and scope of the present invention.