This invention relates generally to semiconductor structures and devices and to a method for their fabrication, and more specifically to semiconductor structures and microresonator devices and to the fabrication and use of semiconductor structures, microresonator devices, and integrated circuits that include a monocrystalline material layer comprised of semiconductor material, compound semiconductor material, and/or other types of material such as metals and non-metals.
Semiconductor devices often include multiple layers of conductive, insulating, and semiconductive layers. Often, the desirable properties of such layers improve with the crystallinity of the layer. For example, the electron mobility and electron lifetime of semiconductive layers improve as the crystallinity of the layer increases. Similarly, the free electron concentration of conductive layers and the electron charge displacement and electron energy recoverability of insulative or dielectric films improve as the crystallinity of these layers increases.
For many years, attempts have been made to grow various monolithic thin films on a foreign substrate such as silicon (Si). To achieve optimal characteristics of the various monolithic layers, however, a monocrystalline film of high crystalline quality is desired. Attempts have been made, for example, to grow various monocrystalline layers on a substrate such as germanium, silicon, and various insulators. These attempts have generally been unsuccessful because lattice mismatches between the host crystal and the grown crystal have caused the resulting layer of monocrystalline material to be of low crystalline quality.
If a large area thin film of high quality monocrystalline material were available at low cost, a variety of semiconductor devices could advantageously be fabricated in or using that film at a low cost compared to the cost of fabricating such devices beginning with a bulk wafer of semiconductor material or in an epitaxial film of such material on a bulk wafer of semiconductor material. In addition, if a thin film of high quality monocrystalline material could be realized beginning with a bulk wafer such as a silicon wafer, an integrated device structure could be achieved that took advantage of the best properties of both the silicon and the high quality monocrystalline material.
Some functions related to microresonators have been unavailable or limited in current technologies because of the unavailability of a low cost wafer structure that includes high quality compound monocrystalline materials in thin layers over a silicon substrate. Existing microresonators include non-gained controlled resonators including those whose critical coupling is controlled by tuning the resonant wavelength by varying the effective index of refraction either through temperature control or by varying the refractive index of a material in the evanescent field region immediately surrounding the resonator (e.g. in an electro-optic polymer material). Another implementation of a gain-controlled resonator uses an optically emitting doped oxide material overlying the resonator that is photo-pumped.
The present invention is illustrated by way of example and not limitation in the accompanying figures, in which like references indicate similar elements, and in which:
Skilled artisans will appreciate that elements in the figures are illustrated for simplicity and clarity and have not necessarily been drawn to scale. For example, the dimensions of some of the elements in the figures may be exaggerated relative to other elements to help to improve understanding of embodiments of the present invention.
In accordance with one embodiment of the invention, structure 20 also includes an amorphous intermediate layer 28 positioned between substrate 22 and accommodating buffer layer 24. Structure 20 may also include a template layer 30 between the accommodating buffer layer and monocrystalline material layer 26. As will be explained more fully below, the template layer helps to initiate the growth of the monocrystalline material layer on the accommodating buffer layer. The amorphous intermediate layer helps to relieve the strain in the accommodating buffer layer and by doing so, aids in the growth of a high crystalline quality accommodating buffer layer.
Substrate 22, in accordance with an embodiment of the invention, is a monocrystalline semiconductor or compound semiconductor wafer, preferably of large diameter. The wafer can be of, for example, a material from Group IV of the periodic table. Examples of Group IV semiconductor materials include silicon, germanium, mixed silicon and germanium, mixed silicon and carbon, mixed silicon, germanium and carbon, and the like. Preferably substrate 22 is a wafer containing silicon or germanium, and most preferably is a high quality monocrystalline silicon wafer as used in the semiconductor industry. Substrate 22 may also be, for example, silicon-on-insulator (SOI), where a thin layer of silicon is on top of an insulating material such as silicon oxide or glass. Accommodating buffer layer 24 is preferably a monocrystalline oxide or nitride material epitaxially grown on the underlying substrate. In accordance with one embodiment of the invention, amorphous intermediate layer 28 is grown on substrate 22 at the interface between substrate 22 and the growing accommodating buffer layer by the oxidation of substrate 22 during the growth of layer 24. The amorphous intermediate layer serves to relieve strain that might otherwise occur in the monocrystalline accommodating buffer layer as a result of differences in the lattice constants of the substrate and the buffer layer. As used herein, lattice constant refers to the distance between atoms of a cell measured in the plane of the surface. If such strain is not relieved by the amorphous intermediate layer, the strain may cause defects in the crystalline structure of the accommodating buffer layer. Defects in the crystalline structure of the accommodating buffer layer, in turn, would make it difficult to achieve a high quality crystalline structure in monocrystalline material layer 26 which may comprise a semiconductor material, a compound semiconductor material, or another type of material such as a metal or a non-metal.
Accommodating buffer layer 24 is preferably a monocrystalline oxide or nitride material selected for its crystalline compatibility with the underlying substrate and with the overlying material layer. For example, the material could be an oxide or nitride having a lattice structure closely matched to the substrate and to the subsequently applied monocrystalline material layer. Materials that are suitable for the accommodating buffer layer include metal oxides such as the alkaline earth metal titanates, alkaline earth metal zirconates, alkaline earth metal hafnates, alkaline earth metal tantalates, alkaline earth metal ruthenates, alkaline earth metal niobates, alkaline earth metal vanadates, alkaline earth metal tin-based perovskites, lanthanum aluminate, lanthanum scandium oxide, and other perovskite oxide materials, and gadolinium oxide. Additionally, various nitrides such as gallium nitride, aluminum nitride, and boron nitride may also be used for the accommodating buffer layer. Most of these materials are insulators, although strontium ruthenate, for example, is a conductor. Generally, these materials are metal oxides or metal nitrides, and more particularly, these metal oxides or nitrides typically include at least two different metallic elements. In some specific applications, the metal oxides or nitrides may include three or more different metallic elements.
Amorphous interface layer 28 is preferably an oxide formed by the oxidation of the surface of substrate 22, and more preferably is composed of a silicon oxide. The thickness of layer 28 is sufficient to relieve strain attributed to mismatches between the lattice constants of substrate 22 and accommodating buffer layer 24. Typically, layer 28 has a thickness in the range of approximately 0.5-5 nm.
The material for monocrystalline material layer 26 can be selected, as desired, for a particular structure or application. For example, the monocrystalline material of layer 26 may comprise a compound semiconductor which can be selected, as needed for a particular semiconductor structure, from any of the Group IIIA and VA elements (III-V semiconductor compounds), mixed III-V compounds, Group II (A or B) and VIA elements (II-VI semiconductor compounds), mixed II-VI compounds, Group IV and VI elements (IV-VI semiconductor compounds), mixed IV-VI compounds, Group IV elements (Group IV semiconductors), and mixed Group IV compounds. Examples include gallium arsenide (GaAs), gallium indium arsenide (GaInAs), gallium aluminum arsenide (GaAlAs), indium phosphide (InP), cadmium sulfide (CdS), cadmium mercury telluride (CdHgTe), zinc selenide (ZnSe), zinc sulfur selenide (ZnSSe), lead selenide (PbSe), lead telluride (PbTe), lead sulfide selenide (PbSSe), silicon (Si), germanium (Ge), silicon germanium (SiGe), silicon germanium carbide (SiGeC), and the like. However, monocrystalline material layer 26 may also comprise other semiconductor materials, metals, or non-metal materials which are used in the formation of semiconductor structures, devices and/or integrated circuits.
Appropriate materials for template 30 are discussed below. Suitable template materials chemically bond to the surface of the accommodating buffer layer 24 at selected sites and provide sites for the nucleation of the epitaxial growth of monocrystalline material layer 26. When used, template layer 30 has a thickness ranging from about 1 to about 10 monolayers.
As explained in greater detail below, amorphous layer 36 may be formed by first forming an accommodating buffer layer and an amorphous interface layer in a similar manner to that described above. Monocrystalline layer 38 is then formed (by epitaxial growth) overlying the monocrystalline accommodating buffer layer. The accommodating buffer layer may then be optionally exposed to an anneal process to convert at least a portion of the monocrystalline accommodating buffer layer to an amorphous layer. Amorphous layer 36 formed in this manner comprises materials from both the accommodating buffer and interface layers, which amorphous layers may or may not amalgamate. Thus, layer 36 may comprise one or two amorphous layers. Formation of amorphous layer 36 between substrate 22 and additional monocrystalline layer 26 (subsequent to layer 38 formation) relieves stresses between layers 22 and 38 and provides strain relief for subsequent processing—e.g., monocrystalline material layer 26 formation.
The processes previously described above in connection with
Additional monocrystalline layer 38 may include any of the materials described throughout this application in connection with either of monocrystalline material layer 26 or additional buffer layer 32. For example, when monocrystalline material layer 26 comprises a semiconductor or compound semiconductor material, layer 38 may include monocrystalline Group IV, monocrystalline compound semiconductor materials, or other monocrystalline materials including oxides and nitrides.
In accordance with one embodiment of the present invention, additional monocrystalline layer 38 serves as an anneal cap during layer 36 formation and as a template for subsequent monocrystalline layer 26 formation. Accordingly, layer 38 is preferably thick enough to provide a suitable template for layer 26 growth (at least one monolayer) and thin enough to allow layer 38 to form as a substantially defect free monocrystalline material.
In accordance with another embodiment of the invention, additional monocrystalline layer 38 comprises monocrystalline material (e.g., a material discussed above in connection with monocrystalline layer 26) that is thick enough to form devices within layer 38. In this case, a semiconductor structure in accordance with the present invention does not include monocrystalline material layer 26. In other words, the semiconductor structure in accordance with this embodiment only includes one monocrystalline layer disposed above amorphous oxide layer 36.
The following non-limiting, illustrative examples illustrate various combinations of materials useful in structures 20, 40, and 34 in accordance with various alternative embodiments of the invention. These examples are merely illustrative, and it is not intended that the invention be limited to these illustrative examples.
In accordance with one embodiment of the invention, monocrystalline substrate 22 is a silicon substrate typically (100) oriented. The silicon substrate can be, for example, a silicon substrate as is commonly used in making complementary metal oxide semiconductor (CMOS) integrated circuits having a diameter of about 200-300 mm. In accordance with this embodiment of the invention, accommodating buffer layer 24 is a monocrystalline layer of SrzBa1-zTiO3 where z ranges from 0 to 1 and the amorphous intermediate layer is a layer of silicon oxide (SiOx) formed at the interface between the silicon substrate and the accommodating buffer layer. The value of z is selected to obtain one or more lattice constants closely matched to corresponding lattice constants of the subsequently formed layer 26. The lattice structure of the resulting crystalline oxide exhibits a substantially 45 degree rotation with respect to the substrate silicon lattice structure. The accommodating buffer layer can have a thickness of about 2 to about 100 nanometers (nm) and preferably has a thickness of about 5 nm. In general, it is desired to have an accommodating buffer layer thick enough to isolate the monocrystalline material layer 26 from the substrate to obtain the desired electrical and optical properties. Layers thicker than 100 nm usually provide little additional benefit while increasing cost unnecessarily; however, thicker layers may be fabricated if needed. The amorphous intermediate layer of silicon oxide can have a thickness of about 0.5-5 nm, and preferably a thickness of about 1 to 2 nm.
In accordance with this embodiment of the invention, monocrystalline material layer 26 is a compound semiconductor layer of gallium arsenide (GaAs) or aluminum gallium arsenide (AlGaAs) having a thickness of about 1 nm to about 100 micrometers (μm) and preferably a thickness of about 0.5 μm to 10 μm. The thickness generally depends on the application for which the layer is being prepared. To facilitate the epitaxial growth of the gallium arsenide or aluminum gallium arsenide on the monocrystalline oxide, a template layer is formed by depositing a surfactant layer comprising one element of the compound semiconductor layer to react with the surface of the oxide layer that has been previously capped. The capping layer is preferably up to 3 monolayers of Sr—O, Ti—O, strontium or titanium. The template layer is preferably of Sr—Ga, Ti—Ga, Ti—As, Ti—O—As, Ti—O—Ga, Sr—O—As, Sr—Ga—O, Sr—Al—O, or Sr—Al. The thickness of the template layer is preferably about 0.5 to about 10 monolayers, and preferably about 0.5-3 monolayers. By way of a preferred example 0.5-3 monolayers of Ga deposited on a capped Sr—O terminated surface have been illustrated to successfully grow GaAs layers. The resulting lattice structure of the compound semiconductor material exhibits a substantially 45 degree rotation with respect to the accommodating buffer layer lattice structure.
In accordance with a further embodiment of the invention, monocrystalline substrate 22 is a silicon substrate as described above. The accommodating buffer layer is a monocrystalline oxide of strontium or barium zirconate or hafnate in a cubic or orthorhombic phase with an amorphous intermediate layer of silicon oxide formed at the interface between the silicon substrate and the accommodating buffer layer. The accommodating buffer layer can have a thickness of about 2-100 nm and preferably has a thickness of at least 4 nm to ensure adequate crystalline and surface quality and is formed of monocrystalline SrZrO3, BaZrO3, SrHfO3, BaSnO3 or BaHfO3. For example, a monocrystalline oxide layer of BaZrO3 can grow at a temperature of about 700 degrees C. The lattice structure of the resulting crystalline oxide exhibits a substantially 45 degree rotation with respect to the substrate silicon lattice structure.
An accommodating buffer layer formed of these zirconate or hafnate materials is suitable for the growth of a monocrystalline material layer which comprises compound semiconductor materials in an indium phosphide (InP) system. In this system, the compound semiconductor material can be, for example, indium phosphide (InP), indium gallium arsenide (InGaAs), aluminum indium arsenide, (AlInAs), or aluminum gallium indium arsenic phosphide (AlGaInAsP), having a thickness of about 1.0 nm to 10 μm. A suitable template for this structure is about 0.5-10 monolayers of one of a material M-N and a material M-O-N, wherein M is selected from at least one of Zr, Hf, Ti, Sr, and Ba; and N is selected from at least one of As, P, Ga, Al, and In. Alternatively, the template may comprise 0.5-10 monolayers of gallium (Ga), aluminum (Al), indium (In), or a combination of gallium, aluminum or indium, zirconium-arsenic (Zr—As), zirconium-phosphorus (Zr—P), hafnium-arsenic (Hf—As), hafnium-phosphorus (Hf—P), strontium-oxygen-arsenic (Sr—O—As), strontium-oxygen-phosphorus (Sr—O—P), barium-oxygen-arsenic (Ba—O—As), indium-strontium-oxygen (In—Sr—O), or barium-oxygen-phosphorus (Ba—O—P), and preferably 0.5-2 monolayers of one of these materials. By way of an example, for a barium zirconate accommodating buffer layer, the surface is terminated with 0.5-2 monolayers of zirconium followed by deposition of 0.5-2 monolayers of arsenic to form a Zr—As template. A monocrystalline layer of the compound semiconductor material from the indium phosphide system is then grown on the template layer. The resulting lattice structure of the compound semiconductor material exhibits a substantially 45 degree rotation with respect to the accommodating buffer layer lattice structure and a lattice mismatch between the buffer layer and (100) oriented InP of less than 2.5%, and preferably less than about 1.0%.
In accordance with a further embodiment of the invention, a structure is provided that is suitable for the growth of an epitaxial film of a monocrystalline material comprising a II-VI material overlying a silicon substrate. The substrate is preferably a silicon wafer as described above. A suitable accommodating buffer layer material is SrxBa1-xTiO3, where x ranges from 0 to 1, having a thickness of about 2-100 nm and preferably a thickness of about 3-10 nm. The lattice structure of the resulting crystalline oxide exhibits a substantially 45 degree rotation with respect to the substrate silicon lattice structure. Where the monocrystalline layer comprises a compound semiconductor material, the II-VI compound semiconductor material can be, for example, zinc selenide (ZnSe) or zinc sulfur selenide (ZnSSe). A suitable template for this material system includes 0.5-10 monolayers of zinc-oxygen (Zn—O) followed by 0.5-2 monolayers of an excess of zinc followed by the selenidation of zinc on the surface. Alternatively, a template can be, for example, 0.5-10 monolayers of strontium-sulfur (Sr—S) followed by the ZnSSe.
This embodiment of the invention is an example of structure 40 illustrated in FIG. 2. Substrate 22, accommodating buffer layer 24, and monocrystalline material layer 26 can be similar to those described in example 1. In addition, an additional buffer layer 32 serves to alleviate any strains that might result from a mismatch of the crystal lattice of the accommodating buffer layer and the lattice of the monocrystalline material. Buffer layer 32 can be a layer of germanium or a GaAs, an aluminum gallium arsenide (AlGaAs), an indium gallium phosphide (InGaP), an aluminum gallium phosphide (AlGaP), an indium gallium arsenide (InGaAs), an aluminum indium phosphide (AlInP), a gallium arsenide phosphide (GaAsP), or an indium gallium phosphide (InGaP) strain compensated superlattice. In accordance with one aspect of this embodiment, buffer layer 32 includes a GaAsxP1-x superlattice, wherein the value of x ranges from 0 to 1. In accordance with another aspect, buffer layer 32 includes an InyGa1-yP superlattice, wherein the value of y ranges from 0 to 1. By varying the value of x or y, as the case may be, the lattice constant is varied from bottom to top across the superlattice to create a substantial (i.e., effective) match between lattice constants of the underlying oxide and the overlying monocrystalline material which in this example is a compound semiconductor material. The compositions of other compound semiconductor materials, such as those listed above, may also be similarly varied to manipulate the lattice constant of layer 32 in a like manner. The superlattice can have a thickness of about 50-500 nm and preferably has a thickness of about 100-200 nm. The superlattice period can have a thickness of about 2-15 nm, preferably 2-10 nm. The template for this structure can be the same as that described in example 1. Alternatively, buffer layer 32 can be a layer of monocrystalline germanium having a thickness of 1-50 nm and preferably having a thickness of about 2-20 nm. In using a germanium buffer layer, a template layer of either germanium-strontium (Ge—Sr) or germanium-titanium (Ge—Ti) having a thickness of about 0.5-2 monolayers can be used as a nucleating site for the subsequent growth of the monocrystalline material layer which in this example is a compound semiconductor material. The formation of the oxide layer is capped with either a 0.5-2 monolayer of strontium or a 0.5-2 monolayer of titanium to act as a nucleating site for the subsequent deposition of the monocrystalline germanium. The layer of strontium or titanium provides a nucleating site to which the first monolayer of germanium can bond.
This example also illustrates materials useful in a structure 40 as illustrated in FIG. 2. Substrate material 22, accommodating buffer layer 24, monocrystalline material layer 26 and template layer 30 can be the same as those described above in example 2. In addition, additional buffer layer 32 is inserted between the accommodating buffer layer and the overlying monocrystalline material layer. The buffer layer, a further monocrystalline material which in this instance comprises a semiconductor material, can be, for example, a graded layer of indium gallium arsenide (InGaAs) or indium aluminum arsenide (InAlAs). In accordance with one aspect of this embodiment, additional buffer layer 32 includes InGaAs, in which the indium composition varies from 0% at the monocrystalline material layer 26 to about 50% at the accommodating buffer layer 24. The additional buffer layer 32 preferably has a thickness of about 10-30 nm. Varying the composition of the buffer layer from GaAs to InGaAs serves to provide an effective (i.e. substantial) lattice match between the underlying monocrystalline oxide material and the overlying layer of monocrystalline material which in this example is a compound semiconductor material. Such a buffer layer is especially advantageous if there is a lattice mismatch between accommodating buffer layer 24 and monocrystalline material layer 26.
This example provides exemplary materials useful in structure 34, as illustrated in FIG. 3. Substrate material 22, template layer 30, and monocrystalline material layer 26 may be the same as those described above in connection with example 1.
Amorphous layer 36 is an amorphous oxide layer which is suitably formed of a combination of amorphous intermediate layer materials (e.g., layer 28 materials as described above) and accommodating buffer layer materials (e.g., layer 24 materials as described above). For example, amorphous layer 36 may include a combination of SiOx and SrzBa1-z TiO3 (where z ranges from 0 to 1), which combine or mix, at least partially, during an anneal process to form amorphous oxide layer 36.
The thickness of amorphous layer 36 may vary from application to application and may depend on such factors as desired insulating properties of layer 36, type of monocrystalline material comprising layer 26, and the like. In accordance with one exemplary aspect of the present embodiment, layer 36 thickness is about 1 nm to about 100 nm, preferably about 1-10 nm, and more preferably about 3-5 nm.
Layer 38 comprises a monocrystalline material that can be grown epitaxially over a monocrystalline oxide material such as material used to form accommodating buffer layer 24. In accordance with one embodiment of the invention, layer 38 includes the same materials as those comprising layer 26. For example, if layer 26 includes GaAs, layer 38 also includes GaAs. However, in accordance with other embodiments of the present invention, layer 38 may include materials different from those used to form layer 26. In accordance with one exemplary embodiment of the invention, layer 38 is about 1 nm to about 500 nm thick.
Referring again to
In accordance with one embodiment of the invention, substrate 22 is typically a (100) oriented monocrystalline silicon wafer and accommodating buffer layer 24 is a layer of strontium barium titanate. Substantial (i.e., effective) matching of lattice constants between these two materials is achieved by rotating the crystal orientation of the titanate material by approximately 45° with respect to the crystal orientation of the silicon substrate wafer. The inclusion in the structure of amorphous interface layer 28, a silicon oxide layer in this example, if it is of sufficient thickness, serves to reduce strain in the titanate monocrystalline layer that might result from any mismatch in the lattice constants of the host silicon wafer and the grown titanate layer. As a result, in accordance with an embodiment of the invention, a high quality, thick, monocrystalline titanate layer is achievable.
Still referring to
The following example illustrates a process, in accordance with one embodiment of the invention, for fabricating a semiconductor structure such as the structures depicted in
It is understood that precise measurement of actual temperatures in MBE equipment, as well as other processing equipment, is difficult, and is commonly accomplished by the use of a pyrometer or by means of a thermocouple placed in close proximity to the substrate. Calibrations can be performed to correlate the pyrometer temperature reading to that of the thermocouple. However, neither temperature reading is necessarily a precise indication of actual substrate temperature. Furthermore, variations may exist when measuring temperatures from one MBE system to another MBE system. For the purpose of this description, typical pyrometer temperatures will be used, and it should be understood that variations may exist in practice due to these measurement difficulties.
In accordance with an alternate embodiment of the invention, the native silicon oxide can be converted and the substrate surface can be prepared for the growth of a monocrystalline oxide layer by depositing an alkaline earth metal oxide, such as strontium oxide, strontium barium oxide, or barium oxide, onto the substrate surface by MBE at a low temperature and by subsequently heating the structure to a temperature of above 720° C. At this temperature a solid state reaction takes place between the strontium oxide and the native silicon oxide causing the reduction of the native silicon oxide and leaving an ordered (2×1) structure on the substrate surface. If an ordered (2×1) structure has not been achieved at this stage of the process, the structure may be exposed to additional strontium until an ordered (2×1) structure is obtained. Again, this forms a template for the subsequent growth of an ordered monocrystalline oxide layer.
Following the removal of the silicon oxide from the surface of the substrate, in accordance with one embodiment of the invention, the substrate is cooled to a temperature in the range of about 200-600° C., preferably 350°-550° C., and a layer of strontium titanate is grown on the template layer by molecular beam epitaxy. The MBE process is initiated by opening shutters in the MBE apparatus to expose strontium, titanium and oxygen sources. The ratio of strontium and titanium is approximately 1:1. The partial pressure of oxygen is initially set at a minimum value to grow stoichiometric strontium titanate at a growth rate of about 0.1-0.8 nm per minute, preferably 0.3-0.5 nm per minute. After initiating growth of the strontium titanate, the partial pressure of oxygen is increased above the initial minimum value. The stoichiometry of the titanium can be controlled during growth by monitoring RHEED patterns and adjusting the titanium flux. The overpressure of oxygen causes the growth of an amorphous silicon oxide layer at the interface between the underlying substrate and the strontium titanate layer. This stage may be applied either during or after the growth of the strontium titanate layer. The growth of the amorphous silicon oxide layer results from the diffusion of oxygen through the strontium titanate layer to the interface where the oxygen reacts with silicon at the surface of the underlying substrate. The strontium titanate grows as an ordered (100) monocrystal with the (100) crystalline orientation rotated by 45° with respect to the underlying substrate. Strain that otherwise might exist in the strontium titanate layer because of the small mismatch in lattice constant between the silicon substrate and the growing crystal is relieved in the amorphous silicon oxide intermediate layer.
After the strontium titanate layer has been grown to the desired thickness, the monocrystalline strontium titanate is capped by a template layer that is conducive to the subsequent growth of an epitaxial layer of a desired monocrystalline material. For example, for the subsequent growth of a monocrystalline compound semiconductor material layer of gallium arsenide, the MBE growth of the strontium titanate monocrystalline layer can be capped by terminating the growth with up to 2 monolayers of titanium, up to 2 monolayers of strontium, up to 2 monolayers of titanium-oxygen or with up to 2 monolayers of strontium-oxygen. Following the formation of this capping layer, arsenic is deposited to form a Ti—As bond, a Ti—O—As bond or a Sr—O—As bond. Any of these form an appropriate template for deposition and formation of a gallium arsenide monocrystalline layer. Following the formation of the template, gallium is subsequently introduced to the reaction with the arsenic and gallium arsenide forms. Alternatively, 0.5-3 monolayers of gallium can be deposited on the capping layer to form a Sr—O—Ga bond, or a Ti—O—Ga bond, and arsenic is subsequently introduced with the gallium to form the GaAs.
The structure illustrated in
Structure 34, illustrated in
In accordance with one aspect of this embodiment, layer 36 is formed by exposing substrate 22, the accommodating buffer layer 24, the amorphous oxide layer 28, and monocrystalline layer 38 to a rapid thermal anneal process with a peak temperature of about 700° C. to about 1000° C. (actual temperature) and a process time of about 5 seconds to about 20 minutes. However, other suitable anneal processes may be employed to convert the accommodating buffer layer to an amorphous layer in accordance with the present invention. For example, laser annealing, electron beam annealing, or “conventional” thermal annealing processes (in the proper environment) may be used to form layer 36. When conventional thermal annealing is employed to form layer 36, an overpressure of one or more constituents of layer 38 may be required to prevent degradation of layer 38 during the anneal process. For example, when layer 38 includes GaAs, the anneal environment preferably includes an overpressure of arsenic to mitigate degradation of layer 38. Alternately, an appropriate anneal cap, such as silicon nitride, may be utilized to prevent the degradation of layer 38 during the anneal process with the anneal cap being removed after the annealing process.
As noted above, layer 38 of structure 34 may include any materials suitable for either of layers 32 or 26. Accordingly, any deposition or growth methods described in connection with either layer 32 or 26 may be employed to deposit layer 38.
The process described above illustrates a process for forming a semiconductor structure including a silicon substrate, an overlying oxide layer, and a monocrystalline material layer comprising a gallium arsenide compound semiconductor layer by the process of molecular beam epitaxy. The process can also be carried out by the process of chemical vapor deposition (CVD), metal organic chemical vapor deposition (MOCVD), migration enhanced epitaxy (MEE), atomic layer epitaxy (ALE), physical vapor deposition (PVD), chemical solution deposition (CSD), pulsed laser deposition (PLD), or the like. Further, by a similar process, other monocrystalline accommodating buffer layers such as alkaline earth metal titanates, zirconates, hafnates, tantalates, vanadates, ruthenates, niobates, alkaline earth metal tin-based perovskites, lanthanum aluminate, lanthanum scandium oxide, and gadolinium oxide can also be grown. Further, by a similar process such as MBE, other monocrystalline material layers comprising other III-V, II-VI, and IV-VI monocrystalline compound semiconductors, semiconductors, metals and non-metals can be deposited overlying the monocrystalline oxide accommodating buffer layer.
Each of the variations of monocrystalline material layer and monocrystalline oxide accommodating buffer layer uses an appropriate template for initiating the growth of the monocrystalline material layer. For example, if the accommodating buffer layer is an alkaline earth metal zirconate, the oxide can be capped by a thin layer of zirconium. The deposition of zirconium can be followed by the deposition of arsenic or phosphorus to react with the zirconium as a precursor to depositing indium gallium arsenide, indium aluminum arsenide, or indium phosphide, respectively. Similarly, if the monocrystalline oxide accommodating buffer layer is an alkaline earth metal hafnate, the oxide layer can be capped by a thin layer of hafnium. The deposition of hafnium is followed by the deposition of arsenic or phosphorous to react with the hafnium as a precursor to the growth of an indium gallium arsenide, indium aluminum arsenide, or indium phosphide layer, respectively. In a similar manner, strontium titanate can be capped with a layer of strontium or strontium and oxygen, and barium titanate can be capped with a layer of barium or barium and oxygen. Each of these depositions can be followed by the deposition of arsenic or phosphorus to react with the capping material to form a template for the deposition of a monocrystalline material layer comprising compound semiconductors such as indium gallium arsenide, indium aluminum arsenide, or indium phosphide.
Single crystal silicon has 4-fold symmetry. That is, its structure is essentially the same as it is rotated in 90 degree steps in the plane of the (100) surface. Likewise, strontium titanate and many other oxides have a 4-fold symmetry. On the other hand, GaAs and related compound semiconductors have a 2-fold symmetry. The 0 degree and 180 degree rotations of the 2-fold symmetry are not the same as the 90 degree and 270 degree rotations of the 4-fold symmetry. If GaAs is nucleated upon strontium titanate at multiple locations on the surface, two different phases are produced. As the material continues to grow, the two phases meet and form anti-phase domains. These anti-phase domains can have an adverse effect upon certain types of devices, particularly minority carrier devices like lasers and light emitting diodes.
In accordance with one embodiment of the present invention, in order to provide for the formation of high quality monocrystalline compound semiconductor material, the starting substrate is off-cut or misoriented from the ideal (100) orientation by 0.5 to 6 degrees in any direction, and preferably 1 to 2 degrees toward the [110] direction. This offcut provides for steps or terraces on the silicon surface and it is believed that these substantially reduce the number of anti-phase domains in the compound semiconductor material, in comparison to a substrate having an offcut near 0 degrees or off cuts larger than 6 degrees. The greater the amount of off-cut, the closer the steps and the smaller the terrace widths become. At very small angles, nucleation occurs at other than the step edges, decreasing the size of single phase domains. At high angles, smaller terraces decrease the size of single phase domains. Growing a high quality oxide, such as strontium titanate, upon a silicon surface causes surface features to be replicated on the surface of the oxide. The step and terrace surface features are replicated on the surface of the oxide, thus preserving directional cues for subsequent growth of compound semiconductor material. Because the formation of the amorphous interface layer occurs after the nucleation of the oxide has begun, the formation of the amorphous interface layer does not disturb the step structure of the oxide.
After the growth of an appropriate accommodating buffer layer, such as strontium titanate or other materials as described earlier, a template layer is used to promote the proper nucleation of compound semiconductor material. In accordance with one embodiment, the strontium titanate is capped with up to 2 monolayers of SrO. The template layer 30 for the nucleation of GaAs is formed by raising the substrate to a temperature in the range of 540 to 630 degrees and exposing the surface to gallium. The amount of gallium exposure is preferably in the range of 0.5 to 5 monolayers. It is understood that the exposure to gallium does not imply that all of the material will actually adhere to the surface. Not wishing to be bound by theory, it is believed that the gallium atoms adhere more readily at the exposed step edges of the oxide surface. Thus, subsequent growth of gallium arsenide preferentially forms along the step edges and prefer an initial alignment in a direction parallel to the step edge, thus forming predominantly single domain material. Other materials besides gallium may also be utilized in a similar fashion, such as aluminum and indium or a combination thereof.
After the deposition of the template, a compound semiconductor material such as gallium arsenide may be deposited. The arsenic source shutter is preferably opened prior to opening the shutter of the gallium source. Small amounts of other elements may also be deposited simultaneously to aid nucleation of the compound semiconductor material layer. For example, aluminum may be deposited to form AlGaAs. As noted above, layer 38, illustrated in
The quality of the compound semiconductor material can be improved by including one or more in-situ anneals at various points during the growth. The growth is interrupted, and the substrate is raised to a temperature of between 500°-650° C., and preferably about 550°-600° C. The anneal time depends on the temperature selected, but for an anneal of about 550° C., the length of time is preferably about 15 minutes. The anneal can be performed at any point during the deposition of the compound semiconductor material, but preferably is performed when there is 50 nm to 500 nm of compound semiconductor material deposited. Additional anneals may also be done, depending on the total thickness of material being deposited.
In accordance with one embodiment, monocrystalline material layer 26 is GaAs. Layer 26 may be deposited on layer 24 at various rates, which may vary from application to application; however in a preferred embodiment, the growth rate of layer 26 is about 0.2 to 1.0 μm/hr. The temperature at which layer 26 is grown may also vary, but in one embodiment, layer 26 is grown at a temperature of about 300°-600° C. and preferably about 350°-500° C.
Turning now to
An accommodating buffer layer 74 such as a monocrystalline oxide layer is first grown on a substrate layer 72, such as silicon, with an amorphous interface layer 78 as illustrated in FIG. 9. Monocrystalline oxide layer 74 may be comprised of any of those materials previously discussed with reference to layer 24 in
Next, a silicon layer 81 is deposited over monocrystalline oxide layer 74 via MBE, CVD, MOCVD, MEE, ALE, PVD, CSD, PLD, or the like as illustrated in
Rapid thermal annealing is then conducted in the presence of a carbon source such as acetylene or methane, for example at a temperature within a range of about 800° C. to 1000° C. to form capping layer 82 and silicate amorphous layer 86. However, other suitable carbon sources may be used as long as the rapid thermal annealing step functions to amorphize the monocrystalline oxide layer 74 into a silicate amorphous layer 86 and carbonize the top silicon layer 81 to form capping layer 82 which in this example would be a silicon carbide (SiC) layer as illustrated in FIG. 11. The formation of amorphous layer 86 is similar to the formation of layer 36 illustrated in FIG. 3 and may comprise any of those materials described with reference to layer 36 in
Finally, as shown in
Although GaN has been grown on SiC substrate in the past, this embodiment of the invention possesses a one step formation of the compliant substrate containing a SiC top surface and an amorphous layer on a Si surface. More specifically, this embodiment of the invention uses an intermediate single crystal oxide layer that is amorphized to form a silicate layer which adsorbs the strain between the layers. Moreover, unlike past use of a SiC substrate, this embodiment of the invention is not limited by wafer size which is usually less than 50 mm in diameter for prior art SiC substrates.
The monolithic integration of nitride containing semiconductor compounds containing group III-V nitrides and silicon devices can be used for high temperature and high power RF applications and optoelectronics. GaN systems have particular use in the photonic industry for the blue/green and UV light sources and detection. High brightness light emitting diodes (LEDs) and lasers may also be formed within the GaN system.
Clearly, those embodiments specifically describing structures having compound semiconductor portions and Group IV semiconductor portions are meant to illustrate embodiments of the present invention and not limit the present invention. There are a multiplicity of other combinations and other embodiments of the present invention. For example, the present invention includes structures and methods for fabricating material layers which form semiconductor structures, devices and integrated circuits including other layers such as metal and non-metal layers. More specifically, the invention includes structures and methods for forming a compliant substrate which is used in the fabrication of semiconductor structures, devices and integrated circuits and the material layers suitable for fabricating those structures, devices, and integrated circuits. By using embodiments of the present invention, it is now simpler to integrate devices that include monocrystalline layers comprising semiconductor and compound semiconductor materials, as well as other material layers that are used to form those devices, with other components that work better or are easily and/or inexpensively formed within semiconductor or compound semiconductor materials. This allows a device to be shrunk, the manufacturing costs to decrease, and yield and reliability to increase.
In accordance with one embodiment of this invention, a monocrystalline semiconductor or compound semiconductor wafer can be used in forming monocrystalline material layers over the wafer. In this manner, the wafer is essentially a “handle” wafer used during the fabrication of semiconductor electrical components within a monocrystalline layer overlying the wafer. Therefore, electrical components can be formed within semiconductor materials over a wafer of at least approximately 200 millimeters in diameter and possibly at least approximately 300 millimeters.
By the use of this type of substrate, the relatively inexpensive “handle” wafer overcomes the fragile nature of wafers fabricated of monocrystalline compound semiconductor or other monocrystalline material by placing the materials over a relatively more durable and easy to fabricate base substrate. Therefore, an integrated circuit can be formed such that all electrical components, and particularly all active electronic devices, can be formed within or using the monocrystalline material layer even though the substrate itself may include a different monocrystalline semiconductor material. Fabrication costs for compound semiconductor devices and other devices employing non-silicon monocrystalline materials should decrease because larger substrates can be processed more economically and more readily compared to the relatively smaller and more fragile substrates (e.g., conventional compound semiconductor wafers).
Insulating material 59 and any other layers that may have been formed or deposited during the processing of semiconductor component 56 in region 53 are removed from the surface of region 57 to provide a bare silicon surface in that region. As is well known, bare silicon surfaces are highly reactive and a native silicon oxide layer can quickly form on the bare surface. A layer (preferably 1-3 monolayers) of strontium or strontium and oxygen is deposited onto the native oxide layer on the surface of region 57 and is reacted with the oxidized surface to form a first template layer (not shown). In accordance with one embodiment, a monocrystalline oxide layer is formed overlying the template layer by a process of molecular beam epitaxy. Reactants including strontium, titanium and oxygen are deposited onto the template layer to form the monocrystalline oxide layer. Initially during the deposition the partial pressure of oxygen is kept near the minimum necessary to fully react with the strontium and titanium to form a monocrystalline strontium titanate layer. The partial pressure of oxygen is then increased to provide an overpressure of oxygen and to allow oxygen to diffuse through the growing monocrystalline oxide layer. The oxygen diffusing through the strontium titanate reacts with silicon at the surface of region 57 to form an amorphous layer of silicon oxide 62 on second region 57 and at the interface between silicon substrate 52 and the monocrystalline oxide layer 65. Layers 65 and 62 may be subject to an annealing process as described above in connection with
In accordance with an embodiment, the step of depositing the monocrystalline oxide layer 65 is terminated by depositing a capping layer 64, which can be up to 3 monolayers of titanium, strontium, strontium and oxygen, or titanium and oxygen. A layer 66 of a monocrystalline compound semiconductor material is then deposited overlying capping layer 64 by a process of molecular beam epitaxy. The deposition of layer 66 is initiated by depositing a layer of gallium onto capping layer 64. This initial step is followed by depositing arsenic and gallium to form monocrystalline gallium arsenide 66. Alternatively, barium or a mix of barium and strontium can be substituted for strontium in the above example.
In accordance with a further embodiment, a semiconductor component, generally indicated by a dashed line 68 is formed in compound semiconductor layer 66. Semiconductor component 68 can be formed by processing steps conventionally used in the fabrication of gallium arsenide or other III-V compound semiconductor material devices. Semiconductor component 68 can be any active or passive component, and preferably is a semiconductor laser, light emitting diode, photodetector, heterojunction bipolar transistor (HBT), high frequency MESFET, pseudomorphic high electron mobility transistor (PHEMT), or other component that utilizes and takes advantage of the physical properties of compound semiconductor materials. A metallic conductor schematically indicated by the line 70 can be formed to electrically couple device 68 and device 56, thus implementing an integrated device that includes at least one component formed in silicon substrate 52 and one device formed in monocrystalline compound semiconductor material layer 66. Although illustrative structure 50 has been described as a structure formed on a silicon substrate 52 and having a strontium (or barium) titanate layer 65 and a gallium arsenide layer 66, similar devices can be fabricated using other substrates, monocrystalline oxide layers and other compound semiconductor layers as described elsewhere in this disclosure.
A semiconductor component generally indicated by a dashed line 92 is formed at least partially in monocrystalline semiconductor layer 87. In accordance with one embodiment, semiconductor component 92 may include a field effect transistor having a gate dielectric formed, in part, by monocrystalline oxide layer 88. In addition, monocrystalline semiconductor layer 90 can be used to implement the gate electrode of that field effect transistor. In accordance with one embodiment, monocrystalline semiconductor layer 87 is formed from a group III-V compound and semiconductor component 92 is a radio frequency amplifier that takes advantage of the high mobility characteristic of group III-V component materials. In accordance with yet a further embodiment, an electrical interconnection schematically illustrated by the line 94 electrically interconnects component 79 and component 92. Structure 71 thus integrates components that take advantage of the unique properties of the two monocrystalline semiconductor materials.
Attention is now directed to a method for forming exemplary portions of illustrative composite semiconductor structures or composite integrated circuits like 50 or 71. In particular, the illustrative composite semiconductor structure or integrated circuit 103 shown in
A p-type dopant is introduced into the drift region 1117 to form an active or intrinsic base region 1114. An n-type, deep collector region 1108 is then formed within the bipolar portion 1024 to allow electrical connection to the buried region 1102. Selective n-type doping is performed to form N+ doped regions 1116 and the emitter region 1120. N+ doped regions 1116 are formed within layer 1104 along adjacent sides of the gate electrode 1112 and are source, drain, or source/drain regions for the MOS transistor. The N+ doped regions 1116 and emitter region 1120 have a doping concentration of at least 1E19 atoms per cubic centimeter to allow ohmic contacts to be formed. A p-type doped region is formed to create the inactive or extrinsic base region 1118 which is a P+ doped region (doping concentration of at least 1E19 atoms per cubic centimeter).
In the embodiment described, several processing steps have been performed but are not illustrated or further described, such as the formation of well regions, threshold adjusting implants, channel punchthrough prevention implants, field punchthrough prevention implants, as well as a variety of masking layers. The formation of the device up to this point in the process is performed using conventional steps. As illustrated, a standard N-channel MOS transistor has been formed within the MOS region 1026, and a vertical NPN bipolar transistor has been formed within the bipolar portion 1024. Although illustrated with a NPN bipolar transistor and an N-channel MOS transistor, device structures and circuits in accordance with various embodiments may additionally or alternatively include other electronic devices formed using the silicon substrate. As of this point, no circuitry has been formed within the compound semiconductor portion 1022.
After the silicon devices are formed in regions 1024 and 1026, a protective layer 1122 is formed overlying devices in regions 1024 and 1026 to protect devices in regions 1024 and 1026 from potential damage resulting from device formation in region 1022. Layer 1122 may be formed of, for example, an insulating material such as silicon oxide or silicon nitride.
All of the layers that have been formed during the processing of the bipolar and MOS portions of the integrated circuit, except for epitaxial layer 1104 but including protective layer 1122, are now removed from the surface of compound semiconductor portion 1022. A bare silicon surface is thus provided in the manner set forth above for the subsequent processing of this portion, for example in the manner set forth below.
An accommodating buffer layer 124 is then formed over the substrate 110 as illustrated in FIG. 16. The accommodating buffer layer will form as a monocrystalline layer over the properly prepared (i.e., having the appropriate template layer) bare silicon surface in portion 1022. The portion of layer 124 that forms over portions 1024 and 1026, however, may be polycrystalline or amorphous because it is formed over a material that is not monocrystalline, and therefore, does not nucleate monocrystalline growth. The accommodating buffer layer 124 typically is a monocrystalline metal oxide or nitride layer and typically has a thickness in a range of approximately 2-100 nanometers. In one particular embodiment, the accommodating buffer layer is approximately 3-10 nm thick. During the formation of the accommodating buffer layer, an amorphous intermediate layer 122 is formed along the uppermost silicon surfaces of the integrated circuit 103. This amorphous intermediate layer 122 typically includes an oxide of silicon and has a thickness and range of approximately 0.5-5 nm. In one particular embodiment, the thickness is 1-2 nm. Following the formation of the accommodating buffer layer 124 and the amorphous intermediate layer 122, a capping layer of up to 3 monolayers of titanium, strontium, titanium oxygen, or strontium oxygen is formed. Template layer 125 is then formed by depositing 0.5-10 monolayers of gallium, indium, aluminum, or a combination thereof and has a thickness in a range of approximately one half to ten monolayers. In one particular embodiment, the template includes gallium, titanium-arsenic, titanium-oxygen-arsenic, strontium-oxygen-arsenic, or other similar materials as previously described with respect to
A monocrystalline compound semiconductor layer 132 is then epitaxially grown overlying the monocrystalline portion of accommodating buffer layer 124 as shown in FIG. 17. The portion of layer 132 that is grown over portions of layer 124 that are not monocrystalline may be polycrystalline or amorphous. The compound semiconductor layer can be formed by a number of methods and typically includes a material such as gallium arsenide, aluminum gallium arsenide, indium phosphide, or other compound semiconductor materials as previously mentioned. The thickness of the layer is in a range of approximately 1-5,000 nm, and more preferably 100-2000 nm. Furthermore, additional monocrystalline layers may be formed above layer 132.
In the particular embodiment of
After at least a portion of layer 132 is formed in region 1022, layers 122 and 124 may be subject to an annealing process as described above in connection with
At this point in time, sections of the compound semiconductor layer 132 and the accommodating buffer layer 124 (or of the amorphous accommodating layer if the annealing process described above has been carried out) are removed from portions overlying the bipolar portion 1024 and the MOS portion 1026 as shown in FIG. 18. After the section of the compound semiconductor layer and the accommodating buffer layer 124 are removed, an insulating layer 142 is formed over protective layer 1122. The insulating layer 142 can include a number of materials such as oxides, nitrides, oxynitrides, low-k dielectrics, or the like. As used herein, low-k is a material having a dielectric constant no higher than approximately 3.5. After the insulating layer 142 has been deposited, it is then polished or etched to remove portions of the insulating layer 142 that overlie monocrystalline compound semiconductor layer 132.
A transistor 144 is then formed within the monocrystalline compound semiconductor portion 1022. A gate electrode 148 is then formed on the monocrystalline compound semiconductor layer 132. Doped regions 146 are then formed within the monocrystalline compound semiconductor layer 132. In this embodiment, the transistor 144 is a metal-semiconductor field-effect transistor (MESFET). If the MESFET is an n-type MESFET, the doped regions 146 and at least a portion of monocrystalline compound semiconductor layer 132 are also n-type doped. If a p-type MESFET were to be formed, then the doped regions 146 and at least a portion of monocrystalline compound semiconductor layer 132 would have just the opposite doping type. The heavier doped (N+) regions 146 allow ohmic contacts to be made to the monocrystalline compound semiconductor layer 132. At this point in time, the active devices within the integrated circuit have been formed. Although not illustrated in the drawing figures, additional processing steps such as formation of well regions, threshold adjusting implants, channel punchthrough prevention implants, field punchthrough prevention implants, and the like may be performed in accordance with the present invention. This particular embodiment includes an n-type MESFET, a vertical NPN bipolar transistor, and a planar n-channel MOS transistor. Many other types of transistors, including P-channel MOS transistors, p-type vertical bipolar transistors, p-type MESFETs, and combinations of vertical and planar transistors, can be used. Also, other electrical components, such as resistors, capacitors, diodes, and the like, may be formed in one or more of the portions 1022, 1024, and 1026.
Processing continues to form a substantially completed integrated circuit 103 as illustrated in FIG. 19. An insulating layer 152 is formed over the substrate 110. The insulating layer 152 may include an etch-stop or polish-stop region that is not illustrated in
A passivation layer 156 is formed over the interconnects 1562, 1564, and 1566 and insulating layer 154. Other electrical connections are made to the transistors as illustrated as well as to other electrical or electronic components within the integrated circuit 103 but are not illustrated in the FIGS. Further, additional insulating layers and interconnects may be formed as necessary to form the proper interconnections between the various components within the integrated circuit 103.
As can be seen from the previous embodiment, active devices for both compound semiconductor and Group IV semiconductor materials can be integrated into a single integrated circuit. Because there is some difficulty in incorporating both bipolar transistors and MOS transistors within a same integrated circuit, it may be possible to move some of the components within bipolar portion 1024 into the compound semiconductor portion 1022 or the MOS portion 1026. Therefore, the requirement of special fabricating steps solely used for making a bipolar transistor can be eliminated. Therefore, there would only be a compound semiconductor portion and a MOS portion to the integrated circuit.
In still another embodiment, an integrated circuit can be formed such that it includes an optical laser in a compound semiconductor portion and an optical interconnect (waveguide) to a MOS transistor within a Group IV semiconductor region of the same integrated circuit.
Another accommodating buffer layer 172, similar to the accommodating buffer layer 164, is formed over the upper mirror layer 170. In an alternative embodiment, the accommodating buffer layers 164 and 172 may include different materials. However, their function is essentially the same in that each is used for making a transition between a compound semiconductor layer and a monocrystalline Group IV semiconductor layer. Layer 172 may be subject to an annealing process as described above in connection with
In
A monocrystalline Group IV semiconductor layer is epitaxially grown over one of the doped regions 177. An upper portion 184 is P+ doped, and a lower portion 182 remains substantially intrinsic (undoped) as illustrated in FIG. 21. The layer can be formed using a selective epitaxial process. In one embodiment, an insulating layer (not shown) is formed over the transistor 181 and the field isolation region 171. The insulating layer is patterned to define an opening that exposes one of the doped regions 177. At least initially, the selective epitaxial layer is formed without dopants. The entire selective epitaxial layer may be intrinsic, or a p-type dopant can be added near the end of the formation of the selective epitaxial layer. If the selective epitaxial layer is intrinsic, as formed, a doping step may be formed by implantation or by furnace doping. Regardless how the P+ upper portion 184 is formed, the insulating layer is then removed to form the resulting structure shown in FIG. 21.
The next set of steps is performed to define the optical laser 180 as illustrated in FIG. 22. The field isolation region 171 and the accommodating buffer layer 172 are removed over the compound semiconductor portion of the integrated circuit. Additional steps are performed to define the upper mirror layer 170 and active layer 168 of the optical laser 180. The sides of the upper mirror layer 170 and active layer 168 are substantially coterminous.
Contacts 186 and 188 are formed for making electrical contact to the upper mirror layer 170 and the lower mirror layer 166, respectively, as shown in FIG. 22. Contact 186 has an annular shape to allow light (photons) to pass out of the upper mirror layer 170 into a subsequently formed optical waveguide.
An insulating layer 190 is then formed and patterned to define optical openings extending to the contact layer 186 and one of the doped regions 177 as shown in FIG. 23. The insulating material can be any number of different materials, including an oxide, nitride, oxynitride, low-k dielectric, or any combination thereof. After defining the openings 192, a higher refractive index material 202 is then formed within the openings to fill them and to deposit the layer over the insulating layer 190 as illustrated in FIG. 24. With respect to the higher refractive index material 202, “higher” is in relation to the material of the insulating layer 190 (i.e., material 202 has a higher refractive index compared to the insulating layer 190). Optionally, a relatively thin lower refractive index film (not shown) could be formed before forming the higher refractive index material 202. A hard mask layer 204 is then formed over the high refractive index layer 202. Portions of the hard mask layer 204, and high refractive index layer 202 are removed from portions overlying the opening and to areas closer to the sides of FIG. 24.
The balance of the formation of the optical waveguide, which is an optical interconnect, is completed as illustrated in
Processing is continued to form a substantially completed integrated circuit as illustrated in
In other embodiments, other types of lasers can be formed. For example, another type of laser can emit light (photons) horizontally instead of vertically. If light is emitted horizontally, the MOSFET transistor could be formed within the substrate 161, and the optical waveguide would be reconfigured, so that the laser is properly coupled (optically connected) to the transistor. In one specific embodiment, the optical waveguide can include at least a portion of the accommodating buffer layer. Other configurations are possible.
Clearly, these embodiments of integrated circuits having compound semiconductor portions and Group IV semiconductor portions, are meant to illustrate what can be done and are not intended to be exhaustive of all possibilities or to limit what can be done. There are a multiplicity of other possible combinations and embodiments. For example, the compound semiconductor portion may include light emitting diodes, photodetectors, diodes, or the like, and the Group IV semiconductor can include digital logic, memory arrays, and most structures that can be formed in conventional MOS integrated circuits. By using what is shown and described herein, it is now simpler to integrate devices that work better in compound semiconductor materials with other components that work better in Group IV semiconductor materials thus providing optimized IC performance. This allows a device to be shrunk, the manufacturing costs to decrease, and yield and reliability to increase.
A monocrystalline Group IV wafer can be used in forming only compound semiconductor electrical components over the wafer. In this manner, the wafer is essentially a “handle” wafer used during the fabrication of the compound semiconductor electrical components within a monocrystalline compound semiconductor layer overlying the wafer. Therefore, electrical components can be formed within III-V or II-VI semiconductor materials over a wafer of at least approximately 200 millimeters in diameter and possibly at least approximately 300 millimeters.
As explained earlier, the use of this relatively inexpensive “handle” wafer overcomes the fragile nature of the compound semiconductor wafers by placing them over a relatively more durable and easy to fabricate base material. Therefore, an integrated circuit can be formed such that all electrical components, and particularly all active electronic devices, can be formed within the compound semiconductor material even though the substrate itself may include a Group IV semiconductor material. Fabrication costs for compound semiconductor devices should decrease because larger substrates can be processed more economically and more readily, compared to the relatively smaller and more fragile, conventional compound semiconductor wafers.
A composite integrated circuit may include components that provide electrical isolation when electrical signals are applied to the composite integrated circuit. The composite integrated circuit may include a pair of optical components, such as an optical source component and an optical detector component. An optical source component may be a light generating semiconductor device, such as an optical laser (e.g., the optical laser illustrated in FIG. 22), a photo emitter, a diode, etc. An optical detector component may be a light-sensitive semiconductor junction device, such as a photodetector, a photodiode, a bipolar junction, a transistor, etc.
A composite integrated circuit may include processing circuitry that is formed at least partly in the Group IV semiconductor portion of the composite integrated circuit. The processing circuitry is configured to communicate with circuitry external to the composite integrated circuit. The processing circuitry may be electronic circuitry, such as a microprocessor, RAM, logic device, decoder, etc.
For the processing circuitry to communicate with external electronic circuitry, the composite integrated circuit may be provided with electrical signal connections with the external electronic circuitry. The composite integrated circuit may have internal optical communications connections for connecting the processing circuitry in the composite integrated circuit to the electrical connections with the external circuitry. Optical components in the composite integrated circuit may provide the optical communications connections which may electrically isolate the electrical signals in the communications connections from the processing circuitry. Together, the electrical and optical communications connections may be for communicating information, such as data, control, timing, etc.
A composite integrated circuit will typically have an electric connection for a power supply and a ground connection. The power and ground connections are in addition to the communications connections that are discussed above. Processing circuitry in a composite integrated circuit may include electrically isolated communications connections and include electrical connections for power and ground. In most known applications, power supply and ground connections are usually well-protected by circuitry to prevent harmful external signals from reaching the composite integrated circuit. A communications ground may be isolated from the ground signal in communications connections that use a ground communications signal.
A pair of optical components (an optical source component and an optical detector component) in the composite integrated circuit may be configured to pass information. For clarity and brevity, optical detector components are discussed primarily in the context of optical detector components that have been formed in a compound semiconductor portion of a composite integrated circuit. In application, the optical detector component may be formed in many suitable ways (e.g., formed from silicon, etc.). Information that is received or transmitted between the optical pair may be from or for the electrical communications connection between the external circuitry and the composite integrated circuit. The optical components and the electrical communications connection may form a communications connection between the processing circuitry and the external circuitry while providing electrical isolation for the processing circuitry. If desired, a plurality of optical component pairs may be included in the composite integrated circuit for providing a plurality of communications connections and for providing isolation. For example, a composite integrated circuit receiving a plurality of data bits may include a pair of optical components for communication of each data bit.
In operation, for example, an optical source component in a pair of components may be configured to generate light (e.g., photons) based on receiving electrical signals from an electrical signal connection with the external circuitry. An optical detector component in the pair of components may be optically connected to the source component to generate electrical signals based on detecting light generated by the optical source component. Information that is communicated between the source and detector components may be digital or analog.
If desired the reverse of this configuration may be used. An optical source component that is responsive to the on-board processing circuitry may be coupled to an optical detector component to have the optical source component generate an electrical signal for use in communications with external circuitry. A plurality of such optical component pair structures may be used for providing two-way connections. In some applications where synchronization is desired, a first pair of optical components may be coupled to provide data communications and a second pair may be coupled for communicating synchronization information.
Stages S308 and S318 represent a decision stages as to whether the waveguides of the microresonator device will fabricated from electro-optical material or oxide material.
The electro-optical path proceeds through stages S310-S312-S314-S328-S326-S332-S334. First, the electro-optical material is deposited on the STO layer during stage S310. Second, a waveguide mask is deposited and patterned on the electro-optical material during stage S312. Third, the electro-optical waveguides are etched and the mask is removed during stage S314. Fourth, a top electrode mask to sit above the electro-optical waveguides is deposited and patterned on the electro-optical waveguides during stage S328. Fifth, material for the top electrode is deposited on the electro-optical waveguides and the mask removed during stage S326. Sixth, a bottom electrode mask on a bottom of the silicon substrate is appropriately deposited and patterned on the silicon substrate during stage S332. Finally, material for the bottom electrode is deposited on the silicon substrate and the mask removed during stage S334.
The oxide path includes a stage S320 represents a decision stage as to whether an electrode will be deposited on the III-V resonator or above electro-optical material filling gaps between the waveguides-resonators. An oxide-electrode-resonator path proceeds through stages S316-S312-S314-S330-S326-S332-S334. First, oxide material is deposited on the STO layer during stage S316. Second, a waveguide mask is deposited and patterned on the oxide material during stage S312. Third, the oxide waveguides are etched and the mask is removed during stage S314. Fourth, a top electrode mask to sit on the III-V resonator is deposited and patterned on the III-V resonator during stage S330. Fifth, material for the top electrode is deposited on the IIV-V resonator and the mask removed during stage S326. Sixth, a bottom electrode mask on a bottom of the silicon substrate is appropriately deposited and patterned on the silicon substrate during stage S332. Finally, material for the bottom electrode is deposited on the silicon substrate and the mask removed during stage S334.
An oxide-electrode-gap path proceeds through stages S316-S312-S314-S322-S324-S326-S332-S334. First, oxide material is deposited on the STO layer during stage S316. Second, a waveguide mask is deposited and patterned on the oxide material during stage S312. Third, the oxide waveguides are etched and the mask is removed during stage S314. Fourth, electro-optical material is coated on the wafer during stage S322. Fifth, a top electrode mask to sit above the gaps is deposited and patterned on the coated electro-optical material during stage S324. Sixth, material for the top electrode is deposited on the electro-optical material and the mask removed during stage S326. Seventh, a bottom electrode mask on a bottom of the silicon substrate is appropriately deposited and patterned on the silicon substrate during stage S332. Finally, material for the bottom electrode is deposited on the silicon substrate and the mask removed during stage S334.
Any light entering into waveguide 404 will propagate out of waveguide 404 or propagate out of waveguide 409 based upon an absence or a presence of a lateral optical coupling of waveguide 404 and resonator 403 across gap 405 and a lateral optical coupling of waveguide 409 and resonator 403 across gap 410. These lateral optical couplings do not exist when the light has a wavelength that does not operatively equal a resonating wavelength of resonator 403. In such a case, substantially all light entering waveguide 404 will propagate through waveguide 404 as shown by an exemplary wavelength λ1 illustrated in FIG. 30. These lateral optical couplings do exist when the light has a wavelength that does operatively equal a resonating wavelength of resonator 403. In such a case, light entering waveguide 404 is coupled into resonator 403 and then coupled into waveguide 409 whereby the light will propagate out of waveguide 409 as shown by an exemplary wavelength λ2 illustrated in FIG. 30.
For a given wavelength of light entering waveguide 404, the establishment of lateral optical coupling is dependent upon various factors. One factor is a geometry of waveguides 404 and 409. A second factor is a geometry of microresonator 403. A third factor is a refractive index of the material from which the resonator 403 and the waveguides 404 and 409 are formed. A fourth factor is the refractive index of any material in gap 405 and/or gap 410. A fifth factor is the dimensions of gaps 405 and 410.
In an alternative embodiment of microresonator device 400, vertical optical couplings can be achieved when the waveguides 404 and 409 are located below or above an edge portion of microresonator 403 and an appropriate coupling gap has been formed between the waveguide 404 and 409 and the resonator 403 by the addition of a layer of material.
Lateral optical coupling within the microresonator device 400 is sensitive to fabrication conditions. Thus, a control of the lateral optical couplings provided by the electro-optic material of waveguides 404 and 409 can be used to offset any fabrication error.
One method to control the lateral optical couplings is to apply a voltage V1 to waveguide 404 via electrodes 406 and 408, and to concurrently or alternatively apply a voltage V2 to waveguide 409 via electrodes 411 and 413. The application of voltages V1 and V2 to the waveguides 404 and 409, respectively, will change their refractive indices whereby the lateral coupling of each waveguide 404 and 409 to microresonator 403 can be selectively controlled. By proper choice of voltage V1 and appropriate design of the resonator dimensions for a desired resonating wavelength, a lateral optical coupling from waveguide 404 to resonator 403 can be allowed or prevented. In addition, by proper choice of the voltage V2, a lateral optical coupling from resonator 403 to waveguide 409 can be allowed or prevented. In this embodiment, substrates 401 and STO 402 and waveguides 404, 409 must be partially or fully conductive.
In an alternative embodiment of microresonator device 400, electrodes 408 and 413 are eliminated and replaced by electrodes 407 and 412, respectively. To control the lateral optical coupling of waveguide 404 to resonator 403, voltage V1 is applied to waveguide 404 via electrodes 406 and 407. Likewise, to control the lateral optical coupling of resonator 403 to waveguide 409, voltage V2 is applied to waveguide 409 via electrodes 411 and 412.
The similar control methods can also be applied to control vertical optical couplings as would occur to those skilled in the art of the present invention.
In modified versions of microresonator 400, ring resonator 403 can be formed into a variety of other shapes. A first shape example is a disc resonator 403′ employed within modified version 400′ of microresonator device 400 as illustrated in
A plurality of resonators can also be formed on a STO layer in a variety of configurations. One configuration example is two or more resonators in series, such as for example, a microresonator device 500 having a pair of ring resonators 502 and 504 formed in series on a STO layer 501 with a gap 503 therebetween as illustrated in FIG. 33. Microresonator device 500 is fabricated in accordance with the electro-optical path of the fabrication method described in
Lateral optical couplings among wavequides 505 and 508 and resonators 502 and 504 essentially do not exist when light entering waveguide 505 has a wavelength that does not operatively equal a resonating wavelength of both resonators 502 and 504. In such a case, essentially all light entering waveguide 505 will propagate through waveguide 505 as shown by an exemplary wavelength λ1 illustrated in FIG. 33. These lateral optical couplings do exist when the light entering waveguide 505 has a wavelength that does operatively equal a resonating wavelength of resonators 502 and 504. In such a case, any light entering waveguide 505 is coupled into both resonators 502 and 504 and then coupled into waveguide 508 whereby the light will propagate out of waveguide 508 as exemplary shown a by wavelength λ2 illustrated in FIG. 33.
Another configuration example is two or more resonators in parallel, such as, for example a microresonator device 600 having a parallel configuration of a resonator 603, a resonator 616, and a resonator 618 formed on a STO layer 602 as illustrated in FIG. 34.
Microresonator device 600 is fabricated in accordance with the electro-optical path of the fabrication method described in
A radius R1 of resonator 602, a radius R2 of resonator 616 and a radius R3 of resonator 618 are unequal whereby resonators 602, 616 and 618 each have different resonating wavelengths. As a result, essentially no lateral optical couplings exist when light entering waveguide 604 has a wavelength that does not operatively equal a resonating wavelength of any of the resonators 603, 616 and 618. In such a case, essentially all light entering waveguide 606 will propagate through waveguide 606 as shown by an exemplary wavelength λ1 illustrated in FIG. 34.
Lateral optical couplings do exist between waveguide 604, resonator 603, and waveguide 626 when the light entering waveguide 604 has a wavelength that operatively equals a resonating wavelength of resonator 603. In such a case, essentially all light entering waveguide 604 is coupled into resonator 603 and then coupled into waveguide 626 whereby the light will propagate out of waveguide 626 as exemplary shown a by wavelength λ2 illustrated in FIG. 34.
Lateral optical couplings do exist between waveguide 604, resonator 616, and waveguide 628 when the light entering waveguide 604 has a wavelength that operatively equals a resonating wavelength of resonator 616. In such a case, essentially all light entering waveguide 604 is coupled into resonator 616 and then coupled into waveguide 628 whereby the light will propagate out of waveguide 628 as exemplary shown a by wavelength λ3 illustrated in FIG. 34.
Lateral optical couplings do exist between waveguide 604, resonator 618, and waveguide 630 when the light entering waveguide 604 has a wavelength that operatively equals a resonating wavelength of resonator 618. In such a case, essentially all light entering waveguide 604 is coupled into resonator 618 and then coupled into waveguide 630 whereby the light will propagate out of waveguide 630 as exemplary shown a by wavelength λ4 illustrated in FIG. 34.
A third configuration example is a microresonator device that includes least one series configuration (e.g., resonators 502 and 504 illustrated in
Microresonator devices such as the ones illustrated in
A second implementation is as a pathogen detector, such as, for example, microresonator device 900 illustrated in
Additionally, a pathogen attractor 904 is formed on resonator 903. The pathogen attractor 904 is attractive to pathogens located in the area of microresonator device 900. In operation, a continuous beam of wavelength λ1 enters into waveguide 905. In the absence of a pathogen 913, resonator 903 is designed to laterally optically couple with waveguides 905 and 909 whereby the continuous beam of wavelength λ1 propagates out of waveguide 909 (not shown). In the presence of a pathogen 913, resonator 903 is designed to prevent a lateral optical coupling with waveguides 905 and 909 whereby the continuous beam of wavelength λ1 propagates out of waveguide 905 as illustrated by example in FIG. 38. Specifically, the resonance of resonator 903 is destroyed when the pathogen 913 attaches to pathogen attractor 904 whereby the beam of wavelength λ1 continues to propagate in waveguide 905 without transfer to waveguide 909.
The source of the beam of wavelength λ1 may be a laser fabricated on the wafer and coupled into waveguide 905. An integrated detector fabricated at the output of waveguide 909 will detect a signal of wavelength λ1 until such time a pathogen 913 attaches to pathogen attractor 914. Further integrating this device with RF electronics (not shown) integrated on the Si substrate 901 provides a method to communicate the presence of a detected pathogen to a monitor of device 900 whereby appropriate action can be initiated by proper authorities.
A third implementation is as an inverter, such as, for example, microresonator device 400 illustrated in FIG. 39. In this implementation, resonator 403 is designed to couple a light of wavelength λ1 from waveguide 404 to waveguide 409 only when light beam of wavelength λ2 is incident upon the resonator 403. The source of the light beam of wavelength λ1 may be a laser fabricated on the wafer and coupled into waveguide 404, and light of wavelength λ2 from an optical data source, such as, for example, an optical fiber in a data transmission system, impinges upon resonator 403. The optical data sources light consists of an optional datastream of bits, each bit being in a zero state or the one state. A bit in the one state carries photons of wavelength λ2, and a bit in the zero state carries no photons. For the time when the optical data stream carries a one bit, all of the light from the continuous light beam of wavelength λ1 is coupled through the resonator 403 into waveguide 409. For the time the optical data stream carries a zero bit, the continuous light beam of λ1 continues to propagate through waveguide 404.
A fourth implementation is an optical amplifier, such as, for example, microresonator device 400 illustrated in FIG. 40. In this implementation, a light 519 of appropriate wavelength and sufficient intensity is incident upon the resonator 403 whereby the gain in the resonator 403 exceeds the loss in the resonator 403. As a result, any light propagating into waveguide 404 will be amplified prior to propagating out of both waveguide 404 and 409.
Stages S1204, S1210 and S1216 represent decision stages as to whether a blanket III-V resonator growth or a selective III-V resonator growth will be fabricated
The blanket III-V resonator growth path proceeds through stages S1208-S1206-S1214-S1212-S1218-S1220-S1222-S1224-S1226-S1228-S1230-S1232-S1234-S1236. First, an active epi stack is deposited in a blank deposition during stage S1208. Second, a microresonator mask is deposited and patterned during stage S1206. Third, the active epi stack is etched during stage S1214. Fourth, the GaAs seed, the interfacial layers and the top Si layer are etched except in the area of the microresonator device, and the mask is removed during stage S1212. Fifth, an etchback mask is deposited and patterned during stage S1218. Sixth, III-V layers are etchbacked to the STO layer during stage S1220. Seventh, the etch mask is removed during stage S1222.
Eighth, a lateral wet oxidation is performed during stage S1224. Ninth, a termination etch mask is deposited and patterned during stage S1226. Tenth, waveguide terminations are etched during stage S1228. Eleventh, the etch mask is removed during stage S1230. Twelfth, a dicing etch mask is deposited and patterned during stage S1232. Thirteenth, the dicing streets are etched during stage S1234. Finally, the etch mask is removed during stage S1236.
The selective III-V resonator growth path proceeds through stages S1206-S1212-S1238-S1240-S1242-S1224-S1226-S1228-S1230-S1232-S1234-S1236. First, stages S1206-S1212 are performed as previously described herein. Second, a thick growth mask is deposited and patterned during stage S1238. Third, selective growth of the epi stack is performed during stage S1240. Fourth, the growth mask is removed during stage S1242. Finally, stages S1224-S1226-S1228-S1230-S1232-S1234-S1236 are performed as previously described herein.
There is an advantage in forming the resonator 1303 from III-V material. The III-V layer 1303 provides a resonator structure with controllable gain. This feature can be used to modulate the imaginary part of the complex refractive index within the resonator 1303, forming a fourth method to control the optical coupling characteristics of the microresonator device 1300. This type of control is termed “active” (as opposed to passive) since energy is being added to the system. In addition to compensating for losses in the microresonator 1303, the presence of gain also increases the Q of the microresonator 1303. When the Q is low there will be essentially no coupling of light between the waveguides 1304 and 1309 and the resonator stack (layers 1318-1302-1303).
The oxidized AlAs layer 1416 is optional, but may be used to tailor the strength of the coupling between the active III-V sections (1418-1428) and the passive Si sections (1411-1414) of the ring resonator. The oxidized AlAs layer 1416 is initially grown as AlAs (or, alternatively, high Al mole fraction AlGaAs), and then laterally oxidized inward from the edges of the mesa after the ring resonator ridge has been defined by etching. The oxidation process significantly changes the refractive index of this material from a relatively high value of about 3 to a relatively low value of around 1.5. The resulting low value allows this layer to effectively be used as an optical spacer layer allowing control of the optical coupling via the layer thickness. This technique of lateral oxidation of high Al mole fraction AlGaAs layers is well known to those of ordinary skill in the art.
Similar to the microresonator devices illustrated in
In the foregoing specification, the invention has been described with reference to specific embodiments. However, one of ordinary skill in the art appreciates that various modifications and changes can be made without departing from the scope of the present invention as set forth in the claims below. Accordingly, the specification and figures are to be regarded in an illustrative rather than a restrictive sense, and all such modifications are intended to be included within the scope of present invention.
Benefits, other advantages, and solutions to problems have been described above with regard to specific embodiments. However, the benefits, advantages, solutions to problems, and any element(s) that may cause any benefit, advantage, or solution to occur or become more pronounced are not to be construed as a critical, required, or essential features or elements of any or all the claims. As used herein, the terms “comprises,” “comprising,” or any other variation thereof, are intended to cover a non-exclusive inclusion, such that a process, method, article, or apparatus that comprises a list of elements does not include only those elements but may include other elements not expressly listed or inherent to such process, method, article, or apparatus.
Number | Name | Date | Kind |
---|---|---|---|
3617951 | Anderson | Nov 1971 | A |
3670213 | Nakawaga et al. | Jun 1972 | A |
3758199 | Thaxter | Sep 1973 | A |
3766370 | Walther | Oct 1973 | A |
3802967 | Ladany et al. | Apr 1974 | A |
3818451 | Coleman | Jun 1974 | A |
3914137 | Huffman et al. | Oct 1975 | A |
3935031 | Adler | Jan 1976 | A |
4006989 | Andringa | Feb 1977 | A |
4084130 | Holton | Apr 1978 | A |
4120588 | Chaum | Oct 1978 | A |
4146297 | Alferness et al. | Mar 1979 | A |
4174422 | Matthews et al. | Nov 1979 | A |
4174504 | Chenausky et al. | Nov 1979 | A |
4177094 | Kroon | Dec 1979 | A |
4242595 | Lehovec | Dec 1980 | A |
4284329 | Smith et al. | Aug 1981 | A |
4289920 | Hovel | Sep 1981 | A |
4297656 | Pan | Oct 1981 | A |
4298247 | Michelet et al. | Nov 1981 | A |
4378259 | Hasegawa et al. | Mar 1983 | A |
4392297 | Little | Jul 1983 | A |
4398342 | Pitt et al. | Aug 1983 | A |
4404265 | Manasevit | Sep 1983 | A |
4424589 | Thomas et al. | Jan 1984 | A |
4439014 | Stacy et al. | Mar 1984 | A |
4442590 | Stockton et al. | Apr 1984 | A |
4447116 | King et al. | May 1984 | A |
4452720 | Harada et al. | Jun 1984 | A |
4459325 | Nozawa et al. | Jul 1984 | A |
4482422 | McGinn et al. | Nov 1984 | A |
4482906 | Hovel et al. | Nov 1984 | A |
4484332 | Hawrylo | Nov 1984 | A |
4503540 | Nakashima et al. | Mar 1985 | A |
4523211 | Morimoto et al. | Jun 1985 | A |
4525871 | Foyt et al. | Jun 1985 | A |
4594000 | Falk et al. | Jun 1986 | A |
4626878 | Kuwano et al. | Dec 1986 | A |
4629821 | Bronstein-Bonte et al. | Dec 1986 | A |
4661176 | Manasevit | Apr 1987 | A |
4667088 | Kramer | May 1987 | A |
4667212 | Nakamura | May 1987 | A |
4681982 | Yoshida | Jul 1987 | A |
4695120 | Holder | Sep 1987 | A |
4723321 | Saleh | Feb 1988 | A |
4748485 | Vasudev | May 1988 | A |
4756007 | Qureshi et al. | Jul 1988 | A |
4772929 | Manchester et al. | Sep 1988 | A |
4773063 | Hunsperger et al. | Sep 1988 | A |
4774205 | Choi et al. | Sep 1988 | A |
4777613 | Shahan et al. | Oct 1988 | A |
4793872 | Meunier et al. | Dec 1988 | A |
4801184 | Revelli | Jan 1989 | A |
4802182 | Thornton et al. | Jan 1989 | A |
4804866 | Akiyama | Feb 1989 | A |
4815084 | Scifres et al. | Mar 1989 | A |
4841775 | Ikeda et al. | Jun 1989 | A |
4843609 | Ohya et al. | Jun 1989 | A |
4845044 | Ariyoshi et al. | Jul 1989 | A |
4846926 | Kay et al. | Jul 1989 | A |
4855249 | Akasaki et al. | Aug 1989 | A |
4866489 | Yokogawa et al. | Sep 1989 | A |
4868376 | Lessin et al. | Sep 1989 | A |
4872046 | Morkoc et al. | Oct 1989 | A |
4876208 | Gustafson et al. | Oct 1989 | A |
4876218 | Pessa et al. | Oct 1989 | A |
4876219 | Eshita et al. | Oct 1989 | A |
4882300 | Inoue et al. | Nov 1989 | A |
4885376 | Verkade | Dec 1989 | A |
4888202 | Murakami et al. | Dec 1989 | A |
4889402 | Reinhart | Dec 1989 | A |
4891091 | Shastry | Jan 1990 | A |
4896194 | Suzuki | Jan 1990 | A |
4901133 | Curran et al. | Feb 1990 | A |
4910164 | Shichijo | Mar 1990 | A |
4912087 | Aslam et al. | Mar 1990 | A |
4928154 | Umeno et al. | May 1990 | A |
4934777 | Jou et al. | Jun 1990 | A |
4952420 | Walters | Aug 1990 | A |
4959702 | Moyer et al. | Sep 1990 | A |
4963508 | Umeno et al. | Oct 1990 | A |
4963949 | Wanlass et al. | Oct 1990 | A |
4965649 | Zanio et al. | Oct 1990 | A |
4981714 | Ohno et al. | Jan 1991 | A |
4984043 | Vinal | Jan 1991 | A |
4999842 | Huang et al. | Mar 1991 | A |
5018816 | Murray et al. | May 1991 | A |
5028563 | Feit et al. | Jul 1991 | A |
5028976 | Ozaki et al. | Jul 1991 | A |
5051790 | Hammer | Sep 1991 | A |
5053835 | Horikawa et al. | Oct 1991 | A |
5055445 | Belt et al. | Oct 1991 | A |
5055835 | Sutton | Oct 1991 | A |
5057694 | Idaka et al. | Oct 1991 | A |
5060031 | Abrokwah et al. | Oct 1991 | A |
5063081 | Cozzette et al. | Nov 1991 | A |
5063166 | Mooney et al. | Nov 1991 | A |
5064781 | Cambou et al. | Nov 1991 | A |
5067809 | Tsubota | Nov 1991 | A |
5073981 | Giles et al. | Dec 1991 | A |
5075743 | Behfar-Rad | Dec 1991 | A |
5081062 | Vasudev et al. | Jan 1992 | A |
5081519 | Nishimura et al. | Jan 1992 | A |
5087829 | Ishibashi et al. | Feb 1992 | A |
5103494 | Mozer | Apr 1992 | A |
5116461 | Lebby et al. | May 1992 | A |
5119448 | Schaefer et al. | Jun 1992 | A |
5122679 | Ishii et al. | Jun 1992 | A |
5122852 | Chan et al. | Jun 1992 | A |
5127067 | Delcoco et al. | Jun 1992 | A |
5130762 | Kulick | Jul 1992 | A |
5132648 | Trinh et al. | Jul 1992 | A |
5140387 | Okazaki et al. | Aug 1992 | A |
5140651 | Soref et al. | Aug 1992 | A |
5141894 | Bisaro et al. | Aug 1992 | A |
5143854 | Pirrung et al. | Sep 1992 | A |
5144409 | Ma | Sep 1992 | A |
5148504 | Levi et al. | Sep 1992 | A |
5155658 | Inam et al. | Oct 1992 | A |
5159413 | Calviello et al. | Oct 1992 | A |
5163118 | Lorenzo et al. | Nov 1992 | A |
5166761 | Olson et al. | Nov 1992 | A |
5173474 | Connell et al. | Dec 1992 | A |
5173835 | Cornett et al. | Dec 1992 | A |
5181085 | Moon et al. | Jan 1993 | A |
5185589 | Krishnaswamy et al. | Feb 1993 | A |
5188976 | Kume et al. | Feb 1993 | A |
5191625 | Gustavsson | Mar 1993 | A |
5194397 | Cook et al. | Mar 1993 | A |
5194917 | Regener | Mar 1993 | A |
5198269 | Swartz et al. | Mar 1993 | A |
5208182 | Narayan et al. | May 1993 | A |
5210763 | Lewis et al. | May 1993 | A |
5216359 | Makki et al. | Jun 1993 | A |
5216729 | Berger et al. | Jun 1993 | A |
5221367 | Chisholm et al. | Jun 1993 | A |
5225031 | McKee et al. | Jul 1993 | A |
5227196 | Itoh | Jul 1993 | A |
5238877 | Russell | Aug 1993 | A |
5244818 | Jokers et al. | Sep 1993 | A |
5248564 | Ramesh | Sep 1993 | A |
5260394 | Tazaki et al. | Nov 1993 | A |
5262659 | Grudkowski et al. | Nov 1993 | A |
5266355 | Wernberg et al. | Nov 1993 | A |
5268327 | Vernon | Dec 1993 | A |
5270298 | Ramesh | Dec 1993 | A |
5280013 | Newman et al. | Jan 1994 | A |
5281834 | Cambou et al. | Jan 1994 | A |
5283462 | Stengel | Feb 1994 | A |
5286985 | Taddiken | Feb 1994 | A |
5293050 | Chapple-Sokol et al. | Mar 1994 | A |
5306649 | Hebert | Apr 1994 | A |
5309464 | Ko | May 1994 | A |
5310707 | Oishi et al. | May 1994 | A |
5312765 | Kanber | May 1994 | A |
5313058 | Friederich et al. | May 1994 | A |
5314547 | Heremans et al. | May 1994 | A |
5315128 | Hunt et al. | May 1994 | A |
5323023 | Fork | Jun 1994 | A |
5326721 | Summerfelt | Jul 1994 | A |
5334556 | Guldi | Aug 1994 | A |
5352926 | Andrews | Oct 1994 | A |
5356509 | Terranova et al. | Oct 1994 | A |
5356831 | Calviello et al. | Oct 1994 | A |
5357122 | Okubora et al. | Oct 1994 | A |
5358925 | Neville Connell et al. | Oct 1994 | A |
5362972 | Yazawa et al. | Nov 1994 | A |
5362998 | Iwamura et al. | Nov 1994 | A |
5365477 | Cooper, Jr. et al. | Nov 1994 | A |
5371621 | Stevens | Dec 1994 | A |
5371734 | Fischer | Dec 1994 | A |
5372992 | Itozaki et al. | Dec 1994 | A |
5373166 | Buchan et al. | Dec 1994 | A |
5387811 | Saigoh | Feb 1995 | A |
5391515 | Kao et al. | Feb 1995 | A |
5393352 | Summerfelt | Feb 1995 | A |
5394489 | Koch | Feb 1995 | A |
5395663 | Tabata et al. | Mar 1995 | A |
5397428 | Stoner et al. | Mar 1995 | A |
5399898 | Rostoker | Mar 1995 | A |
5404581 | Honjo | Apr 1995 | A |
5405802 | Yamagata et al. | Apr 1995 | A |
5406202 | Mehrgardt et al. | Apr 1995 | A |
5410622 | Okada et al. | Apr 1995 | A |
5418216 | Fork | May 1995 | A |
5418389 | Watanabe | May 1995 | A |
5420102 | Harshavardhan et al. | May 1995 | A |
5427988 | Sengupta et al. | Jun 1995 | A |
5430397 | Itoh et al. | Jul 1995 | A |
5436759 | Dijaii et al. | Jul 1995 | A |
5438584 | Paoli et al. | Aug 1995 | A |
5441577 | Sasaki et al. | Aug 1995 | A |
5442191 | Ma | Aug 1995 | A |
5442561 | Yoshizawa et al. | Aug 1995 | A |
5444016 | Abrokwah et al. | Aug 1995 | A |
5446719 | Yoshida et al. | Aug 1995 | A |
5450812 | McKee et al. | Sep 1995 | A |
5452118 | Maruska | Sep 1995 | A |
5453727 | Shibasaki et al. | Sep 1995 | A |
5466631 | Ichikawa et al. | Nov 1995 | A |
5473047 | Shi | Dec 1995 | A |
5473171 | Summerfelt | Dec 1995 | A |
5477363 | Matsuda | Dec 1995 | A |
5478653 | Guenzer | Dec 1995 | A |
5479033 | Baca et al. | Dec 1995 | A |
5479317 | Ramesh | Dec 1995 | A |
5480829 | Abrokwah et al. | Jan 1996 | A |
5481102 | Hazelrigg, Jr. | Jan 1996 | A |
5482003 | McKee et al. | Jan 1996 | A |
5484664 | Kitahara et al. | Jan 1996 | A |
5486406 | Shi | Jan 1996 | A |
5491461 | Partin et al. | Feb 1996 | A |
5492859 | Sakaguchi et al. | Feb 1996 | A |
5494711 | Takeda et al. | Feb 1996 | A |
5504035 | Rostoker et al. | Apr 1996 | A |
5504183 | Shi | Apr 1996 | A |
5508554 | Takatani et al. | Apr 1996 | A |
5510665 | Conley | Apr 1996 | A |
5511238 | Bayraktaroglu | Apr 1996 | A |
5512773 | Wolf et al. | Apr 1996 | A |
5514484 | Nashimoto | May 1996 | A |
5514904 | Onga et al. | May 1996 | A |
5515047 | Yamakido et al. | May 1996 | A |
5515810 | Yamashita et al. | May 1996 | A |
5516725 | Chang et al. | May 1996 | A |
5519235 | Ramesh | May 1996 | A |
5523602 | Horiuchi et al. | Jun 1996 | A |
5528057 | Yanagase et al. | Jun 1996 | A |
5528067 | Farb | Jun 1996 | A |
5528209 | Macdonald et al. | Jun 1996 | A |
5528414 | Oakley | Jun 1996 | A |
5530235 | Stefik et al. | Jun 1996 | A |
5538941 | Findikoglu et al. | Jul 1996 | A |
5540785 | Dennard et al. | Jul 1996 | A |
5541422 | Wolf et al. | Jul 1996 | A |
5548141 | Morris et al. | Aug 1996 | A |
5549977 | Jin et al. | Aug 1996 | A |
5551238 | Prueitt | Sep 1996 | A |
5552547 | Shi | Sep 1996 | A |
5553089 | Seki et al. | Sep 1996 | A |
5556463 | Guenzer | Sep 1996 | A |
5559368 | Hu et al. | Sep 1996 | A |
5561305 | Smith | Oct 1996 | A |
5569953 | Kikkawa et al. | Oct 1996 | A |
5570226 | Ota | Oct 1996 | A |
5572052 | Kashihara et al. | Nov 1996 | A |
5574296 | Park et al. | Nov 1996 | A |
5574589 | Feuer et al. | Nov 1996 | A |
5574744 | Gaw et al. | Nov 1996 | A |
5576879 | Nashimoto | Nov 1996 | A |
5578162 | D'Asaro et al. | Nov 1996 | A |
5585167 | Satoh et al. | Dec 1996 | A |
5585288 | Davis et al. | Dec 1996 | A |
5588995 | Sheldon | Dec 1996 | A |
5589284 | Summerfelt et al. | Dec 1996 | A |
5596205 | Reedy et al. | Jan 1997 | A |
5596214 | Endo | Jan 1997 | A |
5602418 | Imai et al. | Feb 1997 | A |
5603764 | Matsuda et al. | Feb 1997 | A |
5606184 | Abrokwah et al. | Feb 1997 | A |
5608046 | Cook et al. | Mar 1997 | A |
5610744 | Ho et al. | Mar 1997 | A |
5614739 | Abrokwah et al. | Mar 1997 | A |
5619051 | Endo | Apr 1997 | A |
5621227 | Joshi | Apr 1997 | A |
5623439 | Gotoh et al. | Apr 1997 | A |
5623552 | Lane | Apr 1997 | A |
5629534 | Inuzuka et al. | May 1997 | A |
5633724 | King et al. | May 1997 | A |
5635433 | Sengupta | Jun 1997 | A |
5635453 | Pique et al. | Jun 1997 | A |
5640267 | May et al. | Jun 1997 | A |
5642371 | Tohyama et al. | Jun 1997 | A |
5650646 | Summerfelt | Jul 1997 | A |
5656382 | Nashimoto | Aug 1997 | A |
5659180 | Shen et al. | Aug 1997 | A |
5661112 | Hatta et al. | Aug 1997 | A |
5666376 | Cheng | Sep 1997 | A |
5667586 | Ek et al. | Sep 1997 | A |
5668048 | Kondo et al. | Sep 1997 | A |
5670798 | Schetzina | Sep 1997 | A |
5670800 | Nakao et al. | Sep 1997 | A |
5674366 | Hayashi et al. | Oct 1997 | A |
5674813 | Nakamura et al. | Oct 1997 | A |
5679947 | Doi et al. | Oct 1997 | A |
5679965 | Schetzina | Oct 1997 | A |
5682046 | Takahashi et al. | Oct 1997 | A |
5684302 | Wersing et al. | Nov 1997 | A |
5686741 | Ohori et al. | Nov 1997 | A |
5689123 | Major et al. | Nov 1997 | A |
5693140 | McKee et al. | Dec 1997 | A |
5696392 | Char et al. | Dec 1997 | A |
5719417 | Roeder et al. | Feb 1998 | A |
5725641 | MacLeod | Mar 1998 | A |
5729394 | Sevier et al. | Mar 1998 | A |
5729641 | Chandonnet et al. | Mar 1998 | A |
5731220 | Tsu et al. | Mar 1998 | A |
5733641 | Fork et al. | Mar 1998 | A |
5734672 | McMinn et al. | Mar 1998 | A |
5735949 | Mantl et al. | Apr 1998 | A |
5741724 | Ramdani et al. | Apr 1998 | A |
5745631 | Reinker | Apr 1998 | A |
5753300 | Wessels et al. | May 1998 | A |
5753928 | Krause | May 1998 | A |
5753934 | Yano et al. | May 1998 | A |
5754319 | Van De Voorde et al. | May 1998 | A |
5754714 | Suzuki et al. | May 1998 | A |
5760426 | Marx et al. | Jun 1998 | A |
5760427 | Onda | Jun 1998 | A |
5760740 | Blodgett | Jun 1998 | A |
5764676 | Paoli et al. | Jun 1998 | A |
5767543 | Ooms et al. | Jun 1998 | A |
5770887 | Tadatomo et al. | Jun 1998 | A |
5772758 | Collins et al. | Jun 1998 | A |
5776359 | Schultz et al. | Jul 1998 | A |
5776621 | Nashimoto | Jul 1998 | A |
5777350 | Nakamura et al. | Jul 1998 | A |
5777762 | Yamamoto | Jul 1998 | A |
5778018 | Yoshikawa et al. | Jul 1998 | A |
5778116 | Tomich | Jul 1998 | A |
5780311 | Beasom et al. | Jul 1998 | A |
5789733 | Jachimowicz et al. | Aug 1998 | A |
5789845 | Wadaka et al. | Aug 1998 | A |
5790583 | Ho | Aug 1998 | A |
5792569 | Sun et al. | Aug 1998 | A |
5792679 | Nakato | Aug 1998 | A |
5796648 | Kawakubo et al. | Aug 1998 | A |
5801072 | Barber | Sep 1998 | A |
5801105 | Yano et al. | Sep 1998 | A |
5807440 | Kubota et al. | Sep 1998 | A |
5810923 | Yano et al. | Sep 1998 | A |
5812272 | King et al. | Sep 1998 | A |
5814583 | Itozaki et al. | Sep 1998 | A |
5825055 | Summerfelt | Oct 1998 | A |
5825799 | Ho et al. | Oct 1998 | A |
5827755 | Yonehara et al. | Oct 1998 | A |
5828080 | Yano et al. | Oct 1998 | A |
5830270 | McKee et al. | Nov 1998 | A |
5831960 | Jiang et al. | Nov 1998 | A |
5833603 | Kovacs et al. | Nov 1998 | A |
5834362 | Miyagaki et al. | Nov 1998 | A |
5838035 | Ramesh | Nov 1998 | A |
5838053 | Bevan et al. | Nov 1998 | A |
5844260 | Ohori | Dec 1998 | A |
5846846 | Suh et al. | Dec 1998 | A |
5852687 | Wickham | Dec 1998 | A |
5857049 | Beranek et al. | Jan 1999 | A |
5858814 | Goossen et al. | Jan 1999 | A |
5861966 | Ortel | Jan 1999 | A |
5863326 | Nause et al. | Jan 1999 | A |
5864171 | Yamamoto et al. | Jan 1999 | A |
5869845 | Vander Wagt et al. | Feb 1999 | A |
5872493 | Ella | Feb 1999 | A |
5873977 | Desu et al. | Feb 1999 | A |
5874860 | Brunel et al. | Feb 1999 | A |
5878175 | Sonoda et al. | Mar 1999 | A |
5879956 | Seon et al. | Mar 1999 | A |
5880452 | Plesko | Mar 1999 | A |
5882948 | Jewell | Mar 1999 | A |
5883564 | Partin | Mar 1999 | A |
5883996 | Knapp et al. | Mar 1999 | A |
5886867 | Chivukula et al. | Mar 1999 | A |
5888296 | Ooms et al. | Mar 1999 | A |
5889296 | Imamura et al. | Mar 1999 | A |
5896476 | Wisseman et al. | Apr 1999 | A |
5905571 | Butler et al. | May 1999 | A |
5907792 | Droopad et al. | May 1999 | A |
5912068 | Jia | Jun 1999 | A |
5919515 | Yano et al. | Jul 1999 | A |
5919522 | Baum et al. | Jul 1999 | A |
5926493 | O'Brien et al. | Jul 1999 | A |
5926496 | Ho et al. | Jul 1999 | A |
5937115 | Domash | Aug 1999 | A |
5937274 | Kondow et al. | Aug 1999 | A |
5937285 | Abrokwah et al. | Aug 1999 | A |
5948161 | Kizuki | Sep 1999 | A |
5953468 | Finnila et al. | Sep 1999 | A |
5955591 | Imbach et al. | Sep 1999 | A |
5959308 | Shichijo et al. | Sep 1999 | A |
5959879 | Koo | Sep 1999 | A |
5962069 | Schindler et al. | Oct 1999 | A |
5963291 | Wu et al. | Oct 1999 | A |
5966323 | Chen et al. | Oct 1999 | A |
5976953 | Zavracky et al. | Nov 1999 | A |
5977567 | Verdiell | Nov 1999 | A |
5981400 | Lo | Nov 1999 | A |
5981976 | Murasato | Nov 1999 | A |
5981980 | Miyajima et al. | Nov 1999 | A |
5984190 | Nevill | Nov 1999 | A |
5985404 | Yano et al. | Nov 1999 | A |
5986301 | Fukushima et al. | Nov 1999 | A |
5987011 | Toh | Nov 1999 | A |
5987196 | Noble | Nov 1999 | A |
5990495 | Ohba | Nov 1999 | A |
5995359 | Klee et al. | Nov 1999 | A |
5995528 | Fukunaga et al. | Nov 1999 | A |
5997638 | Copel et al. | Dec 1999 | A |
5998781 | Vawter et al. | Dec 1999 | A |
5998819 | Yokoyama et al. | Dec 1999 | A |
6002375 | Corman et al. | Dec 1999 | A |
6008762 | Nghiem | Dec 1999 | A |
6011641 | Shin et al. | Jan 2000 | A |
6011646 | Mirkarimi et al. | Jan 2000 | A |
6013553 | Wallace et al. | Jan 2000 | A |
6020222 | Wollesen | Feb 2000 | A |
6022140 | Fraden et al. | Feb 2000 | A |
6022410 | Yu et al. | Feb 2000 | A |
6022671 | Binkley et al. | Feb 2000 | A |
6022963 | McGall et al. | Feb 2000 | A |
6023082 | McKee et al. | Feb 2000 | A |
6028853 | Haartsen | Feb 2000 | A |
6039803 | Fitzgerald et al. | Mar 2000 | A |
6045626 | Yano et al. | Apr 2000 | A |
6046464 | Schetzina | Apr 2000 | A |
6048751 | D'Asaro et al. | Apr 2000 | A |
6049110 | Koh | Apr 2000 | A |
6049702 | Tham et al. | Apr 2000 | A |
6051858 | Uchida et al. | Apr 2000 | A |
6051874 | Masuda | Apr 2000 | A |
6055179 | Koganei et al. | Apr 2000 | A |
6058131 | Pan | May 2000 | A |
6059895 | Chu et al. | May 2000 | A |
6064078 | Northrup et al. | May 2000 | A |
6064092 | Park | May 2000 | A |
6064783 | Congdon et al. | May 2000 | A |
6078717 | Nashimoto et al. | Jun 2000 | A |
6080378 | Yokota et al. | Jun 2000 | A |
6083697 | Beecher et al. | Jul 2000 | A |
6087681 | Shakuda | Jul 2000 | A |
6088216 | Laibowitz et al. | Jul 2000 | A |
6090659 | Laibowitz et al. | Jul 2000 | A |
6093302 | Montgomery | Jul 2000 | A |
6096584 | Ellis-Monaghan et al. | Aug 2000 | A |
6100578 | Suzuki | Aug 2000 | A |
6103008 | McKee et al. | Aug 2000 | A |
6103403 | Grigorian et al. | Aug 2000 | A |
6107653 | Fitzgerald | Aug 2000 | A |
6107721 | Lakin | Aug 2000 | A |
6108125 | Yano | Aug 2000 | A |
6110813 | Ota et al. | Aug 2000 | A |
6110840 | Yu | Aug 2000 | A |
6113225 | Miyata et al. | Sep 2000 | A |
6113690 | Yu et al. | Sep 2000 | A |
6114996 | Nghiem | Sep 2000 | A |
6121642 | Newns | Sep 2000 | A |
6121647 | Yano et al. | Sep 2000 | A |
6128178 | Newns | Oct 2000 | A |
6134114 | Ungermann et al. | Oct 2000 | A |
6136666 | So | Oct 2000 | A |
6137603 | Henmi | Oct 2000 | A |
6139483 | Seabaugh et al. | Oct 2000 | A |
6140746 | Miyashita et al. | Oct 2000 | A |
6143072 | McKee et al. | Nov 2000 | A |
6143366 | Lu | Nov 2000 | A |
6146906 | Inoue et al. | Nov 2000 | A |
6150239 | Goesele et al. | Nov 2000 | A |
6151240 | Suzuki | Nov 2000 | A |
6153010 | Kiyoku et al. | Nov 2000 | A |
6153454 | Krivokapic | Nov 2000 | A |
6156581 | Vaudo et al. | Dec 2000 | A |
6173474 | Conrad | Jan 2001 | B1 |
6174755 | Manning | Jan 2001 | B1 |
6175497 | Tseng et al. | Jan 2001 | B1 |
6175555 | Hoole | Jan 2001 | B1 |
6180252 | Farrell et al. | Jan 2001 | B1 |
6180486 | Leobandung et al. | Jan 2001 | B1 |
6181920 | Dent et al. | Jan 2001 | B1 |
6184044 | Sone et al. | Feb 2001 | B1 |
6184144 | Lo | Feb 2001 | B1 |
6191011 | Gilboa et al. | Feb 2001 | B1 |
6194753 | Seon et al. | Feb 2001 | B1 |
6197503 | Vo-Dinh et al. | Mar 2001 | B1 |
6198119 | Nabatame et al. | Mar 2001 | B1 |
6204525 | Sakurai et al. | Mar 2001 | B1 |
6204737 | Ella | Mar 2001 | B1 |
6208453 | Wessels et al. | Mar 2001 | B1 |
6210988 | Howe et al. | Apr 2001 | B1 |
6211096 | Allman et al. | Apr 2001 | B1 |
6222654 | Frigo | Apr 2001 | B1 |
6224669 | Yi et al. | May 2001 | B1 |
6225051 | Sugiyama et al. | May 2001 | B1 |
6229159 | Suzuki | May 2001 | B1 |
6232242 | Hata et al. | May 2001 | B1 |
6232806 | Woeste et al. | May 2001 | B1 |
6232910 | Bell et al. | May 2001 | B1 |
6233435 | Wong | May 2001 | B1 |
6235145 | Li et al. | May 2001 | B1 |
6235649 | Kawahara et al. | May 2001 | B1 |
6238946 | Ziegler | May 2001 | B1 |
6239012 | Kinsman | May 2001 | B1 |
6239449 | Fafard et al. | May 2001 | B1 |
6241821 | Yu et al. | Jun 2001 | B1 |
6242686 | Kishimoto et al. | Jun 2001 | B1 |
6248459 | Wang et al. | Jun 2001 | B1 |
6248621 | Wilk et al. | Jun 2001 | B1 |
6252261 | Usui et al. | Jun 2001 | B1 |
6255198 | Linthicum et al. | Jul 2001 | B1 |
6256426 | Duchet | Jul 2001 | B1 |
6265749 | Gardner et al. | Jul 2001 | B1 |
6268269 | Lee et al. | Jul 2001 | B1 |
6271619 | Yamada et al. | Aug 2001 | B1 |
6275122 | Speidell et al. | Aug 2001 | B1 |
6277436 | Stauf et al. | Aug 2001 | B1 |
6278137 | Shimoyama et al. | Aug 2001 | B1 |
6278138 | Suzuki | Aug 2001 | B1 |
6278523 | Gorecki | Aug 2001 | B1 |
6278541 | Baker | Aug 2001 | B1 |
6291319 | Yu et al. | Sep 2001 | B1 |
6291866 | Wallace | Sep 2001 | B1 |
6297598 | Wang et al. | Oct 2001 | B1 |
6297842 | Koizumi et al. | Oct 2001 | B1 |
6300615 | Shinohara et al. | Oct 2001 | B1 |
6306668 | McKee et al. | Oct 2001 | B1 |
6307996 | Nashimoto et al. | Oct 2001 | B1 |
6312819 | Jia et al. | Nov 2001 | B1 |
6313486 | Kencke et al. | Nov 2001 | B1 |
6316785 | Nunoue et al. | Nov 2001 | B1 |
6316832 | Tsuzuki et al. | Nov 2001 | B1 |
6319730 | Ramdani et al. | Nov 2001 | B1 |
6320238 | Kizilyalli et al. | Nov 2001 | B1 |
6326637 | Parkin et al. | Dec 2001 | B1 |
6326645 | Kadota | Dec 2001 | B1 |
6326667 | Sugiyama et al. | Dec 2001 | B1 |
6329277 | Liu et al. | Dec 2001 | B1 |
6338756 | Dietze | Jan 2002 | B2 |
6339664 | Farjady et al. | Jan 2002 | B1 |
6340788 | King et al. | Jan 2002 | B1 |
6341851 | Takayama et al. | Jan 2002 | B1 |
6343171 | Yoshimura et al. | Jan 2002 | B1 |
6345424 | Hasegawa et al. | Feb 2002 | B1 |
6348373 | Ma et al. | Feb 2002 | B1 |
6355945 | Kadota et al. | Mar 2002 | B1 |
6359330 | Goudard | Mar 2002 | B1 |
6362017 | Manabe et al. | Mar 2002 | B1 |
6362558 | Fukui | Mar 2002 | B1 |
6367699 | Ackley | Apr 2002 | B2 |
6372356 | Thornton et al. | Apr 2002 | B1 |
6372813 | Johnson et al. | Apr 2002 | B1 |
6376337 | Wang et al. | Apr 2002 | B1 |
6389209 | Suhir | May 2002 | B1 |
6391674 | Ziegler | May 2002 | B2 |
6392253 | Saxena | May 2002 | B1 |
6392257 | Ramdani et al. | May 2002 | B1 |
6393167 | Davis et al. | May 2002 | B1 |
6404027 | Hong et al. | Jun 2002 | B1 |
6410941 | Taylor et al. | Jun 2002 | B1 |
6410947 | Wada | Jun 2002 | B1 |
6411756 | Sadot et al. | Jun 2002 | B2 |
6415140 | Benjamin et al. | Jul 2002 | B1 |
6417059 | Huang | Jul 2002 | B2 |
6419849 | Qiu et al. | Jul 2002 | B1 |
6427066 | Grube | Jul 2002 | B1 |
6432546 | Ramesh et al. | Aug 2002 | B1 |
6438281 | Tsukamoto et al. | Aug 2002 | B1 |
6445724 | Abeles | Sep 2002 | B2 |
6452232 | Adan | Sep 2002 | B1 |
6461927 | Mochizuki et al. | Oct 2002 | B1 |
6462360 | Higgins, Jr. et al. | Oct 2002 | B1 |
6477285 | Shanley | Nov 2002 | B1 |
6496469 | Uchizaki | Dec 2002 | B1 |
6498358 | Lach et al. | Dec 2002 | B1 |
6501121 | Yu et al. | Dec 2002 | B1 |
6504189 | Matsuda et al. | Jan 2003 | B1 |
6524651 | Gan et al. | Feb 2003 | B2 |
6528374 | Bojarczuk, Jr. et al. | Mar 2003 | B2 |
6538359 | Hiraku et al. | Mar 2003 | B1 |
6589887 | Dalton et al. | Jul 2003 | B1 |
20010013313 | Droopad et al. | Aug 2001 | A1 |
20010020278 | Saito | Sep 2001 | A1 |
20010036142 | Kadowaki et al. | Nov 2001 | A1 |
20010055820 | Sakurai et al. | Dec 2001 | A1 |
20020006245 | Kubota et al. | Jan 2002 | A1 |
20020008234 | Emrick | Jan 2002 | A1 |
20020021855 | Kim | Feb 2002 | A1 |
20020030246 | Eisenbeiser et al. | Mar 2002 | A1 |
20020047123 | Ramdani et al. | Apr 2002 | A1 |
20020047143 | Ramdani et al. | Apr 2002 | A1 |
20020052061 | Fitzgerald | May 2002 | A1 |
20020072245 | Ooms et al. | Jun 2002 | A1 |
20020076878 | Wasa et al. | Jun 2002 | A1 |
20020079576 | Seshan | Jun 2002 | A1 |
20020131675 | Litvin | Sep 2002 | A1 |
20020140012 | Droopad | Oct 2002 | A1 |
20020145168 | Bojarczuk, Jr. et al. | Oct 2002 | A1 |
20020179000 | Lee et al. | Dec 2002 | A1 |
20020195610 | Klosowiak | Dec 2002 | A1 |
20030022395 | Olds | Jan 2003 | A1 |
20040022474 | Lim et al. | Feb 2004 | A1 |
Number | Date | Country |
---|---|---|
196 07 107 | Aug 1997 | DE |
197 12 496 | Oct 1997 | DE |
198 29 609 | Jan 2000 | DE |
100 17 137 | Oct 2000 | DE |
0 247 722 | Dec 1987 | EP |
0 250 171 | Dec 1987 | EP |
0 300 499 | Jan 1989 | EP |
0 309 270 | Mar 1989 | EP |
0 331 338 | Sep 1989 | EP |
0 331 467 | Sep 1989 | EP |
0 342 937 | Nov 1989 | EP |
0 392 714 | Oct 1990 | EP |
0 412 002 | Feb 1991 | EP |
0 455 526 | Jun 1991 | EP |
0 483 993 | May 1992 | EP |
0 494 514 | Jul 1992 | EP |
0 514 018 | Nov 1992 | EP |
0 538 611 | Apr 1993 | EP |
0 581 239 | Feb 1994 | EP |
0 600 658 | Jun 1994 | EP |
0 602 568 | Jun 1994 | EP |
0 607 435 | Jul 1994 | EP |
0 614 256 | Sep 1994 | EP |
0 619 283 | Oct 1994 | EP |
0 630 057 | Dec 1994 | EP |
0 661 561 | Jul 1995 | EP |
0 860 913 | Aug 1995 | EP |
0 682 266 | Nov 1995 | EP |
0 711 853 | May 1996 | EP |
0 766 292 | Apr 1997 | EP |
0 777 379 | Jun 1997 | EP |
0 810 666 | Dec 1997 | EP |
0 828 287 | Mar 1998 | EP |
0 852 416 | Jul 1998 | EP |
0 875 922 | Nov 1998 | EP |
0 881 669 | Dec 1998 | EP |
0 884 767 | Dec 1998 | EP |
0 926 739 | Jun 1999 | EP |
0 957 522 | Nov 1999 | EP |
0 964 259 | Dec 1999 | EP |
0 964 453 | Dec 1999 | EP |
0 993 027 | Apr 2000 | EP |
0 999 600 | May 2000 | EP |
1 001 468 | May 2000 | EP |
1 035 759 | Sep 2000 | EP |
1 037 272 | Sep 2000 | EP |
1 043 426 | Oct 2000 | EP |
1 043 427 | Oct 2000 | EP |
1 043 765 | Oct 2000 | EP |
1 054 442 | Nov 2000 | EP |
1 069 605 | Jan 2001 | EP |
1 069 606 | Jan 2001 | EP |
1 085 319 | Mar 2001 | EP |
1 089 338 | Apr 2001 | EP |
1 109 212 | Jun 2001 | EP |
1 176 230 | Jan 2002 | EP |
2 779 843 | Dec 1999 | FR |
1 319 311 | Jun 1970 | GB |
2 152 315 | Jul 1985 | GB |
2 335 792 | Sep 1999 | GB |
52-88354 | Jul 1977 | JP |
52-89070 | Jul 1977 | JP |
52-135684 | Nov 1977 | JP |
54-134554 | Oct 1979 | JP |
55-87424 | Jul 1980 | JP |
58-075868 | May 1983 | JP |
58-213412 | Dec 1983 | JP |
59-044004 | Mar 1984 | JP |
59066183 | Apr 1984 | JP |
59-073498 | Apr 1984 | JP |
60-161635 | Aug 1985 | JP |
60-210018 | Oct 1985 | JP |
60-212018 | Oct 1985 | JP |
61-36981 | Feb 1986 | JP |
61-63015 | Apr 1986 | JP |
61-108187 | May 1986 | JP |
62-245205 | Oct 1987 | JP |
63-34994 | Feb 1988 | JP |
63-131104 | Jun 1988 | JP |
63-198365 | Aug 1988 | JP |
63-289812 | Nov 1988 | JP |
64-50575 | Feb 1989 | JP |
64-52329 | Feb 1989 | JP |
1-102435 | Apr 1989 | JP |
1-179411 | Jul 1989 | JP |
01-196809 | Aug 1989 | JP |
03-149882 | Nov 1989 | JP |
HEI 2-391 | Jan 1990 | JP |
02051220 | Feb 1990 | JP |
3-41783 | Feb 1991 | JP |
03046384 | Feb 1991 | JP |
3-171617 | Jul 1991 | JP |
03-18619 | Aug 1991 | JP |
5-48072 | Feb 1993 | JP |
5-086477 | Apr 1993 | JP |
05150143 | Jun 1993 | JP |
5-152529 | Jun 1993 | JP |
05 221800 | Aug 1993 | JP |
5-232307 | Sep 1993 | JP |
5-238894 | Sep 1993 | JP |
5-243525 | Sep 1993 | JP |
5-291299 | Nov 1993 | JP |
06-069490 | Mar 1994 | JP |
6-232126 | Aug 1994 | JP |
6-291299 | Oct 1994 | JP |
6-334168 | Dec 1994 | JP |
0812494 | Jan 1996 | JP |
9-67193 | Mar 1997 | JP |
9-82913 | Mar 1997 | JP |
10-256154 | Sep 1998 | JP |
10-269842 | Oct 1998 | JP |
10-303396 | Nov 1998 | JP |
10-321943 | Dec 1998 | JP |
11135614 | May 1999 | JP |
11-238683 | Aug 1999 | JP |
11-260835 | Sep 1999 | JP |
01 294594 | Nov 1999 | JP |
11340542 | Dec 1999 | JP |
2000-068466 | Mar 2000 | JP |
2 000 1645 | Jun 2000 | JP |
2000-278085 | Oct 2000 | JP |
2000-349278 | Dec 2000 | JP |
2000-351692 | Dec 2000 | JP |
2001-196892 | Jul 2001 | JP |
2002-9366 | Jan 2002 | JP |
WO 9210875 | Jun 1992 | WO |
WO 9307647 | Apr 1993 | WO |
WO 9403908 | Feb 1994 | WO |
WO 9502904 | Jan 1995 | WO |
WO 9745827 | Dec 1997 | WO |
WO 9805807 | Jan 1998 | WO |
WO 9820606 | May 1998 | WO |
WO 9914797 | Mar 1999 | WO |
WO 9914804 | Mar 1999 | WO |
WO 9919546 | Apr 1999 | WO |
WO 9963580 | Dec 1999 | WO |
WO 9967882 | Dec 1999 | WO |
WO 0006812 | Feb 2000 | WO |
WO 0016378 | Mar 2000 | WO |
WO 0033363 | Jun 2000 | WO |
WO 0048239 | Aug 2000 | WO |
WO 0104943 | Jan 2001 | WO |
WO 0116395 | Mar 2001 | WO |
WO 0133585 | May 2001 | WO |
WO 0137330 | May 2001 | WO |
WO 0159814 | Aug 2001 | WO |
WO 0159820 | Aug 2001 | WO |
WO 0159821 | Aug 2001 | WO |
WO 0159837 | Aug 2001 | WO |
WO 02 01648 | Jan 2002 | WO |
WO 0203113 | Jan 2002 | WO |
WO 0203467 | Jan 2002 | WO |
WO 0203480 | Jan 2002 | WO |
WO 0208806 | Jan 2002 | WO |
WO 0209160 | Jan 2002 | WO |
WO 02009150 | Jan 2002 | WO |
WO 0211254 | Feb 2002 | WO |
WO 0233385 | Apr 2002 | WO |
WO 0247127 | Jun 2002 | WO |
WO 0250879 | Jun 2002 | WO |
WO 02099885 | Dec 2002 | WO |
WO 03012874 | Feb 2003 | WO |
Number | Date | Country | |
---|---|---|---|
20040150043 A1 | Aug 2004 | US |