STRUCTURE OF INSULIN IN COMPLEX WITH N- AND C-TERMINAL REGIONS OF THE INSULIN RECEPTOR ALPHA-CHAIN

Abstract
The present invention relates to the crystal structure of the insulin receptor ectodomain in complex with human insulin and to methods of using the crystal and related structural information to identify, design and screen for compounds that interact with or modulate the insulin receptor and insulin receptor signalling.
Description
TECHNICAL FIELD

The present invention relates generally to structural studies of insulin binding to the insulin receptor (“IR”). In particular, the present invention relates to the crystal structure of insulin in complex with N- and C-terminal regions of the IR α-chain, and to methods of using the crystal structure and related structural information to identify, design and/or screen for agonists and antagonists that interact with and/or modulate the function of the IR.


BACKGROUND ART

The insulin receptor (“IR”), and its homologue the type 1 insulin-like growth factor receptor (“IGF-1R”), are closely related members of the tyrosine kinase receptor family, and are large, transmembrane, glycoprotein dimers consisting of several structural domains.


Insulin, a hormone produced by the pancreas, interacts with the IR, and via the IR signals into a complex network that ultimately controls the fundamental cellular processes of cell growth and differentiation, protein synthesis, as well as glucose uptake, synthesis and homeostasis (Cohen, 2006; Taniguchi et al., 2006). Insulin signalling also plays a role in neuronal development (Chiu and Cline, 2010). Insulin's role in the treatment of diabetes has underpinned decades of research into the biochemical and biophysical properties of the hormone (Ward and Lawrence, 2011). More recently, aberrant insulin receptor signalling has become implicated in cancer, in part due to its overlap with the closely-related insulin-like growth factor (“IGF”) signalling system and to an increased number of insulin receptors on cancer cells providing a mechanism for increased glucose uptake (Pollak, 2012). Brain insulin resistance is increasingly being seen as a potential causal factor in Alzheimer's disease (Talbot et al., 2012).


Despite these fundamental biological roles of insulin and the role of insulin signalling system in major diseases, there is to date no three-dimensional description of the way in which insulin interacts with the IR.


IR exists as two splice variant isoforms, IR-A and IR-B, which respectively lack or contain the 12 amino acids coded by exon 11. The longer variant, IR-B, is the isoform responsible for signalling metabolic responses. In contrast, IR-A signals predominantly mitogenic responses and is the preferentially expressed isoform in several cancers (Denley et al., 2003). Also, IR-A is capable of binding insulin-like growth factor 2 (“IGF-II”) with high affinity (Frasca et al., 1999; Denley et al., 2004).


The sequence of IR is highly homologous to the sequence of IGF-1R, indicating that their three-dimensional structures are highly likely to be similar. The mature human IR and IGF-1R molecules are each homodimers comprising two α-chains and two β-chains, the α- and β-chains arising from the post-translational cleavage at the furin cleavage site at residues 720-723 (IR-A numbering with the mature N-terminal residue numbered 1) or 707-710 (IGF-1R).


IR is a heavily-glycosylated, disulphide-linked (αβ)2 homodimer of ˜380 kDa molecular weight. Each IR or IGF-1R monomer comprises, from its N-terminus, a leucine-rich repeat domain (“L1”), a cysteine-rich region (“CR”), a leucine-rich repeat domain (“L2”), three fibronectin Type III domains (“FnIII-1”; “FnIII-2”; and “FnIII-3”), trans- and juxtamembrane segments (“TM” and “JM”), a tyrosine kinase domain (“TK”) and a C-terminal tail (McKern et al., 2006). The FnIII-2 domain contains, within its CC′ loop, an insert domain (“ID”) of ˜120 mostly-disordered residues within which lies the α/β cleavage site. Near the C-terminal region of the IR α-chain lies an amphipathic helical segment (“αCT”) that in apo-IR spans residues 693-710 and packs against the central β-sheet (L1-β2) of the L1 domain of the alternate IR monomer (Smith et al., 2010). The domain organisation of IR and the structure of apo-IR are presented in FIGS. 1B and 1C.


Intracellularly, the TK domain is flanked by two regulatory regions that contain the phosphotyrosine binding sites for signalling molecules. Each α-chain is linked to its β-chain via a disulphide bond between residues Cys647 and Cys860 (Sparrow et al., 1997) in the case of IR and/or Cys633-Cys849 in the case of IGF-1R. The α-chains of both IR and IGF-1R are cross-linked by disulphide bonds in two places. The first is at Cys524 (IR) or Cys514 (IGF-1R) in the FnIII-1 domain, cross-linked to its counterpart in the opposite monomer, and the second involves one or more of the residues Cys682, Cys683 and Cys685 (1R) or Cys669, Cys670 and Cys672 (IGF-1R) in the insert region of each FnIII-2 domain, cross-linked to their counterparts in the opposite monomer (Sparrow et al., 1997).


The domains of IR and IGF-1R exhibit high (47-67%) amino acid sequence identity indicative of high conservation of three-dimensional structure. The crystal structure of the first three domains of IGF-1R (L1-CR-L2) has been determined (Garrett et al., 1998) and revealed that the L domains consist of a single-stranded right-handed β-helix (a helical arrangement of β-strands), while the cysteine-rich region is composed of eight related disulphide-bonded modules. The crystal structure of the first three domains of IR (L1-CR-L2) has also been determined (WO 07/147,213, Lou et al., 2006) and as anticipated is closely similar to that of its IGF-1R counterpart. Other evidence for the close structural similarity of IR and IGF-1R arises from: (i) electron microscopic analyses (Tulloch et al., 1999), (ii) the fact that hybrid receptors (heterodimers of one IR monomer disulphide-bonded to one of IGF-1R monomer) exist naturally and are commonly found in tissues expressing both receptors (Bailyes et al., 1997), and (iii) the fact that receptor chimeras can be constructed which have whole domains or smaller segments of polypeptide from one receptor replaced by the corresponding domain or sequence from the other (reviewed in Adams et al., 2000). Further to (ii) and (iii) above, physiologically relevant IR/IGF-1R receptor chimeras have been shown to form on cell surfaces (Belfiore et al., 2009).


The current model for insulin binding proposes that, in the basal state, the IR homodimer contains two identical pairs of binding sites (referred to as “Site 1” and “Site 2”) on each monomer (De Meyts and Whittaker, 2002; Schäffer, 1994; De Meyts, 1994; De Meyts, 2004; Kiselyov et al., 2009). Binding of insulin to a low affinity site (“Site 1”) on one α-subunit is followed by a second binding event between the bound insulin and a different region of the second IR α-subunit (“Site 2”). This ligand-mediated bridging between the two α-subunits generates the high affinity state that results in signal transduction. In contrast, soluble IR ectodomain, which is not tethered at its C-terminus, cannot generate the high affinity receptor-ligand complex. The soluble IR ectodomain can bind two molecules of insulin simultaneously at its two Site 1s, but only with nanomolar affinity (Adams et al., 2000).


The model for IGF-I or IGF-II binding to IGF-1R is the same as that just described for insulin binding to IR and involves IGF-I (or IGF-II) binding to an initial low affinity site (“Site 1”) and subsequent cross-linking to a second site (“Site 2”) on the opposite monomer to form the high affinity state, as described for the IR. However, the values of the kinetic parameters describing these events are somewhat different in the two systems (Surinya et al., 2008; Kiselyov et al., 2009).


In addition to the above models of ligand binding, IGF (IGF-I and IGF-II) and insulin have been shown to bind to IR and the IGF-1R, respectively, albeit at a lower affinity than their cognate receptors (Kristensen et al., 1999; Nakae et al., 2001; Kjeldsen et al., 1991). However, as previously mentioned, the IR-A isoform variant of the IR is a high-affinity receptor for IGF-II (Frasca et al., 1999).


While similar in structure, IGF-1R and IR serve different physiological functions. IGF-1R is expressed in almost all normal adult tissue except for liver, which is itself the major site of IGF-I production (Buttel et al., 1999). A variety of signalling pathways are activated following binding of IGF-I or IGF-II to IGF-1R, including Src and Ras, as well as downstream pathways, such as the MAP kinase cascade and the P13K/AKT axis (Chow et al., 1998). IR is primarily involved in metabolic functions whereas IGF-1R mediates growth and differentiation. Consistent with this, ablation of IGF-I (i.e., in IGF-I knock-out mice) results in embryonic growth deficiency, impaired postnatal growth, and infertility. In addition, IGF-1R knock-out mice were only 45% of normal size and died of respiratory failure at birth (Liu et al., 1993). However, both insulin and IGF-I can induce both mitogenic and metabolic effects.


The insulin monomer comprises a 30-residue B-chain and 21-residue A-chain, together containing three α-helices, A1-A8, A12-A18 and B9-B19, connected by three disulphide bonds (Adams et al., 1969). In its pancreatic (storage) form insulin forms a hexamer (a trimer of dimers). The structure of the insulin monomer is presented in FIG. 1A.


Two distinct surfaces of insulin are understood to interact with IR to initiate signalling (Schäffer, 1994). The first (“classical”) surface consists predominantly of residues involved in hormone dimerization, and the second mostly of residues involved in hexamerization (De Meyts, 2004).


The tandem L1-β2/αCT element from the IR is understood to interact with the classical binding surface of insulin and forms part of Site 1 (Ward and Lawrence, 2009). The second binding surface of insulin is understood to interact with residues at the junction of the FnIII-1 and FnIII-2 domains of the opposite α-chain to that contributing the L1 domain to Site 1 (McKern et al., 2006; Whittaker et al., 2008), referred to as Site 2 (Ward and Lawrence, 2009). IR site 1 is the primary binding hormone site; its dissociation constant for insulin is estimated to be ˜6.4 nM vs ˜400 nM for Site 2 (Kiselyov et al., 2009).


Insulin and the IR ectodomain are proposed to undergo a conformational change upon hormone binding. A key proposed change in insulin is the detachment of the C-terminal B-chain residues B20-B30 (Hua et al., 1991) from the helical core. In the absence of structural characterization of the hormone-receptor complex, however, details of this conformational change have remained speculative. The proposed change in insulin is presented in FIG. 1D.


Insulin remains the key therapeutic for the treatment of both Type 1 and Type 2 diabetes. Its use as a therapeutic has, however, two major complications. The first concerns the method of delivery and the second concerns its profile of action.


In terms of the method of delivery, insulin is not orally bioavailable, and its delivery has to thus be via other means (injection, pumps, pens, nasal sprays, etc.). Formulation of insulin appropriate to each of these means of delivery remains an area of active research.


In terms of profile of action, none of the current modes of delivery can currently deliver insulin in such a way that the respective prandial, post-prandial and sleep concentrations of insulin can be accurately mimicked through a 24-hour cycle.


The above concerns have led to a new class of therapeutics, namely insulin analogues (or “designer” insulins). Examples of designer insulins include:

    • 1. Humalog™ (or lispro insulin), wherein a two-residue segment of insulin ProB28-LysB29 is replaced by LysB28-ProB29. This modification does not alter receptor binding, but blocks the formation of insulin dimers and hexamers, allowing larger amounts of active monomeric insulin to be immediately available upon postprandial injection;
    • 2. Lantus™ (or glargine), designed to be a long-acting insulin analogue. Glargine has a substitution AsnA21Gly and two arginine residues added to the B-chain C-terminus. Glargine is more soluble at acidic pH, thus allowing injection of a clear solution. However, in the neutral subcutaneous space, higher-order aggregates form, resulting in a slow, peakless dissolution and absorption of insulin from the site of injection. It can achieve a peakless level for at least 24 hours; and
    • 3. Novolog™ (or aspart insulin), which is another fast-acting insulin with a substitution ProB28Asp. This analogue has increased charge repulsion, which prevents the formation of hexamers, to create faster-acting insulin.


However, the above designer insulins have been developed without the benefit of knowledge of the three-dimensional atomic details of the insulin/IR interaction. The absence of structural data on the insulin/IR complex has hindered a detailed understanding of ligand/IR interactions.


As mentioned above, structural information to date has been available only for insulin and parts of the IR ectodomain. Thus, there has been no structural information detailing the interactions between insulin and the IR, particularly the conformational changes posited to occur on insulin binding to the IR.


Accordingly, there is a need to determine the structure of insulin in complex with IR in order to better understand the nature of the insulin/IR interaction and its role in IR signalling in order to rationally design or redesign agonists and antagonists, particularly alternative insulin analogues, useful inter alia in the treatment of aberrant IR signalling diseases and/or disorders.


SUMMARY OF INVENTION

The present invention is predicated in part by the determination of the crystal structure of insulin in complex with the N- and C-terminal regions of the IR α-chain, which allows visualisation, for the first time, of the long posited conformational change in insulin upon IR binding. The structure also reveals, for the first time, insulin bound in a stabilised form on the L1-β2 surface of the IR by the αCT recognition helix and shows the accompanied remodelling of the Site 1 L1-β2/αCT tandem element of the IR upon insulin binding (Smith et al., 2010). The atomic coordinates for the structure are presented in Appendix I.


The crystal structure reveals much needed structural information about insulin residues PheB24 and PheB25 during receptor binding. The critical importance of these insulin residues B24 and B25 for receptor binding is well known (Mayer et al., 2007). Clinical mutations at these sites include PheB24Ser (insulin Los Angeles) and PheB25Leu (insulin Chicago), these having 16% and 1-5% of the activity of normal insulin respectively (Shoelson et al., 1983). Studies have shown that PheB24Gly leads to reduced receptor affinity, while D-Ala and D-Phe substitutions at 1324 results in a 150% and 140-180% increase in affinity relative to native insulin. Modifications to the phenyl ring of B24 mostly results in deleterious effects, while B25 accommodates sizable changes in side-chain structure, but is highly demanding in that the phenyl ring must be positioned at the β-carbon (Quan et al., 2006). A TyrB25 analogue demonstrates full in vitro activity. The significance of the size and orientation of the aromatic side-chain is revealed in the binding affinity for the 1- and 2-naphthylalanine analogues (24% and 50%, respectively). In Contrast, non-aromatic substitution at B25 invariably produces low potency. SerB25 and AlaB25 analogues exhibit respective binding potencies of ˜1% and 7% of native insulin. Distance of the phenyl ring from the backbone appears critical to activity, as the homo-phenylalanine and phenylglycine derivatives are as impotent as the nonaromatic analogues.


Thus, derivatization at insulin residues B24 and B25 appears to modulate the potency of insulin. Accordingly, the present inventors consider that the determination of the crystal structure of human insulin in complex with Site 1 of the human IR α-chain, including detailed structural information regarding the interaction between insulin residues B24 and B25 and IR, will assist in the rational design of insulin B24 and B25 analogues. Similarly, it is considered that the structural information provided concerning the nature of the interactions between insulin B24 and B25 residues and IR, will assist in the use of molecular modelling and related techniques to design insulin analogues that have altered binding affinity and or pharmacological profiles due to their alterations at insulin B24 and/or insulin B25.


With the foregoing in view, one aspect of the present invention provides an insulin/IR α-chain crystalline complex comprising the N- and C-terminal regions of the IR α-chain having the atomic coordinates as set forth in Appendix I. Generally, the crystalline complex comprising insulin and the N- and C-terminal regions of the IR α-chain or their derivatives or components thereof are in essentially pure native form. Derivatives and homologues, higher order complexes and soluble forms of the crystalline complex or its components are also contemplated by the present invention.


Another aspect of the present invention is directed to a data set of atomic coordinates defining the Site 1 interaction between IR including the N- and C-terminal regions of the IR α-chain and insulin.


Yet another aspect of the present invention is directed to conformational mimetics of the Site 1 binding surface of insulin useful as antagonists or agonists of insulin signalling via the IR. The mimetics may interfere or interact directly with Site 1 or may interact elsewhere causing conformational changes to Site 1 or may influence the form or level of the insulin/IR complex.


In particular, a Site 1 antagonist is proposed to, for example, reduce aberrant IR signalling, which as previously mentioned has become implicated in cancer, to reduce the increased glucose uptake attributable to the increased number of IRs on cancer cells.


In particular, a Site 1 antagonist is proposed, for example, in the treatment of cancer by reducing aberrant IR signalling attributable to increased glucose uptake in cancer cells due to an increased number of IRs located on cancer cells.


Likewise, a Site 1 agonist is proposed, for example, in the treatment of both Type 1 and Type 2 diabetes.


More particularly, a Site 1 mimetic molecule is proposed that binds to the low affinity insulin binding site of IR with a high degree of specificity and imparts a selective agonistic or antagonistic activity.


With the foregoing in view, one aspect of the present invention provides an insulin/IR α-chain crystalline complex comprising the N- and C-terminal regions of the IR α-chain having the atomic coordinates as set forth in Appendix I. Generally, the crystalline complex comprising insulin and the N- and C-terminal regions of the IR α-chain or their derivatives or components thereof are in essentially pure native form.


Accordingly, the present invention in one form resides in an insulin/IR complex in crystalline form or a derivative or homologue, higher order complex or soluble form thereof.


In one embodiment the complex comprises the N- and C-terminal regions of the IR α-chain in complex with insulin.


In a preferred embodiment, the complex comprises a leucine-rich repeat domain (“L1”) and an adjacent cysteine-rich region (“CR”) from the N-terminus of the IR α-chain and a portion of an amphipathic helical segment (“αCT”) from the C-terminus of the IR α-chain in complex with insulin.


In a more preferred embodiment, the complex comprises portions of the central fi-shed of the L1 domain and the αCT of the IR α-chain in complex with a portion of insulin.


In a most preferred embodiment, the complex comprises the components of the structure defined by the atomic coordinates shown in Appendix I or a subset thereof.


The present invention in another form provides a method of identifying, designing or screening for a compound that can potentially interact with IR, including performing structure-based identification, design, or screening of a compound based on the compound's interactions with an IR structure defined by the atomic coordinates of Appendix I or a subset thereof.


In another form, the present invention provides a method of identifying, designing or screening for a compound that can potentially mimic insulin interacting with IR, including performing structure-based identification, design, or screening of a compound based on (i) the compound's interaction with an IR structure and/or (ii) the compound's similarity with an insulin structure in complex with an IR structure defined by the atomic coordinates of Appendix 1 or a subset thereof.


In one embodiment, the method includes identifying, designing or screening for a compound which interacts with the three-dimensional structure of the low affinity insulin binding site of IR, the structure being defined by the atomic coordinates shown in Appendix 1, wherein interaction of the compound with the structure is favoured energetically.


In another embodiment, the method includes identifying, designing or screening for a compound based upon the three-dimensional structure of insulin in complex with components of the low affinity insulin binding site of IR, the structure being defined by the atomic coordinates shown in Appendix 1, wherein interaction of the compound with the structure is favoured energetically.


In another embodiment, the method further includes synthesising or obtaining an identified or designed candidate compound and determining the ability of the candidate compound to interact with IR and/or mimic insulin in complex with IR.


The present invention in another form provides a method for identifying an agonist or an antagonist compound comprising an entity selected from the group consisting of an antibody, a peptide, a non-peptide molecule and a chemical compound, wherein said compound is capable of enhancing, eliciting or blocking biological activity resulting from an interaction with insulin and/or the IR, wherein said process includes:


introducing into a suitable computer program parameters defining an interacting surface based on the conformation of insulin and/or IR corresponding to the atomic coordinates of Appendix I or a subset thereof, wherein said program displays a three-dimensional model of the interacting surface;


creating a three-dimensional structure of a test compound in said computer program;


displaying a superimposing model of said test compound on the three-dimensional model of the interacting surface;


assessing whether said test compound model fits spatially and optionally energetically into a binding site;


optionally incorporating said test compound in a biological activity assay; and


optionally determining whether said test compound inhibits or enhances the biological activity of insulin or IR signalling or signalling by a derivative of insulin or IR.


In one embodiment, the method includes identifying an agonist or an antagonist compound capable of interacting with the nanomolar affinity insulin binding site (“Site 1”) of the IR as defined by the atomic coordinates shown in Appendix I.


In a further embodiment, the atomic coordinates as shown in Appendix I or a subset thereof define one or more regions of insulin in complex with N- and C-terminal regions of the IR α-chain.


In a preferred embodiment, the atomic coordinates as shown in Appendix I or a subset thereof define insulin in complex with a L1 domain and an adjacent CR domain from the N-terminus of the IR α-chain and a portion of the αCT from the C-terminus of the IR α-chain.


In another preferred embodiment, the atomic coordinates as shown in Appendix I or a subset thereof define portions of the molecular surface of the central n-sheet of the L1 domain and the αCT of the IR α-chain, which interact with a portion of the molecular surface of insulin.


In a particularly preferred embodiment, the atomic coordinates as shown in Appendix I or a subset thereof define the molecular surface of a B-helix of insulin interacting with the molecular surface of the C-terminal edge of L12 of the IR α-chain, the atomic coordinates or a subset thereof defining the B-helix of insulin as lying parallel with and adjacent to a helical portion of the αCT of the IR α-chain.


In another particularly preferred embodiment, the atomic coordinates as shown in Appendix I or a subset thereof define the αCT of the IR α-chain occupying a volume that would otherwise be occupied by the insulin B-chain if insulin was not bound to components of Site 1 of IR. In a more particularly preferred embodiment, a volume that would otherwise be occupied by the C-terminal portion of the B-chain of unbound insulin. In a most particularly preferred embodiment, a volume that would otherwise be occupied by amino acids 26 to 30 from the B-chain of unbound insulin.


In another embodiment, the atomic coordinates define one or more amino acids selected from 1 to 310 and 704 to 719 of the IR α-chain, 1 to 30 from the insulin B-chain and 1 to 21 from the insulin A-chain.


In another preferred embodiment, the one or more amino acids selected from 1 to 310 and 704 to 719 of the IR α-chain include one or more amino acids selected from the group consisting of Asp12, Arg14, Leu36, Leu37, Phe39, Lys40, Leu62, Phe64, Arg65, Phe88, Phe89, Tyr91, Val94, Phe96, Arg118, Glu120, His144, Phe705, Tyr708, Leu709, His710, Asn711, Val712, Val713, Phe714 and Val715.


In another preferred embodiment, the one or more amino acids selected from 1 to 30 from the insulin B-chain include one or more amino acids selected from the group consisting of Gly8, Ser9, Leu11, Val12, Leu15, Tyr16, Phe24, Phe25 and Tyr26.


In another preferred embodiment, the one or more amino acids selected from 1 to 21 from the insulin A-chain include one or more amino acids selected from the group consisting of Gly1, Ile2, Val3, Glu4 and Tyr19.


In another embodiment, IGF-I or IGF-II may be chemically modified to modify the binding affinity of IGF-I or IGF-II to bind to IR as a result of structure-based evaluation using the atomic coordinates as defined in Appendix I or a subset thereof.


In another form, the present invention includes use of the atomic coordinates or a subset thereof as shown in Appendix I at least representing:

    • (i) insulin; and/or
    • (ii) one or more regions of insulin in complex with the N- and C-terminal regions of the IR α-chain,


in identifying, designing or screening for a compound that can potentially mimic insulin interacting with IR, including performing structure-based identification, design, or screening of a compound based on (a) the compound's interactions with an IR structure and/or (b) the compound's similarity with an insulin structure in complex with an IR defined by the atomic coordinates or a subset thereof.


In another form, the present invention includes use of the atomic coordinates or a subset thereof as shown in Appendix I at least representing:

    • (i) the N-terminal region of the IR α-chain;
    • (ii) the C-terminal region of the IR α-chain; and/or
    • (iii) one or more regions of the N- and C-terminal regions of the IR α-chain in complex with insulin,


in identifying, designing or screening for a compound that can potentially interact with IR, including performing structure-based identification, design, or screening of a compound based on the compound's interactions with an IR structure defined by the atomic coordinates or a subset thereof.


In another form, the present invention includes a set of atomic coordinates as shown in Appendix I, or a subset of thereof, at least representing:

    • (i) the N-terminal region of the IR α-chain;
    • (ii) the C-terminal region of the IR α-chain;
    • (iii) insulin; and/or
    • (iv) one or more regions of insulin in complex with the N- and C-terminal regions of the IR α-chain.


In another form, the present invention includes an agonist or antagonist of a site comprising one or more amino acids selected from 1 to 310 and 704 to 719 of the IR α-chain including one or more amino acids selected from the group consisting of Asp12, Arg14, Leu36, Leu37, Phe39, Lys40, Leu62, Phe64, Arg65, Phe88, Phe89, Tyr91, Val94, Phe96, Arg118, Glu120, His144, Phe705, Tyr708, Leu709, His710, Asn711, Val712, Val713, Phe714 and Val715.


In another form, the present invention includes an agonist or antagonist that can potentially mimic insulin interacting with IR, said agonist or antagonist comprising one or more amino acids selected from 1 to 30 from the insulin B-chain including one or more amino acids selected from the group consisting of Gly8, Ser9, Leu11, Val12, Leu15, Tyr16, Phe24, Phe25 and Tyr26.


In another form, the present invention includes an agonist or antagonist that can potentially mimic insulin interacting with IR, said agonist or antagonist comprising one or more amino acids selected from the insulin A-chain including one or more amino acids selected from the group consisting of Gly1, Ile2, Val3, Glu4 and Tyr19.


The present invention has enabled the identification of molecular surface interactions between Site 1 on the IR α-chain and the Site 1 binding surface on insulin. Additionally, the present invention has enabled, for the first time, determination of conformational changes in insulin upon binding to the IR α-chain. In particular, the present invention has enabled the determination of key amino acid residues involved in the binding of insulin to the Site 1 binding surface on the IR α-chain. It will be evident to the skilled person that these findings can be transposed onto related receptors such as the IGF-1R, to which IGF-1 or IGF-II are modelled to bind in a similar fashion as insulin to IR.


The present invention is therefore also useful in the identification, screening and/or design of candidate compounds that bind to Site 1 of IGF-1R.


In one embodiment, candidate compounds for interacting with IR and/or IGF-1R may be chemically modified as a result of structure-based evaluation using the atomic coordinates as defined in Appendix I or a subset thereof.


In another embodiment, the chemical modification is designed to either:

    • (i) reduce the potential for the candidate compound to bind to IR whilst maintaining binding to IGF-1R; or
    • (ii) reduce the potential for the candidate compound to bind to IGF-1R, whilst maintaining binding to IR.


In another embodiment, insulin may be chemically modified to modify the binding affinity of insulin to bind to IGF-1R as a result of structure-based evaluation using the atomic coordinates as defined in Appendix I or a subset thereof.


The present invention is also useful in the identification, screening and/or design of candidate compounds that bind to IR/IGF-1R receptor chimeras. In particular, the present invention is useful in the identification, screening and/or design of candidate compounds that bind to the Site 1 binding site of an IR/IGF-1R receptor chimera. The Site 1 binding site of the IR/IGF-1R receptor chimera may include the L1 domain from one monomer of one receptor type and the αCT peptide from another monomer of the other receptor type.


In one embodiment, candidate compounds for interacting with an IR/IGF-1R receptor or part thereof may be chemically modified as a result of structure-based evaluation using the atomic coordinates as defined in Appendix I or a subset thereof.


In a particular embodiment, candidate compounds for interacting with a Site 1 binding site of an IR/IGF-1R receptor or part thereof may be chemically modified as a result of structure-based evaluation using the atomic coordinates as defined in Appendix I or a subset thereof.


In another embodiment, a ligand selected from the group consisting of insulin, IGF-I and IGF-II may be chemically modified to modify the binding affinity for the ligand to bind to an IR/IGF-1R receptor or part thereof as a result of structure-based evaluation using the atomic coordinates as defined in Appendix I or a subset thereof.


Candidate compounds and compounds identified or designed using a method or process of the present invention may be any suitable compound, including naturally occurring compounds, de novo designed compounds, library generated compounds (chemically or recombinantly generated), mimetics etc., and may include organic compounds, new chemical entities, antibodies, binding proteins other than antibody-based molecules (non-immunoglobulin proteins) including, for example, protein scaffolds such as lipocalins, designed ankyrin repeat proteins (DARPins, Stumpp et al., 2007) and protein A domains (reviewed in Binz et al, 2005), avimers (Silverman et al., 2005), and other new biological entities such as nucleic acid aptamers (reviewed in Ulrich, 2006).


The present invention is also useful for improving the properties of known ligands for the Site 1 binding site of IR and/or IGF-1R. For example, existing IR or IGF-1R ligands may be screened against the 3D structure of the insulin binding site of IR or a region of the insulin binding site of IR as defined by the atomic coordinates of Appendix I or a subset thereof, and an assessment made of the potential to energetically interact with the insulin binding site of IR.


Similarly, existing IR or IGF-1R Site 1 ligands can be screened against the 3D structure of the binding surface of insulin bound to IR as defined by the atomic coordinates of Appendix I or a subset thereof, and an assessment made of the potential to energetically interact with the insulin binding site of IR.


Thus, the present invention also provides a method of redesigning a compound which is known to bind to IR and/or IGF-1R comprising performing structure-based evaluation of the compound based on the compound's interactions with an IR structure defined by the atomic coordinates of Appendix I or a subset thereof and redesigning or chemically modifying the compound as a result of the evaluation.


In another form, the present invention provides a method of redesigning a compound which is known to bind to IR and/or IGF-IR comprising performing structure-based evaluation of the compound's similarity with an insulin structure in complex with an IR defined by the atomic coordinates of Appendix I or, a subset thereof and redesigning or chemically modifying the compound as a result of the evaluation.


In one embodiment, the compound which is known to bind to IR and/or IGF-1R is redesigned or chemically modified to (i) improve affinity for binding to IR, and/or (ii) lower affinity for binding to IGF-1R.


In another embodiment, the compound which is known to bind to IR and/or IGF-1R is redesigned or chemically modified to (i) improve affinity for binding to IGF-1R, and/or (ii) lower affinity for binding to IR.


In a further embodiment the compound is redesigned or modified so as to lower the affinity to IR or IGF-1R by virtue of the structural information provided by the structure of insulin in complex with the IR α-chain, as defined by the atomic coordinates shown in Appendix I, or a subset thereof.


The present invention also provides a computer system for identifying one or more compounds that can potentially interact with IR and/or IGF-1R, the system containing data representing the structure of: (i) the Site 1 binding site of IR, the structure being defined by a subset of the atomic coordinates shown in Appendix I; (ii) the Site 1 binding site on insulin, the structure being defined by a subset of the atomic coordinates shown in Appendix I; and/or (iii) a combination thereof, the structure being defined by the atomic coordinates shown in Appendix I.


In another aspect, the present invention provides a computer-readable medium having recorded data thereon representing a model and/or the atomic coordinates as shown in Appendix I, or a subset of atomic coordinates thereof, the model and/or the atomic coordinates at least representing:

    • (i) the N-terminal region of the IR α-chain;
    • (ii) the C-terminal region of the IR α-chain;
    • (iii) insulin; and/or
    • (iv) one or more regions of insulin in complex with the N- and C-terminal regions of the IR α-chain.


Also provided are a set of atomic coordinates as shown in Appendix I, or a subset of thereof, at least representing:

    • (i) the N-terminal region of the IR α-chain;
    • (ii) the C-terminal region of the IR α-chain;
    • (iii) insulin; and/or
    • (iv) one or more regions of insulin in complex with the N- and C-terminal regions of the IR α-chain.


The three-dimensional structure of the N- and/or C-terminal regions of the IR α-chain and/or insulin and/or the one or more regions of insulin in complex with the N- and C-terminal regions of the IR α-chain may be used to develop models useful for drug design and/or in silico screening of candidate compounds that interact with and/or modulate IR. Other physicochemical characteristics may also be used in developing the model, e.g. bonding, electrostatics, etc.


Generally, the term “in silico” refers to the creation in a computer memory, i.e., on a silicon or other like chip. Stated otherwise “in silico” means “virtual”. When used herein the term “in silico” is intended to refer to screening methods based on the use of computer models rather than in vitro or in vivo experiments.


Accordingly, the present invention also provides a computer-assisted method of identifying a compound that potentially interacts with IR and/or IGF-1R, which method comprises fitting the structure of: (i) the Site 1 binding site of IR, the structure being defined by a subset of the atomic coordinates shown in Appendix I; and/or (ii) portions of the N- and C-terminal regions of the IR α-chain, which are in complex with insulin, the structure being defined by a subset of the atomic coordinates shown in Appendix I, to the structure of a candidate compound.


Also provided by the present invention is a computer-assisted method for identifying a molecule able to interact with IR and/or IGF-1R using a programmed computer comprising a processor, which method comprises the steps of: (a) generating, using computer methods, a set of atomic coordinates of a structure that possesses energetically favourable interactions with the atomic coordinates of (i) the Site 1 binding site of IR, the structure being defined by a subset of the atomic coordinates shown in Appendix I; and/or (ii) portions of the N- and C-terminal regions of the IR α-chain, which are in complex with insulin, the structure being defined by a subset of the atomic coordinates shown in Appendix I, which coordinates are entered into the computer thereby generating a criteria data set; (b) comparing, using the processor, the criteria data set to a computer database of chemical structures; (c) selecting from the database, using computer methods, chemical structures which are complementary or similar to a region of the criteria data set; and optionally, (d) outputting, to an output device, the selected chemical structures which are complementary to or similar to a region of the criteria data set.


The present invention further provides a computer-assisted method for identifying potential mimetics of IR, insulin and/or IGF-1R using a programmed computer comprising a processor, the method comprising the steps of: (a) generating a criteria data set from a set of atomic coordinates of: (i) the Site 1 binding site of IR, the structure being defined by a subset of the atomic coordinates shown in Appendix I; (ii) portions of the N- and C-terminal regions of the IR α-chain, which are in complex with insulin, the structure being defined by a subset of the atomic coordinates shown in Appendix I; (iii) insulin, the structure being defined by a subset of the atomic coordinates shown in Appendix I; and/or (iv) the Site 1 binding site of insulin or portions thereof, the structure being defined by a subset of the atomic coordinates shown in Appendix I, which coordinates are entered into the computer; (b) (i) comparing, using the processor, the criteria data set to a computer database of chemical structures stored in a computer data storage system and selecting from the database, using computer methods, chemical structures having a region that is structurally similar to the criteria data set; or (ii) constructing, using computer methods, a model of a chemical structure having a region that is structurally similar to the criteria data set; and, optionally, (c) outputting to an output device: (i) the selected chemical structures from step (b)(i) having a region similar to the criteria data set; or (ii) the constructed model from step (b)(ii).


The present invention further provides a method for evaluating the ability of a compound to interact with IR and/or IGF-1R, the method comprising the steps of: (a) employing computational means to perform: (i) a fitting operation between the compound and the binding surface of a computer model of the Site 1 binding site for insulin on IR; and/or (ii) a superimposing operation between the compound and insulin, the Site 1 binding site of insulin, or a portion thereof, using atomic coordinates wherein the root mean square deviation between the atomic coordinates and a subset of atomic coordinates of Appendix I or a subset of atomic coordinates of one or more thereof at least representing the N-terminal region of the IR α-chain, the C-terminal region of IR α-chain, insulin, the Site 1 binding site of insulin, or a portion of the Site 1 binding site of insulin, is not more than 1.5 Å; and (b) analysing the results of the fitting operation and/or superimposing operation to quantify the association between the compound and the binding surface model.


The present invention also provides a method of using molecular replacement to obtain structural information about a molecule or a molecular complex of an unknown structure, comprising the steps of (i) generating an X-ray diffraction pattern of the crystallized molecule or molecular complex; and (ii) applying the atomic coordinates of Appendix I, or a subset of atomic coordinates thereof at least representing the N-terminal region of the IR α-chain, the C-terminal region of IR α-chain, insulin, mimetics thereof, derivatives thereof, or portions thereof, to the X-ray diffraction pattern to generate a three-dimensional electron density map of at least a region of the molecule or molecular complex whose structure, is unknown.


The present invention provides compounds that bind to IR and/or IGF-1R designed, redesigned or modified using the methods or processes of the present invention. Preferably, such compounds have an affinity (Kd) for IR and/or IGF-1R of less than 10−5 M. In a particularly preferred embodiment, the compounds binds to the Site 1 binding site of IR and/or to the Site 1 binding site of IGF-1R.


In view of the high sequence homology between the ligands insulin, IGF-I and IGF-II (Adams et al. 2000), the present invention also encompasses compounds that bind to insulin, IGF-I or IGF-II, said compounds being designed, redesigned or modified using the methods or processes of the present invention.


The present invention also provides a composition comprising a compound of the invention, a peptide or mimetic of the invention, and optionally an acceptable carrier or diluent, more preferably a pharmaceutically acceptable carrier or diluent.


The present invention further provides a method for preventing or treating a disease associated with aberrant IR and/or IGF-1R functioning and/or signalling, the method comprising administering to a subject in need thereof a composition, compound, peptide or mimetic of the invention.


Also provided by the present invention is use of a composition, a compound, a peptide or mimetic of the invention in the manufacture of a medicament for treating a disease or disorder in a subject associated with aberrant IR and/or IGF-1R functioning and/or signalling.


Examples of diseases associated with aberrant IR and/or IGF-1R functioning and/or signalling include, but are not limited to, obesity, type I and type II diabetes, cardiovascular disease, osteoporosis, dementia and cancer.


It is also intended that embodiments of the present invention include manufacturing steps such as incorporating the compound, such as a peptide, into a pharmaceutical composition in the manufacture of a medicament.


Throughout this specification, preferred aspects and embodiments apply, as appropriate, separately, or in combination, to other aspects and embodiments, mutatis mutandis, whether or not explicitly stated as such.


The present invention will now be described further with reference to the following examples, which are illustrative only and non-limiting.





BRIEF DESCRIPTION OF THE DRAWINGS

Various embodiments of the invention will be described with reference to the following drawings. Some of the figures contain colour representations or entities. Coloured versions of the figures are available from the applicant upon request or from an appropriate patent office.



FIG. 1: Shows: (A) a model structure of the insulin monomer in which the A-chain is shown in brown, the B-chain is shown in grey and the three disulphide bonds joining the A-chain to the B-chain are shown in green; (B) a graphical representation of the domain profile of the IR, which, from the N-terminus to the C-terminus shows: a leucine-rich repeat domain (“L1”) shown in cyan; a cysteine-rich region (“CR”) shown in brown; another leucine-rich repeat domain (“L2”) shown in red; three fibronectin Type III domains (“FnIII-1; FnIII-2; and FnIII-3”) shown in green, gold and blue, respectively; trans- and juxtamembrane segments (“TM” and “JM”) shown in grey; a tyrosine kinase domain (“TK”) shown in black and a C-terminal tail shown in grey. The FnIII-2 domain contains an insert domain (“ID”) shown in grey, which contains the α-chain/β-chain cleavage site. An amphipathic helical segment (“αCT”) is positioned at the C-terminal region of the IR α-chain, shown as a magenta circle. Disulphide bonds are shown as green braces above and below the domain profile; (C) a model structure of the IR dimer showing how the IR dimer would sit on the membrane surface. Each monomer of the dimer includes the ectodomain of IR with one monomer shown in ribbon form and the other shown as a space-filled model. The domains of the monomers are coloured as in (B); and (D) a model structure of the insulin monomer modelling the proposed conformational changes to the C-terminal B-chain residues 20 to 30 upon binding to the IR (Hua et al., 1991).



FIG. 2: Shows the crystal structure of insulin in complex with the N- and C-terminal regions of the IR α-chain. The structure is shown in ribbon form with the N-terminal region of the IR α-chain shown with a grey backbone, cyan coloured β-sheets in the L1 domain and gold coloured β-sheets in the CR region. The C-terminal region of the IR α-chain, including the αCT segment, is shown as a magenta coloured α-helix. The insulin monomer is shown with a grey backbone. The α-helices of the A-chain of the insulin monomer are coloured gold and the α-helix of the B-chain is coloured black. The N- and C-termini of the A- and B-chain of the insulin monomer are coloured blue and red, respectively.



FIG. 3: Shows: (A) a model of the crystal structure of insulin in complex with the N- and C-terminal regions of the IR α-chain. The model shows the interaction between insulin and the L1 domain from the N-terminal region of the IR α-chain and the αCT segment from the C-terminal region of the IR α-chain. Secondary structural elements from the L1 domain are coloured cyan with loops shown in white. The A-chain from insulin monomer is coloured brown and the B-chain is coloured black. The αCT segment from the crystal structure is coloured magenta. An αCT segment from a crystal structure of the apo form of the IR, shown in yellow, has been superimposed over the model structure. The N- and C-termini of the A- and B-chain of the insulin monomer and the αCT segments are coloured blue and red, respectively; (B) Insulin B-chain residues Phe24 (F24) and Phe25 (F25) are shown in the model structure from (A), without the apo αCT segment; (C) a model of the crystal structure of insulin in complex with the N- and C-terminal regions of the IR α-chain showing the interface between insulin (A-chain shown in brown and B-chain shown in black), the αCT segment (shown in magenta) and the L1 domain (shown in cyan). Selected residues are shown in stick form. The residues from the insulin B-chain are shown with green carbon atoms. Oxygen atoms are coloured red and nitrogen atoms are coloured blue; (D) a model of the crystal structure of insulin in complex with the N- and C-terminal regions of the IR α-chain showing the interface between insulin (A-chain not shown and B-chain shown in black), the αCT segment (shown in magenta) and the L1 domain (shown in cyan). Selected residues from the L1 domain, the αCT segment and the insulin B-chain are shown with carbon atoms coloured cyan, magenta, green. Oxygen atoms are coloured red and nitrogen atoms are coloured blue.



FIG. 4: Shows a model of the L1 domain (coloured in cyan), the insulin B-chain (coloured in black) and the αCT segment (coloured in magenta) from the crystal structure of insulin in complex with the N- and C-terminal regions of the IR α-chain. The L1 domain, the αCT segment and the insulin B-chain are shown with carbon atoms coloured cyan, magenta, green respectively. Oxygen atoms are coloured red and nitrogen atoms are coloured blue.



FIG. 5: Shows: (A) an SDS-PAGE gel showing bands that correspond to purified cIR485 (lane A), IR310.T (lane B) and L2 domain (lane C); (B) an ion exchange chromatography elution profile showing the elution of fractions corresponding to the L2 domain and IR310.T (in red) against a volume buffer gradient (in blue); (C) a size-exclusion chromatography elution profile showing separation of the IR310.T fraction from (B); (D) an SDS-PAGE gel showing bands that correspond to fractions of IR310.T collected from (C); (E) ITC curves for the titration of zinc-free human insulin against IR310.T precomplexed with a 10 fold molar ratio of αCT704-719; and (F) ITC curves for the titration of zinc-free insulin against Fab 83-7 bound IR310.T precomplexed with a 10 fold molar ratio of αCT704-719.



FIG. 6: Shows: (A) a model of the L1 domain, the αCT segment, insulin chain-A and insulin chain-B from the crystal structure of insulin in complex with the N- and C-terminal regions of the IR α-chain. The electron difference density maps corresponding to the location of the αCT segment (in magenta), insulin chain-A and insulin chain-B (in yellow) are also shown; (B) a model of Asn11 (coloured in cyan) with an attached glycan (coloured in green) from the crystal structure of the uncomplexed IR485 (Lou et al., 2006) fitted to the difference electron density map of the present invention. Oxygen atoms are coloured red and nitrogen atoms are coloured blue; (C) a model of a portion of αCT segment (coloured magenta) fitted to a difference electron density map shown in magenta. Oxygen atoms are coloured red and nitrogen atoms are coloured blue.





KEY TO SEQUENCE LISTING

SEQ ID NO: 1—Amino acid sequence of mature human insulin receptor (isoform A).


SEQ ID NO: 2—Amino acid sequence of mature human insulin receptor (isoform B).


SEQ ID NO: 3—Amino acid sequence of mature Type 1 insulin-like growth factor receptor.


SEQ ID NO: 4—Amino acid sequence of insulin A-chain.


SEQ ID NO: 5—Amino acid sequence of insulin B-chain.


SEQ ID NO: 6—Amino acid sequence of mature insulin-like growth factor I (“IGF-I”).


SEQ ID NO: 7—Amino acid sequence of mature insulin-like growth factor II (“IGF-II”).


SEQ ID NO: 8—Amino acid sequence of IR310.T.


SEQ ID NO: 9—Amino acid sequence of the IR α-chain C-terminal peptide from the IR-A isoform (“αCT”).


SEQ ID NO: 10—Amino acid sequence of the IR α-chain C-terminal peptide from the IR-B isoform.


SEQ ID NO: 11—Amino acid sequence of MAb 83-7 IgG1 heavy chain.


SEQ ID NO: 12—Amino acid sequence of MAb 83-7 kappa light chain.


SEQ ID NO: 13—Amino acid sequence of Fab 83-7 kappa light chain.


SEQ ID NO: 14—Amino acid sequence of Fab 83-7 IgG1 heavy chain.


SEQ ID NO: 15—Amino acid sequence of cIR485.


DETAILED DESCRIPTION

Unless defined otherwise, all technical and scientific terms used herein have the same meaning as commonly understood by one of ordinary skill in the art (e.g. in molecular biology, biochemistry, structural biology, and/or computational biology). Standard techniques are used for molecular and biochemical methods (see generally, Sambrook et al., 2001, and Ausubel et al., 1999, which are incorporated herein by reference) and chemical methods.


In the present specification and claims, the word ‘comprising’ and its derivatives including ‘comprises’ and ‘comprise’ include each of the stated integers but does not exclude the inclusion of one or more further integers.


Reference throughout this specification to ‘one embodiment’ or ‘an embodiment’ means that a particular feature, structure, or characteristic described in connection with the embodiment is included in at least one embodiment of the present invention. Thus, the appearance of the phrases ‘in one embodiment’ or ‘in an embodiment’ in various places throughout this specification are not necessarily all referring to the same embodiment. Furthermore, the particular features, structures, or characteristics may be combined in any suitable manner in one or more combinations.


As used herein the term “homologue” means a protein having at least 30% amino acid sequence identity with IR, insulin, IGF-1R, and/or portions thereof. Preferably, the percentage identity is 40 or 50%, more preferably 60 or 70% and most preferably 80 or 90%. A 95% or above identity is most particularly preferred such as 95%, 96%, 97%, 98%, 99% or 100%.


As used herein the term “higher order complex” is used to describe a multimer of the ternary complex of insulin in complex with the IR and the αCT peptide. A higher order complex also includes a co-complex of one or more components of the insulin/IR/αCT complex and another molecule. Various higher order complexes may have different signalling properties.


As used herein the term “derivatives” means IR/insulin/αCT peptide polypeptide complexes that display the biological activity of the wild-type IR/insulin/αCT peptide interactions, characterised by the replacement of at least one amino acid from the wild-type sequence or the modification of one or more of the naturally-occurring amino acids.


Crystals and the Crystal Structure of Insulin in Complex with the N- and C-Terminal Regions of the IR α-Chain


The present invention provides a crystal comprising an N-terminal region of the IR α-chain based on cIR485 (a “cleavable” construct consisting of the first 3 N-terminal domains of the IR α-chain; SEQ ID NO: 15) in complex with Fab 83-7 (SEQ ID NOs 13 and 14), a C-terminal region of the IR α-chain based on the IR classical αCT peptide (“αCT704-719”; residues 704-719; Genscript; SEQ ID NO: 9) and human insulin (Sigma-Aldrich; SEQ ID NOs 4 and 5; see Examples).


The crystal structure of human insulin complexed IR310.T/83-7/αCT704-719 is presented in FIG. 2. Insulin is seen to interact with both the central β-sheet of the L1 domain and with the αCT peptide. The details of these interactions are presented in FIG. 3. The B-helix of insulin lies along the C-terminal edge of L1-β2, parallel and adjacent to the helical portion of αCT (FIG. 3A). Although, the insulin A-chain has no interactions with the L1 domain, extensive interactions are observed with the αCT peptide. Critically, the helical component (residues 705-714 in all structures) of the αCT peptide occupies volume that would otherwise be occupied by the insulin B-chain C-terminal segment B26-B30 if the hormone remained in its free conformation (FIG. 3B). No electron density was discerned for insulin B1-B6.


In the human insulin-complexed IR310.T structure, weak electron density extended beyond insulin GluB21 in a direction anti-parallel to the first strand of L1-β2, suggestive of partial ordering of a folded-out B-chain C-terminal strand.


The interface between insulin, the αCT segment and the L1-β2 surface involves well-defined elements of secondary structure, allowing ready discernment in the electron density maps of the overall direction of the constituent residue side chains. The refined model thus allows key residue-specific interactions at the interface to be discerned with confidence, even though a determination of detailed side-chain conformation is precluded. The major interaction between αCT and insulin is seen to be mediated by the side chains of (a) His710, which is directed into a pocket formed by insulin residues ValA3, GlyB8, SerB9 and ValB12, and (b) Phe714, which is directed into the now exposed hydrophobic crevice of insulin lined by residues GlyA1, IleA2, TyrA19, LeuB11, ValB12 and LeuB15 (FIG. 3C). Asn711 of the αCT peptide is positioned to interact with GlyA1, ValA3 and GluA4. The interaction between the L1 domain and the insulin B-chain helix is not extensive with the side chain of ValB12 being positioned between Phe39, Phe64 and Arg65, while the side chain of TyrB16 is positioned to interact with Phe39 and Lys40 (FIG. 3D). The non-polar face of the amphipathic αCT helix (residues Phe705, Tyr708, Leu709, Val712 and Val 713) engages the non-polar surface of L1-β2 (Leu36, Leu37, Leu62, Phe64, Phe88, Phe89, Val94 and Phe96). The αCT helix appears to be stabilized further by “clamps” formed by Arg118 and Arg14 (FIG. 3D), with the conformation of Arg118 stabilized by interactions with Tyr91, Glu 120, His144 and Phe705 and the conformation of Arg14 stabilized by interactions with Asp12 and the insulin A-chain C-terminus.


Initially, no interpretable density was discerned for insulin residues B20-B26. Final resolution of residues B20-B26 required careful reprocessing of the X-ray data and re-refinement of the model. Ultimately, B20-B24 could be built in a near native-like conformation, with the side chain of residue B24 directed into a hydrophobic pocket formed by the side chains of residues Phe714, Phe39, Leu37 and LeuB15 (FIG. 4). PheB25 and TyrB26 extended in a non-native-like fashion beyond PheB24 with the side chain of residue TyrB25 directed towards the αCT peptide in the vicinity of residue Val715 and the side chain of residue TyrB26 directed towards the L1 domain residues Arg19 and Asp12.


As used herein, the term “crystal” means a structure (such as a three-dimensional (3D) solid aggregate) in which the plane faces intersect at definite angles and in which there is a regular structure (such as an internal structure) of the constituent chemical species. The term “crystal” refers in particular to a solid physical crystal form such as an experimentally prepared crystal.


Crystals according to the invention may be prepared using any IR ectodomain, i.e., the IR polypeptide containing the extracellular domain, including the N- and C-terminal regions, and lacking the transmembrane domain and the intracellular tyrosine kinase domain. Typically, the extracellular domain comprises residues 1 to 917 (mature receptor numbering) of human IR, or the equivalent thereof together with any post-translational modifications of these residues such as N- or O-linked glycosylation.


In a preferred embodiment the IR polypeptide is human IR (SEQ ID NOs: 1 or 2). However, the IR polypeptide may also be obtained from other species, such as other mammalian, vertebrate or invertebrate species.


Crystals may be constructed with wild-type IR polypeptide ectodomain sequences or variants thereof, including allelic variants and naturally occurring mutations as well as genetically engineered variants. Typically, variants have at least 95 or 98% sequence identity with a corresponding wild-type IR ectodomain polypeptide.


Crystals according to the invention may be prepared using any insulin, i.e., insulin polypeptides containing the insulin A-chain and insulin B-chain. Typically, the insulin will be in a monomeric form.


In a preferred embodiment the insulin polypeptides encode human insulin (SEQ ID NOs: 4 and 5).


Crystals may be constructed with wild-type insulin polypeptide sequences or variants thereof, including allelic variants and naturally occurring mutations as well as genetically engineered variants. Typically, variants have at least 95 or 98% sequence identity with a corresponding wild-type insulin polypeptide.


Optionally, the crystal of the IR ectodomain in complex with insulin may comprise one or more compounds which bind to the ectodomain and/or insulin, or otherwise are soaked into the crystal or co-crystallised with the IR ectodomain and/or insulin. Such compounds include ligands or small molecules, which may be candidate pharmaceutical agents intended to modulate the interaction between IR and insulin or IR and biological targets. The crystal of the IR ectodomain in complex with insulin may also be a molecular complex with other receptors of the IGF receptor family such as IGF-1R (SEQ ID NO: 3). The complex may also comprise additional molecules such as the ligands to these receptors, e.g., IGF-I (SEQ ID NO: 6), IGF-II (SEQ ID NO: 7), etc.


The production of IR ectodomain crystals is described below.


In a preferred embodiment, a crystal of the IR ectodomain in complex with insulin of the invention comprises the N- and C-terminal regions of the IR α-chain in complex with insulin having the atomic coordinates set forth in Appendix I. As used herein, the term “atomic coordinates” or “set of coordinates” refers to a set of values which define the position of one or more atoms with reference to a system of axes. It will be understood by those skilled in the art that the atomic coordinates may be varied, without affecting significantly the accuracy of models derived therefrom. Thus, although the invention provides a very precise definition of a preferred atomic structure, it will be understood that minor variations are envisaged and the claims are intended to encompass such variations.


It will be understood that any reference herein to the atomic coordinates or subset of the atomic coordinates shown in Appendix I shall include, unless specified otherwise, atomic coordinates having a root mean square deviation of backbone atoms of not more than 1.5 Å, preferably not more than 1 Å, when superimposed on the corresponding backbone atoms described by the atomic coordinates shown in Appendix I.


The following defines what is intended by the term “root mean square deviation (‘RMSD’)” between two data sets. For each element in the first data set, its deviation from the corresponding item in the second data set is computed. The squared deviation is the square of that deviation, and the mean squared deviation is the mean of all these squared deviations. The root mean square deviation is the square root of the mean squared deviation.


Preferred variants are those in which the RMSD of the x, y and z coordinates for all backbone atoms other than hydrogen is less than 1.5 Å (preferably less than 1 Å, 0.7 Å or less than 0.3 Å) compared with the coordinates given in Appendix I. It will be readily appreciated by those skilled in the art that a 3D rigid body rotation and/or translation of the atomic coordinates does not alter the structure of the molecule concerned.


In a highly preferred embodiment, the crystal has the atomic coordinates as shown in Appendix I.


The present invention also provides a crystal structure of the Site 1 binding site of IR polypeptide comprising the N- and C-terminal regions of the IR α-chain, or regions thereof.


The atomic coordinates obtained experimentally for: amino acids 5 to 310 (the “N-terminal region of the IR α-chain”) and amino acids 705 to 714 (the “C-terminal region of the IR α-chain”) of human IR-A (mature receptor numbering; SEQ ID NO: 1); amino acids 1 to 20 of the human insulin A-chain; and amino acids 7 to 26 of the human insulin B-chain (SEQ ID NOs: 4 and 5) are shown in Appendix I. However, a person skilled in the art will appreciate that a set of atomic coordinates determined by X-ray crystallography is not without standard error. Accordingly, any set of structure coordinates for an IR polypeptide comprising the N- and C-terminal regions of the IR α-chain in complex with human insulin that has a root mean square deviation of protein backbone atoms of less than 0.75 Å when superimposed (using backbone atoms) on the atomic coordinates listed in Appendix I shall be considered identical.


The present invention also comprises the atomic coordinates of the N- and C-terminal regions of the IR α-chain in complex with insulin that substantially conforms to the atomic coordinates listed in Appendix I.


A structure that “substantially conforms” to a given set of atomic coordinates is a structure wherein at least about 50% of such structure has an RMSD of less than about 1.5 Å for the backbone atoms in secondary structure elements in each domain, and more preferably, less than about 1.3 Å for the backbone atoms in secondary structure elements in each domain, and, in increasing preference, less than about 1.0 Å, less than about 0.7 Å, less than about 0.5 Å, and most preferably, less than about 0.3 Å for the backbone atoms in secondary structure elements in each domain.


In a more preferred embodiment, a structure that substantially conforms to a given set of atomic coordinates is a structure wherein at least about 75% of such structure has the recited RMSD value, and more preferably, at least about 90% of such structure has the recited RMSD value, and most preferably, about 100% of such structure has the recited RMSD value.


In an even more preferred embodiment, the above definition of “substantially conforms” can be extended to include atoms of amino acid side chains. As used herein, the phrase “common amino acid side chains” refers to amino acid side chains that are common to both the structure which substantially conforms to a given set of atomic coordinates and the structure that is actually represented by such atomic coordinates.


As used herein, the term “IR ectodomain” refers to the extracellular domain of IR lacking the transmembrane domain and the intracellular tyrosine kinase domain of IR, typically comprising residues 1 to 917 (mature IR-A receptor numbering), of human IR, or the equivalent thereof, together with any post-translational modifications of these residues such as N- or O-linked glycosylation.


As used herein, the term “low affinity binding site” for IR means the regions of IR involved in forming the nanomolar affinity binding site (also known as “Site 1”) of IR for insulin, comprising the N- and C-terminal regions of the IR α-chain including one or both of the L1 domain of IR and the CR domain of IR. Insulin binding to the low affinity binding site of IR induces formation of the high affinity insulin binding site of IR and subsequent signal transduction.


As used herein, the term “classical α-chain C-terminal peptide”, or “αCT”, refers in IR to a region of the C-terminal α-chain of IR previously described in the literature as being important for insulin binding (Kurose et al., 1994; Kristensen et al, 2002), and comprising amino acids 704-719 (mature IR-A receptor numbering) as given in SEQ ID NO: 9.


As used herein, the term “leucine-rich repeat domain 1” or “L1 domain” refers in IR to a leucine-rich domain comprising amino acids 1-156 of mature human IR (SEQ ID NO: 1). The L1 domain of IR comprises a central β-sheet, which comprises amino acids selected from 10-15, 32-37, 60-65, 88-97, 116-121 and 142-147 of mature human IR (SEQ ID NO: 1).


As used herein, the term “leucine-rich repeat domain 2” or “L2” domain refers in IR to a leucine-rich domain comprising amino acids 310-469 of mature human IR (SEQ ID NO: 1).


As used herein, the term “loop in the fourth leucine-rich repeat (LRR) rung of the L1 domain”, or variations thereof, refers in IR to a leucine-rich domain comprising amino acids 85-91 of mature human IR (SEQ ID NO: 1).


As used herein, the term “cysteine-rich domain” or “CR” domain refers in IR to a cysteine-rich domain comprising amino acids 157-309 of mature human IR (SEQ ID NO: 1). The CR domain contains many different modules. As used herein, the term “module 6 of the CR domain” refers in IR to amino acids 256-286 of mature human IR (SEQ ID NO: 1).


Manipulation of the Atomic Coordinates

It will be appreciated that a set of atomic coordinates for one or more polypeptides is a relative set of points that define a shape in three dimensions. Thus, it is possible that an entirely different set of coordinates could define a similar or identical shape. Moreover, slight variations in the individual coordinates will have little effect on overall shape.


The variations in coordinates may be generated due to mathematical manipulations of the atomic coordinates. For example, the atomic coordinates set forth in Appendix I could be manipulated by crystallographic permutations of the atomic coordinates, fractionalisation of the atomic coordinates, integer additions or subtractions to sets of the structure coordinates, inversion of the atomic coordinates, or any combination thereof.


Alternatively, modification in the crystal structure due to mutations, additions, substitutions, and/or deletions of amino acids, or other changes in any of the components that make up the crystal could also account for variations in atomic coordinates.


Various computational analyses are used to determine whether a molecular complex or a portion thereof is sufficiently similar to all or parts of the structure of the extracellular domain of IR in complex with insulin described above. Such analyses may be carried out in current software applications, such as the Sequoia program (Bruns et al., 1999).


The Molecular Similarity program permits comparisons between different structures, different conformations of the same structure, and different parts of the same structure.


Comparisons typically involve calculation of the optimum translations and rotations required such that the root mean square deviation of the fit over the specified pairs of equivalent atoms is an absolute minimum. This number is given in Angstroms (“Å”).


Accordingly, atomic coordinates of an IR ectodomain comprising the Site 1 binding site in complex with insulin of the present invention include atomic coordinates related to the atomic coordinates listed in Appendix I by whole body translations and/or rotations. Accordingly, RMSD values listed above assume that at least the backbone atoms of the structures are optimally superimposed which may require translation and/or rotation to achieve the required optimal fit from which to calculate the RMSD value.


A three dimensional structure of an IR ectodomain polypeptide or a region thereof and/or a three dimensional structure of an insulin polypeptide or a region thereof which substantially conforms to a specified set of atomic coordinates can be modelled by a suitable modelling computer program such as MODELLER (Sali & Blundell, 1993), using information, for example, derived from the following data: (1) the amino acid sequence of the human IR ectodomain polypeptide and/or the amino acid sequence of the human insulin polypeptide; (2) the amino acid sequence of the related portion(s) of the protein represented by the specified set of atomic coordinates having a three dimensional configuration; and (3) the atomic coordinates of the specified three dimensional configuration. A three dimensional structure of an IR ectodomain polypeptide and/or a three dimensional structure of an insulin polypeptide which substantially conforms to a specified set of atomic coordinates can also be calculated by a method such as molecular replacement, which is described in detail below.


Atomic coordinates are typically loaded onto a machine-readable medium for subsequent computational manipulation. Thus models and/or atomic coordinates are advantageously stored on machine-readable media, such as magnetic or optical media and random-access or read-only memory, including tapes, diskettes, hard disks, CD-ROMs and DVDs, flash memory cards or chips, servers and the interne. The machine is typically a computer.


The atomic coordinates may be used in a computer to generate a representation, e.g. an image of the three-dimensional structure of the IR ectodomain in complex with insulin which can be displayed by the computer and/or represented in an electronic file.


The atomic coordinates and models derived therefrom may also be used for a variety of purposes such as drug discovery, biological reagent (binding protein) selection and X-ray crystallographic analysis of other protein crystals.


Molecular Replacement

The structure coordinates of IR comprising the N- and C-terminal regions of the α-chain in complex with insulin, such as those set forth in Appendix I, or a subset thereof, can also be used for determining the three-dimensional structure of a molecular complex which contains at least the N- and/or C-terminal regions of the α-chain of IR. In particular, structural information about another crystallised molecular complex may be obtained. This may be achieved by any of a number of well-known techniques, including molecular replacement.


Methods of molecular replacement are generally known by those of skill in the art (generally described in Brunger, 1997; Navaza & Saludjian, 1997; Tong & Rossmann, 1997; Bentley, 1997; Lattman, 1985; Rossmann, 1972; McCoy, 2007).


Generally, molecular replacement involves the following steps. X-ray diffraction data are collected from the crystal of a crystallised target structure. The X-ray diffraction data are transformed to calculate a Patterson function. The Patterson function of the crystallised target structure is compared with a Patterson function calculated from a known structure (referred to herein as a search structure). The Patterson function of the search structure is rotated on the target structure Patterson function to determine the correct orientation of the search structure in the crystal. A translation function is then calculated to determine the location of the search structure with respect to the crystal axes. Once the search structure has been correctly positioned in the unit cell, initial phases for the experimental data can be calculated. These phases are necessary for calculation of an electron density map from which structural differences can be observed and for refinement of the structure. Preferably, the structural features (e.g., amino acid sequence, conserved di-sulphide bonds, and beta-strands or beta-sheets) of the search molecule are related to the crystallised target structure.


The electron density map can, in turn, be subjected to any well-known model building and structure refinement techniques to provide a final, accurate structure of the unknown (i.e., target) crystallised molecular complex (e.g. see Jones et al., 1991; Brünger et al., 1998).


Obtaining accurate values for the phases, by methods other than molecular replacement, is a time-consuming process that involves iterative cycles of approximations and refinements and greatly hinders the solution of crystal structures. However, when the crystal structure of a protein containing at least a homologous portion has been solved, the phases from the known structure provide a satisfactory starting estimate of the phases for the unknown structure.


By using molecular replacement, all or part of the structure coordinates of IR comprising the N- and C-terminal regions of the IR α-chain in complex with insulin provided herein (and set forth in Appendix I) can be used to determine the structure of a crystallised molecular complex whose structure is unknown more rapidly and more efficiently than attempting to determine such information ab initio. This method is especially useful in determining the structure of IR.


The structure of any portion of any crystallised molecular complex that is sufficiently homologous to any portion of the extracellular domain of IR and/or IGF-1R can be solved by this method.


Such structure coordinates are also particularly useful to solve the structure of crystals of IR co-complexed with a variety of molecules, such as chemical entities. For example, this approach enables the determination of the optimal sites for the interaction between chemical entities, and the interaction of candidate IR and/or IGF-1R agonists or antagonists.


All of the complexes referred to above may be studied using well-known X-ray diffraction techniques and may be refined against 1.5-3.5 Å resolution X-ray data to an R value of about 0.25 or less using computer software, such as X-PLOR (Yale University, distributed by Molecular Simulations, Inc.; see Brünger, 1996). This information may thus be used to optimize known IR agonist/antagonists, such as anti-IR antibodies, and more importantly, to design new or improved IR agonists/antagonists.


Target Sites for Compound Identification, Design or Screening

The three-dimensional structure of the Site 1 binding site of IR in complex with insulin provided by the present invention (Appendix I) can be used to identify potential target binding sites in the Site 1 binding site of IR and/or IGF-1R (i.e., to identify those regions of the Site 1 binding site of IR and/or IGF-1R involved in and important to the binding of insulin, IGF-I and/or IGF-II and subsequent signal transduction) as well as in methods for identifying or designing compounds which interact with the low affinity binding site of IR and/or IGF-1R, e.g., potential modulators of IR and/or IGF-1R.


The three-dimensional structure of IR in complex with insulin provided by the present invention (Appendix I) can be used to identify potential target binding sites in the L1 domain of IR and/or IGF-1R important for binding to insulin and in the C-terminal region of the IR and/or IGF-1R α-chain important for binding to insulin as well as in methods for identifying or designing compounds which interact with the L1 domain of IR and/or IGF-1R and/or with the C-terminal region of the IR and/or IGF-1R α-chain in a manner similar to insulin in complex with the L1 domain and the C-terminal region of the IR α-chain, e.g., potential modulators of IR and/or IGF-1R.


The low affinity binding site of IR is a region of IR ectodomain involved in insulin docking to the receptor. The preferred low affinity target binding site may comprise the C-terminal region of the IR α-chain and one or more regions from the L1 domain of the IR ectodomain. With regards to the L1 domain, the target binding site preferably comprises portions of the molecular surface of the central β-sheet of L1, preferably containing Asp12, Arg14, Leu 36, Leu 37, Leu62, Phe64, Val94, Phe96, Arg118, Glu120 and His144 and portions of the molecular surface of the second leucine-rich repeat (LRR), preferably containing Phe88, Phe89 and Tyr 91. Most preferably, the low affinity binding site contains both portions of the molecular surface of the central β-sheet of L1 and portions of the molecular surface of the second LRR as defined above.


Alternatively, the low affinity target binding site in IR may comprise one or more amino acids from amino acids 704 to 719 (encompassing the C-terminal region of the IR α-chain) plus one or more of the following amino acid sequences: (i) amino acids 1-156 and (ii) amino acids 157-310.


With regards to amino acids 1-156, the target binding site preferably comprises one or more amino acids selected from Asp12, Arg14, Asn15, Gln34, Leu36, Leu37, Leu62, Phe39, Pro43, Phe46, Leu62, Phe64, Leu87, Phe88, Phe89, Asn90, Val94, Phe96, Glu97, Arg118, Gle120 and His144.


With regards to amino acids 157-310, the target binding site preferably comprises one or more amino acids from the amino acid sequence 192-310, more preferably one or more amino acids from the sequence 227-303, yet more preferably one or more amino acids selected from the sequence 259-284.


In a preferred embodiment, van der Waals and/or hydrophobic interactions account for the major portion of the binding energy between a compound and a low affinity insulin binding site of IR.


The three-dimensional structure of the N- and C-terminal regions of the IR α-chain provided by the present invention can also be used to identify or more clearly elucidate potential target binding sites on IGF-1R ectodomain (i.e., to identify those regions, or at least more accurately elucidate those regions of IGF-1R ectodomain involved in and important to the binding of IGF and signal transduction) as well as in methods used for identifying or designing compounds which interact with potential target binding sites of IGF-IR ectodomain, e.g. potential modulators of IGF-1R.


Preferred target binding sites are those governing specificity, i.e., those regions of IGF-1R ectodomain involved in the initial nanomolar affinity binding of IGF (i.e., the initial binding of IGF to IGF-1R).


The low affinity binding site of IGF-IR is a region of IGF-1R ectodomain involved in IGF-I binding to the receptor. Preferred low affinity target binding sites comprise the C-terminal region of IGF-1R α-chain and one or more regions from the L1 domain and/or the CR domain of IGF-1R ectodomain. With regards to the L1 domain, the target binding site preferably comprises the central β-sheet of the L1 domain, and/or that part of the second LRR containing Ser35, and/or the loop in the fourth LRR rung of the L1 domain, or preferably all of these, as defined above. With regards the CR domain, the target binding site preferably comprises module 6 of the CR domain, as defined above.


In a preferred embodiment, van der Waals and/or hydrophobic interactions account for the major portion of the binding energy between a compound and a low affinity binding site of IGF-1R.


Additional preferred binding sites in the case of both IR and IGF-1R, particularly for biological macromolecules such as proteins or aptamers, are those that are devoid of glycosylation or devoid of steric hindrance from glycan covalently attached to the polypeptide at sites in the spatial vicinity.


Design, Selection, Fitting and Assessment of Chemical Entities that Bind IR and/or IGF-1R


Using a variety of known modelling techniques, the crystal structure of the present invention can be used to produce a model for the low affinity binding site of IR and/or IGF-1R.


As used herein, the term “modelling” includes the quantitative and qualitative analysis of molecular structure and/or function based on atomic structural information and interaction models. The term “modelling” includes conventional numeric-based molecular dynamic and energy minimisation models, interactive computer graphic models, modified molecular mechanics models, distance geometry and other structure-based constraint models.


Molecular modelling techniques can be applied to the atomic coordinates of the low affinity binding site of IR in complex with insulin, or at least part of the C-terminal region of the α-chain of IR or insulin, or regions thereof to derive a range of 3D models and to investigate the structure of binding sites, such as the binding sites of monoclonal antibodies, nonimmunoglobulin binding proteins and inhibitory peptides.


These techniques may also be used to screen for or design small and large chemical entities which are capable of binding IR and modulating the ability of IR to interact with extracellular biological targets, such as insulin or members of the IGF receptor family e.g. which modulate the ability of IR to heterodimerise. The screen may employ a solid 3D screening system or a computational screening system.


Such modelling methods are to design or select chemical entities that possess stereochemical complementary to the low affininty binding site of IR and/or IGF-1R, to the regions of the L1 domain of IR and/or IGF-1R with which the C-terminal region of the α-chain of IR and/or IGF-1R interact, or to the regions of the L1 domain of IR and/or IGF-1R with which insulin or IGF interact. By “stereochemical complementarity” we mean that the compound or a portion thereof makes a sufficient number of energetically favourable contacts with the receptor as to have a net reduction of free energy on binding to the receptor.


Modelling method may also be used to design or select chemical entities that possess stereochemical similarity to the low affinity binding site surface of insulin, to the regions of the A-chain and B-chain of insulin that interact with the C-terminal region of the α-chain of IR or to the regions of the A-chain and B-chain of insulin that interact with the L1 domain of IR. By “stereochemical similarity” we mean that the compound or portion thereof makes about the same number of energetically favourable contacts with the receptor as insulin makes as determined by the crystal structure of insulin in complex with the IR α-chain set out by the coordinates shown in Appendix I.


Stereochemical complementarity is characteristic of a molecule that matches intra-site surface residues lining the groove of the receptor site as enumerated by the coordinates set out in Appendix I or a subset thereof. By “match” we mean that the identified portions interact with the surface residues, for example, via hydrogen bonding or by non-covalent Van der Waals and Coulomb interactions (with surface or residue) which promote desolvation of the molecule within the site, in such a way that retention of the molecule at the binding site is favoured energetically.


It is preferred that the stereochemical complementarity is such that the compound has a Kd for the receptor site of less than 10−4M, more preferably less than 10−5M and more preferably 10−6M. In a most preferred embodiment, the Kd value is less than 10−8M and more preferably less than 10−9M.


Chemical entities which are complementary to the shape and electrostatics or chemistry of the receptor site characterised by amino acids positioned at atomic coordinates set out in Appendix I will be able to bind to the receptor, and when the binding is sufficiently strong, substantially prohibit the interaction of the IR and/or IGF-1R ectodomain with biological target molecules such as insulin or IGF.


It will be appreciated that it is not necessary that the complementarity between chemical entities and the receptor site or similarity between the chemical entities and biological receptor target molecules such as insulin or IGF need extend over all residues of the receptor site or target molecule in order to inhibit or mimic binding of a molecule or complex that naturally interacts with IR and/or IGF-1R ectodomain.


A number of methods may be used to identify chemical entities possessing stereochemical complementarity to the low affinitybinding site of IR and/or IGF-1R, to the regions of the L1 domain of IR and/or IGF-1R with which the C-terminal region of the α-chain of IR and/or IGF-1R interact, or to the regions of the L1 domain of IR and/or IGF-1R with which insulin or IGF interact. For instance, the process may begin by visual inspection of the entire low affinity insulin binding site comprising the N- and C-terminal regions of the α-chain of IR, or the equivalent region in IGF-1R, on the computer screen based on the coordinates in Appendix I generated from the machine-readable storage medium. Alternatively, selected fragments or chemical entities may then be positioned in a variety of orientations, or docked, within the low affinity binding site of IR and/or IGF-1R, or within the L1 domain of IR and/or IGF-1R in a manner similar to insulin and/or the C-terminal region of the α-chain of IR, as defined above. Similar methods could be used to identify chemical entities or compounds that may interact with the L1 domain of IR and/or IGF-1R in a manner similar to that of insulin and/or the C-terminal region of the α-chain of IR.


Modelling software that is well known and available in the art may be used (Guida, 1994). These include. Discovery Studio (Accelrys Software Inc., San Diego), SYBYL (Tripos Associates, Inc., St. Louis, Mo., 1992), Maestro (Schrödinger LLC, Portland), MOE (Chemical Computing Group Inc., Montreal, Canada). This modelling step may be followed by energy minimization with standard molecular mechanics force fields such as AMBER (Weiner et al., 1984), OPLS (Jorgensen and Tirado-Rives, 1988) and CHARMM (Brooks et al., 1983). In addition, there are a number of more specialized computer programs to assist in the process of selecting the binding moieties of this invention.


Specialised computer programs may also assist in the process of selecting fragments or chemical entities. These include, inter alia:

    • 1. GRID (Goodford, 1985). GRID is available from Molecular Discovery Ltd., Italy;
    • 2. AUTODOCK (Goodsell & Olsen, 1990). AUTODOCK is available from Scripps Research Institute, La Jolla, Calif.;
    • 3. DOCK (Kuntz et al., 1982). DOCK is available from University of California, San Francisco, Calif.;
    • 4. GLIDE (Friesner et al., 2004). GLIDE is available from Schrödinger LLC, Portland; and
    • 5. GOLD (Cole et al., 2005). GOLD is available from The Cambridge Crystallographic Data Centre, Cambridge, UK.


Once suitable chemical entities or fragments have been selected, they can be assembled into a single compound. In one embodiment, assembly may proceed by visual inspection of the relationship of the fragments to each other on the three-dimensional image displayed on a computer screen in relation to the structure coordinates of the low affinity site of IR, or the L1 domain to which insulin and/or the C-terminal region of the α-chain of IR binds. This is followed by manual model building using software such as Discovery Studio, Maestro, MOE or Sybyl. Alternatively, fragments may be joined to additional atoms using standard chemical geometry.


The above-described evaluation process for chemical entities may be performed in a similar fashion for chemical compounds.


Useful programs to aid one of skilled in the art in connecting the individual chemical entities or fragments include:

    • 1. CAVEAT (Bartlett et al., 1989). CAVEAT is available from the University of California, Berkeley, Calif.; and
    • 2. GANDI (Day and Caflisch, 2008). GANDI is available from the University of Zurich.


Other molecular modelling techniques may also be employed in accordance with this invention, see, e.g., Cohen et al. (1990) and Navia & Murcko (1992).


There are two preferred approaches to designing a molecule according to the present invention that complement the stereochemistry of the low affinity binding site of IR and/or IGF-1R, or the L1 domain to which insulin and/or the C-terminal region of the α-chain of IR binds. The first approach is to in silky) directly dock molecules from a three-dimensional structural database, to the target binding site, using mostly, but not exclusively, geometric criteria to assess the goodness-of-fit of a particular molecule to the site. In this approach, the number of internal degrees of freedom (and the corresponding local minima in the molecular conformation space) is reduced by considering only the geometric (hard-sphere) interactions of two rigid bodies, where one body (the active site) contains “pockets” or “grooves” that form binding sites for the second body (the complementing molecule).


Flexibility of the receptor, IR or IGF-1R, can be incorporated into the in silico screening by the application of multiple conformations of the receptor (Totrov and Abagyan, 2008). The multiple conformations of the IR receptor can be generated from the coordinates listed in Appendix I computationally by use of molecular dynamics simulation or similar approaches.


This approach is illustrated by Kuntz et al. (1982) and Ewing et al. (2001), the contents of which are hereby incorporated by reference, whose algorithm for ligand design is implemented in a commercial software package, DOCK version 4.0, distributed by the Regents of the University of California and further described in a document, provided by the distributor, which is entitled. “Overview of the DOCK program suite” the contents of which are hereby incorporated by reference. Pursuant to the Kuntz algorithm, the shape of the cavity in which the C-terminal region of the α-chain of IR fits and/or insulin fits is defined as a series of overlapping spheres of different radii. One or more extant databases of crystallographic data, such as the Cambridge Structural Database System (The Cambridge Crystallographic Data Centre, Cambridge, U.K.), the Protein Data Bank, maintained by the Research Collaboratory for Structural Bioinformatics (Rutgers University, N.J., U.S.A.), LeadQuest (Tripos Associates, Inc., St. Louis, Mo.), Available Chemicals Directory (Symyx Technologies Inc.), and the NCI database (National Cancer Institute, U.S.A) is then searched for molecules which approximate the shape thus defined.


Molecules identified on the basis of geometric parameters, can then be modified to satisfy criteria associated with chemical complementarity, such as hydrogen bonding, ionic interactions and van der Waals interactions. Different scoring functions can be employed to rank and select the best molecule from a database. See for example Bohm & Stahl (1999). The software package FlexX, marketed by Tripos Associates, Inc. (St. Louis, Mo.) is another program that can be used in this direct docking approach (see Rarey et al., 1996).


The second preferred approach entails an assessment of the interaction of respective chemical groups (“probes”) with the active site at sample positions within and around the site, resulting in an array of energy values from which three-dimensional contour surfaces at selected energy levels can be generated. The chemical-probe approach to ligand design is described, for example, by Goodford, (1985), the contents of which are hereby incorporated by reference, and is implemented in several commercial software packages, such as GRID (product of Molecular Discovery Ltd., Italy).


Pursuant to this approach, the chemical prerequisites for a site-complementing molecule are identified at the outset, by probing the active site with different chemical probes, e.g., water, a methyl group, an amine nitrogen, a carboxyl oxygen, or a hydroxyl. Favoured sites for interaction between the active site and each probe are thus determined, and from the resulting three-dimensional pattern of such sites a putative complementary molecule can be generated. This may be done either by programs that can search three-dimensional databases to identify molecules incorporating desired pharmacophore patterns or by programs which use the favoured sites and probes as input to perform de novo design. Suitable programs for determining and designing pharmacophores include CATALYST (Accelrys Software, Inc), and CERIUS2, DISCO (Abbott Laboratories, Abbott Park, Ill.; distributed by Tripos Associates Inc.).


The pharmacophore can be used to screen in silico compound libraries/three-dimensional databases, using a program such as CATALYST (Accelrys Software, Inc) and Sybyl/3DB Unity (Tripos Associates, Inc., St. Louis, Mo.).


Databases of chemical structures are available from a number of sources including Cambridge Crystallographic Data Centre (Cambridge, U.K.), Molecular Design, Ltd., (San Leandro, Calif.), Tripos Associates, Inc. (St. Louis, Mo.), Chemical Abstracts Service (Columbus, Ohio), the Available Chemical Directory (Symyx Technologies, Inc.), the Derwent World Drug Index (WDI), BioByteMasterFile, the National Cancer Institute database (NCI), Medchem Database (BioByte Corp.), and the Maybridge catalogue.


De novo design programs include LUDI (Accelrys Software Inc., San Diego, Calif.), Leapfrog (Tripos Associates, Inc.), and LigBuilder (Peking University, China).


Once an entity or compound has been designed or selected by the above methods, the efficiency with which that entity or compound may bind to IR and/or IGF-1R can be tested and optimised by computational evaluation. For example, a compound that has been designed or selected to function as an IR binding compound must also preferably traverse a volume not overlapping that occupied by the binding site when it is bound to the native IR. An effective IR binding compound must preferably demonstrate a relatively small difference in energy between its bound and free states (i.e., a small deformation energy of binding). Thus, the most efficient IR binding compound should preferably be designed with a deformation energy of binding of not greater than about 10 kcal/mole, preferably, not greater than 7 kcal/mole. IR and/or IGF-1R binding compounds may interact with IR and/or IGF-1R in more than one conformation that are similar in overall binding energy. In those cases, the deformation energy of binding is taken to be the difference between the energy of the free compound and the average energy of the conformations observed when the compound binds to the protein.


A compound designed or selected as binding to IR and/or IGF-1R may be further computationally optimised so that in its bound state it would preferably lack repulsive electrostatic interaction with the target protein.


Such non-complementary (e.g., electrostatic) interactions include repulsive charge-charge, dipole-dipole and charge-dipole interactions. Specifically, the sum of all electrostatic interactions between the compound and the protein when the compound is bound to IR and/or IGF-IR, preferably make a neutral or favourable contribution to the enthalpy of binding.


Once an IR-binding compound and/or IGF-1R-binding compound has been optimally selected or designed, as described above, substitutions may then be made in some of its atoms or side groups to improve or modify its binding properties. Generally, initial substitutions are conservative, i.e., the replacement group will have approximately the same size, shape, hydrophobicity and charge as the original group. It should, of course, be understood that components known in the art to alter conformation should be avoided. Such substituted chemical compounds may then be analysed for efficiency of fit to IR and/or IGF-IR by the same computer methods described in detail above.


Specific computer software is available in the art to evaluate compound deformation energy and electrostatic interaction. Examples of programs designed for such uses include: Gaussian 03, (Frisch, Gaussian, Inc., Pittsburgh, Pa.); GAMESS (Gordon et al., Iowa State University); Jaguar (Schrödinger LLC, Portland); AMBER, version 9.0 (Case et al, University of California at San Francisco); CHARMM (Accelrys Software, Inc., San Diego, Calif.); and GROMACS version 4.0 (van der Spoel et al.).


The screening/design methods may be implemented in hardware or software, or a combination of both. However, preferably, the methods are implemented in computer programs executing on programmable computers each comprising a processor, a data storage system (including volatile and non-volatile memory and/or storage elements), at least one input device, and at least one output device. Program code is applied to input data to perform the functions described above and generate output information. The output information is applied to one or more output devices, in known fashion. The computer may be, for example, a personal computer, microcomputer, or workstation of conventional design.


Each program is preferably implemented in a high level procedural or object-oriented programming language to communicate with a computer system. However, the programs can be implemented in assembly or machine language, if desired. In any case, the language may be compiled or interpreted language.


Each such computer program is preferably stored on a storage medium or device (e.g., ROM or magnetic diskette) readable by a general or special purpose programmable computer, for configuring and operating the computer when the storage media or device is read by the computer to perform the procedures described herein. The system may also be considered to be implemented as a computer-readable storage medium, configured with a computer program, where the storage medium so configured causes a computer to operate in a specific and predefined manner to perform the functions described herein.


Compounds

Compounds of the present invention include both those designed or identified using a screening method of the invention and those which are capable of recognising and binding to the low affinity binding site of IR and/or IGF-1R as defined above. Also encompassed by the present invention are compounds that bind to the L1 domain of IR in a manner similar to that of insulin and/or the C-terminal region of the α-chain of IR, i.e., compounds which mimic insulin and/or the C-terminal region of the α-chain of IR.


Compounds capable of recognising and binding to the low affinity binding site of IR and/or IGF-1R may be produced using (i) a screening method based on use of the atomic coordinates corresponding to the 3D structure of the low affinity binding site of IR in complex with insulin; or (ii) a screening method based on the use of the atomic coordinates corresponding to the 3D structure of insulin in complex with IR. Alternatively, compounds may be identified by screening against a specific target molecule which is indicative of the capacity to bind to the low affinity binding site of IR.


Compounds capable of recognising and binding to the L1 domain of IR and/or IGF-1R in a manner similar to that of insulin and/or the C-terminal region of the α-chain of IR to the L1 domain of IR (i.e. compounds which mimic insulin and/or the C-terminal region of the α-chain of IR) may be produced using a screening method based on use of the atomic coordinates corresponding to the 3D structure of the insulin and/or the C-terminal region of the α-chain of IR in isolation or as it associates with IR, or alternatively may be identified by screening against a specific target molecule which is indicative of the capacity to bind to the low affinity binding site of IR.


The candidate compounds and/or compounds identified or designed using a method of the present invention may be any suitable compound, synthetic or naturally occurring, preferably synthetic. In one embodiment, a synthetic compound selected or designed by the methods of the invention preferably has a molecular weight equal to or less than about 5000, 4000, 3000, 2000, 1000 or 500 daltons. A compound of the present invention is preferably soluble under physiological conditions.


The compounds may encompass numerous chemical classes, though typically they are organic molecules, preferably small organic compounds having a molecular weight of more than 50 and less than about 2,500 daltons, preferably less than 1,500, more preferably less than 1,000 and yet more preferably less than 500. Such compounds can comprise functional groups necessary for structural interaction with proteins, particularly hydrogen bonding, and typically include at least an amine, carbonyl, hydroxyl or carboxyl group, preferably at least two of the functional chemical groups. The compound may comprise cyclical carbon or heterocyclic structures and/or aromatic or polyaromatic structures substituted with one or more of the above functional groups. Compounds can also comprise biomolecules including peptides, saccharides, fatty acids, steroids, purines, pyrimidines, derivatives, structural analogues, or combinations thereof.


Compounds may include, for example: (1) peptides such as soluble peptides, including Ig-tailed fusion peptides and members of random peptide libraries (see, e.g., Lam et al., 1991; Houghten et al., 1991) and combinatorial chemistry-derived molecular libraries made of D- and/or L-configuration amino acids; (2) phosphopeptides (e.g., members of random and partially degenerate, directed phosphopeptide libraries, see, e.g., Songyang et al., 1993); (3) antibodies (e.g., polyclonal, monoclonal, humanized, anti-idiotypic, chimeric, and single chain antibodies as well as Fab, (Fab)2′, Fab expression library and epitope-binding fragments of antibodies); (4) nonimmunoglobulin binding proteins such as but not restricted to avimers, DARPins and lipocalins; (5) nucleic acid-based aptamers; and (6) small organic and inorganic molecules.


Ligands can be obtained from a wide variety of sources including libraries of synthetic or natural compounds. Synthetic compound libraries are commercially available from, for example, Maybridge Chemical Co. (Tintagel, Cornwall, UK), AMRI (Budapest, Hungary) and ChemDiv (San Diego, Calif.), Specs (Delft, The Netherlands).


Natural compound libraries comprising bacterial, fungal, plant or animal extracts are available from, for example, Pan Laboratories (Bothell, Wash.), TimTec (Newark, Del.). In addition, numerous means are available for random and directed synthesis of a wide variety of organic compounds and biomolecules, including expression of randomized oligonucleotides.


Alternatively, libraries of natural compounds in the form of bacterial, fungal, plant and animal extracts can be readily produced. Methods for the synthesis of molecular libraries are readily available (see, e.g., DeWitt et al., 1993; Erb et al., 1994; Zuckermann et al., 1994; Cho et al., 1993; Carell et al., 1994a; Carell et al., 1994b; and Gallop et al., 1994). In addition, natural or synthetic compound libraries and compounds can be readily modified through conventional chemical, physical and biochemical means (see, e.g., Blondelle and Houghton, 1996), and may be used to produce combinatorial libraries. In another approach, previously identified pharmacological agents can be subjected to directed or random chemical modifications, such as acylation, alkylation, esterification, amidification, and the analogues can be screened for IR and/or IGF-1R-modulating activity.


Numerous methods for producing combinatorial libraries are known in the art, including those involving biological libraries; spatially addressable parallel solid phase or solution phase libraries; synthetic library methods requiring deconvolution; the “one-bead one-compound” library method; and synthetic library methods using affinity chromatography selection. The biological library approach is limited to polypeptide or peptide libraries, while the other four approaches are applicable to polypeptide, peptide, nonpeptide oligomer, or small molecule libraries of compounds (Lam, 1997).


Compounds also include those that may be synthesized from leads generated by fragment-based drug design, wherein the binding of such chemical fragments is assessed by soaking or co-crystallizing such screen fragments into crystals provided by the invention and then subjecting these to an X-ray beam and obtaining diffraction data. Difference Fourier techniques are readily applied by those skilled in the art to determine the location within the IR ectodomain structure at which these fragments bind, and such fragments can then be assembled by synthetic chemistry into larger compounds with increased affinity for the receptor.


Isolated Peptides or Mimetics Thereof.

Compounds identified or designed using the methods of the invention can be a peptide or a mimetic thereof.


The isolated peptides or mimetics of the invention may be conformationally constrained molecules or alternatively molecules which are not conformationally constrained such as, for example, non-constrained peptide sequences. The term “conformationally constrained molecules” means conformationally constrained peptides and conformationally constrained peptide analogues and derivatives.


The term “analogues” refers to molecules having a chemically analogous structure to naturally occurring α-amino acids. Examples include molecules containing gem-diaminoalkyl groups or alklylmalonyl groups.


The term “derivatives” includes α-amino acids wherein one or more side groups found in the naturally occurring α-amino acids have been modified. Thus, for example the amino acids may be replaced with a variety of uncoded or modified amino acids such as the corresponding D-amino acid or N-methyl amino acid. Other modifications include substitution of hydroxyl, thiol, amino and carboxyl functional groups with chemically similar groups.


With regard to peptides and mimetics thereof, other examples of other unnatural amino acids or chemical amino acid analogues/derivatives which can be introduced as a substitution or addition include, but are not, limited to, 2,4-diaminobutyric acid, α-amino isobutyric acid, 4-aminobutyric acid, 2-aminobutyric acid, 6-amino hexanoic acid, 2-amino isobutyric acid, 3-amino propionic acid, ornithine, norleucine, norvaline, hydroxyproline, sarcosine, citrulline, homocitrulline, cysteic acid, t-butylglycine, t-butylalanine, phenylglycine, cyclohexylalanine, β-alanine, fluoro-amino acids, designer amino acids such as β-methyl amino acids, Cα-methyl amino acids, Nα-methyl amino acids, and amino acid analogues in general.


The mimetic may be a peptidomimetic. A “peptidomimetic” is a molecule that mimics the biological activity of a peptide but is no longer peptidic in chemical nature. By strict definition, a peptidomimetic is a molecule that no longer contains any peptide bonds (that is, amide bonds between amino acids). However, the term peptide mimetic is sometimes used to describe molecules that are no longer completely peptidic in nature, such as pseudo-peptides, semi-peptides and peptoids. Whether completely or partially non-peptide, peptidomimetics for use in the methods of the invention, and/or of the invention, provide a spatial arrangement of reactive chemical moieties that closely resembles the three-dimensional arrangement of active groups in the peptide on which the peptidomimetic is based. As a result of this similar active-site geometry, the peptidomimetic has effects on biological systems which are similar to the biological activity of the peptide.


There are sometimes advantages for using a mimetic of a given peptide rather than the peptide itself, because peptides commonly exhibit two undesirable properties: (1) poor bioavailability; and (2) short duration of action. Peptide mimetics offer an obvious route around these two major obstacles, since the molecules concerned are small enough to be both orally active and have a long duration of action. There are also considerable cost savings and improved patient compliance associated with peptide mimetics, since they can be administered orally compared with parenteral administration for peptides. Furthermore, peptide mimetics are generally cheaper to produce than peptides.


Suitable peptidomimetics based on insulin, a fragment thereof, and/or the C-terminal region of the α-chain of IR and/or IGR-1R can be developed using readily available techniques. Thus, for example, peptide bonds can be replaced by non-peptide bonds that allow the peptidomimetic to adopt a similar structure, and therefore biological activity, to the original peptide. Further modifications can also be made by replacing chemical groups of the amino acids with other chemical groups of similar structure. The development of peptidomimetics derived from peptides of insulin, a fragment thereof, and/or the C-terminal region of the IR and/or IGF-1R α-chain can be aided by reference to the three dimensional structure of these residues as provided in Appendix I. This structural information can be used to search three-dimensional databases to identify molecules having a similar structure, using programs such as Sybyl/3DB Unity (Tripos Associates, St. Louis, Mo.).


Those skilled in the art will recognize that the design of a peptidomimetic may require slight structural alteration or adjustment of a chemical structure designed or identified using the methods of the invention. In general, chemical compounds identified or designed using the methods of the invention can be synthesized chemically and then tested for ability to modulate IR and/or IGF-1R activity using any of the methods described herein. The methods of the invention are particularly useful because they can be used to greatly decrease the number potential mimetics which must be screened for their ability to modulate IR and/or IGF-1R activity.


The peptides or peptidomimetics of the present invention can be used in assays for screening for candidate compounds which bind to regions of IR and/or IGF-1R and potentially interfere with the binding of insulin to IR and/or signal transduction and/or the binding of IGF to IGF-1R and/or signal transduction. Peptides or peptidomimetics which mimic target binding sites are particularly useful as specific target molecules for identifying potentially useful ligands for IR and/or IGF-IR.


Standard solid-phase ELISA assay formats are particularly useful for identifying compounds that bind to the receptor. In accordance with this embodiment, the peptide or peptidomimetic immobilized on a solid matrix, such as, for example an array of polymeric pins or a glass support. Conveniently, the immobilized peptide or peptidomimetic is a fusion polypeptide comprising Glutathione-5-transferase (GST; e.g. a CAP-ERK fusion), wherein the GST moiety facilitates immobilization of the protein to the solid phase support. This assay format can then be used to screen for candidate compounds that bind to the immobilised peptide or peptidomimetic and/or interfere with binding of a natural binding partner of IR and/or IGF-IR to the immobilised peptide or peptidomimetic.


As used herein a “fragment” is a portion of a peptide of the invention which maintains a defined activity of the “full-length” peptide, namely the ability to bind to the low affinity binding site of IR and/or IGF-1R, or to bind to the L1 domain of IR and/or IGF-1R. Fragments can be any size as long as they maintain the defined activity. Preferably, the fragment maintains at least 50%, more preferably at least 75%, of the activity of the full length polypeptide.


The % identity of a peptide is determined by GAP (Needleman and Wunsch, 1970) analysis (GCG program) with a gap creation penalty=5, and a gap extension penalty=0.3. The query sequence is at least 10 amino acids in length, and the GAP analysis aligns the two sequences over a region of at least 10 amino acids. More preferably, the GAP analysis aligns two sequences over their entire length.


With regard to a defined peptide, it will be appreciated that % identity figures higher than those provided above will encompass preferred embodiments. Thus, where applicable, in light of the minimum % identity figures, it is preferred that the peptide comprises an amino acid sequence which is at least 50%, more preferably at least 55%, more preferably at least 60%, more preferably at least 65%, more preferably at least 70%, more preferably at least 75%, more preferably at least 80%, more preferably at least 85%, more preferably at least 90%, more preferably at least 91%, more preferably at least 92%, more preferably at least 93%, more preferably at least 94%, more preferably at least 95%, more preferably at least 96%, more preferably at least 97%, more preferably at least 98%, more preferably at least 99%, more preferably at least 99.1%, more preferably at least 99.2%, more preferably at least 99.3%, more preferably at least 99.4%, more preferably at least 99.5%, more preferably at least 99.6%, more preferably at least 99.7%, more preferably at least 99.8%, and even more preferably at least 99.9% identical to the relevant nominated SEQ ID NO.


Amino acid sequence mutants of the peptides identified or designed using the methods of the invention, and/or of the present invention, can be prepared by introducing appropriate nucleotide changes into a nucleic acid of the present invention, or by in vitro synthesis of the desired peptide. Such mutants include, for example, deletions, insertions or substitutions of residues within the amino acid sequence. A combination of deletion, insertion and substitution can be made to arrive at the final construct, provided that the final peptide product possesses the desired characteristics.


In designing amino acid sequence mutants, the location of the mutation site and the nature of the mutation will depend on characteristic(s) to be modified. The sites for mutation can be modified individually or in series, e.g., by (1) substituting first with conservative amino acid choices and then with more radical selections depending upon the results achieved, (2) deleting the target residue, or (3) inserting other residues adjacent to the located site.


Substitution mutants have at least one amino acid residue in the peptide removed and a different residue inserted in its place. Sites of interest are those in which particular residues obtained from various strains or species are identical. These sites, especially those falling within a sequence of at least three other identically conserved sites, are preferably substituted in a relatively conservative manner. Such conservative substitutions are shown in Table 1 under the heading of “exemplary substitutions”.









TABLE 1







Exemplary substitutions.










Original
Exemplary



Residue
Substitutions






Ala (A)
val; leu; ile; gly



Arg (R)
lys



Asn (N)
gln; his



Asp (D)
glu



Cys (C)
ser



Gln (Q)
asn; his



Glu (E)
asp



Gly (G)
pro, ala



His (H)
asn; gln



Ile (I)
leu; val; ala



Leu (L)
ile; val; met; ala; phe



Lys (K)
arg



Met (M)
leu; phe



Phe (F)
leu; val; ala



Pro (P)
gly



Ser (S)
thr



Thr (T)
ser



Trp (W)
tyr



Tyr (Y)
trp; phe



Val (V)
ile; leu; met; phe, ala









In a preferred embodiment a mutant/variant peptide has one or two or three or four conservative amino acid changes when compared to a peptide defined herein. Details of conservative amino acid changes are provided in Table 1.


Also included within the scope of the invention are peptides which are differentially modified during or after synthesis, e.g., by biotinylation, benzylation, glycosylation, acetylation, phosphorylation, amidation, derivatization by known protecting/blocking groups, proteolytic cleavage, linkage to an antibody molecule or other cellular ligand, etc. These modifications may serve to increase the stability and/or bioactivity of the peptide.


The residues that form the αCT segment of the IR α-chain, namely residues 704 to 719, can be grouped into four classes: Class A—those whose side chains are completely buried in the interface with insulin (His710, Asn711 and Phe714); Class B—those whose sides chains are completely buried in the interface with L1 (Phe703, Phe705 Tyr708, Leu709, Val712, Val713); Class C—those whose side chains lie at the periphery of the interface with insulin and/or the L1 domain; and Class D—those whose side chains appear to have no interaction with insulin or L1. In terms of using the αCT segment itself as a scaffold for mimetics that might compete with the naturally-occurring αCT segment in its binding to insulin and/or the L1 domain, design might focus in the first instance on substitution of those residues belonging to Class C, given that the residues lying in Classes A and B are relatively optimally packed within the interfaces and already have few degrees of freedom. Higher affinity binding might be achieved by substitution of one or more of the Class C residues with either naturally-occurring amino acids or non-natural amino acids. For example, the substitution of one or more of the charged residues with residues that have reduced rotameric degrees of freedom (i.e., reduced entropy) may lead to higher affinity binding or altered physicochemical properties of the compound. Such modification for example may include substitution by the naturally-occurring amino acids Phe, Tyr or Trp. As a further example, it may be possible to substitute residues with more bulky non-natural amino acids that retain the terminal cationic character, for example substitution by the basic phenyl propanoic acid derivatives App (L-2-amino-3-(4-aminophenyl)propanoic acid) and/or Gpp, (L-2-amino-3-(4-guanidinophenyl)propanoic acid) (Svenson et al., 2009). A further strategy for design might involve substitutions to improve the overall stability of the helical structure (for example helix stapling—see Danial et al., 2008). Such substitutions would likely be made within Class D residues. A yet further strategy to improve affinity or physicochemical properties might involve truncation of the helical segment and/or attaching an N- or C-terminal group also designed to improve affinity. Similar principles of design may be applied to generate modified peptides based on the corresponding native IGF-1R peptide as outlined above for the IR peptide.


Likewise, the residues that form the Site 1 binding surface of insulin can be grouped into five classes: Class A—those whose side chains are complete buried in the interface with the L1 domain (TyrB16, PheB24); Class B—those whose sides chains are completely buried in the interface with the αCT segment (ValA3, GlyB8, SerB9, GlyA1, IleA2, TyrA19, LeuB11, LeuB15, GluA4 and PheB25); Class C—those whose side chains mediate the interface with both the L1 domain and the αCT segment (ValB12 and TyrB26); Class D—those whose side chains lie at the periphery of the interface with the L1 domain and/or the αCT segment; and Class E—those whose side chains appear to have no interaction with the L1 domain or the αCT segment. In terms of using the insulin monomer as defined in complex with IR itself as a scaffold for mimetics that might compete with the naturally-occurring insulin in its binding to the L1 domain and/or the αCT segment, design might focus in the first instance on substitution of those residues belonging to Class D, given that the residues lying in Classes A and B are relatively optimally packed within the interfaces and already have few degrees of freedom. Higher affinity binding might be achieved by substitution of one or more of the Class D residues with either naturally-occurring amino acids or non-natural amino acids. For example, the substitution of one or more of the charged residues with residues that have reduced rotameric degrees of freedom (i.e., reduced entropy) may lead to higher affinity binding or altered physicochemical properties of the compound. Such modification for example may include substitution by the naturally-occurring amino acids Phe, Tyr or Trp. As a further example, it may be possible to substitute residues with more bulky non-natural amino acids that retain the terminal cationic character, for example substitution by the basic phenyl propanoic acid derivatives App (L-2-amino-3-(4-aminophenyl)propanoic acid) and/or Gpp, (L-2-amino-3-(4-guanidinophenyl)propanoic acid) (Swenson et, al., 2009). A further strategy for design might involve substitutions to improve the overall stability of the conformational change in insulin upon binding to the IR. Such substitutions would likely be made within Class E residues. A yet further strategy to improve affinity or physicochemical properties might involve truncation of the C-terminus residues B26 to B30 and/or attaching an N- or C-terminal group also designed to improve affinity. Similar principles of design may be applied to generate modified peptides based on the corresponding native IGF-1R peptide as outlined above for the IR peptide.


The design of synthetic non-peptide mimetics of α-helices is an established art (see for example Davis et al., 2006). In particular, methods of mimicry of i, i+4, i+7 motifs (such as those identified within the αCT segment of the α-chain of IR and IGF-1R and which interact the respective L1 domains are known. For example, these motifs may be mimicked by terphenyl, oligophenyl, chalcone or 1,4-benzodiazepine-2,5-dione scaffolds (Davis et al., 2006) or by benzoylurea scaffolds (US 2008153802). Non-peptide mimetics of α-helices have been investigated as therapeutics in a number of disease contexts, for example HIV1 infection (disruption of the assembly of the hexameric helical bundle (Ernst et al., 2001)) and cancer (disruption of the assembly of the HDM2-p53 complex (Yin et al., 2005); inhibitors of Bcl-2 family heterodimerisation (Degterev et al., 2001).


With regard to redesigning compounds using a method of the invention, in an embodiment the compound is redesigned to be more structurally similar to the native αCT segment of the α-chain of IR and/or the αCT segment of the α-chain of IGF-1R. Examples of peptides which could be redesigned in this manner include, but are not limited to, those described by Schäffer et al. (2003) and/or U.S. Pat. No. 7,173,005.


In an alternative embodiment, the compound is redesigned to be more structurally similar to native insulin in complex with the IR. Preferably, the compound is redesigned to mimic the conformational structural changes in insulin upon binding to the IR. More preferably, the compound is redesigned to mimic the conformational structural changes in the insulin B-chain upon binding to the IR.


Interaction of Compounds with IR and/or IGF-1R


A compound may interact with the low affinity binding site of IR and/or IGF-1R by binding either directly or indirectly to that region. A compound which binds directly, binds to the specified region. A compound which binds indirectly, binds to a region in close proximity to or adjacent to the low affinity binding site of IR and/or IGF-1R with the result that it interferes with the ability of IR to bind to insulin, or IGF-1R to bind IGF, either antagonistically or agonistically. Such interference may be steric, electrostatic, or allosteric. Preferably, a compound interacts with the low affinity binding site of IR and/or IGF-1R by binding directly to the specified region. In the case of compounds that bind to specific target molecules, such compounds bind directly to the specific target molecule.


A compound may alternatively interact with the L1 domain of IR and/or IGF-1R in a manner similar to that of the αCT segment of the α-chain of IR by binding either directly or indirectly to that region. A compound which binds directly, binds to the specified region. A compound which binds indirectly, binds to a region in close proximity to or adjacent to the L1 domain of IR and/or IGF-1R in a manner similar to that of the αCT segment of the α-chain of IR with the result that it interferes with the ability of IR to bind to insulin, or IGF-1R to bind IGF, either antagonistically or agonistically. Such interference may be steric, electrostatic, or allosteric. Preferably, a compound interacts with the L1 domain of IR and/or IGF-1R in a manner similar to that of the αCT segment of the α-chain of IR by binding directly to the specified region. In the case of compounds that bind to specific target molecules, such compounds bind directly to the specific target molecule.


Binding can be either by covalent or non-covalent interactions, or both. Examples of non-covalent interactions include electrostatic interactions, van der Waals interactions, hydrophobic interactions and hydrophilic interactions.


When a compound of the invention interacts with IR and/or IGF-1R, it preferably “modulates” IR or IGF-1R, respectively. By “modulate” we mean that the compound changes an activity of IR or IGF-1R by at least 10%. Suitably, a compound modulates IR or IGF-1R by increasing or decreasing signal transduction via IR or IGF-1R, respectively. The phrase “decreases signal transduction” is intended to encompass partial or complete inhibition of signal transduction via IR or IGF-1R. The ability of a candidate compound to increase or decrease signal transduction via IR or IGF-1R can be assessed by any one of the IR or IGF-1R cell-based assays described herein.


Compounds may act as antagonists or agonists for insulin binding to IR or as antagonists or agonists for IGF binding to IGF-1R.


Compounds of the present invention preferably have an affinity for IR or IGF-1R sufficient to provide adequate binding for the intended purpose. Suitably, such compounds and compounds which bind to specific target molecules of IR or IGF-1R have an affinity (Kd) of from 10−5 to 10−15 M. For use as a therapeutic, the compound suitably has an affinity (Kd) of from 10−7 to 10−15 M, preferably from 10−8 to 10−12 M and more preferably from 10−10 to 10−12 M. Where a compound is to be used as a reagent in a competitive assay to identify other ligands, the compound suitably has an affinity (Kd) of from 10−5 to 10−12 M.


As will be evident to the skilled person, the crystal structure presented herein has enabled, for the first time, direct visualisation of the regions binding insulin in the IR. The structure has enabled the identification of the αCT segment of the α-chain of IR, critical for the initial binding of insulin, and in the subsequent formation of the high affinity insulin-IR complex that leads to signal transduction.


In one preferred embodiment, a compound has a high specificity for IR and/or a specific target molecule of IR but not for IGF-1R, i.e., a compound selectively binds to IR or has enhanced selectivity for IR over IGF-1R. In this respect, a compound suitably has an affinity (IQ) for IR and/or a specific target molecule of IR of no more than 10−5 M, preferably no more than 10−7 M, and an affinity for IGF-1R of at least 10−5 M, preferably at least 10−3 M. Such compounds are desirable as, for example, IR agonists where the propensity to interact with IGF-1R and thus, for example, promote undesirable cell proliferation, is reduced.


In a preferred embodiment, the (IR or specific target molecule of IR)/IGF-1R binding affinity ratio for a compound is at least 10 and preferably at least 100.


In another preferred embodiment, a compound has a high specificity for IGF-1R and/or a specific target molecule of IGF-1R but not for IR, i.e., a compound selectively binds to IGF-1R or has enhanced selectivity for IGF-1R over IR. In this respect, a compound suitably has an affinity (IQ) for IGF-1R and/or a specific target molecule of IGF-1R of no more than 10−5 M, preferably no more than 10−7 M, and an affinity for IR of at least 10−5 M, preferably at least 10−3 M. Such compounds are desirable as, for example, IGF-1R agonists where there propensity to interact with IR and thus, for example, promote glucose uptake and metabolism, is reduced.


In a preferred embodiment, the (IGF-1R or specific target molecule of IGF-1R)/(IR) binding affinity ratio for a compound is at least 10 and preferably at least 100.


Screening Assays and Confirmation of Binding

Compounds of the invention may be subjected to further confirmation of binding to IR and/or IGF-1R by co-crystallization of the compound with IR and/or IGF-1R and structural determination, as described herein.


Compounds designed or selected according to the methods of the present invention are preferably assessed by a number of in vitro and in vivo assays of IR and/or IGF-1R function to confirm their ability to interact with and modulate IR and/or IGF-1R activity. For example, compounds may be tested for their ability to bind to IR and/or IGF-1R and/or for their ability to modulate e.g. disrupt, IR and/or IGF-1R signal transduction.


Libraries may be screened in solution by methods generally known in the art for determining whether ligands competitively bind at a common binding site. Such methods may include screening libraries in solution (e.g., Houghten, 1992), or on beads (Lam, 1991), chips (Fodor, 1993), bacteria or spores (U.S. Pat. No. 5,223,409), plasmids (Cull et al., 1992), or on phage (Scott & Smith, 1990; Devlin, 1990; Cwirla et al., 1990; Felici, 1991; U.S. Pat. No. 5,223,409).


Where the screening assay is a binding assay, IR or IGF-1R may be joined to a label, where the label can directly or indirectly provide a detectable signal. Various labels include radioisotopes, fluorescent molecules, chemiluminescent molecules, enzymes, specific binding molecules, particles, e.g., magnetic particles, and the like. Specific binding molecules include pairs, such as biotin and streptavidin, digoxin and antidigoxin, etc. For the specific binding members, the complementary member would normally be labelled with a molecule that provides for detection, in accordance with known procedures.


A variety of other reagents may be included in the screening assay. These include reagents like salts, neutral proteins, e.g., albumin, detergents, etc., which are used to facilitate optimal protein-protein binding and/or reduce non-specific or background interactions. Reagents that improve the efficiency of the assay, such as protease inhibitors, nuclease inhibitors, antimicrobial agents, etc., may be used. The components are added in any order that produces the requisite binding. Incubations are performed at any temperature that facilitates optimal activity, typically between 4 and 40° C.


Direct binding of compounds to IR or IGF-1R can also be done by Surface Plasmon Resonance (BIAcore) (reviewed in Morton & Myszka, 1998). Here the receptor is immobilized on a CM5 or other sensor chip by either direct chemical coupling using amine or thiol-disulphide exchange coupling (Nice & Catimel, 1999) or by capturing the receptor ectodomain as an Fe fusion protein to an appropriately derivatised sensor surface (Morten & Myszka, 1998). The potential binding molecule (called an analyte) is passed over the sensor surface at an appropriate flow rate and a range of concentrations. The classical method of analysis is to collect responses for a wide range of analyte concentrations. A range of concentrations provides sufficient information about the reaction, and by using a fitting algorithm such as CLAMP (see Morton & Myszka, 1998), rate constants can be determined (Morton & Myszka, 1998; Nice & Catimel, 1999). Normally, the ligand surface is regenerated at the end of each analyte binding cycle. Surface regeneration ensures that the same number of ligand binding sites is accessible to the analyte at the beginning of each cycle.


Incubation periods are selected for optimum activity, but may also be optimized to facilitate rapid high-throughput screening. Normally, between 0.1 and 1 hour will be sufficient. In general, a plurality of assay mixtures is run in parallel with different test agent concentrations to obtain a differential response to these concentrations. Typically, one of these concentrations serves as a negative control, i.e. at zero concentration or below the level of detection.


The basic format of an in vitro competitive receptor binding assay as the basis of a heterogeneous screen for small organic molecular replacements for insulin may be as follows: occupation of the low affinity binding site of IR and/or IGF-1R is quantified by time-resolved fluorometric detection (TRFD) as described by Denley et al., 2004. RIR-A, RIR-B and P6 cells are used as sources of IR-A, IR-B and IGF-1R respectively. Cells are lysed with lysis buffer (20 mM HEPES, 150 mM NaCl, 1.5 mM MgCl2, 10% (v/v) glycerol, 1% (v/v) Triton X-100, 1 mM EGTA pH 7.5) for 1 hour at 4° C. Lysates are centrifuged for 10 minutes at 3500 rpm and then 100 μl is added per well to a white Greiner Lumitrac 600 plate previously coated with anti-insulin receptor antibody 83-7 or anti-IGF-IR antibody 24-31. Neither capture antibody interferes with receptor binding by insulin, IGF-I or IGF-II. Approximately 100,000 fluorescent counts of europium-labelled insulin or europium-labelled IGF-I are added to each well along with various amounts of unlabelled competitor and incubated for 16 hours at 4° C. Wells are washed with 20 mM Tris, 150 mM NaCl, 0.05% (v/v) Tween 20 (TBST) and DELFIA enhancement solution (100 μl/well) is added. Time-resolved fluorescence is measured using 340 nm excitation and 612 nm emission filters with a BMG Lab Technologies Polarstar™ Fluorimeter or a Wallac Victor II (EG & G Wallac, Inc.).


Examples of other suitable assays which may be employed to assess the binding and biological activity of compounds to and on IR are well known in the art. For example, suitable assays may be found in PCT International Publication Number WO 03/027246. Examples of suitable assays include the following:


(i) Receptor autophosphorylation (as described by Denley et al., 2004). RIR-A, RIR-B cells or P6 cells are plated in a Falcon 96 well flat bottom plate at 2.5×104 cells/well and grown overnight at 37° C., 5% CO2. Cells are washed for 4 hours in serum-free medium before treating with one of either insulin, IGF-I or IGF-II in 100 μl DMEM with 1% BSA for 10 minutes at 37° C., 5% CO2. Lysis buffer containing 2 mM Na3VO4 and 1 mg/ml NaF is added to cells and receptors from lysates are captured on 96 well plates precoated with antibody 83-7 or 24-31 and blocked with 1×TBST/0.5% BSA. After overnight incubation at 4° C., the plates are washed with 1×TBST. Phosphorylated receptor is detected with europium-labelled antiphosphotyrosine antibody PY20 (130 ng/well, room temperature, 2 hours). DELFIA enhancement solution (100 μl/well) is added and time resolved fluorescence detected as described above.


(ii) Glucose uptake using 2-deoxy-[U-14C] glucose (as described by Olefsky, 1978). Adipocytes between days 8-12 post-differentiation in 24-well plates are washed twice in Krebs-Ringer Bicarbonate Buffer (25 mM HEPES, pH 7.4 containing 130 mM NaCl, 5 mM KCl, KH2PO4, 1.3 mM MgSO4.7H2O, 25 mM NaHCO3 and 1.15 mM CaCl2) supplemented with 1% (w/v) RIA-grade BSA and 2 mM sodium pyruvate. Adipocytes are equilibrated for 90 min at 37° C. prior to insulin addition, or for 30 min prior to agonist or antagonist addition. Insulin (Actrapid, Novogen) is added over a concentration range of 0.7 to 70 nM for 30 min at 37° C. Agonist or antagonist (0 to 500 mM) is added to adipocytes for 90 min followed by the addition of insulin in the case of antagonists. Uptake of 50 mM 2-deoxy glucose and 0.5 mCi-2-deoxy-[U-14C] glucose (NEN, PerkinElmer Life Sciences) per well is measured over the final 10 min of agonist stimulation by scintillation counting.


(iii) Glucose transporter GLUT4 translocation using plasma membrane lawns (as described by Robinson & James (1992) and Marsh et al. (1995)).


(iv) GLUT4 translocation using plasma membrane lawns (as described by Marsh et al., 1995). 3T3-L1 fibroblasts are grown on glass coverslips in 6-well plates and differentiated into adipocytes. After 8-12 days post-differentiation, adipocytes are serum-starved for 18 hrs in DMEM containing 0.5% FBS. Cells are washed twice in Krebs-Ringer Bicarbonate Buffer, pH 7.4 and equilibrated for 90 min at 37° C. prior to insulin (100 nM) addition, or for 30 min prior to compound (100 μM) addition. After treatments, adipocytes are washed in 0.5 mg/ml poly-L-lysine in PBS, shocked hypotonically by three washes in 1:3 (v/v) membrane buffer (30 mM HEPES, pH 7.2 containing 70 mM KCl, 5 mM MgCl2, 3 mM EGTA and freshly added 1 mM DTT and 2 mM PMSF) on ice. The washed cells are then sonicated using a probe sonicator (Microson) at setting 0 in 1:1 (v/v) membrane buffer on ice, to generate a lawn of plasma membrane fragments that remain attached to the coverslip. The fragments are fixed in 2% (w/v) paraformaldehyde in membrane buffer for 20 min at 22° C. and the fixative quenched by 100 mM glycine in PBS. The plasma membrane fragments are then blocked in 1% (w/v) Blotto in membrane buffer for 60 min at 22° C. and immunolabelled with an in-house rabbit affinity purified anti-GLUT4 polyclonal antibody (clone R10, generated against a peptide encompassing the C-terminal 19 amino acids of GLUT4) and Alexa 488 goat anti-rabbit secondary antibody (Molecular Probes; 1:200). Coverslips are mounted onto slides using FluoroSave reagent (Calbiochem), and imaged using an OptiScan confocal laser scanning immunofluoroscence microscope (Optiscan, VIC., Australia). Data are analysed using ImageJ (NIH) imaging software. At least six fields are examined within each experiment for each condition, and the confocal microscope gain settings over the period of experiments are maintained to minimise between-experiment variability.


Insulin agonist activity may be determined using an adipocyte assay. Insulin increases uptake of 3H glucose into adipocytes and its conversion into lipid. Incorporation of 3H into a lipid phase is determined by partitioning of lipid phase into a scintillant mixture, which excludes water-soluble 3H products. The effect of compounds on the incorporation of 3H glucose at a sub-maximal insulin dose is determined, and the results expressed as increase relative to full insulin response. The method is adapted from Moody et al., (1974). Mouse epididymal fat pads are dissected out, minced into digestion buffer (Krebs-Ringer 25 mM HEPES, 4% HSA, 1.1 mM glucose, 0.4 mg/ml Collagenase Type 1, pH 7.4), and digested for up to 1.5 hours at 36.5 C. After filtration, washing (Krebs-Ringer HEPES, 1% HSA) and resuspension in assay buffer (Krebs-Ringer HEPES, 1% HSA), free fat cells are pipetted into 96-well Picoplates containing test solution and approximately an ED20 insulin.


The assay is started by addition of 3H glucose (e.g. ex. Amersham TRK 239), in a final concentration of 0.45 mM glucose. The assay is incubated for 2 hours at 36.5° C., in a Labshaker incubation tower, 400 rpm, then terminated by the addition of Permablend/Toluene scintillant (or equivalent), and the plates sealed before standing for at least 1 hour and detection in a Packard Top Counter or equivalent. A full insulin standard curve (8 dose) is run as control on each plate.


Data are presented graphically, as the effect of the compound on an (approximate) ED20 insulin response, with data normalized to a full insulin response. The assay can also be run at basal or maximal insulin concentration.


To test the in vivo activity of a compound, an intravenous blood glucose test may be carried out on Wistar rats as follows. Male Mol:Wistar rats, weighing about 300 g, are divided into two groups. A 10 μl sample of blood is taken from the tail vein for determination of blood glucose concentration. The rats are then anaesthetized (e.g. with Hypnorm/Dormicum) at t=30 min and blood glucose measured again at t=−20 min and at t=0 min. After the t=0 sample is taken, the rats are injected into the tail vein with vehicle or test substance in an isotonic aqueous buffer at a concentration corresponding to a 1 ml/kg volume of injection. Blood glucose is measured at times 10, 20, 30, 40, 60, 80, 120 and 180 min. The anaesthetic administration is repeated at 20 min intervals.


Additional assays to determine the effect of binding molecules on IGF-1R activity are as follows:


(i) Cell Viability Assay on HT29 cells with induction of Apoptosis: The ability of compounds to inhibit IGF-mediated rescue from apoptosis is measured using the colorectal cell line HT29 cells (ATCC: HTB 38) after induction with Na Butyrate. The HT29 cells are plated out onto white Fluoronunc 96 well plates (Nunc) at 12,000 cells/ml and incubated at 37° C., 5% CO2 for 48 hours. Media is aspirated and 100 μl/well of serum free DMEM/F12 is added for 2 hours to serum starve cells. IGF (100 μl/well 0.05-50 nM dilutions) in the presence and the absence of inhibitory compound is added in 0.1% BSA solution (Sigma) in DMEM/F12 (Gibco) in triplicate. A final concentration of 5 mM Butyrate (Sigma) is added to each well. Plates are incubated at 37° C., 5% CO2 for a further 48 hours. Plates are brought to room temperature and developed (as per instructions for CTG Assay (Promega)). Luminescence signal is measured on the Polarstar plate reader and data is evaluated using table curve to obtain the specific ED50.


(ii) Cell Migration Assay: The migration assays are performed in the modified 96-well Boyden chamber (Neuroprobe, Bethesda, Mass.). An 8 μM polycarbonate filter, which is pre-soaked in 25 μg/ml of collagen in 10 mM acetic acid overnight at 4° C., is placed so as to divide the chamber into an upper & lower compartment. Varying concentrations of the IGF-I analogues (25 μl of 0-100 nM) diluted in RPMI (Gibco) with 0.5% BSA (Sigma) tested for their migration including ability, are placed in the lower compartment in quadruplicates. The wells of the upper chamber are seeded with 50 μl/well of 2×105 SW480 (ATCC:CCL 228) pre-incubated for 30 mins/37° C. with 1.1 μl of 2 μM Calcein (Molecular Probes). Cells migrate for 8 hours at 37° C., 5% CO2. Unmigrated cells are removed by wiping the filter. The filter is then analysed in the Polarstar for fluorescence at excitation wavelength of 485 nm and emission wavelength of 520 nm. Data is evaluated using table curve to obtain the specific ED50 value.


(iii) Mouse Xenograft studies for anti-IGF-1R antibodies: In vivo studies are performed in 56-week-old female athymic BALBc nude mice, homozygous for the nunu allele. Mice are maintained in autoclaved micro-isolator cages housed in a positive pressure containment rack (Thoren Caging Systems Inc., Hazelton, Pa., USA. To establish xenografts, mice are injected subcutaneously into the left inguinal mammary line with 3×106 or 5×106 cells in 100 μl of PBS. Tumour volume (TV) is calculated by the formula (length×width2)/2 (Clarke et al., 2000), where length is the longest axis and width the measurement at right angles to length.


Initial biodistribution of potential binding molecules are ascertained by injecting 40 BALBc nude mice with established xenografts with radiolabelled 111In- or 125I-anti-IGFR antibody (3 μg, 10 μCi) intravenously via the tail vein (total volume=0.1 ml). At designated time points after injection of the radioconjugates (t=4 h, days 1, 2, 3, 5 and 7), groups of mice (n=35) are killed by Ethrane anaesthesia. Mice are then exsanguinated by cardiac puncture, and tumours and organs (liver, spleen, kidney, muscle, skin, bone (femur), lungs, heart, stomach, brain, small bowel, tail and colon) are resected immediately. All samples are counted in a dual gamma scintillation counter (Packard Instruments). Triplicate standards prepared from the injected material are counted at each time point with tissue and tumour samples enabling calculations to be corrected for the physical decay of the isotopes. The tissue distribution data are calculated as the mean±s.d. percent injected dose per gram tissue (% ID g−1) for the candidate molecule per time point.


Pharmacokinetics for the candidate compounds are ascertained as follows: Serum obtained from mice bearing xenografts, following infusion of radiolabelled-binding molecule as described above, is aliquoted in duplicate and counted in a gamma scintillation counter (Packard Instruments, Melbourne, Australia). Triplicate standards prepared from the injected material are counted at each time point with serum samples to enable calculations to be corrected for the isotope physical decay. The results of the serum are expressed as % injected dose per litre (% ID 1−1). Pharmacokinetic calculations are performed of serum data using a curve fitting program (WinNonlin, Pharsight Co., Mountain View, Calif., USA). A two-compartment model is used to calculate serum pharmacokinetic parameters of AUC (area under the serum concentration curve extrapolated to infinite time), CL (total serum clearance), T12α and T12β (half-lives of the initial and terminal phases of disposition) for 125I- and 111In-labelled molecule


(iv) Therapeutic in vivo studies: Tumour cells (3×106) in 100 μl of media are inoculated subcutaneously into both flanks of 46-week-old female nude mice (n=5 group−1). Candidate molecule treatment commences day 7 post-tumour cell inoculations (mean±s.e. tumour volume=60×15 mm3) and consists of six intraperitoneal injections over 2 weeks of appropriate amounts of the candidate molecule or vehicle control. Tumour volume in mm3 is determined as described previously. Data is expressed as mean tumour volume for each treatment group. Differences in tumour size between control and test groups are tested for statistical significance (P<0.05) by t-test.


Uses of Compounds

Compounds/chemical entities designed or selected by the methods of the invention described above may be used to modulate IR and/or IGF-1R activity in cells, i.e., activate or inhibit IR and/or IGF-1R activity. Such compounds may interact with the low affinity binding sites of IR as defined herein, mimic the αCT segment of the α-chain of IR, or mimic insulin in complex with the IR as defined herein. They may also be used to modulate homodimerisation of IR and/or IGF-1R.


Modulation of homodimerisation of IR and/or IGF-1R may be achieved by direct binding of the chemical entity to a homodimerisation surface of IR and/or IGF-1R, and/or by an allosteric interaction elsewhere in the IR and/or IGF-1R extracellular domain.


Given that aberrant IR and/or IGF-1R activity is implicated in a range of disorders, the compounds described above may also be used to treat, ameliorate or prevent disorders characterised by abnormal IR and/or IGF-1R signalling. Examples of such disorders include malignant conditions including tumours of the brain, head and neck, prostate, ovary, breast, cervix, lung, pancreas and colon; and melanoma, rhabdomyosarcoma, mesothelioma, squamous carcinomas of the skin and glioblastoma.


The compounds designed to interact or identified as interacting with the extracellular domain of IR and/or IGF-1R, and in particular to interact with the target binding sites, are useful as agonists or antagonists against the action of insulin on IR and/or IGF on IGF-1R. The compounds are useful as assay reagents for identifying other useful ligands by, for example, competition assays, as research tools for further analysis of IR and/or IGF-1R and as potential therapeutics in pharmaceutical compositions.


Compounds provided by this invention are also useful as lead compounds for identifying other more potent or selective compounds. The mimetic compounds of the present invention are also potentially useful as inhibitors of the action of insulin and in the design of assay kits directed at identifying compounds capable of binding to the low affinity binding site for insulin on IR. The mimetic compounds of the present invention are also potentially useful as inhibitors of the action of IGF and in the design of assay kits directed at identifying compounds capable of binding to the low affinity binding site for IGF on IGF-1R. In particular, it is envisaged that compounds of the present invention will prove particularly useful in selecting/designing ligands which are specific for IR or IGF-1R.


In one embodiment, one or more of the compounds can be provided as components in a kit for identifying other ligands (e.g., small, organic molecules) that bind to IR or IGF-IR. Such kits may also comprise IR or IGF-IR, or functional fragments thereof. The compound and receptor components of the kit may be labelled (e.g., by radioisotopes, fluorescent molecules, chemiluminescent molecules, enzymes or other labels), or may be unlabeled and labelling reagents may be provided. The kits may also contain peripheral reagents such as buffers, stabilizers, etc. Instructions for use can also be provided.


IR and IGF-1R agonists and antagonists, and in particular antagonists, provided by this invention are potentially useful as therapeutics. For example, compounds are potentially useful as treatments for cancers, including, but not limited to, breast, prostate, colorectal, and ovarian cancers. Human and breast cancers are responsible for over 40,000 deaths per year, as present treatments such as surgery, chemotherapy, radiation therapy, and immunotherapy show limited success. Recent reports have shown that a previously identified IGF-1R antagonist can suppress retinal neovascularization, which causes diabetic retinopathy (Smith et al., 1999). IGF-1R agonist compounds (i.e. existing IGF-1R compounds which have been modified employing methods of the present invention) are useful for development as treatments for neurological disorders, including stroke and diabetic neuropathy. Reports of several different groups implicate IGF-1R in the reduction of global brain ischemia, and support the use of IGF-I for the treatment of diabetic neuropathy (reviewed in Auer et al., 1998; Apfel, 1999). A number of therapeutics directed against IGF-1R are currently undergoing clinical trial as anti-cancer agents (Hewish et al., 2009).


The IGF-1R agonist peptides of the invention may be useful for enhancing the survival of cells and/or blocking apoptosis in cells.


Administration

Compounds of the invention, i.e., ligands of the invention or modulators of IR and/or IGF-1R identified or identifiable by the screening methods of the invention, may preferably be combined with various components to produce compositions of the invention. Preferably the compositions are combined with a pharmaceutically acceptable carrier or diluent to produce a pharmaceutical composition (which may be for human or animal use).


The formulation will depend upon the nature of the compound and the route of administration but typically they can be formulated for, topical, parenteral, intramuscular, oral, intravenous, intra-peritoneal, intranasal inhalation, lung inhalation, intradermal or intra-articular administration. The compound may be used in an injectable form. It may therefore be mixed with any vehicle which is pharmaceutically acceptable for an injectable formulation, preferably for a direct injection at the site to be treated, although it may be administered systemically.


The pharmaceutically acceptable carrier or diluent may be, for example, sterile isotonic saline solutions, or other isotonic solutions such as phosphate-buffered saline. The compounds of the present invention may be admixed with any suitable binder(s), lubricant(s), suspending agent(s), coating agent(s), solubilising agent(s). It is also preferred to formulate the compound in an orally active form.


In general, a therapeutically effective daily oral or intravenous dose of the compounds of the invention, including compounds of the invention and their salts, is likely to range from 0.01 to 50 mg/kg body weight of the subject to be treated, preferably 0.1 to 20 mg/kg. The compounds of the invention and their salts may also be administered by intravenous infusion, at a dose which is likely to range from 0.001-10 mg/kg/hr.


Tablets or capsules of the compounds may be administered singly or two or more at a time, as appropriate. It is also possible to administer the compounds in sustained release formulations.


Typically, the physician will determine the actual dosage which will be most suitable for an individual patient and it will vary with the age, weight and response of the particular patient. The above dosages are exemplary of the average case. There can, of course, be individual instances where higher or lower dosage ranges are merited, and such are within the scope of this invention.


For some applications, preferably the compositions are administered orally in the form of tablets containing excipients such as starch or lactose, or in capsules or ovules either alone or in admixture with excipients, or in the form of elixirs, solutions or suspensions containing flavouring or colouring agents.


The compositions (as well as the compounds alone) can also be injected parenterally, for example intravenously, intramuscularly or subcutaneously. In this case, the compositions will comprise a suitable carrier or diluent.


For parenteral administration, the compositions are best used in the form of a sterile aqueous solution which may contain other substances, for example enough salts or monosaccharides to make the solution isotonic with blood.


For buccal or sublingual administration the compositions may be administered in the form of tablets or lozenges which can be formulated in a conventional manner.


For oral, parenteral, buccal and sublingual administration to subjects (such as patients), the daily dosage level of the compounds of the present invention and their pharmaceutically acceptable salts and solvates may typically be from 10 to 500 mg (in single or divided doses). Thus, and by way of example, tablets or capsules may contain from 5 to 100 mg of active compound for administration singly, or two or more at a time, as appropriate. As indicated above, the physician will determine the actual dosage which will be most suitable for an individual patient and it will vary with the age, weight and response of the particular patient.


The routes of administration and dosages described are intended only as a guide since a skilled practitioner will be able to determine readily the optimum route of administration and dosage for any particular patient depending on, for example, the age, weight and condition of the patient.


EXAMPLES
Experimental Procedures
Crystallisation, Structure Solution and Refinement of IR310.T in Complex with Insulin Construction of the cIR485 Expression Vector

A 1741-base fragment of IR was synthesized (DNA2.0) and inserted into the HindIII/XbaI sites of the mammalian expression plasmid vector pEE14 (Bebbington & Hentschel, 1987). The fragment encoded a protein cIR485 (“cleavable” IR485; SEQ ID NO: 15) which consists, in order, of (i) the 27-residue IR native signal sequence, (ii) residues 1-310 of the IR α-chain (the L1-CR module), (iii) a thrombin cleavage site SSSLVPRGSSS, (iv) residues 311-485 of the IR α-chain (the L2 domain), (v) an enterokinase cleavage site DDDDK and (vi) a c-myc purification tag EQKLISEEDLN (Hoogenboom et al., 1991). A 106-base non-coding fragment GTCGACGGTACCCCGGGGAATTAATTCCGGGGGCCGCCTCGGAGCATGACCCCC GCGGGCCAGCGCCGCGCGCTCTGATCCGAGGAGACCCCGCGCTCCCGCAGCC was included between the Hind III site and the start codon; bases 29-106 of this fragment corresponding to those immediately upstream of the human IR coding region.


Cell Culture and Transfection

The expression plasmid pEE14/cIR485 was transfected into Lec8 mutant Chinese hamster ovary (CHO) cells (CRL-1737; ATCC) (Stanley, 1989) using LipofectAMINE 2000 (Life Technologies). The Lec8 cells were maintained in Dulbecco's Modified Eagle Medium: Nutrient Mixture F-12 (DMEM/F12; Life Technologies) containing 10% fetal bovine serum (FBS; Life Technologies). Transfected Lec8 cells were maintained in DMEM (High Glucose, Pyruvate, no Glutamine) plus 1× glutamine synthetase supplements (Sigma-Aldrich) and 10% dialyzed FBS (dFBS) containing 25 mM methionine sulphoximine (MSX, Sigma-Aldrich).


Transfectants from 96-well plates were screened for protein expression by Western blot with monoclonal antibodies 83-7 (Soos et al., 1986) and 9E10 (Evan et al., 1985). A high-yielding cell line was selected by screening a high number of transfectants.


Protein Production and Purification

The Lec8 host cell line containing the cIR485 construct was sub-cultured in tissue culture flasks initially and then in roller bottles (Greiner) for two weeks to prepare inocula for the spinner flasks. DMEM/F12 media supplemented with 10% dFBS and 25 μM MSX to maintain selection pressure was used during passaging and production work.


Cells from ten fully-confluent roller bottles were transferred to four spinner flasks (New Brunswick Scientific) containing Fibra-Cel disks (New Brunswick Scientific) to provide a matrix for cell attachment. Approximately 35×107 viable cells/spinner flask were used to initiate production. The spinners were incubated in 5% CO2 at 37° C. with 100 rpm stirring and ˜50 ml/min airflow. Spinner flasks were supplemented with 0.1% FoamAway (Life Technologies). Glucose and lactic acid levels were monitored daily, with spent media replaced to maintain residual glucose levels of ˜1.6 g/L.


The production phase lasted three weeks and ˜50 L of harvest collected, with the media being supplemented with 0.8 mM butyric acid (Sigma-Aldrich) during the last week.


Daily harvests from the spinners were kept at 4° C. after addition of 0.02% NaN3 and 0.1 mM phenylmethanesulfonylfluoride (PMSF; Sigma-Aldrich). Pooled harvest batches were filtered with a 1.2/0.2μ filter to remover cell debris and concentrated approximately 10× using a 30 kDa cut-off membrane. All of the large-scale mammalian cell culture was performed under contract by CSIRO (Parkville, Australia).


Initial purification of cIR485 was by 9E10 antibody affinity chromatography and size-exclusion chromatography (SEC) using procedures effectively identical to those described for purification of IR485 (Lou et al., 2006).


Purified cIR485 in Tris-buffered saline (TBS; 24.8 mM Tris-HCl pH 8.0, 137 mM NaCl, 2.7 mM KCl) plus 0.02% sodium azide (TBSA) was then incubated overnight at 37° C. with 0.25 units human thrombin (Roche) per mg of cIR485 in the presence of 10 mM CaCl2.


Completion of proteolysis was assessed by SDS-PAGE, which revealed bands corresponding to the estimated molecular weight of the IR310.T fragment and the IR L2 domain (51 kDa and 30 kDa, respectively; FIG. 5A).


Western blotting with Mab 83-7 (Soos et al., 1986) confirmed that the CR domain was contained in the upper band alone. The sample was diluted 8-fold in buffer A (10 mM ethanolamine-HCl, pH 9.6+0.02% sodium azide), centrifuged for 5 min at 17,000 g to remove particulates and then loaded onto MonoQ 5/50 GL column (GE Healthcare). The sample was eluted with a 60 column-volume gradient of buffer A to buffer B (10 mM ethanolamine-HCl, 400 mM NaCl, pH 9.6+0.02% sodium azide; FIG. 5B) and the fractions assessed by SDS-PAGE (FIG. 5A).


Fractions containing IR310.T (SEQ ID NO: 8) were pooled, concentrated and rerun in TBSA on a Superdex 200 10/300 column (GE Healthcare). The chromatogram exhibited three overlapping peaks, likely arising from multimerization (FIG. 5C).


SDS-PAGE of fractions revealed the presence of three closely-spaced bands, which we, attributed to varying glycosylation (FIG. 5D). Fractions containing IR310.T were pooled, concentrated and buffer exchanged into either TBSA or 10 mM HEPES-NaOH (pH 7.5)+0.02% NaN3.


Mab 83-7 Production and Purification

A hybridoma cell line expressing Mab 83-7 (a gift from Prof. Ken Siddle, University of Cambridge, UK; SEQ ID NOs: 11 and 12) was then grown in large scale using Gibco Hybridoma Serum-free medium (H-SFM). Cells lines originally required 7-10% serum for optimal growth and 30-60 mg/l final yield.


A brief adaption experiment to lower serum levels was unsuccessful, at lower than 5% serum levels both viability and yield dropped.


The cells were then grown in 950 cm2 roller bottles at 37° C., 5% CO2 balanced with air and 10 rpm using approximately 300 ml H-SFM media supplemented with 5% fetal calf serum. Typically, 2-3 litres of cell culture at the viable cell density in the range of 2-3*106 cells/ml was achieved. The cell culture was then pelleted (5 mins, 350 g) and re-suspended in serum-free medium. When cell viability dropped below 30% (after 5-7 days), the culture was harvested and the Mab 83-7 captured using a Protein-A column (Millipore). Under these conditions final yield was between 5-12 mg/l of cell culture medium.


Fab 83-7 Production and Purification

Production and purification of Fab 83-7 (SEQ ID NOs: 13 and 14) from Mab 83-7 was based on protocols described previously (McKern et al., 2006). Briefly, Mab 83-7 was digested with dithiothreitol-activated papain (Sigma-Aldrich) at 37° C. The digestion was stopped by adding iodoacetamide (IAA; Sigma-Aldrich), and the reaction mixture passed down a Superdex 200 26/60 column (GE Healthcare). Fractions containing 83-7 F(ab′)2 were isolated and reduced with mercaptoethylamine (Sigma-Aldrich) and then alkylated with IAA, followed by further SEC and anion-exchange chromatography on Mono S (GE Healthcare).


IR310.T/Fab 83-7 Purification

IR310.T was mixed with a slight molar excess of Fab 83-7 and the complex purified by SEC using a S200 10/300 column (GE Healthcare) in TBSA buffer. Fractions containing the complex of IR310.T/Fab 83-7 were then pooled, concentrated and exchanged into 10 mM HEPES-NaOH (pH 7.5)+0.02% NaN3.


Crystallization

Samples of the IR310.T/Fab 83-7 complex were prepared for crystallization by combining with a 1.5× molar ratio of αCT704-719 (Genscript; SEQ ID NO: 9) and 3× molar ratio of human insulin (Sigma-Aldrich) to a final concentration of 3.5 mg/ml in 10 mM HEPES, pH 7.0. [D-ProB26]-DTI-NH2 was prepared as described previously (Zakova et al., 2008).


A single crystallization condition (1.0 M trisodium citrate, 0.1 M imidazole HCl, pH 8.0+0.02% NaN3) was detected for the IR310.T/Fab83-7/[D-ProB26]-DTI-NH2/αCT704-719 complex in a large (792-condition) sparse matrix sitting-drop screen set up in SBS-format sitting-drop plates, performed under contract by the CSIRO Collaborative Crystallization Centre (Parkville, Australia). This condition was refined manually for both [D-ProB26]-DTI-NH2 and human insulin complexes within a range of 0.9-1.1 M trisodium citrate, 0.1 M imidazole HCl, pH 8.0+0.02% NaN3 in hanging-drop plates. Crystals grew to a maximum size of 200-250 μm.


Diffraction Data Collection

Single crystals of the human insulin IR310.T quaternary complex were mounted in cryo-loops in paraffin oil HR403 (Hampton Research) and flash frozen in liquid nitrogen. Data Set 1 for IR310.T human insulin quaternary complex was collected (McPhillips et al., 2002) at the MX2 beamline at the Australian Synchrotron (Melbourne, Australia) using a Quantum 315 detector (ADSC). Data Set 2 was collected in similar fashion from a further crystal at beamline 124 at, the Diamond Light Source (Oxford, UK) using a Pilatus 6M detector (Dectris).


Crystals were transferred to reservoir solutions supplemented with 20% glycerol, flash frozen in liquid nitrogen and mounted directly on the MX2 beamline at the Australian Synchrotron. A number of crystals of 50-200 μm size were obtained, but only one diffracted to 4.4 Å, with the remainder diffracting to ˜6.0 Å Diffraction data were collected (McPhillips et al., 2002) from multiple volumes within the crystal in an endeavour to reduce the effects of radiation damage; however, only 88% completeness was achieved.


All diffraction data were processed using the XDS suite (Kabsch, 2010) and TRUNCATE within the CCP4 suite. Precision-indicating merging R factors (Rpim) were computed using SCALA within the CCP4 suite. Statistics for all data sets are provided in Table 2.









TABLE 2







X-ray data processing and refinement











Data set 1
Data set 2
Data set 3





X-ray source
Australian
Diamond
(combined



Synchrotron
Light Source
Data sets





1 + 2)


No. of frames
141
180



Oscillation range (°)
1.0
0.2



Exposure/frame (s)
 3-15
0.2



Unit cell dimensions
a = 168.15 Å
a = 168.91 Å



Space group
P23
P23



Solvent content (%)
78
78



Data completeness (%)
99.8 (98.9)1
98.4 (99.6)
99.8 (99.7)


Resolution (Å)
59.5-4.0 
46.8-3.9 
59.5-3.5 



(4.1-4.0)
(4.0-3.9)
(3.6-3.5)


Rmerge
0.156 (2.33)2
0.089 (1.32) 
0.216 (8.71) 


CC(1/2)
0.998 (0.580)3
0.998 (0.342)
0.998 (0.177)


<I/s(I)>
11.46 (1.6) 
8.95 (1.0) 
9.32 (0.4) 


Redundancy
17.3 (17.4)
4.1 (4.2)
23.8 (20.7)


Protein atoms

4466
4466


Carbohydrate atoms

131
131


Rwork

0.2654
0.258


Rfree (5% of refls)

0.2934
0.279


sbond (Å)

0.011
0.010


sangle (°)

1.4
1.4


Ramachandran plot:





favoured region (%)

90.9
90.8


acceptable region

5.1
5.8


(%)





outliers (%)

4.0
3.8






1Numbers in parentheses refer to the statistic in the highest resolution shell.




2Rmerge = ΣhklΣi|Ii(hkl) − <I(hkl)>|/ΣhklΣiIi(hkl)




3CC(1/2) is the Pearson correlation coefficient between independently merged halves of the data set. Values for the highest resolution shell are significant at p = 0.001 and justify the use of data to the stated resolution (Karplus, 2012).




4Rwork and Rfree are computed using R = <|Fhxpct − Fhobs|>/<|Fhobs|> where Fhxpct is the expectation value of the model structure amplitude; Blanc et al., 2004).







Structure Solution and Refinement

Molecular replacement employed Data Set 1 (Table 2). A single copy of an L1-CR search fragment (residues 4-310, from PDB entry 3LOH) was located within the asymmetric unit using PHASER (TFZ=26.7) (McCoy, 2007). The variable module of Fab 83-7 (Fv, from PDB entry 3LOH) was then located in the presence of the L1-CR module (TFZ=37.6). Attempts to locate the Fab 83-7 constant module failed and it proved disordered. TLS parameters and individual isotropic B-factors for the L1-CR/Fv complex were then refined using autoBUSTER (Bricogne et al., 2011), followed by a subsequent atomic coordinate-only refinement, yielding Rxpctwork/Rxpctfree=0.368/0.363, where “xpct” denotes the statistic's expectation value (Blanc et al., 2004). The resultant difference density maps revealed tubular helix-like features (the 1st, 3rd, 4th, 5th and 7th highest peaks within the map) in the immediate vicinity of the L1-β2 surface, into which PHASER unambiguously positioned a rigid model comprising the three insulin helices (TFZ=11.4). The correctness of this solution was confirmed by an exhaustive 6-dimensional real-space search using ESSENS (Kleywegt and Jones, 1997) to locate the core fragment within the Fo-Fc map. The ESSENS search, refined on a (1°, 0.33 Å) grid, yielded a single solution, with a Z-score of 12.6 and an rmsd of 0.7 Å from that obtained by PHASER. The 2nd highest difference electron density feature corresponded to glycan attached to Asn111 (FIG. 6A), configured effectively identically to its counterpart in the structure of uncomplexed IR485 (Lou et al., 2006). The L1-CR/Fv/insulin core model was then refined further, yielding Rxpctwork/Rxpctfree=0.320/0.339.


The remaining helix-like feature in the above difference map (encompassing the 1st and 5th highest peaks) revealed clear side chain protrusions upon B-factor map sharpening, spaced consistent with an underlying α-helix (FIG. 6B). We concluded that the feature arose from the αCT peptide. A 10-residue polyalanine α-helix was docked into this feature using an ESSENS search with all constituent atoms contributing to the target function to allow discernment of helix direction. The best fit had Z-score of 7.3 and was adequately discriminated from lower-scoring fits. Visual inspection confirmed the overall correctness of the fit to the density and, in particular, the direction of the helix as judged by protruding side-chain density.


Register assignment of the αCT704-719 sequence to the decameric polyalanine helix was achieved using a procedure that assessed both compatibility of individual residue side chains with difference electron density and compatibility of individual residue side chains with their surrounding protein environment. (a) Fit to difference density employed the following method that was designed not only to assess the fit of atoms within the density, but also to penalize the existence of volumes of positive difference density into which no atoms had been placed. Briefly, the map feature assigned to the αCT segment was excised from the B-factor sharpened map using CHIMERA (Pettersen et al., 2004) (cut-off level=0.16 e/A3) and placed within a rectangular grid volume large enough to allow a >8 Å buffer zone around the αCT feature. All grid points outside of the feature were set to 0 e/Å3, with the resultant map being termed Mobs. Coordinates for residues 1, 2 and 10 of the fitted polyalanine helix were then deleted from the model, as the density associated with them displayed somewhat poorer α-helical geometry. Ten comparisons corresponding to all possible alignments of heptameric sequences from αCT704-719 with the heptameric polyalanine structure were considered. Rotamers for each residue within each of these ten models were then selected manually using COOT (Emsley and Cowtan, 2004) based on visual inspection of the fit of the trial rotamer to the density at the corresponding site in Mobs. The ten individual models were then “real-space-refined” within COOT to achieve optimal fit to Mobs, maintaining tight helical restraints. An electron density map Mcalc, on the same grid as Mobs was then generated (using SFALL within CCP4) for each heptamer model in isolation, with the B-factors of all main-chain atoms being set to 10 Å2 and of all side-chain atoms set to 20 Å2 to allow for subsequent comparison with a sharpened map. All density within Mcalc lower than 0.45 e/A3 was set to 0 e/A3. Correlation coefficients CC=(<xy>−<x><y>)/√[(<x2>−<x>2) (<y2>−<y>2)] between Mobs and each Mcalc were then calculated using MAPMAN (Jones and Thirup, 1986). Each CC was then “normalized” by dividing its value by the CC value calculated for the underlying polyalanine heptamer, and the quotient termed the trial sequence's “density score”. Trial register 705-711 was seen to have the highest density score (Table 3). (b) Compatibility of residue side-chain environment within the putative L1/αCT/insulin interface was assessed as follows. For each of the ten trial heptamer (real-space refined) models described above, an environment score was generated using VERIFY3D (Luthy et al., 1992) in order to assess compatibility with the surrounding L1-β2 and insulin surfaces. Trial register 705-711 again scored highest (Table 3). A “combined score” was then computed as the product (density score)×(environment score) in order to assist with assessing lower ranked trial registers (Table 3). The next highest combined score was for trial register 709-715, which is related trial register 705-711 by a one-turn translation along the helix, effectively maintaining hydrophobic-to-hydrophobic docking with the L1 surface. However, register 709-715 was judged to be most unlikely, as it would bring Pro716 and Pro718 into the remaining C-terminal part of the overall helix. We thus concluded that register assignment 705-711 was correct, given that it was the highest ranking on all criteria. The assignment was subsequently confirmed by the structure determination of the insulin-complexed IR593.αCT construct, which has the segment directly and covalently attached to the C-terminus of FnIII-1.









TABLE 3







Density and environmental fit scores for various trial αCT registers,


indicating the consistently high score assigned to register 705-711.










IR αCT





register
Density fit score1
Environment fit score2
Combined score3





704-710
1.13
11.3
12.8



705-711


1.15
4


18.5


21.3



706-712
1.11
13.4
14.9


707-713
1.13
13.8
15.6


708-714
1.03
15.4
15.9


709-715
1.13
16.9
19.0


710-716
1.06
14.4
15.2


711-717
1.06
14.4
15.2


712-718
1.04
12.0
12.5


713-719
1.04
 8.19
 8.5






1Density score = (Correlation of the computed electron density for the trial IR αCT heptamer with the difference electron density feature shown in FIG. 6B)/(Correlation of the computed electron density for the initial polyalanine heptamer with the difference electron density feature shown in FIG. 6B).




2Environment fit score computed using VERIFY3D (Luthy et al., 1992).




3Combined score = (density fit score) × (environment fit score).




4Highest scores within each column are underlined.







The 705-711 peptide model was then included in the insulin/IR310.T/Fab83-7 atomic model and autoBUSTER refinement continued against Data Set 2, which became available in the interim (Table 2, assigned identical free-R set to Data Set 1). Residues 712-715 were built as a further α-helical turn beyond residue 711 and a total of nine sugars added at sites 16, 25, 111, 225 and 255 (Lou et al., 2006; Sparrow et al., 2008), followed by iterative rounds of refinement and model rebuilding (COOT). LSSR restraints to higher-resolution structures (Smart et al., 2012) were included for IR310.T (restrained to PDB entry 2HR7-A) and the Fab83-7 light chain (to PDB entry 11L1-B) and heavy chain (to PDB entry 1FNS-C). Final refinement statistics are detailed in Table 2. Inclusion of data to 3.9 Å was justified a posteriori—the average figure of merit for free set reflections remained above 0.70 at this limit.


Extension of Resolution to 3.5 Å and Model Building

Data sets 1 and 2 for the human insulin complexed IR310.T/83-7/αCT704-719 crystal were then re-processed to extended resolution of 3.5 Å, based on a recent report that additional information could be obtained by inclusion of weak data at the very limit of diffraction. The integrated reflection data from the two sets were then scaled and merged together, the combined data set having CC(1/2)=0.998, significant at the p=0.001 level of confidence.


The prior model of human insulin complexed IR310.T/83-7/αCT704-719 refined at 3.9 Å resolution against Data set 2 was then re-refined against this extended resolution data set using autoBUSTER.


Examination of the resultant difference density maps showed that insulin residue A21 was misplaced in the earlier refinement. This residue was then removed from model and the model re-refined. The resultant difference maps revealed that residues B21-B24 could be built in a near native-like conformation, with the side chain of residue B24 directed into a hydrophobic pocket formed by the side chains of residues Phe714, Phe39, Leu37 and LeuB15. We then observed that residues PheB25 and TyrB26 could be built into difference electron density, in a non-native like fashion with the side chain of residue TyrB25 directed towards the αCT peptide in the vicinity of residue Val715 and the side chain of residue TyrB26 directed towards L1 domain residues Asn12 and Arg19.


Val715 was then removed from the model to avoid steric clash with TyrB25. We noted that Val715 is replaced by glutamate in some insulin receptors, incompatible with it being directed towards the L1 surface in the fashion prescribed by the lower resolution model and hence it like A21 had been built incorrectly in the lower resolution model.


A number of rounds of model building then followed using autoBUSTER, with the loop B20-B23 restrained to a native-like conformation. The resultant model showed a good fit to the electron density and a reduced R/Rfree with respect to the starting structure.


Example 1
A Thermodynamic Study of Insulin Binding to IR310.T
Introduction

In order to assess insulin binding to IR310.T in the presence of Fab 83.7 isothermal titration calorimetry (“ITC”) was used. ITC allowed a direct assay of the interactions between the construct IR310.T (described above) complexed with Fab 83.7 and zinc free human insulin and between the construct IR310.T (not complexed with Fab 83.7) and zinc free human insulin. All interactions were assayed in presence of a 10× molar ratio of αCT704-719.


Reagents

Protocols and instrumentation for ITC determination of the thermodynamic parameters of binding of (a) zinc-free porcine insulin to a pre-formed complex of IR310.T and αCT704-719, (b) zinc-free porcine insulin to a pre-formed complex of IR310.T/Fab83-7 and αCT704-719, (c) alanine-substituted αCT peptide to the L1-CR-L2 construct IR485 and (d) zinc-free porcine insulin to a pre-formed complex of alanine-substituted αCT704-719 and IR485 were identical to those described previously (Menting et al., 2009).


Briefly, all experiments were conducted using a VP-ITC isothermal titration calorimeter (MicroCal) with the calorimeter cell held at 25° C. All samples were degassed prior to injection or placement into the cell, and the instrument was temperature-equilibrated prior to the start of the injections. In all experiments, the volume of the sample placed in the cell was 1.4 ml and the titrant was injected in 7 μl volumes over 14 s at 3 min intervals, with the total number of injections being 40. The sample contents were stirred at a speed of 310 rpm over the duration of the titration. For peptide titrations, the titrant was prepared at 80 μM in TBSA, with the sample cell holding IR485 at 10 μM concentration. For insulin and insulin analogue titrations, the titrant was prepared at 32 to 48 μM concentration in TBSA with the sample cell containing IR485 at 4 to 6 μM concentration in TBSA and pre-incubated with a 10× molar ratio of the respective Ala-substituted αCT peptide. Data were analysed using the instrument's software and in all cases fitted as a single-site interaction. All measurements were performed in triplicate.


Results

ITC analysis showed that zinc-free human insulin bound IR310.T with Kd=30 nM in the presence of a 10× molar ratio of αCT704-719 (FIG. 5E), and that zinc-free human insulin bound Fab 83-7 complexed IR310.T with Kd=48 nM in the presence of a 10× molar ratio of αCT704-719 (FIG. 5F).


The disclosure of all publications referred to in this application are incorporated herein by reference.


In compliance with the statute, the invention has been described in language more or less specific to structural or methodical features. It is to be understood that the invention is not limited to specific features shown or described since the means herein described comprises preferred forms of putting the invention into effect. The invention is, therefore, claimed in any of its forms or modifications within the proper scope of the appended claims (if any) appropriately interpreted by those skilled in the art.


CITATION LIST



  • Adams, M. J., Blundell, T. L., Dodson, E. J., Dodson, G. G., Vijayan, M., Baker, E. N., Harding, M. M., Hodgkin, D. C., Rimmer, B., and Sheat, S. (1969). Structure of Rhombohedral 2 Zinc Insulin Crystals. Nature 224, 491-495.

  • Adams et al. (2000) Cell. Mol. Life. Sci., 57, 1050-1093.

  • Apfel (1999) Am. J. Med., 107, 34S-42S.

  • Auer (1998) Neurology, 51, S39-S43.

  • Ausubel et al. (1999) Short Protocols in Molecular Biology, 4th Ed, John Wiley & Sons, Inc.; and the full version entitled Current Protocols in Molecular Biology.

  • Bailyes et al. (1997) Biochem. J., 327, 209-215.

  • Bartlett et al. (1989) Royal Chem. Soc., 78, 182-196.

  • Bebbington, C. R. & Hentschel, C. C. G. (1987) The use of vector based on gene amplification for the expression of cloned genes in mammalian cells, in DNA Cloning, ed. Glover, D. M. Academic Press, San Diego. Vol 3, p 163.

  • Belfiore, A. et al. (2009) Endocr Rev., 30, 586-623.

  • Bentley (1997) Methods Enzymol., 276,611-619.

  • Binz et al. (2005) Nature Biotech., 23, 1257-1268.

  • Blanc, E., Roversi, P., Vonrhein, C., Flensburg, C., Lea, S. M., and Bricogne, G. (2004). Refinement of severely incomplete structures with maximum likelihood in BUSTER-TNT. Acta Crystallogr D Biol Crystallogr 60, 2210-2221.

  • Blondelle and Houghten (1996) Trends Biotechnol., 14, 60-65.

  • Bohm and Stahl (1999) M. Med. Chem. Res., 9, 445.

  • Bricogne, G., Blanc, E., Brandt, M., Flensburg, C., Keller, P., Paciorek, W., Roversi, P., Sharff, A., Smart, O. S., Vonrhein, C., et al. (2011). BUSTER version 2.10, Cambridge, United Kingdom: Global Phasing Ltd.

  • Brooks et al. (1983) Comp. Chem., 4, 187-217.

  • Brünger, A. T. (1996) X-PLOR reference manual 3.851 (Yale Univ., New Haven, Conn.).

  • Brünger (1997) Methods Enzymol., 276, 558-580.

  • Brünger et al. (1998) Acta Cryst. D54, 905-921.

  • Bruns et al. (1999) J Mol. Biol., 288, 427-439.

  • Buttel et al. (1999) Immunol. Cell Biol., 77, 256-262.

  • Carell et al. (1994a) Angew. Chem. Int. Ed. Engl., 33, 2059.

  • Carell et al. (1994b) Angew. Chem. Int. Ed. Engl., 33, 2061.

  • Chiu, S. L., and Cline, H. T. (2010). Insulin receptor signaling in the development of neuronal structure and function. Neural Dev 5, 7.

  • Cho et al. (1993) Science, 261, 1303.

  • Chow et al. (1998) Biol. Chem., 273, 4672-4680.

  • Clarke et al. (2000) Cancer Res., 60, 4804-4811.

  • Cohen et al. (1990) J. Med. Chem., 33, 883-894.

  • Cohen, P. (2006). The twentieth century struggle to decipher insulin signalling. Nat Rev Mol Cell Biol 7, 867-873.

  • Cole et al. (2005) in “Virtual Screening in Drug Discovery (Eds. B. Shoichet, J. Alvarez)”, Taylor & Francis CRC Press, Florida, USA.

  • Cull et al. (1992) Proc. Natl. Acad. Sci. USA, 89, 1865-1869.

  • Cwirla et al. (1990) Proc. Natl. Acad. Sci. USA, 97, 6378-6382.

  • Danial et al. (2008) Nat. Med. 14, 144-153.

  • Davis et al. (2006) Chem. Soc. Rev. 36, 326-334.

  • Day and Caflisch (2008) J. Chem. Inform. Model. 48, 679-90.

  • Degterev et al. (2001) Nat. Cell. Biol. 3, 173-182.

  • De Meyts (1994) Diabetologia, 37, S135-S148.

  • De Meyts and Whittaker (2002) Nat. Rev. Drug Discov., 1, 769-783.

  • De Meyts, P. (2004). Insulin and its receptor: structure, function and evolution. Bioessays 26, 1351-1362.

  • Denley et al. (2003) Horm. Metab. Res., 35, 778-785.

  • Denley et al. (2004) Mol. Endocrinol., 18, 2502-2512.

  • Devlin (1990) Science, 249, 404-406.

  • DeWitt et al. (1993) Proc. Natl. Acad. Sci. USA, 90, 6909.

  • Emsley, P., and Cowtan, K. (2004). Coot: model-building tools for molecular graphics. Acta Crystallogr D Biol Crystallogr 60, 2126-2132.

  • Erb et al. (1994) Proc. Natl. Acad. Sci. USA, 91, 11422.

  • Ernst et al. (2000) J. Magn. Reson. Imaging, 12, 859-865.

  • Evan, G. I., Lewis, G. K., Ramsay, G., and Bishop, J. M. (1985). Isolation of monoclonal antibodies specific for human c-myc proto-oncogene product. Mol Cell Biol 5, 3610-3616.

  • Ewing et al. (2001) J. Comput-Aid. Mol. Design, 15, 411.

  • Frasca et al. (1999) Mol Cell Biol, 19, 3278-3288.

  • Felici (1991) J. Mol. Biol., 222, 301-310.

  • Fodor (1993) Nature, 364, 555-556.

  • Friesner et al. (2004) J. Med. Chem. 47, 1739-1749.

  • Gallop et al. (1994). J. Med. Chem., 37, 1233.

  • Garrett et al. (1998) Nature, 394, 395-399.

  • Goodford (1985) J. Med. Chem., 28, 849-857 (1985).

  • Goodsell and Olsen (1990) Proteins: Struct. Funct. Genet., 8, 195-202.

  • Guida (1994) Curr. Opin. Struct. Biol., 4, 777-781.

  • Hewish et al. (2009) Recent Patents Anticancer Drug Discov, 4, 54-72.

  • Hoogenboom, H. R., Griffiths, A. D., Johnson, K. S., Chiswell, D. J., Hudson, P., and Winter, G. (1991). Multi-subunit proteins on the surface of filamentous phage: methodologies for displaying antibody (Fab) heavy and light chains. Nucleic Acids Res 19, 4133-4137.

  • Houghten et al. (1991) Nature, 354, 84-86.

  • Houghten (1992) Biotechniques, 13, 412-421.

  • Hua, Q. X., Shoelson, S. E., Kochoyan, M., and Weiss, M. A. (1991). Receptor binding redefined by a structural switch in a mutant human insulin. Nature 354, 238-241.

  • Jones, T. A., and Thirup, S. (1986). Using known substructures in protein model building and crystallography. EMBO J. 5, 819-822.

  • Jones et al. (1991) Acta Cryst. A47, 110-119.

  • Jorgensen and Tirado-Rives (1988) Am. Chem. Soc., 110, 1657-1666.

  • Kabsch, W. (2010). Integration, scaling, space-group assignment and post-refinement. Acta Crystallogr D Biol Crystallogr 66, 133-144.

  • Karplus, P. A., and Diederichs, K. (2012). Linking crystallographic model and data quality. Science 336, 1030-1033.

  • Kiselyov, V. V., Versteyhe, S., Gauguin, L., and De Meyts, P. (2009). Harmonic oscillator model of the insulin and IGF1 receptors' allosteric binding and activation. Molec Sys Biol 5, 243.

  • Kjeldsen, T. et al. (1991) Proc Natl Acad Sci USA 88, 4404-4408.

  • Kleywegt, G. J., and Jones, T. A. (1997). Template convolution to enhance or detect structural features in macromolecular electron-density maps. Acta Crystallogr D Biol Crystallogr 53, 179-185.

  • Kristensen, C. et al. (1999). J Biol Chem 274, 37351-37356.

  • Kristensen, C., Andersen, A. S., Østergaard, S., Hansen, P. H., and Brandt, J. (2002). Functional reconstitution of insulin receptor binding site from non-binding receptor fragments. J Biol Chem 277, 18340-18345.

  • Kuntz et al. (1982) J. Mol. Biol., 161, 269-288.

  • Kurose et al. (1994) J. Biol. Chem., 269, 29190-29197.

  • Lam et al. (1991) Nature, 354, 82-84.

  • Lam (1997) Anticancer Drug Des., 12, 145.

  • Lattman (1985) Use of the Rotation and Translation Functions, Meth. Enzymol., 115, 55-77.

  • Liu et al. (1993) Cell, 75, 59-72.

  • Lou, M., Garrett, T. P., McKern, N. M., Hoyne, P. A., Epa, V. C., Bentley, J. D., Lovrecz, G. O., Cosgrove, L. J., Frenkel, M. J., and Ward, C. W. (2006). The first three domains of the insulin receptor differ structurally from the insulin-like growth factor 1 receptor in the regions governing ligand specificity. Proc Natl Acad Sci USA 103, 12429-12434.

  • Luthy, R., Bowie, J. U., and Eisenberg, D. (1992). Assessment of protein models with three-dimensional profiles. Nature 356, 83-85.

  • Marsh et al. (1995) J. Cell Biol., 130, 1081-1091.

  • Mayer, J. P., Zhang, F., and DiMarchi, R. D. (2007). Insulin structure and function. Biopolymers 88, 687-713.



McCoy, A. J. (2007). Solving structures of protein complexes by molecular replacement with Phaser. Acta Crystallogr D Biol Crystallogr 63, 32-41.

  • McKern, N. M., Lawrence, M. C., Streltsov, V. A., Lou, M. Z., Adams, T. E., Lovrecz, G. O., Elleman, T. C., Richards, K. M., Bentley, J. D., Pilling, P. A., et al. (2006). Structure of the insulin receptor ectodomain reveals a folded-over conformation. Nature 443, 218-221.
  • McPhillips, T. M., McPhillips, S. E., Chiu, H. J., Cohen, A. E., Deacon, A. M., Ellis, P. J., Garman, E., Gonzalez, A., Sauter, N. K., Phizackerley, et al. (2002). Blu-Ice and the Distributed Control System: software for data acquisition and instrument control at macromolecular crystallography hemlines. J Synchrotron Radiat 9, 401-406.
  • Moody et al. (1974) Horm. Metab. Res., 6, 12-16.
  • Morton and Myszka (1998) Methods Enzymol., 295, 268-294.
  • Nakae, J. et al. (2001) Endocr Rev., 22, 818-835.
  • Navaza and Saludjian (1997) Methods Enzymol., 276, 581-594.
  • Navia and Murcko (1992) Curr. Opin. Struct. Biol., 2, 202-210.
  • Nice and Catimel (1999) Bioessays, 21, 339-352.
  • Olefsky (1978) Biochem. J., 172, 137-145.
  • Pettersen, E. F., Goddard, T. D., Huang, C. C., Couch, G. S., Greenblatt, D. M., Meng, E. C., and Ferrin, T. E. (2004). UCSF Chimera—a visualization system for exploratory research and analysis. J Comp Chem 25, 1605-1612.
  • Pollak, M. (2012). The insulin and insulin-like growth factor receptor family in neoplasia: an update. Nat Rev Cancer 12, 159-169.
  • Quan, B., Smiley, D. L., Gelfanov, V. M., and DiMarchi, R. D. (2006). Site Specific Introduction of Unnatural Amino Acids at Sites Critical to Insulin Receptor Recognition and Biological Activity. In Understanding Biology Using Peptides Proceedings of the 19th American Peptide Symposium, S. E. Blondelle, ed. (New York, N.Y.: Springer), pp. 311-312.
  • Rarey et al. (1996) J. Mol. Biol., 261, 470.
  • Robinson and James (1992) Am. J. Physiol., 263, E383-E393.
  • Rossmann, ed. (1972) The Molecular Replacement Method, Int. Sci. Rev. Ser., No. 13, Gordon & Breach, New York.
  • Sali and Blundell (1993) J. Mol. Biol., 234, 779-815.
  • Sambrook et al. (2001) Molecular Cloning: A Laboratory Manual, 3rd ed. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, N.Y.
  • Schäffer, L. (1994). A model for insulin binding to the insulin receptor. Eur J Biochem 221, 1127-1132.


Schäffer et al. (2003) Proc. Natl. Acad. Sci. USA, 100, 4435-4439.

  • Scott and Smith (1990) Science, 249, 386-390.
  • Seino, S., and Bell, G. I. (1989). Alternative splicing of human insulin receptor messenger RNA. Biochem Biophys Res Commun 159, 312-316.
  • Shoelson, S., Fickova, M., Haneda, M., Nahum, A., Musso, G., Kaiser, E. T., Rubenstein, A. H., and Tager, H. (1983). Identification of a mutant human insulin predicted to contain a serine-for-phenylalanine substitution. Proc Natl Acad Sci USA 80, 7390-7394.
  • Silverman et al. (2005) Nature Biotech., 23, 1556-1561.
  • Smart, O. S., Womack, T. O., Flensburg, C., Keller, P., Paciorek, W., Sharff, A., Vonrhein, C., and Bricogne, G. (2012). Exploiting structure similarity in refinement: automated NCS and target-structure restraints in BUSTER. Acta Crystallogr D Biol Crystallogr 68, 368-380.
  • Smith et al. (1999) Nat. Med., 5, 1390-1395.
  • Smith, B. J., Huang, K., Kong, G., Chan, S. J., Nakagawa, S., Menting, J. G., Hu, S.-Q., Whittaker, J., Steiner, D. F., Katsoyannis, P. G., et al. (2010). Structural resolution of a tandem hormone-binding element in the insulin receptor and its implications for design of peptide agonists. Proc Natl Acad Sci USA 107, 6771-6776.
  • Songyang et al. (1993) Cell, 72, 767-778.
  • Soos, M. A., Siddle, K., Baron, M. D., Heward, J. M., Luzio, J. P., Bellatin, J., and Lennox, E. S. (1986). Monoclonal antibodies reacting with multiple epitopes on the human insulin receptor. Biochem J 235, 199-208.
  • Sparrow et al. (1997) J. Biol. Chem., 272, 29460-29467.
  • Sparrow, L. G., Lawrence, M. C., Gorman, J. J., Strike, P. M., Robinson, C. P., McKern, N. M., and Ward, C. W. (2008). N-linked glycans of the human insulin receptor and their distribution over the crystal structure. Proteins: Struct Funct Bioinform 71, 426-439.
  • Stanley, P. (1989). Chinese hamster ovary cell mutants with multiple glycosylation defects for production of glycoproteins with minimal carbohydrate heterogeneity. Mol Cell Biol 9, 377-383.
  • Stumpp et al. (2007) Curr. Opin. Drug Discov. Develop., 10, 153-159.
  • Surinya et al. (2008) J. Biol. Chem. 283, 5355-5363.
  • Svenson et al. (2009) Mol. Pharm., published online 2 Apr. 2009 (DOI: 10.1021/mp900057k).
  • Talbot, K., Wang, H. Y., Kazi, H., Han, L. Y., Bakshi, K. P., Stucky, A., Fuino, R. L., Kawaguchi, K. R., Samoyedny, A. J., Wilson, R. S., et al. (2012). Demonstrated brain insulin resistance in Alzheimer's disease patients is associated with IGF-1 resistance, IRS-1 dysregulation, and cognitive decline. J Clin Invest 122, 1316-1338.
  • Taniguchi, C. M., Emanuelli, B., and Kahn, C. R. (2006). Critical nodes in signalling pathways: insights into insulin action. Nat Rev Mol Cell Biol 7, 85-96.
  • Tong and Rossmann, (1997) Methods Enzymol., 276, 594-611.
  • Tulloch et al. (1999) J. Struct. Biol., 125, 11-18.
  • Ulrich (2006) Handb Exp Pharmacol., 173, 305-326.
  • van der Spoel et al. (2005) J. Comp. Chem., 26, 1701-1718.
  • Ward, C. W., and Lawrence, M. C. (2009). Ligand-induced activation of the insulin receptor: a multi-step process involving structural changes in both the ligand and the receptor. Bioessays 31, 422-434.
  • Ward, C. W., and Lawrence, M. C. (2011). Landmarks in insulin research. Front Endocrin 2, Article 76, 71-11, doi: 10.3389/fendo.2011.00076.
  • Weiner et al. (1984) J. Am. Chem. Soc., 106, 765-784.
  • Whittaker, L., Hao, C., Fu, W., and Whittaker, J. (2008). High-Affinity Insulin Binding: Insulin Interacts with Two Receptor Ligand Binding Sites. Biochemistry 47, 12900-12909.
  • Yin et al. (2005) Angew. Chem. Int. Ed. Engl., 44, 2704-2707.
  • Zakova, L., Kazdova, L., Hanclova, I., Protivinska, E., Sanda, M., Budesinsky, M., and Jiracek, J. (2008). Insulin analogues with modifications at position B26. Divergence of binding affinity and biological activity. Biochemistry 47, 5858-5868.
  • Zuckermann et al. (1994) J. Med. Chem., 37, 2678.









APPENDIX I





ATOMIC COORDINATES FOR IR310.T MONOMER (CHAIN E)


WITH ATTACHED αCT PEPTIDE (CHAIN F), HUMAN INSULIN MONOMER


(CHAINS A AND B) AND Fab 83-7 (CHAINS C AND D)

























ATOM
1
N
GLY
A
1
31.737
−47.052
−15.556
1.00
186.71


ATOM
2
CA
GLY
A
1
32.951
−46.963
−16.365
1.00
186.36


ATOM
3
C
GLY
A
1
32.828
−45.909
−17.446
1.00
189.75


ATOM
4
O
GLY
A
1
32.585
−44.748
−17.129
1.00
188.96


ATOM
5
N
ILE
A
2
32.937
−46.314
−18.736
1.00
186.15


ATOM
6
CA
ILE
A
2
32.787
−45.454
−19.928
1.00
185.79


ATOM
7
C
ILE
A
2
31.534
−44.590
−19.816
1.00
192.27


ATOM
8
O
ILE
A
2
31.519
−43.475
−20.317
1.00
191.57


ATOM
9
CB
ILE
A
2
32.769
−46.301
−21.241
1.00
187.88


ATOM
10
CG1
ILE
A
2
32.843
−45.406
−22.494
1.00
187.01


ATOM
11
CG2
ILE
A
2
31.584
−47.311
−21.287
1.00
188.88


ATOM
12
CD1
ILE
A
2
32.317
−45.992
−23.743
1.00
186.23


ATOM
13
N
VAL
A
3
30.499
−45.132
−19.149
1.00
192.14


ATOM
14
CA
VAL
A
3
29.171
−44.566
−18.879
1.00
194.24


ATOM
15
C
VAL
A
3
29.234
−43.566
−17.742
1.00
202.11


ATOM
16
O
VAL
A
3
28.583
−42.518
−17.789
1.00
201.42


ATOM
17
CB
VAL
A
3
28.188
−45.721
−18.532
1.00
198.80


ATOM
18
CG1
VAL
A
3
26.795
−45.215
−18.126
1.00
198.93


ATOM
19
CG2
VAL
A
3
28.100
−46.716
−19.681
1.00
198.25


ATOM
20
N
GLU
A
4
29.974
−43.922
−16.696
1.00
202.33


ATOM
21
CA
GLU
A
4
30.086
−43.072
−15.525
1.00
204.40


ATOM
22
C
GLU
A
4
31.245
−42.072
−15.608
1.00
208.87


ATOM
23
O
GLU
A
4
31.227
−41.080
−14.882
1.00
208.80


ATOM
24
CB
GLU
A
4
30.025
−43.906
−14.225
1.00
206.53


ATOM
25
CG
GLU
A
4
28.728
−44.707
−14.074
1.00
221.10


ATOM
26
CD
GLU
A
4
27.428
−43.914
−14.123
1.00
253.39


ATOM
27
OE1
GLU
A
4
26.930
−43.519
−13.044
1.00
256.12


ATOM
28
OE2
GLU
A
4
26.901
−43.693
−15.238
1.00
250.04


ATOM
29
N
GLN
A
5
32.181
−42.292
−16.568
1.00
205.56


ATOM
30
CA
GLN
A
5
33.376
−41.488
−16.876
1.00
205.86


ATOM
31
C
GLN
A
5
33.108
−40.479
−18.011
1.00
211.44


ATOM
32
O
GLN
A
5
33.743
−39.421
−18.034
1.00
211.70


ATOM
33
CB
GLN
A
5
34.543
−42.437
−17.233
1.00
206.26


ATOM
34
CG
GLN
A
5
35.846
−41.828
−17.753
1.00
209.80


ATOM
35
CD
GLN
A
5
36.640
−42.888
−18.483
1.00
223.23


ATOM
36
OE1
GLN
A
5
36.089
−43.691
−19.238
1.00
217.40


ATOM
37
NE2
GLN
A
5
37.951
−42.935
−18.272
1.00
214.35


ATOM
38
N
CYS
A
6
32.180
−40.809
−18.945
1.00
208.45


ATOM
39
CA
CYS
A
6
31.843
−39.957
−20.089
1.00
208.46


ATOM
40
C
CYS
A
6
30.379
−39.501
−20.183
1.00
211.68


ATOM
41
O
CYS
A
6
30.099
−38.573
−20.944
1.00
209.81


ATOM
42
CB
CYS
A
6
32.367
−40.536
−21.400
1.00
208.91


ATOM
43
SG
CYS
A
6
34.063
−41.190
−21.302
1.00
213.56


ATOM
44
N
CYS
A
7
29.466
−40.075
−19.357
1.00
210.76


ATOM
45
CA
CYS
A
7
28.081
−39.600
−19.303
1.00
212.79


ATOM
46
C
CYS
A
7
27.757
−38.804
−18.059
1.00
219.11


ATOM
47
O
CYS
A
7
27.671
−37.575
−18.168
1.00
219.63


ATOM
48
CB
CYS
A
7
27.037
−40.668
−19.605
1.00
213.87


ATOM
49
SG
CYS
A
7
25.876
−40.195
−20.921
1.00
218.12


ATOM
50
N
THR
A
8
27.621
−39.457
−16.876
1.00
217.02


ATOM
51
CA
THR
A
8
27.404
−38.715
−15.619
1.00
218.63


ATOM
52
C
THR
A
8
28.618
−37.768
−15.488
1.00
223.50


ATOM
53
O
THR
A
8
28.441
−36.547
−15.595
1.00
223.51


ATOM
54
CB
THR
A
8
27.128
−39.639
−14.401
1.00
225.58


ATOM
55
OG1
THR
A
8
28.312
−40.357
−14.045
1.00
226.59


ATOM
56
CG2
THR
A
8
25.932
−40.589
−14.613
1.00
219.68


ATOM
57
N
SER
A
9
29.853
−38.344
−15.435
1.00
220.28


ATOM
58
CA
SER
A
9
31.123
−37.593
−15.481
1.00
220.67


ATOM
59
C
SER
A
9
31.389
−37.222
−16.970
1.00
223.32


ATOM
60
O
SER
A
9
30.848
−37.895
−17.850
1.00
222.92


ATOM
61
CB
SER
A
9
32.274
−38.407
−14.880
1.00
224.27


ATOM
62
OG
SER
A
9
33.525
−38.269
−15.542
1.00
233.29


ATOM
63
N
ILE
A
10
32.173
−36.141
−17.252
1.00
217.80


ATOM
64
CA
ILE
A
10
32.424
−35.684
−18.632
1.00
215.17


ATOM
65
C
ILE
A
10
33.838
−36.044
−19.173
1.00
215.54


ATOM
66
O
ILE
A
10
34.839
−35.982
−18.453
1.00
214.66


ATOM
67
CB
ILE
A
10
31.873
−34.241
−18.922
1.00
218.28


ATOM
68
CG1
ILE
A
10
30.383
−34.014
−18.378
1.00
218.40


ATOM
69
CG2
ILE
A
10
32.037
−33.829
−20.394
1.00
218.12


ATOM
70
CD1
ILE
A
10
29.056
−34.647
−19.169
1.00
214.17


ATOM
71
N
CYS
A
11
33.866
−36.501
−20.431
1.00
210.74


ATOM
72
CA
CYS
A
11
35.005
−37.064
−21.155
1.00
210.30


ATOM
73
C
CYS
A
11
35.909
−36.089
−21.888
1.00
212.63


ATOM
74
O
CYS
A
11
35.448
−35.239
−22.657
1.00
210.85


ATOM
75
CB
CYS
A
11
34.518
−38.170
−22.095
1.00
210.31


ATOM
76
SG
CYS
A
11
35.393
−39.762
−21.944
1.00
214.15


ATOM
77
N
SER
A
12
37.218
−36.288
−21.690
1.00
209.84


ATOM
78
CA
SER
A
12
38.304
−35.593
−22.382
1.00
209.99


ATOM
79
C
SER
A
12
38.610
−36.502
−23.563
1.00
211.83


ATOM
80
O
SER
A
12
38.563
−37.725
−23.400
1.00
211.06


ATOM
81
CB
SER
A
12
39.528
−35.467
−21.471
1.00
214.68


ATOM
82
OG
SER
A
12
40.761
−35.834
−22.075
1.00
223.54


ATOM
83
N
LEU
A
13
38.933
−35.932
−24.735
1.00
207.24


ATOM
84
CA
LEU
A
13
39.213
−36.730
−25.931
1.00
206.83


ATOM
85
C
LEU
A
13
40.276
−37.829
−25.792
1.00
209.14


ATOM
86
O
LEU
A
13
40.432
−38.666
−26.695
1.00
207.43


ATOM
87
CB
LEU
A
13
39.425
−35.859
−27.166
1.00
207.56


ATOM
88
CG
LEU
A
13
38.707
−36.307
−28.442
1.00
212.48


ATOM
89
CD1
LEU
A
13
37.217
−35.965
−28.391
1.00
211.59


ATOM
90
CD2
LEU
A
13
39.370
−35.704
−29.684
1.00
216.13


ATOM
91
N
TYR
A
14
40.965
−37.863
−24.637
1.00
206.66


ATOM
92
CA
TYR
A
14
41.901
−38.941
−24.375
1.00
207.15


ATOM
93
C
TYR
A
14
41.134
−40.151
−23.869
1.00
209.90


ATOM
94
O
TYR
A
14
41.283
−41.234
−24.434
1.00
209.79


ATOM
95
CB
TYR
A
14
43.016
−38.603
−23.369
1.00
209.13


ATOM
96
CG
TYR
A
14
43.706
−39.890
−22.968
1.00
211.84


ATOM
97
CD1
TYR
A
14
44.316
−40.702
−23.927
1.00
214.41


ATOM
98
CD2
TYR
A
14
43.596
−40.389
−21.671
1.00
212.97


ATOM
99
CE1
TYR
A
14
44.839
−41.953
−23.598
1.00
216.03


ATOM
100
CE2
TYR
A
14
44.149
−41.627
−21.321
1.00
214.39


ATOM
101
CZ
TYR
A
14
44.774
−42.406
−22.291
1.00
222.21


ATOM
102
OH
TYR
A
14
45.342
−43.630
−21.992
1.00
220.55


ATOM
103
N
GLN
A
15
40.378
−39.991
−22.759
1.00
204.72


ATOM
104
CA
GLN
A
15
39.613
−41.076
−22.142
1.00
203.03


ATOM
105
C
GLN
A
15
38.930
−41.983
−23.154
1.00
203.72


ATOM
106
O
GLN
A
15
38.768
−43.159
−22.873
1.00
202.89


ATOM
107
CB
GLN
A
15
38.636
−40.559
−21.087
1.00
204.31


ATOM
108
CG
GLN
A
15
39.304
−40.122
−19.787
1.00
216.06


ATOM
109
CD
GLN
A
15
39.279
−38.628
−19.606
1.00
225.02


ATOM
110
OE1
GLN
A
15
38.208
−37.987
−19.579
1.00
213.61


ATOM
111
NE2
GLN
A
15
40.466
−38.055
−19.419
1.00
217.98


ATOM
112
N
LEU
A
16
38.607
−41.451
−24.354
1.00
198.95


ATOM
113
CA
LEU
A
16
38.038
−42.196
−25.477
1.00
197.96


ATOM
114
C
LEU
A
16
39.107
−42.912
−26.366
1.00
204.30


ATOM
115
O
LEU
A
16
38.754
−43.904
−27.017
1.00
203.61


ATOM
116
CB
LEU
A
16
37.060
−41.355
−26.319
1.00
196.58


ATOM
117
CG
LEU
A
16
35.753
−40.931
−25.677
1.00
198.33


ATOM
118
CD1
LEU
A
16
35.860
−39.537
−25.192
1.00
198.12


ATOM
119
CD2
LEU
A
16
34.644
−40.937
−26.691
1.00
197.87


ATOM
120
N
GLU
A
17
40.393
−42.436
−26.396
1.00
203.04


ATOM
121
CA
GLU
A
17
41.464
−43.149
−27.119
1.00
204.91


ATOM
122
C
GLU
A
17
41.527
−44.494
−26.429
1.00
213.93


ATOM
123
O
GLU
A
17
41.495
−45.522
−27.106
1.00
215.72


ATOM
124
CB
GLU
A
17
42.862
−42.487
−26.970
1.00
206.66


ATOM
125
CG
GLU
A
17
44.060
−43.342
−27.439
1.00
214.83


ATOM
126
CD
GLU
A
17
44.520
−44.611
−26.709
1.00
224.64


ATOM
127
OE1
GLU
A
17
44.942
−44.529
−25.530
1.00
203.51


ATOM
128
OE2
GLU
A
17
44.513
−45.688
−27.352
1.00
212.80


ATOM
129
N
ASN
A
18
41.650
−44.471
−25.069
1.00
211.20


ATOM
130
CA
ASN
A
18
41.753
−45.620
−24.171
1.00
211.23


ATOM
131
C
ASN
A
18
41.284
−46.928
−24.816
1.00
216.76


ATOM
132
O
ASN
A
18
42.113
−47.819
−25.070
1.00
217.67


ATOM
133
CB
ASN
A
18
40.932
−45.362
−22.897
1.00
210.56


ATOM
134
CG
ASN
A
18
41.619
−44.591
−21.804
1.00
230.65


ATOM
135
OD1
ASN
A
18
42.829
−44.709
−21.603
1.00
228.38


ATOM
136
ND2
ASN
A
18
40.838
−43.885
−20.988
1.00
218.23


ATOM
137
N
TYR
A
19
39.954
−46.963
−25.170
1.00
212.26


ATOM
138
CA
TYR
A
19
39.116
−48.065
−25.681
1.00
211.48


ATOM
139
C
TYR
A
19
39.274
−48.525
−27.145
1.00
214.08


ATOM
140
O
TYR
A
19
38.342
−49.153
−27.669
1.00
213.48


ATOM
141
CB
TYR
A
19
37.636
−47.728
−25.434
1.00
211.91


ATOM
142
CG
TYR
A
19
37.307
−47.248
−24.041
1.00
214.04


ATOM
143
CD1
TYR
A
19
37.361
−48.116
−22.951
1.00
216.92


ATOM
144
CD2
TYR
A
19
36.841
−45.956
−23.822
1.00
214.35


ATOM
145
CE1
TYR
A
19
37.009
−47.692
−21.669
1.00
218.74


ATOM
146
CE2
TYR
A
19
36.477
−45.523
−22.548
1.00
215.16


ATOM
147
CZ
TYR
A
19
36.566
−46.392
−21.473
1.00
224.76


ATOM
148
OH
TYR
A
19
36.208
−45.965
−20.219
1.00
226.93


ATOM
149
N
CYS
A
20
40.433
−48.271
−27.794
1.00
209.85


ATOM
150
CA
CYS
A
20
40.578
−48.616
−29.210
1.00
214.12


ATOM
151
C
CYS
A
20
41.666
−49.637
−29.665
1.00
210.58


ATOM
152
O
CYS
A
20
42.766
−49.736
−29.116
1.00
156.27


ATOM
153
CB
CYS
A
20
40.556
−47.359
−30.079
1.00
214.21


ATOM
154
SG
CYS
A
20
39.473
−46.029
−29.464
1.00
216.29


ATOM
156
N
CYS
B
7
23.960
−38.221
−23.082
1.00
232.97


ATOM
157
CA
CYS
B
7
25.056
−38.561
−24.003
1.00
229.98


ATOM
158
C
CYS
B
7
24.970
−40.015
−24.562
1.00
225.15


ATOM
159
O
CYS
B
7
25.917
−40.482
−25.206
1.00
222.28


ATOM
160
CB
CYS
B
7
26.417
−38.269
−23.364
1.00
231.56


ATOM
161
SG
CYS
B
7
27.143
−39.672
−22.458
1.00
235.21


ATOM
162
N
GLY
B
8
23.830
−40.676
−24.313
1.00
217.38


ATOM
163
CA
GLY
B
8
23.520
−42.044
−24.709
1.00
213.28


ATOM
164
C
GLY
B
8
24.120
−42.490
−26.023
1.00
210.24


ATOM
165
O
GLY
B
8
25.270
−42.944
−26.052
1.00
208.44


ATOM
166
N
SER
B
9
23.348
−42.341
−27.124
1.00
202.95


ATOM
167
CA
SER
B
9
23.744
−42.737
−28.486
1.00
199.17


ATOM
168
C
SER
B
9
25.045
−42.082
−28.921
1.00
198.52


ATOM
169
O
SER
B
9
25.894
−42.739
−29.522
1.00
195.47


ATOM
170
CB
SER
B
9
22.629
−42.431
−29.489
1.00
202.12


ATOM
171
OG
SER
B
9
22.321
−41.050
−29.598
1.00
207.98


ATOM
172
N
HIS
B
10
25.189
−40.781
−28.565
1.00
194.66


ATOM
173
CA
HIS
B
10
26.294
−39.852
−28.847
1.00
192.96


ATOM
174
C
HIS
B
10
27.662
−40.379
−28.406
1.00
192.77


ATOM
175
O
HIS
B
10
28.654
−40.128
−29.088
1.00
190.71


ATOM
176
CB
HIS
B
10
25.995
−38.448
−28.265
1.00
195.43


ATOM
177
CG
HIS
B
10
24.532
−38.075
−28.241
1.00
200.51


ATOM
178
ND1
HIS
B
10
23.642
−38.518
−29.220
1.00
201.87


ATOM
179
CD2
HIS
B
10
23.849
−37.316
−27.351
1.00
204.64


ATOM
180
CE1
HIS
B
10
22.458
−38.029
−28.882
1.00
203.13


ATOM
181
NE2
HIS
B
10
22.530
−37.301
−27.766
1.00
205.30


ATOM
182
N
LEU
B
11
27.706
−41.147
−27.298
1.00
187.77


ATOM
183
CA
LEU
B
11
28.940
−41.761
−26.811
1.00
185.44


ATOM
184
C
LEU
B
11
29.329
−42.880
−27.747
1.00
185.19


ATOM
185
O
LEU
B
11
30.527
−43.088
−27.958
1.00
182.23


ATOM
186
CB
LEU
B
11
28.805
−42.254
−25.354
1.00
185.86


ATOM
187
CG
LEU
B
11
29.952
−43.090
−24.734
1.00
189.01


ATOM
188
CD1
LEU
B
11
31.332
−42.458
−24.932
1.00
188.16


ATOM
189
CD2
LEU
B
11
29.704
−43.316
−23.272
1.00
193.32


ATOM
190
N
VAL
B
12
28.325
−43.585
−28.338
1.00
182.38


ATOM
191
CA
VAL
B
12
28.645
−44.640
−29.308
1.00
181.99


ATOM
192
C
VAL
B
12
29.279
−43.915
−30.501
1.00
187.02


ATOM
193
O
VAL
B
12
30.314
−44.368
−30.998
1.00
188.18


ATOM
194
CB
VAL
B
12
27.514
−45.642
−29.754
1.00
185.60


ATOM
195
CG1
VAL
B
12
28.107
−46.995
−30.137
1.00
183.94


ATOM
196
CG2
VAL
B
12
26.427
−45.827
−28.699
1.00
186.32


ATOM
197
N
GLU
B
13
28.723
−42.736
−30.878
1.00
181.73


ATOM
198
CA
GLU
B
13
29.219
−41.943
−31.998
1.00
180.32


ATOM
199
C
GLU
B
13
30.543
−41.230
−31.732
1.00
182.27


ATOM
200
O
GLU
B
13
31.435
−41.334
−32.578
1.00
181.29


ATOM
201
CB
GLU
B
13
28.122
−41.050
−32.570
1.00
182.32


ATOM
202
CG
GLU
B
13
27.083
−41.867
−33.323
1.00
194.34


ATOM
203
CD
GLU
B
13
25.640
−41.400
−33.250
1.00
230.28


ATOM
204
OE1
GLU
B
13
25.396
−40.169
−33.238
1.00
226.43


ATOM
205
OE2
GLU
B
13
24.747
−42.280
−33.248
1.00
233.16


ATOM
206
N
ALA
B
14
30.702
−40.584
−30.535
1.00
178.12


ATOM
207
CA
ALA
B
14
31.936
−39.909
−30.086
1.00
177.54


ATOM
208
C
ALA
B
14
33.097
−40.906
−30.140
1.00
182.19


ATOM
209
O
ALA
B
14
34.128
−40.608
−30.735
1.00
179.92


ATOM
210
CB
ALA
B
14
31.768
−39.363
−28.669
1.00
178.72


ATOM
211
N
LEU
B
15
32.875
−42.141
−29.615
1.00
182.04


ATOM
212
CA
LEU
B
15
33.858
−43.231
−29.649
1.00
182.35


ATOM
213
C
LEU
B
15
34.176
−43.695
−31.065
1.00
189.26


ATOM
214
O
LEU
B
15
35.210
−44.338
−31.262
1.00
190.00


ATOM
215
CB
LEU
B
15
33.525
−44.417
−28.722
1.00
181.61


ATOM
216
CG
LEU
B
15
34.648
−44.729
−27.731
1.00
185.56


ATOM
217
CD1
LEU
B
15
34.214
−44.482
−26.333
1.00
186.41


ATOM
218
CD2
LEU
B
15
35.158
−46.129
−27.864
1.00
185.02


ATOM
219
N
TYR
B
16
33.327
−43.354
−32.063
1.00
186.36


ATOM
220
CA
TYR
B
16
33.721
−43.723
−33.404
1.00
186.42


ATOM
221
C
TYR
B
16
34.750
−42.737
−33.915
1.00
198.07


ATOM
222
O
TYR
B
16
35.846
−43.176
−34.299
1.00
199.72


ATOM
223
CB
TYR
B
16
32.591
−43.907
−34.397
1.00
184.87


ATOM
224
CG
TYR
B
16
33.123
−44.612
−35.621
1.00
184.81


ATOM
225
CD1
TYR
B
16
34.233
−45.449
−35.541
1.00
186.73


ATOM
226
CD2
TYR
B
16
32.516
−44.454
−36.856
1.00
186.19


ATOM
227
CE1
TYR
B
16
34.729
−46.105
−36.664
1.00
189.25


ATOM
228
CE2
TYR
B
16
32.994
−45.116
−37.988
1.00
188.21


ATOM
229
CZ
TYR
B
16
34.092
−45.955
−37.884
1.00
196.82


ATOM
230
OH
TYR
B
16
34.561
−46.634
−38.987
1.00
199.80


ATOM
231
N
LEU
B
17
34.443
−41.409
−33.875
1.00
197.09


ATOM
232
CA
LEU
B
17
35.423
−40.420
−34.328
1.00
197.79


ATOM
233
C
LEU
B
17
36.798
−40.640
−33.667
1.00
203.69


ATOM
234
O
LEU
B
17
37.797
−40.670
−34.385
1.00
204.11


ATOM
235
CB
LEU
B
17
34.941
−38.928
−34.362
1.00
197.83


ATOM
236
CG
LEU
B
17
34.071
−38.317
−33.224
1.00
201.49


ATOM
237
CD1
LEU
B
17
34.365
−36.818
−33.034
1.00
201.24


ATOM
238
CD2
LEU
B
17
32.601
−38.461
−33.524
1.00
203.23


ATOM
239
N
VAL
B
18
36.816
−40.985
−32.355
1.00
201.18


ATOM
240
CA
VAL
B
18
38.042
−41.235
−31.593
1.00
202.21


ATOM
241
C
VAL
B
18
38.853
−42.503
−31.985
1.00
211.88


ATOM
242
O
VAL
B
18
40.058
−42.516
−31.740
1.00
211.89


ATOM
243
CB
VAL
B
18
37.891
−41.009
−30.060
1.00
205.16


ATOM
244
CG1
VAL
B
18
39.248
−40.846
−29.375
1.00
205.05


ATOM
245
CG2
VAL
B
18
37.033
−39.787
−29.773
1.00
205.11


ATOM
246
N
CYS
B
19
38.246
−43.536
−32.625
1.00
212.92


ATOM
247
CA
CYS
B
19
39.047
−44.719
−33.007
1.00
215.52


ATOM
248
C
CYS
B
19
39.237
−44.835
−34.509
1.00
222.37


ATOM
249
O
CYS
B
19
40.242
−45.384
−34.944
1.00
222.72


ATOM
250
CB
CYS
B
19
38.510
−46.026
−32.412
1.00
216.15


ATOM
251
SG
CYS
B
19
37.878
−45.918
−30.719
1.00
219.65


ATOM
252
N
GLY
B
20
38.235
−44.436
−35.291
1.00
220.86


ATOM
253
CA
GLY
B
20
38.269
−44.572
−36.740
1.00
222.90


ATOM
254
C
GLY
B
20
38.616
−45.976
−37.198
1.00
231.14


ATOM
255
O
GLY
B
20
38.179
−46.977
−36.608
1.00
229.96


ATOM
256
N
GLU
B
21
39.565
−46.036
−38.113
1.00
232.64


ATOM
257
CA
GLU
B
21
40.038
−47.273
−38.722
1.00
235.94


ATOM
258
C
GLU
B
21
40.657
−48.280
−37.743
1.00
241.56


ATOM
259
O
GLU
B
21
40.635
−49.490
−38.011
1.00
243.26


ATOM
260
CB
GLU
B
21
40.980
−46.950
−39.900
1.00
240.01


ATOM
261
CG
GLU
B
21
40.285
−46.762
−41.255
1.00
255.11


ATOM
262
CD
GLU
B
21
40.965
−45.875
−42.288
1.00
284.51


ATOM
263
OE1
GLU
B
21
42.182
−46.053
−42.522
1.00
289.71


ATOM
264
OE2
GLU
B
21
40.263
−45.044
−42.912
1.00
276.74


ATOM
265
N
ARG
B
22
41.158
−47.804
−36.597
1.00
236.16


ATOM
266
CA
ARG
B
22
41.777
−48.670
−35.594
1.00
235.07


ATOM
267
C
ARG
B
22
40.776
−49.650
−34.986
1.00
236.02


ATOM
268
O
ARG
B
22
41.130
−50.761
−34.568
1.00
235.36


ATOM
269
CB
ARG
B
22
42.355
−47.790
−34.492
1.00
233.08


ATOM
270
CG
ARG
B
22
43.670
−47.117
−34.861
1.00
241.66


ATOM
271
CD
ARG
B
22
43.815
−46.031
−35.953
1.00
255.79


ATOM
272
NE
ARG
B
22
44.366
−46.527
−37.236
1.00
267.56


ATOM
273
CZ
ARG
B
22
45.529
−46.160
−37.788
1.00
278.48


ATOM
274
NH1
ARG
B
22
46.345
−45.329
−37.151
1.00
266.51


ATOM
275
NH2
ARG
B
22
45.895
−46.650
−38.967
1.00
258.49


ATOM
276
N
GLY
B
23
39.541
−49.195
−34.883
1.00
230.04


ATOM
277
CA
GLY
B
23
38.541
−50.026
−34.237
1.00
227.91


ATOM
278
C
GLY
B
23
38.646
−50.044
−32.710
1.00
228.27


ATOM
279
O
GLY
B
23
39.457
−49.333
−32.113
1.00
226.72


ATOM
280
N
PHE
B
24
37.778
−50.847
−32.037
1.00
223.26


ATOM
281
CA
PHE
B
24
37.610
−50.941
−30.560
1.00
221.71


ATOM
282
C
PHE
B
24
38.446
−52.073
−29.833
1.00
227.25


ATOM
283
O
PHE
B
24
39.307
−52.660
−30.494
1.00
228.96


ATOM
284
CB
PHE
B
24
36.095
−50.988
−30.223
1.00
221.97


ATOM
285
CG
PHE
B
24
35.264
−49.809
−30.714
1.00
222.42


ATOM
286
CD1
PHE
B
24
34.611
−48.976
−29.818
1.00
224.25


ATOM
287
CD2
PHE
B
24
35.105
−49.560
−32.073
1.00
224.10


ATOM
288
CE1
PHE
B
24
33.841
−47.898
−30.273
1.00
224.62


ATOM
289
CE2
PHE
B
24
34.366
−48.466
−32.520
1.00
226.18


ATOM
290
CZ
PHE
B
24
33.736
−47.644
−31.617
1.00
223.52


ATOM
291
O
PHE
B
25
37.255
−53.905
−26.185
1.00
218.98


ATOM
292
N
PHE
B
25
38.246
−52.347
−28.482
1.00
222.49


ATOM
293
CA
PHE
B
25
39.032
−53.388
−27.745
1.00
222.12


ATOM
294
C
PHE
B
25
38.325
−54.262
−26.694
1.00
221.10


ATOM
295
CB
PHE
B
25
40.442
−52.890
−27.287
1.00
225.15


ATOM
296
CG
PHE
B
25
40.864
−52.760
−25.823
1.00
226.85


ATOM
297
CD1
PHE
B
25
41.962
−53.466
−25.333
1.00
230.25


ATOM
298
CD2
PHE
B
25
40.275
−51.802
−24.988
1.00
228.79


ATOM
299
CE1
PHE
B
25
42.425
−53.262
−24.020
1.00
231.09


ATOM
300
CE2
PHE
B
25
40.729
−51.611
−23.666
1.00
231.35


ATOM
301
CZ
PHE
B
25
41.809
−52.331
−23.199
1.00
229.78


ATOM
302
O
TYR
B
26
39.488
−58.312
−24.237
1.00
198.04


ATOM
303
N
TYR
B
26
38.953
−55.436
−26.407
1.00
216.09


ATOM
304
CA
TYR
B
26
38.483
−56.481
−25.493
1.00
236.98


ATOM
305
C
TYR
B
26
39.559
−57.556
−25.218
1.00
245.61


ATOM
306
CB
TYR
B
26
37.176
−57.124
−26.024
1.00
238.00


ATOM
307
CG
TYR
B
26
37.184
−57.640
−27.456
1.00
240.71


ATOM
308
CD1
TYR
B
26
36.631
−58.877
−27.774
1.00
242.87


ATOM
309
CD2
TYR
B
26
37.674
−56.858
−28.505
1.00
242.05


ATOM
310
CE1
TYR
B
26
36.596
−59.341
−29.090
1.00
244.60


ATOM
311
CE2
TYR
B
26
37.663
−57.320
−29.822
1.00
243.99


ATOM
312
CZ
TYR
B
26
37.099
−58.554
−30.115
1.00
251.05


ATOM
313
OH
TYR
B
26
37.068
−59.015
−31.415
1.00
250.94


ATOM
315
N
GLN
C
1
11.311
−99.334
−34.481
1.00
197.85


ATOM
316
CA
GLN
C
1
11.076
−100.772
−34.608
1.00
197.44


ATOM
317
C
GLN
C
1
12.144
−101.453
−33.778
1.00
199.98


ATOM
318
O
GLN
C
1
12.893
−102.222
−34.362
1.00
201.18


ATOM
319
CB
GLN
C
1
11.244
−101.198
−36.098
1.00
201.73


ATOM
320
CG
GLN
C
1
10.262
−100.602
−37.118
1.00
209.58


ATOM
321
CD
GLN
C
1
10.377
−99.106
−37.366
1.00
224.21


ATOM
322
OE1
GLN
C
1
11.470
−98.526
−37.428
1.00
219.38


ATOM
323
NE2
GLN
C
1
9.237
−98.444
−37.528
1.00
214.07


ATOM
324
N
VAL
C
2
12.312
−101.099
−32.477
1.00
194.14


ATOM
325
CA
VAL
C
2
13.420
−101.605
−31.645
1.00
191.93


ATOM
326
C
VAL
C
2
13.431
−103.118
−31.472
1.00
201.23


ATOM
327
O
VAL
C
2
12.476
−103.682
−30.948
1.00
200.75


ATOM
328
CB
VAL
C
2
13.586
−100.870
−30.292
1.00
192.02


ATOM
329
CG1
VAL
C
2
14.753
−101.437
−29.495
1.00
189.08


ATOM
330
CG2
VAL
C
2
13.794
−99.380
−30.507
1.00
192.95


ATOM
331
N
GLN
C
3
14.526
−103.766
−31.907
1.00
202.34


ATOM
332
CA
GLN
C
3
14.717
−105.214
−31.806
1.00
203.12


ATOM
333
C
GLN
C
3
16.131
−105.584
−31.436
1.00
208.12


ATOM
334
O
GLN
C
3
17.096
−104.926
−31.837
1.00
207.84


ATOM
335
CB
GLN
C
3
14.356
−105.911
−33.113
1.00
207.35


ATOM
336
CG
GLN
C
3
12.872
−105.887
−33.415
1.00
218.60


ATOM
337
CD
GLN
C
3
12.507
−107.080
−34.229
1.00
242.36


ATOM
338
OE1
GLN
C
3
12.817
−108.213
−33.851
1.00
238.61


ATOM
339
NE2
GLN
C
3
11.849
−106.861
−35.360
1.00
237.02


ATOM
340
N
LEU
C
4
16.237
−106.648
−30.665
1.00
205.59


ATOM
341
CA
LEU
C
4
17.501
−107.205
−30.244
1.00
206.04


ATOM
342
C
LEU
C
4
17.300
−108.701
−30.296
1.00
216.94


ATOM
343
O
LEU
C
4
16.221
−109.194
−29.931
1.00
217.18


ATOM
344
CB
LEU
C
4
17.879
−106.781
−28.814
1.00
203.08


ATOM
345
CG
LEU
C
4
18.075
−105.295
−28.547
1.00
206.08


ATOM
346
CD1
LEU
C
4
16.789
−104.684
−28.046
1.00
205.23


ATOM
347
CD2
LEU
C
4
19.173
−105.066
−27.506
1.00
206.30


ATOM
348
N
LYS
C
5
18.304
−109.425
−30.825
1.00
218.00


ATOM
349
CA
LYS
C
5
18.255
−110.881
−30.949
1.00
219.97


ATOM
350
C
LYS
C
5
19.645
−111.452
−30.731
1.00
226.85


ATOM
351
O
LYS
C
5
20.617
−110.984
−31.316
1.00
227.49


ATOM
352
CB
LYS
C
5
17.705
−111.336
−32.322
1.00
225.47


ATOM
353
CG
LYS
C
5
16.634
−110.443
−32.965
1.00
243.07


ATOM
354
CD
LYS
C
5
16.061
−111.036
−34.239
1.00
255.86


ATOM
355
CE
LYS
C
5
15.154
−110.063
−34.958
1.00
261.22


ATOM
356
NZ
LYS
C
5
14.231
−110.755
−35.898
1.00
271.57


ATOM
357
N
GLU
C
6
19.730
−112.478
−29.909
1.00
225.50


ATOM
358
CA
GLU
C
6
20.977
−113.162
−29.590
1.00
226.93


ATOM
359
C
GLU
C
6
21.178
−114.369
−30.533
1.00
238.32


ATOM
360
O
GLU
C
6
20.208
−115.076
−30.857
1.00
240.02


ATOM
361
CB
GLU
C
6
20.945
−113.659
−28.134
1.00
226.31


ATOM
362
CG
GLU
C
6
20.497
−112.620
−27.114
1.00
231.37


ATOM
363
CD
GLU
C
6
18.994
−112.414
−26.960
1.00
243.21


ATOM
364
OE1
GLU
C
6
18.238
−112.715
−27.913
1.00
223.73


ATOM
365
OE2
GLU
C
6
18.578
−111.882
−25.908
1.00
237.51


ATOM
366
N
SER
C
7
22.429
−114.587
−30.981
1.00
238.35


ATOM
367
CA
SER
C
7
22.827
−115.745
−31.792
1.00
242.29


ATOM
368
C
SER
C
7
23.885
−116.420
−30.966
1.00
247.19


ATOM
369
O
SER
C
7
25.010
−115.916
−30.881
1.00
246.61


ATOM
370
CB
SER
C
7
23.382
−115.349
−33.164
1.00
248.70


ATOM
371
OG
SER
C
7
23.934
−114.042
−33.211
1.00
254.86


ATOM
372
N
GLY
C
8
23.489
−117.496
−30.296
1.00
244.80


ATOM
373
CA
GLY
C
8
24.366
−118.239
−29.410
1.00
244.75


ATOM
374
C
GLY
C
8
24.718
−119.591
−29.977
1.00
251.22


ATOM
375
O
GLY
C
8
24.148
−120.006
−30.995
1.00
252.95


ATOM
376
N
PRO
C
9
25.646
−120.311
−29.319
1.00
248.44


ATOM
377
CA
PRO
C
9
26.038
−121.625
−29.832
1.00
252.42


ATOM
378
C
PRO
C
9
25.159
−122.772
−29.330
1.00
256.51


ATOM
379
O
PRO
C
9
25.321
−123.906
−29.796
1.00
260.58


ATOM
380
CB
PRO
C
9
27.470
−121.756
−29.323
1.00
255.02


ATOM
381
CG
PRO
C
9
27.409
−121.113
−27.973
1.00
255.59


ATOM
382
CD
PRO
C
9
26.417
−119.969
−28.105
1.00
247.91


ATOM
383
N
GLY
C
10
24.278
−122.481
−28.367
1.00
248.27


ATOM
384
CA
GLY
C
10
23.399
−123.471
−27.761
1.00
248.79


ATOM
385
C
GLY
C
10
24.093
−124.338
−26.728
1.00
252.08


ATOM
386
O
GLY
C
10
23.618
−124.449
−25.593
1.00
250.75


ATOM
387
N
LEU
C
11
25.216
−124.971
−27.116
1.00
249.31


ATOM
388
CA
LEU
C
11
25.979
−125.865
−26.245
1.00
249.44


ATOM
389
C
LEU
C
11
27.421
−125.436
−26.109
1.00
252.08


ATOM
390
O
LEU
C
11
28.060
−125.034
−27.085
1.00
251.88


ATOM
391
CB
LEU
C
11
25.925
−127.316
−26.758
1.00
253.71


ATOM
392
CG
LEU
C
11
24.542
−127.948
−26.957
1.00
257.43


ATOM
393
CD1
LEU
C
11
24.648
−129.329
−27.523
1.00
258.15


ATOM
394
CD2
LEU
C
11
23.758
−127.978
−25.671
1.00
259.04


ATOM
395
N
VAL
C
12
27.930
−125.523
−24.892
1.00
248.11


ATOM
396
CA
VAL
C
12
29.316
−125.189
−24.589
1.00
248.35


ATOM
397
C
VAL
C
12
29.845
−126.333
−23.744
1.00
255.02


ATOM
398
O
VAL
C
12
29.216
−126.680
−22.746
1.00
254.64


ATOM
399
CB
VAL
C
12
29.476
−123.828
−23.845
1.00
248.71


ATOM
400
CG1
VAL
C
12
30.923
−123.600
−23.391
1.00
249.58


ATOM
401
CG2
VAL
C
12
29.011
−122.670
−24.713
1.00
246.11


ATOM
402
N
ALA
C
13
30.994
−126.915
−24.139
1.00
254.27


ATOM
403
CA
ALA
C
13
31.649
−127.980
−23.388
1.00
256.24


ATOM
404
C
ALA
C
13
32.343
−127.331
−22.195
1.00
258.29


ATOM
405
O
ALA
C
13
32.885
−126.225
−22.322
1.00
256.04


ATOM
406
CB
ALA
C
13
32.669
−128.691
−24.258
1.00
257.95


ATOM
407
N
PRO
C
14
32.333
−127.984
−21.020
1.00
255.63


ATOM
408
CA
PRO
C
14
32.994
−127.378
−19.855
1.00
254.38


ATOM
409
C
PRO
C
14
34.430
−127.007
−20.214
1.00
257.45


ATOM
410
O
PRO
C
14
35.072
−127.703
−21.003
1.00
257.51


ATOM
411
CB
PRO
C
14
32.896
−128.465
−18.787
1.00
256.74


ATOM
412
CG
PRO
C
14
31.773
−129.350
−19.240
1.00
260.04


ATOM
413
CD
PRO
C
14
31.809
−129.329
−20.716
1.00
256.97


ATOM
414
N
SER
C
15
34.886
−125.852
−19.713
1.00
253.09


ATOM
415
CA
SER
C
15
36.211
−125.274
−19.963
1.00
254.74


ATOM
416
C
SER
C
15
36.369
−124.537
−21.281
1.00
259.01


ATOM
417
O
SER
C
15
37.408
−123.912
−21.514
1.00
259.43


ATOM
418
CB
SER
C
15
37.326
−126.287
−19.753
1.00
258.90


ATOM
419
OG
SER
C
15
37.423
−126.568
−18.370
1.00
264.44


ATOM
420
N
GLN
C
16
35.340
−124.589
−22.138
1.00
255.08


ATOM
421
CA
GLN
C
16
35.339
−123.849
−23.397
1.00
254.27


ATOM
422
C
GLN
C
16
34.713
−122.446
−23.198
1.00
253.72


ATOM
423
O
GLN
C
16
34.105
−122.147
−22.161
1.00
249.79


ATOM
424
CB
GLN
C
16
34.598
−124.617
−24.506
1.00
256.25


ATOM
425
CG
GLN
C
16
35.484
−125.392
−25.469
1.00
258.15


ATOM
426
CD
GLN
C
16
36.796
−124.735
−25.838
1.00
266.06


ATOM
427
OE1
GLN
C
16
37.874
−125.295
−25.615
1.00
263.70


ATOM
428
NE2
GLN
C
16
36.736
−123.556
−26.447
1.00
251.39


ATOM
429
N
SER
C
17
34.847
−121.609
−24.220
1.00
250.17


ATOM
430
CA
SER
C
17
34.322
−120.262
−24.195
1.00
246.15


ATOM
431
C
SER
C
17
32.925
−120.187
−24.798
1.00
247.04


ATOM
432
O
SER
C
17
32.552
−121.019
−25.637
1.00
247.81


ATOM
433
CB
SER
C
17
35.248
−119.333
−24.968
1.00
251.44


ATOM
434
OG
SER
C
17
35.279
−119.725
−26.331
1.00
262.40


ATOM
435
N
LEU
C
18
32.179
−119.142
−24.390
1.00
239.71


ATOM
436
CA
LEU
C
18
30.845
−118.808
−24.877
1.00
236.03


ATOM
437
C
LEU
C
18
30.951
−117.535
−25.690
1.00
236.59


ATOM
438
O
LEU
C
18
31.449
−116.520
−25.201
1.00
234.42


ATOM
439
CB
LEU
C
18
29.866
−118.603
−23.711
1.00
232.94


ATOM
440
CG
LEU
C
18
28.521
−117.971
−24.018
1.00
234.99


ATOM
441
CD1
LEU
C
18
27.694
−118.856
−24.950
1.00
236.30


ATOM
442
CD2
LEU
C
18
27.746
−117.705
−22.724
1.00
235.75


ATOM
443
N
SER
C
19
30.497
−117.597
−26.927
1.00
233.64


ATOM
444
CA
SER
C
19
30.486
−116.438
−27.799
1.00
233.48


ATOM
445
C
SER
C
19
29.043
−116.213
−28.232
1.00
236.48


ATOM
446
O
SER
C
19
28.398
−117.163
−28.712
1.00
238.69


ATOM
447
CB
SER
C
19
31.385
−116.655
−29.015
1.00
240.18


ATOM
448
OG
SER
C
19
32.746
−116.388
−28.722
1.00
247.52


ATOM
449
N
ILE
C
20
28.515
−114.983
−28.020
1.00
227.96


ATOM
450
CA
ILE
C
20
27.159
−114.655
−28.446
1.00
224.65


ATOM
451
C
ILE
C
20
27.181
−113.355
−29.198
1.00
227.83


ATOM
452
O
ILE
C
20
27.792
−112.394
−28.741
1.00
226.77


ATOM
453
CB
ILE
C
20
26.121
−114.581
−27.298
1.00
223.52


ATOM
454
CG1
ILE
C
20
26.103
−115.842
−26.457
1.00
222.52


ATOM
455
CG2
ILE
C
20
24.722
−114.298
−27.873
1.00
224.78


ATOM
456
CD1
ILE
C
20
25.387
−115.688
−25.173
1.00
212.68


ATOM
457
N
THR
C
21
26.484
−113.301
−30.325
1.00
225.00


ATOM
458
CA
THR
C
21
26.351
−112.052
−31.039
1.00
224.68


ATOM
459
C
THR
C
21
24.926
−111.537
−30.829
1.00
225.10


ATOM
460
O
THR
C
21
23.956
−112.268
−31.035
1.00
224.93


ATOM
461
CB
THR
C
21
26.677
−112.208
−32.522
1.00
232.85


ATOM
462
OG1
THR
C
21
28.048
−112.566
−32.667
1.00
231.60


ATOM
463
CG2
THR
C
21
26.395
−110.934
−33.306
1.00
230.66


ATOM
464
N
CYS
C
22
24.801
−110.280
−30.435
1.00
218.33


ATOM
465
CA
CYS
C
22
23.497
−109.651
−30.303
1.00
215.04


ATOM
466
C
CYS
C
22
23.364
−108.761
−31.526
1.00
220.75


ATOM
467
O
CYS
C
22
24.202
−107.870
−31.733
1.00
221.72


ATOM
468
CB
CYS
C
22
23.424
−108.838
−29.020
1.00
211.51


ATOM
469
SG
CYS
C
22
21.899
−107.871
−28.812
1.00
212.59


ATOM
470
N
THR
C
23
22.353
−109.025
−32.361
1.00
216.64


ATOM
471
CA
THR
C
23
22.121
−108.249
−33.574
1.00
217.30


ATOM
472
C
THR
C
23
20.965
−107.308
−33.226
1.00
216.14


ATOM
473
O
THR
C
23
19.918
−107.777
−32.766
1.00
212.99


ATOM
474
CB
THR
C
23
21.846
−109.183
−34.789
1.00
220.47


ATOM
475
OG1
THR
C
23
21.795
−110.570
−34.404
1.00
211.66


ATOM
476
CG2
THR
C
23
22.862
−109.019
−35.905
1.00
222.87


ATOM
477
N
VAL
C
24
21.171
−105.988
−33.359
1.00
211.41


ATOM
478
CA
VAL
C
24
20.105
−105.051
−33.006
1.00
208.14


ATOM
479
C
VAL
C
24
19.610
−104.298
−34.237
1.00
214.75


ATOM
480
O
VAL
C
24
20.346
−104.150
−35.218
1.00
217.17


ATOM
481
CB
VAL
C
24
20.502
−104.069
−31.874
1.00
208.29


ATOM
482
CG1
VAL
C
24
21.138
−104.781
−30.695
1.00
205.19


ATOM
483
CG2
VAL
C
24
21.425
−102.978
−32.394
1.00
210.37


ATOM
484
N
SER
C
25
18.377
−103.799
−34.176
1.00
211.21


ATOM
485
CA
SER
C
25
17.833
−102.978
−35.255
1.00
214.41


ATOM
486
C
SER
C
25
16.849
−101.965
−34.702
1.00
216.37


ATOM
487
O
SER
C
25
16.310
−102.161
−33.613
1.00
213.91


ATOM
488
CB
SER
C
25
17.206
−103.829
−36.362
1.00
221.50


ATOM
489
OG
SER
C
25
16.068
−104.545
−35.914
1.00
228.46


ATOM
490
N
GLY
C
26
16.640
−100.883
−35.441
1.00
213.67


ATOM
491
CA
GLY
C
26
15.697
−99.850
−35.046
1.00
211.94


ATOM
492
C
GLY
C
26
16.282
−98.735
−34.213
1.00
212.67


ATOM
493
O
GLY
C
26
15.547
−97.844
−33.789
1.00
212.53


ATOM
494
N
PHE
C
27
17.591
−98.769
−33.971
1.00
207.09


ATOM
495
CA
PHE
C
27
18.288
−97.732
−33.221
1.00
205.58


ATOM
496
C
PHE
C
27
19.756
−97.843
−33.493
1.00
209.71


ATOM
497
O
PHE
C
27
20.206
−98.942
−33.853
1.00
209.50


ATOM
498
CB
PHE
C
27
18.043
−97.875
−31.709
1.00
203.51


ATOM
499
CG
PHE
C
27
18.668
−99.083
−31.052
1.00
202.69


ATOM
500
CD2
PHE
C
27
19.874
−98.974
−30.357
1.00
203.91


ATOM
501
CD1
PHE
C
27
18.023
−100.322
−31.079
1.00
204.50


ATOM
502
CE2
PHE
C
27
20.441
−100.088
−29.726
1.00
204.86


ATOM
503
CE1
PHE
C
27
18.578
−101.438
−30.434
1.00
203.53


ATOM
504
CZ
PHE
C
27
19.782
−101.312
−29.755
1.00
201.77


ATOM
505
N
PRO
C
28
20.523
−96.747
−33.243
1.00
206.63


ATOM
506
CA
PRO
C
28
21.977
−96.799
−33.460
1.00
208.79


ATOM
507
C
PRO
C
28
22.748
−97.154
−32.183
1.00
210.19


ATOM
508
O
PRO
C
28
22.468
−96.590
−31.128
1.00
208.24


ATOM
509
CB
PRO
C
28
22.310
−95.377
−33.942
1.00
214.37


ATOM
510
CG
PRO
C
28
20.991
−94.554
−33.784
1.00
217.56


ATOM
511
CD
PRO
C
28
20.103
−95.373
−32.904
1.00
208.35


ATOM
512
N
LEU
C
29
23.718
−98.091
−32.272
1.00
206.64


ATOM
513
CA
LEU
C
29
24.543
−98.499
−31.123
1.00
203.72


ATOM
514
C
LEU
C
29
25.421
−97.342
−30.648
1.00
207.57


ATOM
515
O
LEU
C
29
25.982
−97.406
−29.552
1.00
206.13


ATOM
516
CB
LEU
C
29
25.417
−99.729
−31.460
1.00
204.57


ATOM
517
CG
LEU
C
29
24.711
−101.088
−31.565
1.00
206.92


ATOM
518
CD1
LEU
C
29
25.657
−102.149
−32.081
1.00
209.72


ATOM
519
CD2
LEU
C
29
24.138
−101.519
−30.229
1.00
204.33


ATOM
520
N
THR
C
30
25.547
−96.288
−31.469
1.00
205.88


ATOM
521
CA
THR
C
30
26.348
−95.132
−31.087
1.00
207.97


ATOM
522
C
THR
C
30
25.623
−94.319
−29.982
1.00
210.17


ATOM
523
O
THR
C
30
26.282
−93.666
−29.177
1.00
210.78


ATOM
524
CB
THR
C
30
26.718
−94.262
−32.324
1.00
216.82


ATOM
525
OG1
THR
C
30
25.548
−93.677
−32.878
1.00
213.22


ATOM
526
CG2
THR
C
30
27.421
−95.039
−33.418
1.00
218.01


ATOM
527
N
ALA
C
31
24.272
−94.367
−29.945
1.00
203.75


ATOM
528
CA
ALA
C
31
23.427
−93.580
−29.026
1.00
200.55


ATOM
529
C
ALA
C
31
22.799
−94.337
−27.872
1.00
196.90


ATOM
530
O
ALA
C
31
22.058
−93.747
−27.101
1.00
193.76


ATOM
531
CB
ALA
C
31
22.329
−92.882
−29.823
1.00
202.43


ATOM
532
N
TYR
C
32
23.008
−95.637
−27.795
1.00
191.80


ATOM
533
CA
TYR
C
32
22.377
−96.430
−26.752
1.00
188.57


ATOM
534
C
TYR
C
32
23.357
−97.434
−26.205
1.00
193.25


ATOM
535
O
TYR
C
32
24.368
−97.757
−26.841
1.00
195.66


ATOM
536
CB
TYR
C
32
21.118
−97.154
−27.290
1.00
188.15


ATOM
537
CG
TYR
C
32
19.949
−96.239
−27.595
1.00
190.21


ATOM
538
CD1
TYR
C
32
19.816
−95.632
−28.841
1.00
194.62


ATOM
539
CD2
TYR
C
32
18.979
−95.978
−26.642
1.00
189.28


ATOM
540
CE1
TYR
C
32
18.762
−94.763
−29.117
1.00
195.12


ATOM
541
CE2
TYR
C
32
17.915
−95.117
−26.910
1.00
190.93


ATOM
542
CZ
TYR
C
32
17.802
−94.522
−28.155
1.00
197.11


ATOM
543
OH
TYR
C
32
16.735
−93.700
−28.434
1.00
194.23


ATOM
544
N
GLY
C
33
23.081
−97.913
−25.016
1.00
187.51


ATOM
545
CA
GLY
C
33
23.960
−98.920
−24.454
1.00
186.96


ATOM
546
C
GLY
C
33
23.301
−100.254
−24.667
1.00
188.61


ATOM
547
O
GLY
C
33
22.103
−100.298
−24.990
1.00
187.43


ATOM
548
N
VAL
C
34
24.074
−101.339
−24.518
1.00
184.25


ATOM
549
CA
VAL
C
34
23.529
−102.694
−24.602
1.00
182.32


ATOM
550
C
VAL
C
34
24.083
−103.493
−23.444
1.00
184.30


ATOM
551
O
VAL
C
34
25.299
−103.567
−23.252
1.00
183.93


ATOM
552
CB
VAL
C
34
23.753
−103.416
−25.960
1.00
187.86


ATOM
553
CG1
VAL
C
34
23.394
−104.906
−25.865
1.00
186.65


ATOM
554
CG2
VAL
C
34
22.948
−102.748
−27.071
1.00
188.75


ATOM
555
N
ASN
C
35
23.189
−104.086
−22.678
1.00
180.82


ATOM
556
CA
ASN
C
35
23.557
−104.903
−21.534
1.00
182.01


ATOM
557
C
ASN
C
35
23.344
−106.389
−21.799
1.00
188.69


ATOM
558
O
ASN
C
35
22.603
−106.757
−22.715
1.00
190.26


ATOM
559
CB
ASN
C
35
22.700
−104.531
−20.339
1.00
183.40


ATOM
560
CG
ASN
C
35
22.572
−103.068
−20.112
1.00
215.20


ATOM
561
OD1
ASN
C
35
22.234
−102.303
−21.019
1.00
216.32


ATOM
562
ND2
ASN
C
35
22.797
−102.650
−18.897
1.00
209.15


ATOM
563
N
TRP
C
36
23.949
−107.240
−20.952
1.00
183.77


ATOM
564
CA
TRP
C
36
23.749
−108.664
−21.002
1.00
182.96


ATOM
565
C
TRP
C
36
23.333
−109.071
−19.659
1.00
181.87


ATOM
566
O
TRP
C
36
23.905
−108.642
−18.658
1.00
180.07


ATOM
567
CB
TRP
C
36
25.007
−109.385
−21.393
1.00
184.61


ATOM
568
CG
TRP
C
36
25.387
−109.152
−22.803
1.00
188.10


ATOM
569
CD1
TRP
C
36
26.153
−108.131
−23.296
1.00
192.31


ATOM
570
CD2
TRP
C
36
25.012
−109.962
−23.924
1.00
189.30


ATOM
571
NE1
TRP
C
36
26.290
−108.261
−24.660
1.00
193.92


ATOM
572
CE2
TRP
C
36
25.599
−109.380
−25.072
1.00
195.52


ATOM
573
CE3
TRP
C
36
24.249
−111.146
−24.068
1.00
190.76


ATOM
574
CZ2
TRP
C
36
25.444
−109.938
−26.347
1.00
196.26


ATOM
575
CZ3
TRP
C
36
24.093
−111.692
−25.331
1.00
193.58


ATOM
576
CH2
TRP
C
36
24.682
−111.091
−26.453
1.00
195.59


ATOM
577
N
VAL
C
37
22.304
−109.875
−19.636
1.00
179.40


ATOM
578
CA
VAL
C
37
21.676
−110.412
−18.444
1.00
181.70


ATOM
579
C
VAL
C
37
21.515
−111.952
−18.656
1.00
195.83


ATOM
580
O
VAL
C
37
21.262
−112.399
−19.778
1.00
197.57


ATOM
581
CB
VAL
C
37
20.305
−109.685
−18.247
1.00
182.78


ATOM
582
CG1
VAL
C
37
19.437
−110.335
−17.172
1.00
182.86


ATOM
583
CG2
VAL
C
37
20.519
−108.215
−17.935
1.00
181.91


ATOM
584
N
ARG
C
38
21.672
−112.761
−17.602
1.00
195.92


ATOM
585
CA
ARG
C
38
21.411
−114.193
−17.730
1.00
196.88


ATOM
586
C
ARG
C
38
20.446
−114.670
−16.654
1.00
204.40


ATOM
587
O
ARG
C
38
20.318
−114.045
−15.582
1.00
205.00


ATOM
588
CB
ARG
C
38
22.686
−115.025
−17.768
1.00
194.92


ATOM
589
CG
ARG
C
38
23.368
−115.188
−16.421
1.00
201.46


ATOM
590
CD
ARG
C
38
24.634
−115.980
−16.563
1.00
208.80


ATOM
591
NE
ARG
C
38
25.328
−116.107
−15.287
1.00
215.75


ATOM
592
CZ
ARG
C
38
26.477
−116.753
−15.116
1.00
235.95


ATOM
593
NH1
ARG
C
38
27.082
−117.335
−16.146
1.00
233.11


ATOM
594
NH2
ARG
C
38
27.025
−116.835
−13.912
1.00
222.08


ATOM
595
N
GLN
C
39
19.749
−115.758
−16.959
1.00
203.58


ATOM
596
CA
GLN
C
39
18.802
−116.343
−16.031
1.00
207.41


ATOM
597
C
GLN
C
39
18.976
−117.875
−15.962
1.00
216.73


ATOM
598
O
GLN
C
39
18.597
−118.578
−16.911
1.00
217.45


ATOM
599
CB
GLN
C
39
17.369
−115.958
−16.412
1.00
208.85


ATOM
600
CG
GLN
C
39
16.281
−116.423
−15.442
1.00
230.23


ATOM
601
CD
GLN
C
39
14.944
−115.800
−15.781
1.00
251.88


ATOM
602
OE1
GLN
C
39
14.645
−115.543
−16.955
1.00
254.54


ATOM
603
NE2
GLN
C
39
14.103
−115.540
−14.769
1.00
232.99


ATOM
604
N
PRO
C
40
19.552
−118.424
−14.862
1.00
215.34


ATOM
605
CA
PRO
C
40
19.636
−119.880
−14.754
1.00
217.60


ATOM
606
C
PRO
C
40
18.204
−120.420
−14.689
1.00
221.18


ATOM
607
O
PRO
C
40
17.294
−119.737
−14.188
1.00
219.80


ATOM
608
CB
PRO
C
40
20.383
−120.087
−13.435
1.00
221.76


ATOM
609
CG
PRO
C
40
21.125
−118.785
−13.218
1.00
223.58


ATOM
610
CD
PRO
C
40
20.115
−117.781
−13.657
1.00
217.27


ATOM
611
N
PRO
C
41
17.966
−121.622
−15.241
1.00
219.64


ATOM
612
CA
PRO
C
41
16.595
−122.164
−15.232
1.00
222.58


ATOM
613
C
PRO
C
41
15.928
−122.098
−13.860
1.00
227.93


ATOM
614
O
PRO
C
41
16.542
−122.448
−12.856
1.00
228.37


ATOM
615
CB
PRO
C
41
16.768
−123.584
−15.777
1.00
227.48


ATOM
616
CG
PRO
C
41
18.057
−123.518
−16.601
1.00
228.79


ATOM
617
CD
PRO
C
41
18.930
−122.565
−15.856
1.00
221.71


ATOM
618
N
GLY
C
42
14.728
−121.528
−13.827
1.00
225.44


ATOM
619
CA
GLY
C
42
13.954
−121.351
−12.605
1.00
229.26


ATOM
620
C
GLY
C
42
14.552
−120.401
−11.588
1.00
232.21


ATOM
621
O
GLY
C
42
14.102
−120.363
−10.443
1.00
234.41


ATOM
622
N
LYS
C
43
15.565
−119.630
−11.977
1.00
226.56


ATOM
623
CA
LYS
C
43
16.175
−118.671
−11.054
1.00
226.60


ATOM
624
C
LYS
C
43
15.999
−117.244
−11.529
1.00
230.10


ATOM
625
O
LYS
C
43
15.356
−117.016
−12.553
1.00
228.89


ATOM
626
CB
LYS
C
43
17.646
−119.011
−10.774
1.00
227.73


ATOM
627
CG
LYS
C
43
17.801
−120.286
−9.928
1.00
235.99


ATOM
628
CD
LYS
C
43
19.257
−120.582
−9.548
1.00
229.20


ATOM
629
CE
LYS
C
43
19.408
−121.717
−8.566
1.00
223.07


ATOM
630
NZ
LYS
C
43
19.240
−121.255
−7.164
1.00
226.42


ATOM
631
N
GLY
C
44
16.528
−116.298
−10.766
1.00
227.49


ATOM
632
CA
GLY
C
44
16.403
−114.882
−11.077
1.00
224.80


ATOM
633
C
GLY
C
44
17.303
−114.358
−12.177
1.00
224.29


ATOM
634
O
GLY
C
44
17.899
−115.127
−12.948
1.00
222.39


ATOM
635
N
LEU
C
45
17.417
−113.015
−12.219
1.00
218.10


ATOM
636
CA
LEU
C
45
18.219
−112.305
−13.207
1.00
212.98


ATOM
637
C
LEU
C
45
19.522
−111.854
−12.644
1.00
212.75


ATOM
638
O
LEU
C
45
19.599
−111.383
−11.505
1.00
213.02


ATOM
639
CB
LEU
C
45
17.451
−111.107
−13.773
1.00
211.35


ATOM
640
CG
LEU
C
45
16.101
−111.428
−14.388
1.00
216.60


ATOM
641
CD1
LEU
C
45
15.349
−110.177
−14.707
1.00
214.41


ATOM
642
CD2
LEU
C
45
16.262
−112.308
−15.635
1.00
220.84


ATOM
643
N
GLU
C
46
20.550
−111.996
−13.449
1.00
206.80


ATOM
644
CA
GLU
C
46
21.878
−111.598
−13.047
1.00
207.29


ATOM
645
C
GLU
C
46
22.413
−110.658
−14.091
1.00
207.36


ATOM
646
O
GLU
C
46
22.516
−111.028
−15.255
1.00
204.84


ATOM
647
CB
GLU
C
46
22.804
−112.832
−12.892
1.00
210.88


ATOM
648
CG
GLU
C
46
24.185
−112.521
−12.308
1.00
226.10


ATOM
649
CD
GLU
C
46
25.215
−113.640
−12.282
1.00
249.52


ATOM
650
OE1
GLU
C
46
26.176
−113.524
−11.488
1.00
234.02


ATOM
651
OE2
GLU
C
46
25.080
−114.613
−13.061
1.00
250.50


ATOM
652
N
TRP
C
47
22.777
−109.450
−13.683
1.00
204.03


ATOM
653
CA
TRP
C
47
23.334
−108.509
−14.630
1.00
202.23


ATOM
654
C
TRP
C
47
24.787
−108.837
−14.858
1.00
203.49


ATOM
655
O
TRP
C
47
25.547
−108.937
−13.899
1.00
205.62


ATOM
656
CB
TRP
C
47
23.173
−107.095
−14.114
1.00
202.22


ATOM
657
CG
TRP
C
47
23.687
−106.056
−15.067
1.00
202.39


ATOM
658
CD1
TRP
C
47
23.016
−105.492
−16.116
1.00
203.89


ATOM
659
CD2
TRP
C
47
24.973
−105.422
−15.020
1.00
202.70


ATOM
660
NE1
TRP
C
47
23.803
−104.541
−16.724
1.00
202.88


ATOM
661
CE2
TRP
C
47
25.000
−104.459
−16.054
1.00
205.42


ATOM
662
CE3
TRP
C
47
26.088
−105.536
−14.164
1.00
205.20


ATOM
663
CZ2
TRP
C
47
26.096
−103.621
−16.259
1.00
205.20


ATOM
664
CZ3
TRP
C
47
27.152
−104.679
−14.348
1.00
207.04


ATOM
665
CH2
TRP
C
47
27.158
−103.748
−15.396
1.00
206.69


ATOM
666
N
LEU
C
48
25.177
−108.976
−16.117
1.00
196.92


ATOM
667
CA
LEU
C
48
26.543
−109.356
−16.455
1.00
197.76


ATOM
668
C
LEU
C
48
27.500
−108.205
−16.784
1.00
202.09


ATOM
669
O
LEU
C
48
28.650
−108.204
−16.346
1.00
203.51


ATOM
670
CB
LEU
C
48
26.540
−110.406
−17.583
1.00
197.52


ATOM
671
CG
LEU
C
48
25.688
−111.687
−17.397
1.00
201.93


ATOM
672
CD1
LEU
C
48
25.764
−112.574
−18.635
1.00
201.41


ATOM
673
CD2
LEU
C
48
26.122
−112.477
−16.164
1.00
206.21


ATOM
674
N
GLY
C
49
27.034
−107.257
−17.572
1.00
197.73


ATOM
675
CA
GLY
C
49
27.842
−106.124
−17.996
1.00
199.02


ATOM
676
C
GLY
C
49
27.114
−105.325
−19.056
1.00
203.53


ATOM
677
O
GLY
C
49
26.000
−105.698
−19.443
1.00
203.14


ATOM
678
N
MET
C
50
27.702
−104.206
−19.511
1.00
199.85


ATOM
679
CA
MET
C
50
27.123
−103.389
−20.585
1.00
197.85


ATOM
680
C
MET
C
50
28.200
−102.658
−21.372
1.00
200.95


ATOM
681
O
MET
C
50
29.350
−102.539
−20.919
1.00
200.81


ATOM
682
CB
MET
C
50
25.994
−102.439
−20.105
1.00
199.09


ATOM
683
CG
MET
C
50
26.420
−101.306
−19.146
1.00
204.41


ATOM
684
SD
MET
C
50
25.420
−99.723
−19.238
1.00
208.15


ATOM
685
CE
MET
C
50
25.943
−99.102
−20.833
1.00
205.84


ATOM
686
N
ILE
C
51
27.831
−102.217
−22.569
1.00
197.98


ATOM
687
CA
ILE
C
51
28.701
−101.428
−23.416
1.00
201.37


ATOM
688
C
ILE
C
51
27.969
−100.113
−23.758
1.00
208.60


ATOM
689
O
ILE
C
51
26.844
−100.119
−24.290
1.00
205.82


ATOM
690
CB
ILE
C
51
29.224
−102.187
−24.660
1.00
205.50


ATOM
691
CG1
ILE
C
51
30.319
−101.341
−25.375
1.00
209.38


ATOM
692
CG2
ILE
C
51
28.061
−102.569
−25.603
1.00
204.42


ATOM
693
CD1
ILE
C
51
31.298
−102.123
−26.288
1.00
214.02


ATOM
694
N
TRP
C
52
28.614
−98.993
−23.402
1.00
210.00


ATOM
695
CA
TRP
C
52
28.094
−97.647
−23.620
1.00
211.69


ATOM
696
C
TRP
C
52
28.235
−97.257
−25.070
1.00
219.19


ATOM
697
O
TRP
C
52
29.000
−97.874
−25.813
1.00
219.81


ATOM
698
CB
TRP
C
52
28.856
−96.628
−22.757
1.00
213.35


ATOM
699
CG
TRP
C
52
28.680
−96.786
−21.271
1.00
212.95


ATOM
700
CD1
TRP
C
52
29.347
−97.653
−20.466
1.00
215.60


ATOM
701
CD2
TRP
C
52
27.831
−96.008
−20.404
1.00
212.40


ATOM
702
NE1
TRP
C
52
28.966
−97.475
−19.157
1.00
214.41


ATOM
703
CE2
TRP
C
52
28.026
−96.482
−19.091
1.00
215.77


ATOM
704
CE3
TRP
C
52
26.943
−94.940
−20.605
1.00
214.25


ATOM
705
CZ2
TRP
C
52
27.355
−95.937
−17.984
1.00
215.34


ATOM
706
CZ3
TRP
C
52
26.259
−94.418
−19.510
1.00
215.51


ATOM
707
CH2
TRP
C
52
26.464
−94.918
−18.220
1.00
215.83


ATOM
708
N
GLY
C
53
27.542
−96.196
−25.451
1.00
218.79


ATOM
709
CA
GLY
C
53
27.620
−95.683
−26.810
1.00
222.72


ATOM
710
C
GLY
C
53
29.044
−95.475
−27.285
1.00
232.92


ATOM
711
O
GLY
C
53
29.365
−95.826
−28.423
1.00
236.09


ATOM
712
N
ASP
C
54
29.923
−94.958
−26.399
1.00
230.73


ATOM
713
CA
ASP
C
54
31.328
−94.674
−26.720
1.00
235.34


ATOM
714
C
ASP
C
54
32.263
−95.903
−26.742
1.00
235.81


ATOM
715
O
ASP
C
54
33.466
−95.752
−26.975
1.00
239.34


ATOM
716
CB
ASP
C
54
31.882
−93.583
−25.777
1.00
240.48


ATOM
717
CG
ASP
C
54
32.190
−94.043
−24.355
1.00
253.43


ATOM
718
OD1
ASP
C
54
31.789
−95.167
−23.989
1.00
251.99


ATOM
719
OD2
ASP
C
54
32.815
−93.268
−23.603
1.00
260.96


ATOM
720
N
GLY
C
55
31.717
−97.082
−26.456
1.00
225.76


ATOM
721
CA
GLY
C
55
32.500
−98.308
−26.440
1.00
224.79


ATOM
722
C
GLY
C
55
33.111
−98.656
−25.104
1.00
224.61


ATOM
723
O
GLY
C
55
33.688
−99.736
−24.966
1.00
223.85


ATOM
724
N
ASN
C
56
33.002
−97.762
−24.112
1.00
219.23


ATOM
725
CA
ASN
C
56
33.515
−98.055
−22.780
1.00
218.32


ATOM
726
C
ASN
C
56
32.591
−99.101
−22.181
1.00
217.60


ATOM
727
O
ASN
C
56
31.432
−99.204
−22.593
1.00
213.43


ATOM
728
CB
ASN
C
56
33.725
−96.759
−21.939
1.00
220.27


ATOM
729
CG
ASN
C
56
32.974
−96.501
−20.638
1.00
235.55


ATOM
730
OD1
ASN
C
56
32.899
−97.346
−19.743
1.00
228.70


ATOM
731
ND2
ASN
C
56
32.595
−95.235
−20.419
1.00
224.99


ATOM
732
N
THR
C
57
33.123
−99.944
−21.297
1.00
215.56


ATOM
733
CA
THR
C
57
32.343
−101.036
−20.711
1.00
212.34


ATOM
734
C
THR
C
57
32.343
−101.064
−19.207
1.00
217.65


ATOM
735
O
THR
C
57
33.237
−100.515
−18.550
1.00
220.14


ATOM
736
CB
THR
C
57
32.892
−102.378
−21.151
1.00
221.76


ATOM
737
OG1
THR
C
57
34.263
−102.456
−20.765
1.00
223.39


ATOM
738
CG2
THR
C
57
32.766
−102.581
−22.624
1.00
224.51


ATOM
739
N
ASP
C
58
31.343
−101.764
−18.673
1.00
212.49


ATOM
740
CA
ASP
C
58
31.196
−102.017
−17.255
1.00
212.70


ATOM
741
C
ASP
C
58
30.925
−103.506
−17.113
1.00
217.17


ATOM
742
O
ASP
C
58
30.044
−104.026
−17.807
1.00
215.62


ATOM
743
CB
ASP
C
58
30.042
−101.197
−16.655
1.00
212.25


ATOM
744
CG
ASP
C
58
30.359
−99.743
−16.431
1.00
216.30


ATOM
745
OD1
ASP
C
58
31.446
−99.441
−15.868
1.00
218.24


ATOM
746
OD2
ASP
C
58
29.524
−98.908
−16.792
1.00
220.08


ATOM
747
N
TYR
C
59
31.697
−104.197
−16.248
1.00
214.67


ATOM
748
CA
TYR
C
59
31.510
−105.620
−16.014
1.00
213.53


ATOM
749
C
TYR
C
59
31.189
−105.896
−14.578
1.00
218.58


ATOM
750
O
TYR
C
59
31.684
−105.193
−13.689
1.00
218.59


ATOM
751
CB
TYR
C
59
32.752
−106.409
−16.402
1.00
217.31


ATOM
752
CG
TYR
C
59
33.173
−106.250
−17.844
1.00
220.65


ATOM
753
CD1
TYR
C
59
32.277
−106.487
−18.884
1.00
220.40


ATOM
754
CD2
TYR
C
59
34.479
−105.900
−18.173
1.00
225.31


ATOM
755
CE1
TYR
C
59
32.665
−106.352
−20.211
1.00
222.17


ATOM
756
CE2
TYR
C
59
34.879
−105.763
−19.497
1.00
227.62


ATOM
757
CZ
TYR
C
59
33.969
−105.988
−20.511
1.00
232.58


ATOM
758
OH
TYR
C
59
34.380
−105.861
−21.812
1.00
235.10


ATOM
759
N
ASN
C
60
30.362
−106.936
−14.352
1.00
217.23


ATOM
760
CA
ASN
C
60
29.962
−107.381
−13.021
1.00
219.89


ATOM
761
C
ASN
C
60
31.230
−107.895
−12.352
1.00
230.39


ATOM
762
O
ASN
C
60
31.969
−108.669
−12.973
1.00
231.39


ATOM
763
CB
ASN
C
60
28.874
−108.477
−13.116
1.00
219.44


ATOM
764
CG
ASN
C
60
28.359
−109.021
−11.790
1.00
245.88


ATOM
765
OD1
ASN
C
60
29.104
−109.483
−10.924
1.00
237.16


ATOM
766
ND2
ASN
C
60
27.045
−109.050
−11.625
1.00
240.38


ATOM
767
N
SER
C
61
31.526
−107.416
−11.125
1.00
230.14


ATOM
768
CA
SER
C
61
32.720
−107.822
−10.369
1.00
233.35


ATOM
769
C
SER
C
61
32.950
−109.348
−10.296
1.00
236.26


ATOM
770
O
SER
C
61
34.106
−109.786
−10.235
1.00
237.09


ATOM
771
CB
SER
C
61
32.704
−107.212
−8.976
1.00
240.05


ATOM
772
OG
SER
C
61
31.447
−107.405
−8.347
1.00
247.18


ATOM
773
N
ALA
C
62
31.866
−110.153
−10.369
1.00
230.99


ATOM
774
CA
ALA
C
62
32.001
−111.607
−10.372
1.00
231.64


ATOM
775
C
ALA
C
62
32.853
−112.072
−11.589
1.00
234.58


ATOM
776
O
ALA
C
62
33.483
−113.130
−11.530
1.00
236.98


ATOM
777
CB
ALA
C
62
30.626
−112.269
−10.381
1.00
230.76


ATOM
778
N
LEU
C
63
32.895
−111.240
−12.657
1.00
227.35


ATOM
779
CA
LEU
C
63
33.614
−111.470
−13.894
1.00
226.19


ATOM
780
C
LEU
C
63
34.951
−110.859
−13.923
1.00
234.56


ATOM
781
O
LEU
C
63
35.209
−109.744
−14.419
1.00
230.13


ATOM
782
CB
LEU
C
63
32.811
−111.226
−15.154
1.00
222.49


ATOM
783
CG
LEU
C
63
31.887
−112.376
−15.491
1.00
224.54


ATOM
784
CD1
LEU
C
63
30.527
−111.904
−15.975
1.00
221.75


ATOM
785
CD2
LEU
C
63
32.505
−113.267
−16.484
1.00
226.67


ATOM
786
N
LYS
C
64
35.764
−111.610
−13.210
1.00
240.77


ATOM
787
CA
LYS
C
64
37.188
−111.574
−12.992
1.00
247.57


ATOM
788
C
LYS
C
64
37.876
−111.925
−14.315
1.00
258.44


ATOM
789
O
LYS
C
64
38.385
−113.049
−14.490
1.00
260.48


ATOM
790
CB
LYS
C
64
37.560
−112.651
−11.952
1.00
252.35


ATOM
791
CG
LYS
C
64
37.101
−112.398
−10.523
1.00
256.92


ATOM
792
CD
LYS
C
64
37.818
−113.370
−9.577
1.00
257.87


ATOM
793
CE
LYS
C
64
37.526
−113.121
−8.117
1.00
256.02


ATOM
794
NZ
LYS
C
64
38.024
−114.232
−7.262
1.00
257.37


ATOM
795
N
SER
C
65
37.849
−110.970
−15.261
1.00
256.63


ATOM
796
CA
SER
C
65
38.473
−111.100
−16.576
1.00
258.13


ATOM
797
C
SER
C
65
37.924
−112.257
−17.440
1.00
260.27


ATOM
798
O
SER
C
65
38.493
−112.505
−18.504
1.00
261.93


ATOM
799
CB
SER
C
65
39.999
−111.158
−16.455
1.00
266.26


ATOM
800
OG
SER
C
65
40.525
−110.095
−15.674
1.00
270.82


ATOM
801
N
ARG
C
66
36.819
−112.944
−17.030
1.00
252.90


ATOM
802
CA
ARG
C
66
36.253
−113.996
−17.888
1.00
250.89


ATOM
803
C
ARG
C
66
35.377
−113.347
−18.961
1.00
253.03


ATOM
804
O
ARG
C
66
35.226
−113.954
−20.012
1.00
253.97


ATOM
805
CB
ARG
C
66
35.370
−115.035
−17.165
1.00
246.36


ATOM
806
CG
ARG
C
66
35.776
−115.462
−15.774
1.00
249.47


ATOM
807
CD
ARG
C
66
34.612
−116.134
−15.048
1.00
247.68


ATOM
808
NE
ARG
C
66
34.204
−117.382
−15.698
1.00
241.84


ATOM
809
CZ
ARG
C
66
33.252
−118.201
−15.262
1.00
246.01


ATOM
810
NH1
ARG
C
66
32.602
−117.937
−14.132
1.00
218.66


ATOM
811
NH2
ARG
C
66
32.977
−119.316
−15.924
1.00
238.07


ATOM
812
N
LEU
C
67
34.801
−112.135
−18.705
1.00
246.00


ATOM
813
CA
LEU
C
67
33.894
−111.466
−19.640
1.00
242.37


ATOM
814
C
LEU
C
67
34.443
−110.317
−20.489
1.00
243.25


ATOM
815
O
LEU
C
67
35.098
−109.406
−19.983
1.00
244.65


ATOM
816
CB
LEU
C
67
32.608
−111.032
−18.934
1.00
239.67


ATOM
817
CG
LEU
C
67
31.512
−110.331
−19.771
1.00
243.36


ATOM
818
CD1
LEU
C
67
30.780
−111.318
−20.678
1.00
243.13


ATOM
819
CD2
LEU
C
67
30.483
−109.641
−18.881
1.00
245.65


ATOM
820
N
SER
C
68
34.090
−110.351
−21.785
1.00
235.74


ATOM
821
CA
SER
C
68
34.421
−109.333
−22.771
1.00
235.00


ATOM
822
C
SER
C
68
33.167
−108.918
−23.554
1.00
232.82


ATOM
823
O
SER
C
68
32.447
−109.781
−24.064
1.00
231.52


ATOM
824
CB
SER
C
68
35.488
−109.847
−23.733
1.00
240.32


ATOM
825
OG
SER
C
68
36.788
−109.660
−23.195
1.00
247.20


ATOM
826
N
ILE
C
69
32.892
−107.603
−23.626
1.00
224.77


ATOM
827
CA
ILE
C
69
31.802
−107.063
−24.436
1.00
220.28


ATOM
828
C
ILE
C
69
32.430
−106.073
−25.423
1.00
224.29


ATOM
829
O
ILE
C
69
33.070
−105.111
−25.004
1.00
224.82


ATOM
830
CB
ILE
C
69
30.642
−106.410
−23.641
1.00
218.88


ATOM
831
CG1
ILE
C
69
30.090
−107.332
−22.561
1.00
215.03


ATOM
832
CG2
ILE
C
69
29.515
−105.971
−24.602
1.00
219.69


ATOM
833
CD1
ILE
C
69
29.211
−106.613
−21.602
1.00
209.36


ATOM
834
N
SER
C
70
32.275
−106.323
−26.719
1.00
220.60


ATOM
835
CA
SER
C
70
32.773
−105.437
−27.767
1.00
223.29


ATOM
836
C
SER
C
70
31.634
−105.243
−28.746
1.00
225.11


ATOM
837
O
SER
C
70
30.589
−105.876
−28.600
1.00
220.78


ATOM
838
CB
SER
C
70
33.996
−106.037
−28.461
1.00
231.14


ATOM
839
OG
SER
C
70
33.843
−107.420
−28.748
1.00
237.65


ATOM
840
N
LYS
C
71
31.805
−104.375
−29.731
1.00
225.14


ATOM
841
CA
LYS
C
71
30.732
−104.160
−30.685
1.00
224.70


ATOM
842
C
LYS
C
71
31.254
−103.643
−31.996
1.00
233.46


ATOM
843
O
LYS
C
71
32.394
−103.167
−32.084
1.00
236.49


ATOM
844
CB
LYS
C
71
29.711
−103.156
−30.116
1.00
224.58


ATOM
845
CG
LYS
C
71
30.291
−101.743
−29.877
1.00
239.01


ATOM
846
CD
LYS
C
71
29.235
−100.743
−29.366
1.00
235.71


ATOM
847
CE
LYS
C
71
29.757
−99.331
−29.167
1.00
233.04


ATOM
848
NZ
LYS
C
71
28.647
−98.347
−29.114
1.00
235.49


ATOM
849
N
ASP
C
72
30.387
−103.687
−33.000
1.00
231.02


ATOM
850
CA
ASP
C
72
30.674
−103.135
−34.301
1.00
236.86


ATOM
851
C
ASP
C
72
29.493
−102.251
−34.621
1.00
240.52


ATOM
852
O
ASP
C
72
28.433
−102.755
−35.014
1.00
238.21


ATOM
853
CB
ASP
C
72
30.849
−104.234
−35.363
1.00
242.01


ATOM
854
CG
ASP
C
72
31.255
−103.698
−36.739
1.00
256.61


ATOM
855
OD1
ASP
C
72
30.760
−102.610
−37.136
1.00
258.39


ATOM
856
OD2
ASP
C
72
32.062
−104.358
−37.415
1.00
263.41


ATOM
857
N
ASN
C
73
29.668
−100.936
−34.457
1.00
239.20


ATOM
858
CA
ASN
C
73
28.585
−100.001
−34.712
1.00
238.45


ATOM
859
C
ASN
C
73
27.989
−100.111
−36.105
1.00
245.64


ATOM
860
O
ASN
C
73
26.765
−100.127
−36.238
1.00
243.29


ATOM
861
CB
ASN
C
73
28.975
−98.561
−34.369
1.00
240.93


ATOM
862
CG
ASN
C
73
29.894
−97.803
−35.296
1.00
259.01


ATOM
863
OD1
ASN
C
73
30.422
−98.298
−36.304
1.00
258.99


ATOM
864
ND2
ASN
C
73
30.081
−96.537
−34.969
1.00
244.98


ATOM
865
N
SER
C
74
28.844
−100.217
−37.134
1.00
246.95


ATOM
866
CA
SER
C
74
28.370
−100.269
−38.506
1.00
250.11


ATOM
867
C
SER
C
74
27.572
−101.531
−38.832
1.00
250.27


ATOM
868
O
SER
C
74
26.728
−101.487
−39.722
1.00
251.48


ATOM
869
CB
SER
C
74
29.515
−100.050
−39.483
1.00
261.26


ATOM
870
OG
SER
C
74
30.453
−101.109
−39.403
1.00
272.17


ATOM
871
N
LYS
C
75
27.798
−102.629
−38.098
1.00
242.24


ATOM
872
CA
LYS
C
75
27.064
−103.861
−38.344
1.00
240.07


ATOM
873
C
LYS
C
75
25.964
−104.093
−37.336
1.00
239.90


ATOM
874
O
LYS
C
75
25.338
−105.151
−37.368
1.00
239.13


ATOM
875
CB
LYS
C
75
28.013
−105.061
−38.428
1.00
243.44


ATOM
876
CG
LYS
C
75
29.052
−104.909
−39.534
1.00
256.59


ATOM
877
CD
LYS
C
75
29.412
−106.230
−40.217
1.00
262.20


ATOM
878
CE
LYS
C
75
28.518
−106.519
−41.400
1.00
264.12


ATOM
879
NZ
LYS
C
75
29.037
−107.644
−42.223
1.00
269.50


ATOM
880
N
SER
C
76
25.691
−103.101
−36.461
1.00
234.10


ATOM
881
CA
SER
C
76
24.652
−103.195
−35.421
1.00
228.87


ATOM
882
C
SER
C
76
24.774
−104.497
−34.630
1.00
228.56


ATOM
883
O
SER
C
76
23.788
−105.207
−34.406
1.00
224.53


ATOM
884
CB
SER
C
76
23.257
−103.065
−36.023
1.00
233.29


ATOM
885
OG
SER
C
76
23.003
−101.731
−36.424
1.00
245.47


ATOM
886
N
GLN
C
77
26.003
−104.829
−34.253
1.00
226.00


ATOM
887
CA
GLN
C
77
26.237
−106.046
−33.523
1.00
223.85


ATOM
888
C
GLN
C
77
27.031
−105.784
−32.275
1.00
226.91


ATOM
889
O
GLN
C
77
27.928
−104.939
−32.262
1.00
226.07


ATOM
890
CB
GLN
C
77
26.960
−107.060
−34.402
1.00
229.27


ATOM
891
CG
GLN
C
77
26.138
−107.607
−35.554
1.00
250.74


ATOM
892
CD
GLN
C
77
26.943
−108.494
−36.491
1.00
275.75


ATOM
893
OE1
GLN
C
77
26.953
−108.294
−37.707
1.00
273.34


ATOM
894
NE2
GLN
C
77
27.661
−109.490
−35.970
1.00
269.24


ATOM
895
N
VAL
C
78
26.692
−106.521
−31.219
1.00
224.87


ATOM
896
CA
VAL
C
78
27.355
−106.458
−29.915
1.00
225.43


ATOM
897
C
VAL
C
78
27.853
−107.862
−29.587
1.00
232.32


ATOM
898
O
VAL
C
78
27.072
−108.817
−29.631
1.00
229.97


ATOM
899
CB
VAL
C
78
26.404
−105.933
−28.815
1.00
226.53


ATOM
900
CG1
VAL
C
78
27.051
−106.040
−27.434
1.00
225.19


ATOM
901
CG2
VAL
C
78
25.968
−104.501
−29.107
1.00
226.70


ATOM
902
N
PHE
C
79
29.123
−107.986
−29.219
1.00
233.57


ATOM
903
CA
PHE
C
79
29.692
−109.291
−28.958
1.00
235.73


ATOM
904
C
PHE
C
79
30.024
−109.597
−27.522
1.00
238.72


ATOM
905
O
PHE
C
79
30.839
−108.907
−26.917
1.00
238.58


ATOM
906
CB
PHE
C
79
30.916
−109.522
−29.850
1.00
243.11


ATOM
907
CG
PHE
C
79
30.755
−109.061
−31.283
1.00
248.87


ATOM
908
CD2
PHE
C
79
31.393
−107.912
−31.737
1.00
255.03


ATOM
909
CD1
PHE
C
79
30.003
−109.805
−32.195
1.00
253.44


ATOM
910
CE2
PHE
C
79
31.262
−107.494
−33.073
1.00
261.66


ATOM
911
CE1
PHE
C
79
29.881
−109.392
−33.531
1.00
258.18


ATOM
912
CZ
PHE
C
79
30.507
−108.233
−33.956
1.00
260.39


ATOM
913
N
LEU
C
80
29.418
−110.664
−26.986
1.00
234.81


ATOM
914
CA
LEU
C
80
29.722
−111.169
−25.651
1.00
233.82


ATOM
915
C
LEU
C
80
30.682
−112.344
−25.836
1.00
242.87


ATOM
916
O
LEU
C
80
30.466
−113.191
−26.705
1.00
243.95


ATOM
917
CB
LEU
C
80
28.457
−111.658
−24.899
1.00
230.61


ATOM
918
CG
LEU
C
80
28.694
−112.361
−23.538
1.00
233.90


ATOM
919
CD1
LEU
C
80
27.610
−112.028
−22.559
1.00
230.90


ATOM
920
CD2
LEU
C
80
28.829
−113.901
−23.693
1.00
238.76


ATOM
921
N
LYS
C
81
31.717
−112.418
−25.010
1.00
241.69


ATOM
922
CA
LYS
C
81
32.587
−113.585
−25.005
1.00
243.98


ATOM
923
C
LYS
C
81
32.888
−113.890
−23.569
1.00
247.67


ATOM
924
O
LYS
C
81
33.272
−112.979
−22.842
1.00
246.97


ATOM
925
CB
LYS
C
81
33.874
−113.409
−25.824
1.00
249.57


ATOM
926
CG
LYS
C
81
34.760
−114.669
−25.809
1.00
257.00


ATOM
927
CD
LYS
C
81
36.116
−114.393
−25.125
1.00
265.30


ATOM
928
CE
LYS
C
81
37.313
−115.029
−25.808
1.00
276.15


ATOM
929
NZ
LYS
C
81
38.596
−114.437
−25.339
1.00
283.50


ATOM
930
N
MET
C
82
32.695
−115.144
−23.138
1.00
244.94


ATOM
931
CA
MET
C
82
33.009
−115.524
−21.758
1.00
245.29


ATOM
932
C
MET
C
82
33.949
−116.755
−21.730
1.00
256.44


ATOM
933
O
MET
C
82
33.651
−117.777
−22.348
1.00
257.84


ATOM
934
CB
MET
C
82
31.733
−115.766
−20.949
1.00
244.29


ATOM
935
CG
MET
C
82
31.873
−115.514
−19.470
1.00
247.03


ATOM
936
SD
MET
C
82
30.220
−115.625
−18.710
1.00
248.41


ATOM
937
CE
MET
C
82
30.256
−117.297
−18.099
1.00
247.48


ATOM
938
N
ASN
C
83
35.090
−116.647
−21.032
1.00
256.50


ATOM
939
CA
ASN
C
83
36.045
−117.752
−20.963
1.00
260.34


ATOM
940
C
ASN
C
83
35.620
−118.843
−19.985
1.00
265.37


ATOM
941
O
ASN
C
83
34.852
−118.570
−19.054
1.00
263.30


ATOM
942
CB
ASN
C
83
37.495
−117.231
−20.789
1.00
262.96


ATOM
943
CG
ASN
C
83
38.302
−117.623
−19.576
1.00
280.41


ATOM
944
OD1
ASN
C
83
38.523
−118.796
−19.292
1.00
272.90


ATOM
945
ND2
ASN
C
83
38.946
−116.640
−18.968
1.00
274.23


ATOM
946
N
SER
C
84
36.130
−120.079
−20.229
1.00
264.80


ATOM
947
CA
SER
C
84
35.975
−121.326
−19.463
1.00
265.99


ATOM
948
C
SER
C
84
34.686
−121.504
−18.671
1.00
267.85


ATOM
949
O
SER
C
84
34.660
−121.398
−17.435
1.00
266.84


ATOM
950
CB
SER
C
84
37.208
−121.585
−18.600
1.00
271.28


ATOM
951
OG
SER
C
84
37.267
−122.867
−17.995
1.00
276.69


ATOM
952
N
LEU
C
85
33.623
−121.818
−19.393
1.00
264.45


ATOM
953
CA
LEU
C
85
32.332
−122.057
−18.783
1.00
263.47


ATOM
954
C
LEU
C
85
32.335
−123.345
−17.981
1.00
271.20


ATOM
955
O
LEU
C
85
33.112
−124.269
−18.253
1.00
273.51


ATOM
956
CB
LEU
C
85
31.220
−122.058
−19.851
1.00
262.03


ATOM
957
CG
LEU
C
85
30.673
−120.656
−20.147
1.00
263.64


ATOM
958
CD1
LEU
C
85
31.672
−119.863
−20.959
1.00
264.04


ATOM
959
CD2
LEU
C
85
29.310
−120.704
−20.833
1.00
265.31


ATOM
960
N
GLN
C
86
31.508
−123.358
−16.943
1.00
267.03


ATOM
961
CA
GLN
C
86
31.287
−124.505
−16.099
1.00
269.78


ATOM
962
C
GLN
C
86
29.789
−124.747
−16.095
1.00
273.22


ATOM
963
O
GLN
C
86
29.027
−123.922
−16.611
1.00
270.26


ATOM
964
CB
GLN
C
86
31.837
−124.252
−14.695
1.00
271.53


ATOM
965
CG
GLN
C
86
33.326
−124.496
−14.615
1.00
273.60


ATOM
966
CD
GLN
C
86
33.602
−125.984
−14.614
1.00
277.19


ATOM
967
OE1
GLN
C
86
33.485
−126.691
−13.604
1.00
274.74


ATOM
968
NE2
GLN
C
86
33.846
−126.506
−15.776
1.00
263.98


ATOM
969
N
THR
C
87
29.365
−125.885
−15.552
1.00
271.67


ATOM
970
CA
THR
C
87
27.956
−126.270
−15.500
1.00
271.98


ATOM
971
C
THR
C
87
27.063
−125.152
−14.924
1.00
271.97


ATOM
972
O
THR
C
87
25.992
−124.906
−15.470
1.00
270.41


ATOM
973
CB
THR
C
87
27.800
−127.632
−14.807
1.00
279.45


ATOM
974
OG1
THR
C
87
28.146
−127.493
−13.430
1.00
281.11


ATOM
975
CG2
THR
C
87
28.667
−128.720
−15.448
1.00
276.94


ATOM
976
N
ASP
C
88
27.531
−124.426
−13.889
1.00
266.30


ATOM
977
CA
ASP
C
88
26.749
−123.336
−13.286
1.00
263.24


ATOM
978
C
ASP
C
88
26.565
−122.060
−14.159
1.00
261.40


ATOM
979
O
ASP
C
88
25.907
−121.102
−13.729
1.00
258.59


ATOM
980
CB
ASP
C
88
27.260
−123.010
−11.876
1.00
266.30


ATOM
981
CG
ASP
C
88
28.689
−122.511
−11.799
1.00
270.13


ATOM
982
OD1
ASP
C
88
29.060
−121.940
−10.753
1.00
270.87


ATOM
983
OD2
ASP
C
88
29.429
−122.651
−12.801
1.00
271.67


ATOM
984
N
ASP
C
89
27.134
−122.059
−15.378
1.00
255.73


ATOM
985
CA
ASP
C
89
26.984
−120.966
−16.333
1.00
251.01


ATOM
986
C
ASP
C
89
25.844
−121.318
−17.295
1.00
251.67


ATOM
987
O
ASP
C
89
25.564
−120.570
−18.237
1.00
248.94


ATOM
988
CB
ASP
C
89
28.305
−120.694
−17.067
1.00
252.62


ATOM
989
CG
ASP
C
89
29.403
−120.153
−16.155
1.00
266.29


ATOM
990
OD1
ASP
C
89
29.172
−119.102
−15.500
1.00
265.27


ATOM
991
OD2
ASP
C
89
30.489
−120.793
−16.080
1.00
276.06


ATOM
992
N
THR
C
90
25.174
−122.469
−17.042
1.00
248.92


ATOM
993
CA
THR
C
90
24.002
−122.911
−17.812
1.00
247.97


ATOM
994
C
THR
C
90
22.870
−121.925
−17.475
1.00
249.05


ATOM
995
O
THR
C
90
22.477
−121.802
−16.301
1.00
249.29


ATOM
996
CB
THR
C
90
23.603
−124.360
−17.478
1.00
250.67


ATOM
997
OG1
THR
C
90
24.607
−125.263
−17.958
1.00
250.51


ATOM
998
CG2
THR
C
90
22.234
−124.736
−18.049
1.00
245.32


ATOM
999
N
ALA
C
91
22.377
−121.204
−18.497
1.00
242.43


ATOM
1000
CA
ALA
C
91
21.361
−120.170
−18.301
1.00
239.45


ATOM
1001
C
ALA
C
91
20.873
−119.660
−19.635
1.00
238.56


ATOM
1002
O
ALA
C
91
21.449
−119.988
−20.679
1.00
238.92


ATOM
1003
CB
ALA
C
91
21.971
−118.994
−17.520
1.00
237.93


ATOM
1004
N
ARG
C
92
19.802
−118.849
−19.602
1.00
230.17


ATOM
1005
CA
ARG
C
92
19.322
−118.170
−20.794
1.00
226.08


ATOM
1006
C
ARG
C
92
20.026
−116.823
−20.723
1.00
222.86


ATOM
1007
O
ARG
C
92
20.020
−116.167
−19.670
1.00
220.46


ATOM
1008
CB
ARG
C
92
17.784
−118.026
−20.829
1.00
225.00


ATOM
1009
CG
ARG
C
92
17.289
−117.250
−22.059
1.00
226.42


ATOM
1010
CD
ARG
C
92
15.793
−117.357
−22.301
1.00
234.80


ATOM
1011
NE
ARG
C
92
15.512
−118.553
−23.095
1.00
251.51


ATOM
1012
CZ
ARG
C
92
15.197
−118.564
−24.391
1.00
267.75


ATOM
1013
NH1
ARG
C
92
15.037
−117.428
−25.052
1.00
257.16


ATOM
1014
NH2
ARG
C
92
15.020
−119.716
−25.028
1.00
253.47


ATOM
1015
N
TYR
C
93
20.680
−116.449
−21.824
1.00
216.93


ATOM
1016
CA
TYR
C
93
21.434
−115.204
−21.948
1.00
214.66


ATOM
1017
C
TYR
C
93
20.673
−114.201
−22.815
1.00
213.82


ATOM
1018
O
TYR
C
93
20.343
−114.534
−23.958
1.00
216.93


ATOM
1019
CB
TYR
C
93
22.819
−115.487
−22.560
1.00
217.89


ATOM
1020
CG
TYR
C
93
23.764
−116.172
−21.593
1.00
224.05


ATOM
1021
CD1
TYR
C
93
23.539
−117.483
−21.174
1.00
228.47


ATOM
1022
CD2
TYR
C
93
24.869
−115.500
−21.069
1.00
225.63


ATOM
1023
CE1
TYR
C
93
24.384
−118.109
−20.254
1.00
231.23


ATOM
1024
CE2
TYR
C
93
25.714
−116.111
−20.132
1.00
228.61


ATOM
1025
CZ
TYR
C
93
25.476
−117.422
−19.741
1.00
240.55


ATOM
1026
OH
TYR
C
93
26.320
−118.047
−18.849
1.00
247.46


ATOM
1027
N
TYR
C
94
20.410
−112.979
−22.292
1.00
201.12


ATOM
1028
CA
TYR
C
94
19.705
−111.924
−23.018
1.00
196.10


ATOM
1029
C
TYR
C
94
20.589
−110.707
−23.249
1.00
201.56


ATOM
1030
O
TYR
C
94
21.357
−110.326
−22.362
1.00
201.70


ATOM
1031
CB
TYR
C
94
18.552
−111.380
−22.193
1.00
193.18


ATOM
1032
CG
TYR
C
94
17.563
−112.363
−21.653
1.00
192.67


ATOM
1033
CD1
TYR
C
94
16.364
−112.598
−22.310
1.00
196.13


ATOM
1034
CD2
TYR
C
94
17.752
−112.949
−20.414
1.00
193.31


ATOM
1035
CE1
TYR
C
94
15.399
−113.442
−21.776
1.00
199.62


ATOM
1036
CE2
TYR
C
94
16.801
−113.798
−19.868
1.00
196.58


ATOM
1037
CZ
TYR
C
94
15.617
−114.033
−20.547
1.00
206.72


ATOM
1038
OH
TYR
C
94
14.663
−114.861
−20.014
1.00
212.42


ATOM
1039
N
CYS
C
95
20.421
−110.038
−24.389
1.00
199.59


ATOM
1040
CA
CYS
C
95
21.031
−108.734
−24.582
1.00
199.61


ATOM
1041
C
CYS
C
95
19.830
−107.782
−24.474
1.00
200.06


ATOM
1042
O
CYS
C
95
18.727
−108.112
−24.914
1.00
201.62


ATOM
1043
CB
CYS
C
95
21.799
−108.585
−25.892
1.00
202.87


ATOM
1044
SG
CYS
C
95
20.826
−108.864
−27.388
1.00
209.82


ATOM
1045
N
ALA
C
96
19.998
−106.683
−23.756
1.00
192.01


ATOM
1046
CA
ALA
C
96
18.921
−105.732
−23.499
1.00
189.07


ATOM
1047
C
ALA
C
96
19.449
−104.350
−23.728
1.00
189.32


ATOM
1048
O
ALA
C
96
20.592
−104.057
−23.348
1.00
189.59


ATOM
1049
CB
ALA
C
96
18.488
−105.856
−22.064
1.00
189.10


ATOM
1050
N
ARG
C
97
18.632
−103.487
−24.334
1.00
182.19


ATOM
1051
CA
ARG
C
97
19.062
−102.103
−24.576
1.00
180.60


ATOM
1052
C
ARG
C
97
18.861
−101.242
−23.336
1.00
181.37


ATOM
1053
O
ARG
C
97
17.965
−101.488
−22.544
1.00
180.82


ATOM
1054
CB
ARG
C
97
18.250
−101.471
−25.722
1.00
178.25


ATOM
1055
CG
ARG
C
97
18.748
−100.083
−26.143
1.00
174.95


ATOM
1056
CD
ARG
C
97
17.874
−99.442
−27.197
1.00
180.01


ATOM
1057
NE
ARG
C
97
16.659
−98.785
−26.692
1.00
184.42


ATOM
1058
CZ
ARG
C
97
15.915
−97.945
−27.425
1.00
194.45


ATOM
1059
NH1
ARG
C
97
16.282
−97.620
−28.658
1.00
183.13


ATOM
1060
NH2
ARG
C
97
14.803
−97.431
−26.932
1.00
173.66


ATOM
1061
N
ASP
C
98
19.669
−100.222
−23.181
1.00
176.02


ATOM
1062
CA
ASP
C
98
19.426
−99.269
−22.137
1.00
175.16


ATOM
1063
C
ASP
C
98
19.684
−97.885
−22.752
1.00
175.24


ATOM
1064
O
ASP
C
98
20.704
−97.699
−23.453
1.00
175.80


ATOM
1065
CB
ASP
C
98
20.189
−99.565
−20.815
1.00
177.83


ATOM
1066
CG
ASP
C
98
21.662
−99.145
−20.705
1.00
200.06


ATOM
1067
OD2
ASP
C
98
22.240
−99.294
−19.618
1.00
208.72


ATOM
1068
OD1
ASP
C
98
22.262
−98.776
−21.730
1.00
203.84


ATOM
1069
N
PRO
C
99
18.642
−97.005
−22.654
1.00
165.90


ATOM
1070
CA
PRO
C
99
18.760
−95.621
−23.124
1.00
165.12


ATOM
1071
C
PRO
C
99
19.373
−94.720
−22.025
1.00
166.32


ATOM
1072
O
PRO
C
99
18.968
−93.577
−21.809
1.00
166.08


ATOM
1073
CB
PRO
C
99
17.312
−95.253
−23.410
1.00
166.93


ATOM
1074
CG
PRO
C
99
16.489
−96.305
−22.745
1.00
170.01


ATOM
1075
CD
PRO
C
99
17.351
−97.194
−21.981
1.00
165.23


ATOM
1076
N
TYR
C
100
20.394
−95.261
−21.363
1.00
161.73


ATOM
1077
CA
TYR
C
100
21.175
−94.747
−20.251
1.00
162.93


ATOM
1078
C
TYR
C
100
20.868
−93.384
−19.584
1.00
169.39


ATOM
1079
O
TYR
C
100
20.686
−93.364
−18.367
1.00
172.49


ATOM
1080
CB
TYR
C
100
22.681
−95.007
−20.397
1.00
164.59


ATOM
1081
CG
TYR
C
100
23.358
−94.615
−21.696
1.00
165.93


ATOM
1082
CD1
TYR
C
100
23.433
−95.509
−22.763
1.00
166.41


ATOM
1083
CD2
TYR
C
100
24.097
−93.442
−21.787
1.00
169.01


ATOM
1084
CE1
TYR
C
100
24.167
−95.210
−23.909
1.00
167.90


ATOM
1085
CE2
TYR
C
100
24.875
−93.162
−22.907
1.00
171.74


ATOM
1086
CZ
TYR
C
100
24.873
−94.026
−23.983
1.00
177.51


ATOM
1087
OH
TYR
C
100
25.562
−93.696
−25.118
1.00
182.67


ATOM
1088
N
GLY
C
101
20.847
−92.283
−20.310
1.00
163.55


ATOM
1089
CA
GLY
C
101
20.574
−91.011
−19.653
1.00
164.92


ATOM
1090
C
GLY
C
101
19.107
−90.784
−19.369
1.00
167.63


ATOM
1091
O
GLY
C
101
18.739
−90.153
−18.378
1.00
166.91


ATOM
1092
N
SER
C
102
18.268
−91.302
−20.256
1.00
165.55


ATOM
1093
CA
SER
C
102
16.822
−91.143
−20.212
1.00
167.29


ATOM
1094
C
SER
C
102
16.096
−92.319
−19.550
1.00
172.53


ATOM
1095
O
SER
C
102
15.123
−92.077
−18.846
1.00
175.22


ATOM
1096
CB
SER
C
102
16.252
−90.940
−21.621
1.00
171.37


ATOM
1097
OG
SER
C
102
16.746
−89.824
−22.345
1.00
179.02


ATOM
1098
N
LYS
C
103
16.473
−93.579
−19.830
1.00
166.61


ATOM
1099
CA
LYS
C
103
15.727
−94.701
−19.258
1.00
165.71


ATOM
1100
C
LYS
C
103
16.587
−95.920
−18.895
1.00
173.62


ATOM
1101
O
LYS
C
103
17.725
−96.054
−19.356
1.00
172.00


ATOM
1102
CB
LYS
C
103
14.628
−95.164
−20.247
1.00
165.32


ATOM
1103
CG
LYS
C
103
13.422
−94.248
−20.443
1.00
159.19


ATOM
1104
CD
LYS
C
103
12.208
−94.987
−21.035
1.00
161.03


ATOM
1105
CE
LYS
C
103
12.270
−95.294
−22.524
1.00
169.31


ATOM
1106
NZ
LYS
C
103
11.529
−96.550
−22.887
1.00
176.67


ATOM
1107
N
PRO
C
104
16.020
−96.872
−18.129
1.00
175.22


ATOM
1108
CA
PRO
C
104
16.725
−98.133
−17.872
1.00
175.64


ATOM
1109
C
PRO
C
104
16.303
−99.197
−18.915
1.00
182.32


ATOM
1110
O
PRO
C
104
15.294
−98.982
−19.604
1.00
182.87


ATOM
1111
CB
PRO
C
104
16.232
−98.515
−16.481
1.00
178.75


ATOM
1112
CG
PRO
C
104
14.874
−97.950
−16.421
1.00
184.39


ATOM
1113
CD
PRO
C
104
14.702
−96.886
−17.476
1.00
179.12


ATOM
1114
N
MET
C
105
17.053
−100.347
−19.008
1.00
179.04


ATOM
1115
CA
MET
C
105
16.848
−101.463
−19.949
1.00
177.87


ATOM
1116
C
MET
C
105
15.411
−101.597
−20.432
1.00
186.09


ATOM
1117
O
MET
C
105
14.582
−102.250
−19.805
1.00
187.73


ATOM
1118
CB
MET
C
105
17.341
−102.820
−19.411
1.00
179.30


ATOM
1119
CG
MET
C
105
18.828
−102.970
−19.275
1.00
181.80


ATOM
1120
SD
MET
C
105
19.064
−104.640
−18.631
1.00
185.03


ATOM
1121
CE
MET
C
105
20.457
−104.448
−17.762
1.00
181.47


ATOM
1122
N
ASP
C
106
15.125
−100.916
−21.534
1.00
184.24


ATOM
1123
CA
ASP
C
106
13.870
−100.879
−22.279
1.00
185.24


ATOM
1124
C
ASP
C
106
14.137
−101.801
−23.481
1.00
191.65


ATOM
1125
O
ASP
C
106
15.167
−101.621
−24.133
1.00
192.61


ATOM
1126
CB
ASP
C
106
13.658
−99.416
−22.744
1.00
186.84


ATOM
1127
CG
ASP
C
106
14.565
−98.886
−23.866
1.00
181.60


ATOM
1128
OD1
ASP
C
106
15.805
−99.142
−23.825
1.00
178.19


ATOM
1129
OD2
ASP
C
106
14.043
−98.214
−24.768
1.00
181.40


ATOM
1130
N
TYR
C
107
13.314
−102.789
−23.783
1.00
189.18


ATOM
1131
CA
TYR
C
107
13.700
−103.653
−24.910
1.00
190.12


ATOM
1132
C
TYR
C
107
14.765
−104.731
−24.640
1.00
197.98


ATOM
1133
O
TYR
C
107
15.998
−104.528
−24.660
1.00
195.18


ATOM
1134
CB
TYR
C
107
13.993
−102.915
−26.218
1.00
191.38


ATOM
1135
CG
TYR
C
107
12.870
−102.025
−26.638
1.00
194.83


ATOM
1136
CD2
TYR
C
107
11.736
−102.551
−27.237
1.00
196.86


ATOM
1137
CD1
TYR
C
107
12.979
−100.643
−26.537
1.00
198.02


ATOM
1138
CE2
TYR
C
107
10.724
−101.730
−27.714
1.00
199.52


ATOM
1139
CE1
TYR
C
107
11.958
−99.807
−26.984
1.00
202.06


ATOM
1140
CZ
TYR
C
107
10.830
−100.359
−27.580
1.00
207.92


ATOM
1141
OH
TYR
C
107
9.795
−99.579
−28.052
1.00
208.83


ATOM
1142
N
TRP
C
108
14.224
−105.927
−24.477
1.00
200.80


ATOM
1143
CA
TRP
C
108
14.953
−107.163
−24.240
1.00
202.32


ATOM
1144
C
TRP
C
108
14.886
−108.068
−25.451
1.00
211.97


ATOM
1145
O
TRP
C
108
13.849
−108.159
−26.126
1.00
213.65


ATOM
1146
CB
TRP
C
108
14.303
−107.917
−23.083
1.00
201.78


ATOM
1147
CG
TRP
C
108
14.445
−107.225
−21.780
1.00
202.06


ATOM
1148
CD1
TRP
C
108
13.941
−106.006
−21.431
1.00
205.01


ATOM
1149
CD2
TRP
C
108
15.128
−107.725
−20.637
1.00
201.85


ATOM
1150
NE1
TRP
C
108
14.301
−105.703
−20.148
1.00
204.54


ATOM
1151
CE2
TRP
C
108
15.023
−106.749
−19.628
1.00
205.93


ATOM
1152
CE3
TRP
C
108
15.861
−108.892
−20.376
1.00
203.48


ATOM
1153
CZ2
TRP
C
108
15.630
−106.907
−18.374
1.00
205.77


ATOM
1154
CZ3
TRP
C
108
16.432
−109.064
−19.124
1.00
205.24


ATOM
1155
CH2
TRP
C
108
16.313
−108.082
−18.139
1.00
205.99


ATOM
1156
N
GLY
C
109
15.973
−108.780
−25.693
1.00
210.90


ATOM
1157
CA
GLY
C
109
15.972
−109.799
−26.731
1.00
213.51


ATOM
1158
C
GLY
C
109
15.179
−110.970
−26.175
1.00
221.08


ATOM
1159
O
GLY
C
109
14.909
−111.008
−24.964
1.00
221.60


ATOM
1160
N
GLN
C
110
14.777
−111.918
−27.022
1.00
219.60


ATOM
1161
CA
GLN
C
110
14.029
−113.082
−26.547
1.00
221.61


ATOM
1162
C
GLN
C
110
14.922
−113.982
−25.668
1.00
226.47


ATOM
1163
O
GLN
C
110
14.406
−114.755
−24.866
1.00
226.50


ATOM
1164
CB
GLN
C
110
13.495
−113.870
−27.739
1.00
225.94


ATOM
1165
CG
GLN
C
110
14.631
−114.468
−28.572
1.00
249.21


ATOM
1166
CD
GLN
C
110
14.251
−114.911
−29.963
1.00
273.76


ATOM
1167
OE1
GLN
C
110
13.080
−114.885
−30.379
1.00
271.32


ATOM
1168
NE2
GLN
C
110
15.253
−115.281
−30.750
1.00
266.05


ATOM
1169
N
GLY
C
111
16.242
−113.869
−25.833
1.00
224.51


ATOM
1170
CA
GLY
C
111
17.200
−114.674
−25.091
1.00
225.89


ATOM
1171
C
GLY
C
111
17.631
−115.917
−25.837
1.00
235.97


ATOM
1172
O
GLY
C
111
16.908
−116.399
−26.713
1.00
237.63


ATOM
1173
N
THR
C
112
18.826
−116.429
−25.518
1.00
235.92


ATOM
1174
CA
THR
C
112
19.336
−117.681
−26.099
1.00
240.05


ATOM
1175
C
THR
C
112
19.712
−118.612
−24.960
1.00
244.66


ATOM
1176
O
THR
C
112
20.446
−118.205
−24.041
1.00
243.52


ATOM
1177
CB
THR
C
112
20.515
−117.503
−27.120
1.00
258.42


ATOM
1178
OG1
THR
C
112
20.789
−118.785
−27.727
1.00
264.47


ATOM
1179
CG2
THR
C
112
21.811
−116.938
−26.465
1.00
257.47


ATOM
1180
N
SER
C
113
19.217
−119.858
−25.018
1.00
241.67


ATOM
1181
CA
SER
C
113
19.515
−120.831
−23.984
1.00
241.49


ATOM
1182
C
SER
C
113
20.902
−121.445
−24.186
1.00
243.68


ATOM
1183
O
SER
C
113
21.243
−121.869
−25.291
1.00
245.11


ATOM
1184
CB
SER
C
113
18.419
−121.884
−23.915
1.00
247.36


ATOM
1185
OG
SER
C
113
18.870
−123.025
−23.204
1.00
257.84


ATOM
1186
N
VAL
C
114
21.711
−121.441
−23.118
1.00
237.59


ATOM
1187
CA
VAL
C
114
23.071
−121.977
−23.119
1.00
237.75


ATOM
1188
C
VAL
C
114
23.148
−123.117
−22.117
1.00
245.35


ATOM
1189
O
VAL
C
114
22.818
−122.935
−20.936
1.00
244.72


ATOM
1190
CB
VAL
C
114
24.157
−120.900
−22.834
1.00
237.73


ATOM
1191
CG1
VAL
C
114
25.552
−121.521
−22.777
1.00
239.20


ATOM
1192
CG2
VAL
C
114
24.127
−119.808
−23.889
1.00
235.25


ATOM
1193
N
THR
C
115
23.612
−124.287
−22.593
1.00
244.93


ATOM
1194
CA
THR
C
115
23.787
−125.468
−21.759
1.00
247.53


ATOM
1195
C
THR
C
115
25.256
−125.809
−21.719
1.00
249.43


ATOM
1196
O
THR
C
115
25.887
−125.925
−22.768
1.00
249.03


ATOM
1197
CB
THR
C
115
22.966
−126.641
−22.298
1.00
263.16


ATOM
1198
OG1
THR
C
115
21.616
−126.209
−22.474
1.00
263.76


ATOM
1199
CG2
THR
C
115
23.025
−127.876
−21.380
1.00
266.71


ATOM
1200
N
VAL
C
116
25.801
−125.966
−20.522
1.00
244.82


ATOM
1201
CA
VAL
C
116
27.200
−126.316
−20.410
1.00
245.14


ATOM
1202
C
VAL
C
116
27.260
−127.766
−19.981
1.00
255.05


ATOM
1203
O
VAL
C
116
26.842
−128.094
−18.864
1.00
256.45


ATOM
1204
CB
VAL
C
116
27.990
−125.376
−19.487
1.00
245.20


ATOM
1205
CG1
VAL
C
116
29.472
−125.731
−19.514
1.00
246.44


ATOM
1206
CG2
VAL
C
116
27.775
−123.923
−19.893
1.00
240.81


ATOM
1207
N
SER
C
117
27.743
−128.641
−20.890
1.00
254.39


ATOM
1208
CA
SER
C
117
27.864
−130.090
−20.678
1.00
256.49


ATOM
1209
C
SER
C
117
28.654
−130.757
−21.818
1.00
258.43


ATOM
1210
O
SER
C
117
28.888
−130.140
−22.853
1.00
257.63


ATOM
1211
CB
SER
C
117
26.481
−130.736
−20.571
1.00
259.10


ATOM
1212
OG
SER
C
117
26.604
−132.124
−20.286
1.00
263.70


ATOM
1213
N
SER
C
118
29.029
−132.034
−21.655
1.00
256.05


ATOM
1214
CA
SER
C
118
29.692
−132.806
−22.714
1.00
253.96


ATOM
1215
C
SER
C
118
28.846
−134.065
−23.045
1.00
238.13


ATOM
1216
O
SER
C
118
28.463
−134.337
−24.201
1.00
176.20


ATOM
1217
CB
SER
C
118
31.111
−133.183
−22.298
1.00
256.18


ATOM
1218
OG
SER
C
118
31.113
−133.869
−21.057
1.00
261.64


ATOM
1220
N
ASP
D
1
30.700
−101.896
−5.650
1.00
219.75


ATOM
1221
CA
ASP
D
1
29.635
−102.694
−6.264
1.00
215.21


ATOM
1222
C
ASP
D
1
28.358
−102.601
−5.407
1.00
214.43


ATOM
1223
O
ASP
D
1
28.441
−102.803
−4.193
1.00
215.39


ATOM
1224
CB
ASP
D
1
30.091
−104.167
−6.442
1.00
218.57


ATOM
1225
CG
ASP
D
1
29.804
−104.786
−7.813
1.00
226.38


ATOM
1226
OD2
ASP
D
1
28.649
−105.237
−8.040
1.00
230.15


ATOM
1227
OD1
ASP
D
1
30.740
−104.856
−8.641
1.00
228.29


ATOM
1228
N
ILE
D
2
27.195
−102.275
−6.017
1.00
205.37


ATOM
1229
CA
ILE
D
2
25.953
−102.154
−5.255
1.00
200.95


ATOM
1230
C
ILE
D
2
25.204
−103.475
−5.202
1.00
202.02


ATOM
1231
O
ILE
D
2
24.984
−104.107
−6.239
1.00
200.75


ATOM
1232
CB
ILE
D
2
25.053
−100.996
−5.756
1.00
200.66


ATOM
1233
CG1
ILE
D
2
25.840
−99.675
−5.865
1.00
203.17


ATOM
1234
CG2
ILE
D
2
23.801
−100.850
−4.889
1.00
198.20


ATOM
1235
CD1
ILE
D
2
25.003
−98.430
−6.360
1.00
207.75


ATOM
1236
N
VAL
D
3
24.790
−103.875
−3.995
1.00
197.39


ATOM
1237
CA
VAL
D
3
24.013
−105.091
−3.790
1.00
195.24


ATOM
1238
C
VAL
D
3
22.529
−104.776
−3.572
1.00
192.85


ATOM
1239
O
VAL
D
3
22.185
−103.909
−2.767
1.00
191.33


ATOM
1240
CB
VAL
D
3
24.583
−105.958
−2.656
1.00
202.47


ATOM
1241
CG1
VAL
D
3
23.638
−107.107
−2.309
1.00
201.27


ATOM
1242
CG2
VAL
D
3
25.955
−106.497
−3.033
1.00
205.65


ATOM
1243
N
MET
D
4
21.666
−105.532
−4.263
1.00
185.60


ATOM
1244
CA
MET
D
4
20.226
−105.403
−4.185
1.00
182.08


ATOM
1245
C
MET
D
4
19.599
−106.622
−3.561
1.00
183.32


ATOM
1246
O
MET
D
4
19.931
−107.740
−3.930
1.00
184.69


ATOM
1247
CB
MET
D
4
19.639
−105.223
−5.581
1.00
183.09


ATOM
1248
CG
MET
D
4
20.292
−104.135
−6.416
1.00
188.24


ATOM
1249
SD
MET
D
4
20.260
−102.506
−5.653
1.00
194.21


ATOM
1250
CE
MET
D
4
18.473
−102.165
−5.632
1.00
187.91


ATOM
1251
N
SER
D
5
18.666
−106.421
−2.653
1.00
178.23


ATOM
1252
CA
SER
D
5
17.972
−107.516
−1.995
1.00
179.45


ATOM
1253
C
SER
D
5
16.462
−107.305
−1.950
1.00
182.40


ATOM
1254
O
SER
D
5
16.004
−106.237
−1.551
1.00
181.07


ATOM
1255
CB
SER
D
5
18.534
−107.736
−0.592
1.00
187.61


ATOM
1256
OG
SER
D
5
18.639
−106.542
0.169
1.00
198.91


ATOM
1257
N
GLN
D
6
15.689
−108.325
−2.340
1.00
179.97


ATOM
1258
CA
GLN
D
6
14.234
−108.246
−2.365
1.00
179.57


ATOM
1259
C
GLN
D
6
13.543
−109.232
−1.426
1.00
192.26


ATOM
1260
O
GLN
D
6
14.034
−110.341
−1.182
1.00
192.53


ATOM
1261
CB
GLN
D
6
13.698
−108.472
−3.784
1.00
178.04


ATOM
1262
CG
GLN
D
6
14.362
−107.659
−4.879
1.00
149.98


ATOM
1263
CD
GLN
D
6
13.700
−107.937
−6.204
1.00
172.08


ATOM
1264
OE1
GLN
D
6
14.377
−108.186
−7.194
1.00
168.54


ATOM
1265
NE2
GLN
D
6
12.363
−107.888
−6.270
1.00
172.65


ATOM
1266
N
SER
D
7
12.363
−108.825
−0.948
1.00
195.02


ATOM
1267
CA
SER
D
7
11.482
−109.616
−0.088
1.00
199.12


ATOM
1268
C
SER
D
7
10.018
−109.289
−0.459
1.00
204.12


ATOM
1269
O
SER
D
7
9.722
−108.146
−0.806
1.00
203.72


ATOM
1270
CB
SER
D
7
11.762
−109.345
1.384
1.00
206.38


ATOM
1271
OG
SER
D
7
11.483
−107.991
1.694
1.00
218.81


ATOM
1272
N
PRO
D
8
9.101
−110.262
−0.440
1.00
201.18


ATOM
1273
CA
PRO
D
8
9.320
−111.656
−0.101
1.00
203.06


ATOM
1274
C
PRO
D
8
10.019
−112.312
−1.282
1.00
206.04


ATOM
1275
O
PRO
D
8
10.160
−111.701
−2.344
1.00
203.51


ATOM
1276
CB
PRO
D
8
7.888
−112.168
0.101
1.00
206.78


ATOM
1277
CG
PRO
D
8
7.122
−111.418
−0.918
1.00
209.40


ATOM
1278
CD
PRO
D
8
7.712
−110.036
−0.881
1.00
202.71


ATOM
1279
N
SER
D
9
10.451
−113.552
−1.092
1.00
202.99


ATOM
1280
CA
SER
D
9
11.048
−114.348
−2.141
1.00
201.21


ATOM
1281
C
SER
D
9
9.855
−114.770
−3.033
1.00
205.09


ATOM
1282
O
SER
D
9
10.017
−114.981
−4.237
1.00
203.20


ATOM
1283
CB
SER
D
9
11.719
−115.558
−1.510
1.00
205.36


ATOM
1284
OG
SER
D
9
12.059
−115.332
−0.145
1.00
210.14


ATOM
1285
N
SER
D
10
8.637
−114.811
−2.415
1.00
203.61


ATOM
1286
CA
SER
D
10
7.360
−115.151
−3.040
1.00
204.25


ATOM
1287
C
SER
D
10
6.149
−114.874
−2.123
1.00
207.98


ATOM
1288
O
SER
D
10
6.298
−114.788
−0.907
1.00
208.80


ATOM
1289
CB
SER
D
10
7.369
−116.613
−3.475
1.00
210.49


ATOM
1290
OG
SER
D
10
7.631
−117.478
−2.382
1.00
220.56


ATOM
1291
N
LEU
D
11
4.948
−114.768
−2.713
1.00
203.36


ATOM
1292
CA
LEU
D
11
3.687
−114.551
−1.995
1.00
204.47


ATOM
1293
C
LEU
D
11
2.507
−114.921
−2.888
1.00
209.45


ATOM
1294
O
LEU
D
11
2.670
−115.019
−4.104
1.00
206.09


ATOM
1295
CB
LEU
D
11
3.581
−113.092
−1.507
1.00
202.35


ATOM
1296
CG
LEU
D
11
3.351
−111.996
−2.562
1.00
203.05


ATOM
1297
CD1
LEU
D
11
2.869
−110.750
−1.921
1.00
202.20


ATOM
1298
CD2
LEU
D
11
4.594
−111.735
−3.408
1.00
199.95


ATOM
1299
N
VAL
D
12
1.328
−115.135
−2.291
1.00
211.94


ATOM
1300
CA
VAL
D
12
0.114
−115.484
−3.042
1.00
216.37


ATOM
1301
C
VAL
D
12
−1.003
−114.502
−2.714
1.00
222.00


ATOM
1302
O
VAL
D
12
−1.174
−114.145
−1.547
1.00
222.49


ATOM
1303
CB
VAL
D
12
−0.343
−116.964
−2.846
1.00
226.79


ATOM
1304
CG1
VAL
D
12
0.840
−117.947
−2.888
1.00
226.01


ATOM
1305
CG2
VAL
D
12
−1.153
−117.160
−1.555
1.00
231.27


ATOM
1306
N
VAL
D
13
−1.767
−114.081
−3.728
1.00
219.56


ATOM
1307
CA
VAL
D
13
−2.882
−113.144
−3.568
1.00
221.45


ATOM
1308
C
VAL
D
13
−4.003
−113.475
−4.533
1.00
227.02


ATOM
1309
O
VAL
D
13
−3.734
−113.999
−5.617
1.00
225.91


ATOM
1310
CB
VAL
D
13
−2.395
−111.703
−3.798
1.00
222.09


ATOM
1311
CG1
VAL
D
13
−2.148
−111.424
−5.284
1.00
219.38


ATOM
1312
CG2
VAL
D
13
−3.388
−110.719
−3.228
1.00
223.91


ATOM
1313
N
SER
D
14
−5.241
−113.122
−4.184
1.00
226.63


ATOM
1314
CA
SER
D
14
−6.340
−113.380
−5.105
1.00
230.48


ATOM
1315
C
SER
D
14
−6.593
−112.155
−5.960
1.00
233.23


ATOM
1316
O
SER
D
14
−6.156
−111.064
−5.607
1.00
228.51


ATOM
1317
CB
SER
D
14
−7.610
−113.798
−4.359
1.00
240.15


ATOM
1318
OG
SER
D
14
−8.508
−114.515
−5.200
1.00
248.33


ATOM
1319
N
VAL
D
15
−7.309
−112.337
−7.077
1.00
234.06


ATOM
1320
CA
VAL
D
15
−7.701
−111.267
−8.002
1.00
233.09


ATOM
1321
C
VAL
D
15
−8.464
−110.147
−7.257
1.00
237.91


ATOM
1322
O
VAL
D
15
−9.333
−110.432
−6.433
1.00
241.55


ATOM
1323
CB
VAL
D
15
−8.544
−111.823
−9.178
1.00
241.51


ATOM
1324
CG1
VAL
D
15
−9.008
−110.707
−10.110
1.00
240.25


ATOM
1325
CG2
VAL
D
15
−7.767
−112.883
−9.950
1.00
240.83


ATOM
1326
N
GLY
D
16
−8.124
−108.899
−7.567
1.00
230.71


ATOM
1327
CA
GLY
D
16
−8.761
−107.735
−6.965
1.00
230.65


ATOM
1328
C
GLY
D
16
−8.015
−107.129
−5.793
1.00
230.26


ATOM
1329
O
GLY
D
16
−8.198
−105.942
−5.511
1.00
228.55


ATOM
1330
N
GLU
D
17
−7.179
−107.926
−5.093
1.00
224.41


ATOM
1331
CA
GLU
D
17
−6.402
−107.415
−3.963
1.00
220.79


ATOM
1332
C
GLU
D
17
−5.153
−106.592
−4.403
1.00
215.13


ATOM
1333
O
GLU
D
17
−4.641
−106.765
−5.509
1.00
212.08


ATOM
1334
CB
GLU
D
17
−5.991
−108.567
−3.060
1.00
224.15


ATOM
1335
CG
GLU
D
17
−5.896
−108.204
−1.591
1.00
236.27


ATOM
1336
CD
GLU
D
17
−4.958
−109.093
−0.795
1.00
263.60


ATOM
1337
OE1
GLU
D
17
−5.096
−110.337
−0.864
1.00
272.93


ATOM
1338
OE2
GLU
D
17
−4.036
−108.547
−0.152
1.00
251.34


ATOM
1339
N
LYS
D
18
−4.674
−105.701
−3.523
1.00
206.57


ATOM
1340
CA
LYS
D
18
−3.490
−104.891
−3.757
1.00
199.67


ATOM
1341
C
LYS
D
18
−2.291
−105.677
−3.263
1.00
201.92


ATOM
1342
O
LYS
D
18
−2.426
−106.451
−2.324
1.00
204.60


ATOM
1343
CB
LYS
D
18
−3.614
−103.585
−2.987
1.00
200.65


ATOM
1344
CG
LYS
D
18
−2.653
−102.509
−3.453
1.00
212.59


ATOM
1345
CD
LYS
D
18
−2.942
−101.148
−2.816
1.00
228.84


ATOM
1346
CE
LYS
D
18
−2.576
−99.971
−3.708
1.00
240.61


ATOM
1347
NZ
LYS
D
18
−3.105
−98.665
−3.214
1.00
251.85


ATOM
1348
N
VAL
D
19
−1.123
−105.497
−3.872
1.00
195.38


ATOM
1349
CA
VAL
D
19
0.098
−106.225
−3.462
1.00
195.06


ATOM
1350
C
VAL
D
19
1.284
−105.320
−3.344
1.00
196.89


ATOM
1351
O
VAL
D
19
1.477
−104.497
−4.234
1.00
196.16


ATOM
1352
CB
VAL
D
19
0.416
−107.323
−4.487
1.00
199.61


ATOM
1353
CG1
VAL
D
19
1.876
−107.773
−4.424
1.00
197.04


ATOM
1354
CG2
VAL
D
19
−0.519
−108.496
−4.303
1.00
204.21


ATOM
1355
N
THR
D
20
2.142
−105.524
−2.331
1.00
192.45


ATOM
1356
CA
THR
D
20
3.373
−104.732
−2.196
1.00
189.49


ATOM
1357
C
THR
D
20
4.629
−105.599
−1.956
1.00
192.59


ATOM
1358
O
THR
D
20
4.642
−106.452
−1.077
1.00
194.63


ATOM
1359
CB
THR
D
20
3.195
−103.573
−1.190
1.00
194.36


ATOM
1360
OG1
THR
D
20
2.348
−102.602
−1.803
1.00
186.15


ATOM
1361
CG2
THR
D
20
4.511
−102.882
−0.835
1.00
190.19


ATOM
1362
N
MET
D
21
5.682
−105.360
−2.715
1.00
185.25


ATOM
1363
CA
MET
D
21
6.928
−106.087
−2.554
1.00
185.08


ATOM
1364
C
MET
D
21
8.043
−105.084
−2.406
1.00
190.70


ATOM
1365
O
MET
D
21
7.937
−104.013
−2.991
1.00
190.70


ATOM
1366
CB
MET
D
21
7.164
−107.005
−3.746
1.00
186.69


ATOM
1367
CG
MET
D
21
7.257
−106.295
−5.056
1.00
188.19


ATOM
1368
SD
MET
D
21
6.773
−107.331
−6.421
1.00
193.27


ATOM
1369
CE
MET
D
21
4.963
−106.726
−6.632
1.00
190.78


ATOM
1370
N
SER
D
22
9.099
−105.394
−1.633
1.00
187.95


ATOM
1371
CA
SER
D
22
10.175
−104.430
−1.396
1.00
186.81


ATOM
1372
C
SER
D
22
11.527
−104.766
−1.992
1.00
190.81


ATOM
1373
O
SER
D
22
11.757
−105.908
−2.385
1.00
189.78


ATOM
1374
CB
SER
D
22
10.305
−104.137
0.087
1.00
191.56


ATOM
1375
OG
SER
D
22
10.572
−105.357
0.746
1.00
200.62


ATOM
1376
N
CYS
D
23
12.419
−103.750
−2.058
1.00
188.69


ATOM
1377
CA
CYS
D
23
13.774
−103.814
−2.629
1.00
189.47


ATOM
1378
C
CYS
D
23
14.703
−102.985
−1.777
1.00
191.36


ATOM
1379
O
CYS
D
23
14.318
−101.912
−1.326
1.00
191.16


ATOM
1380
CB
CYS
D
23
13.757
−103.322
−4.083
1.00
189.38


ATOM
1381
SG
CYS
D
23
15.388
−103.179
−4.884
1.00
194.58


ATOM
1382
N
LYS
D
24
15.918
−103.457
−1.553
1.00
187.81


ATOM
1383
CA
LYS
D
24
16.888
−102.712
−0.748
1.00
189.71


ATOM
1384
C
LYS
D
24
18.253
−102.685
−1.403
1.00
195.48


ATOM
1385
O
LYS
D
24
18.715
−103.713
−1.895
1.00
197.67


ATOM
1386
CB
LYS
D
24
16.979
−103.258
0.687
1.00
195.01


ATOM
1387
CG
LYS
D
24
17.570
−102.257
1.712
1.00
205.65


ATOM
1388
CD
LYS
D
24
18.081
−102.919
3.038
1.00
215.49


ATOM
1389
CE
LYS
D
24
19.106
−104.061
2.949
1.00
214.97


ATOM
1390
NZ
LYS
D
24
19.635
−104.476
4.284
1.00
211.92


ATOM
1391
N
SER
D
25
18.921
−101.531
−1.361
1.00
190.72


ATOM
1392
CA
SER
D
25
20.244
−101.366
−1.947
1.00
191.20


ATOM
1393
C
SER
D
25
21.232
−101.034
−0.855
1.00
198.70


ATOM
1394
O
SER
D
25
20.907
−100.290
0.072
1.00
198.77


ATOM
1395
CB
SER
D
25
20.201
−100.251
−2.983
1.00
190.75


ATOM
1396
OG
SER
D
25
21.308
−100.165
−3.855
1.00
195.49


ATOM
1397
N
SER
D
26
22.434
−101.594
−0.958
1.00
198.42


ATOM
1398
CA
SER
D
26
23.526
−101.381
−0.007
1.00
202.70


ATOM
1399
C
SER
D
26
24.050
−99.942
−0.009
1.00
208.22


ATOM
1400
O
SER
D
26
24.785
−99.561
0.903
1.00
211.59


ATOM
1401
CB
SER
D
26
24.668
−102.336
−0.319
1.00
209.79


ATOM
1402
OG
SER
D
26
24.999
−102.237
−1.694
1.00
217.86


ATOM
1403
N
GLN
D
27
23.666
−99.147
−1.016
1.00
202.53


ATOM
1404
CA
GLN
D
27
24.098
−97.757
−1.173
1.00
203.52


ATOM
1405
C
GLN
D
27
22.932
−96.910
−1.653
1.00
203.00


ATOM
1406
O
GLN
D
27
22.038
−97.464
−2.273
1.00
199.36


ATOM
1407
CB
GLN
D
27
25.234
−97.744
−2.200
1.00
207.14


ATOM
1408
CG
GLN
D
27
25.966
−96.427
−2.441
1.00
224.70


ATOM
1409
CD
GLN
D
27
26.935
−96.597
−3.609
1.00
237.11


ATOM
1410
OE1
GLN
D
27
26.823
−95.919
−4.641
1.00
232.36


ATOM
1411
NE2
GLN
D
27
27.819
−97.609
−3.542
1.00
219.82


ATOM
1412
N
SER
D
28
22.928
−95.580
−1.383
1.00
201.25


ATOM
1413
CA
SER
D
28
21.837
−94.679
−1.836
1.00
198.77


ATOM
1414
C
SER
D
28
21.831
−94.482
−3.328
1.00
202.25


ATOM
1415
O
SER
D
28
22.873
−94.224
−3.936
1.00
203.42


ATOM
1416
CB
SER
D
28
21.867
−93.310
−1.162
1.00
204.36


ATOM
1417
OG
SER
D
28
20.909
−92.436
−1.751
1.00
207.36


ATOM
1418
N
LEU
D
29
20.635
−94.570
−3.907
1.00
196.93


ATOM
1419
CA
LEU
D
29
20.465
−94.481
−5.349
1.00
195.59


ATOM
1420
C
LEU
D
29
19.856
−93.148
−5.744
1.00
198.59


ATOM
1421
O
LEU
D
29
19.494
−92.936
−6.907
1.00
197.03


ATOM
1422
CB
LEU
D
29
19.610
−95.668
−5.867
1.00
193.26


ATOM
1423
CG
LEU
D
29
19.984
−97.090
−5.417
1.00
198.16


ATOM
1424
CD1
LEU
D
29
19.044
−98.096
−6.021
1.00
195.29


ATOM
1425
CD2
LEU
D
29
21.423
−97.418
−5.765
1.00
202.98


ATOM
1426
N
LEU
D
30
19.770
−92.231
−4.784
1.00
195.19


ATOM
1427
CA
LEU
D
30
19.185
−90.929
−5.059
1.00
192.56


ATOM
1428
C
LEU
D
30
20.207
−89.989
−5.657
1.00
195.61


ATOM
1429
O
LEU
D
30
21.179
−89.623
−4.992
1.00
200.33


ATOM
1430
CB
LEU
D
30
18.514
−90.377
−3.804
1.00
192.47


ATOM
1431
CG
LEU
D
30
17.944
−88.975
−3.840
1.00
195.85


ATOM
1432
CD1
LEU
D
30
16.984
−88.771
−4.996
1.00
192.09


ATOM
1433
CD2
LEU
D
30
17.222
−88.704
−2.558
1.00
200.02


ATOM
1434
N
TYR
D
31
19.974
−89.628
−6.942
1.00
185.23


ATOM
1435
CA
TYR
D
31
20.817
−88.751
−7.736
1.00
183.96


ATOM
1436
C
TYR
D
31
20.714
−87.327
−7.229
1.00
189.61


ATOM
1437
O
TYR
D
31
19.644
−86.728
−7.319
1.00
187.01


ATOM
1438
CB
TYR
D
31
20.443
−88.796
−9.224
1.00
179.36


ATOM
1439
CG
TYR
D
31
21.546
−88.318
−10.128
1.00
178.22


ATOM
1440
CD1
TYR
D
31
22.804
−88.022
−9.625
1.00
182.83


ATOM
1441
CD2
TYR
D
31
21.358
−88.232
−11.493
1.00
177.09


ATOM
1442
CE1
TYR
D
31
23.838
−87.645
−10.453
1.00
184.40


ATOM
1443
CE2
TYR
D
31
22.398
−87.882
−12.338
1.00
180.80


ATOM
1444
CZ
TYR
D
31
23.640
−87.589
−11.812
1.00
189.00


ATOM
1445
OH
TYR
D
31
24.689
−87.260
−12.627
1.00
192.03


ATOM
1446
N
SER
D
32
21.834
−86.784
−6.711
1.00
189.26


ATOM
1447
CA
SER
D
32
21.917
−85.434
−6.179
1.00
190.19


ATOM
1448
C
SER
D
32
21.390
−84.373
−7.164
1.00
193.89


ATOM
1449
O
SER
D
32
20.301
−83.825
−6.943
1.00
191.71


ATOM
1450
CB
SER
D
32
23.340
−85.133
−5.729
1.00
197.42


ATOM
1451
OG
SER
D
32
24.238
−85.232
−6.820
1.00
206.93


ATOM
1452
N
SER
D
33
22.117
−84.124
−8.272
1.00
191.54


ATOM
1453
CA
SER
D
33
21.699
−83.132
−9.257
1.00
189.53


ATOM
1454
C
SER
D
33
20.601
−83.676
−10.114
1.00
189.65


ATOM
1455
O
SER
D
33
20.809
−83.876
−11.310
1.00
189.36


ATOM
1456
CB
SER
D
33
22.871
−82.714
−10.130
1.00
195.21


ATOM
1457
OG
SER
D
33
23.407
−83.839
−10.809
1.00
200.36


ATOM
1458
N
ASN
D
34
19.427
−83.909
−9.519
1.00
184.28


ATOM
1459
CA
ASN
D
34
18.302
−84.466
−10.238
1.00
182.47


ATOM
1460
C
ASN
D
34
17.129
−84.649
−9.314
1.00
190.01


ATOM
1461
O
ASN
D
34
15.980
−84.357
−9.689
1.00
185.92


ATOM
1462
CB
ASN
D
34
18.689
−85.842
−10.820
1.00
184.45


ATOM
1463
CG
ASN
D
34
17.679
−86.389
−11.788
1.00
209.29


ATOM
1464
OD1
ASN
D
34
17.739
−87.552
−12.177
1.00
212.67


ATOM
1465
ND2
ASN
D
34
16.714
−85.576
−12.200
1.00
193.35


ATOM
1466
N
GLN
D
35
17.424
−85.216
−8.122
1.00
193.14


ATOM
1467
CA
GLN
D
35
16.456
−85.569
−7.075
1.00
193.23


ATOM
1468
C
GLN
D
35
15.587
−86.779
−7.469
1.00
193.97


ATOM
1469
O
GLN
D
35
14.464
−86.934
−6.982
1.00
191.59


ATOM
1470
CB
GLN
D
35
15.629
−84.350
−6.627
1.00
194.47


ATOM
1471
CG
GLN
D
35
16.472
−83.204
−6.051
1.00
205.79


ATOM
1472
CD
GLN
D
35
17.046
−83.496
−4.683
1.00
210.28


ATOM
1473
OE1
GLN
D
35
17.564
−84.582
−4.407
1.00
197.15


ATOM
1474
NE2
GLN
D
35
17.101
−82.474
−3.839
1.00
204.58


ATOM
1475
N
LYS
D
36
16.160
−87.658
−8.319
1.00
190.17


ATOM
1476
CA
LYS
D
36
15.549
−88.898
−8.805
1.00
188.31


ATOM
1477
C
LYS
D
36
16.351
−90.114
−8.317
1.00
193.72


ATOM
1478
O
LYS
D
36
17.557
−90.027
−8.072
1.00
196.83


ATOM
1479
CB
LYS
D
36
15.410
−88.909
−10.333
1.00
189.11


ATOM
1480
CG
LYS
D
36
14.661
−87.696
−10.891
1.00
193.77


ATOM
1481
CD
LYS
D
36
14.124
−87.942
−12.286
1.00
195.32


ATOM
1482
CE
LYS
D
36
12.627
−87.784
−12.338
1.00
197.19


ATOM
1483
NZ
LYS
D
36
12.114
−88.014
−13.701
1.00
209.34


ATOM
1484
N
ASN
D
37
15.668
−91.223
−8.132
1.00
186.47


ATOM
1485
CA
ASN
D
37
16.288
−92.425
−7.624
1.00
186.10


ATOM
1486
C
ASN
D
37
16.615
−93.289
−8.807
1.00
186.85


ATOM
1487
O
ASN
D
37
15.730
−93.562
−9.588
1.00
183.99


ATOM
1488
CB
ASN
D
37
15.288
−93.113
−6.708
1.00
187.62


ATOM
1489
CG
ASN
D
37
15.189
−92.492
−5.334
1.00
210.54


ATOM
1490
OD1
ASN
D
37
16.019
−92.779
−4.467
1.00
194.98


ATOM
1491
ND2
ASN
D
37
14.172
−91.640
−5.099
1.00
204.81


ATOM
1492
N
PHE
D
38
17.856
−93.719
−8.973
1.00
185.33


ATOM
1493
CA
PHE
D
38
18.239
−94.574
−10.103
1.00
185.27


ATOM
1494
C
PHE
D
38
17.852
−96.045
−9.932
1.00
192.74


ATOM
1495
O
PHE
D
38
18.714
−96.917
−9.899
1.00
193.92


ATOM
1496
CB
PHE
D
38
19.709
−94.345
−10.470
1.00
188.58


ATOM
1497
CG
PHE
D
38
19.821
−93.123
−11.347
1.00
189.12


ATOM
1498
CD2
PHE
D
38
20.663
−93.120
−12.440
1.00
192.05


ATOM
1499
CD1
PHE
D
38
18.890
−92.083
−11.247
1.00
190.10


ATOM
1500
CE2
PHE
D
38
20.726
−92.022
−13.295
1.00
195.19


ATOM
1501
CE1
PHE
D
38
18.905
−91.014
−12.139
1.00
190.91


ATOM
1502
CZ
PHE
D
38
19.821
−90.995
−13.163
1.00
191.75


ATOM
1503
N
LEU
D
39
16.550
−96.316
−9.816
1.00
190.07


ATOM
1504
CA
LEU
D
39
16.062
−97.674
−9.626
1.00
190.88


ATOM
1505
C
LEU
D
39
14.930
−97.972
−10.578
1.00
195.37


ATOM
1506
O
LEU
D
39
14.160
−97.065
−10.923
1.00
196.60


ATOM
1507
CB
LEU
D
39
15.656
−97.890
−8.158
1.00
191.08


ATOM
1508
CG
LEU
D
39
15.019
−99.210
−7.696
1.00
195.68


ATOM
1509
CD1
LEU
D
39
15.847
−100.453
−7.842
1.00
196.91


ATOM
1510
CD2
LEU
D
39
13.537
−99.261
−7.865
1.00
197.21


ATOM
1511
N
ALA
D
40
14.831
−99.241
−11.006
1.00
188.96


ATOM
1512
CA
ALA
D
40
13.790
−99.664
−11.922
1.00
186.21


ATOM
1513
C
ALA
D
40
13.166
−100.919
−11.476
1.00
188.36


ATOM
1514
O
ALA
D
40
13.786
−101.661
−10.727
1.00
189.80


ATOM
1515
CB
ALA
D
40
14.363
−99.849
−13.311
1.00
187.42


ATOM
1516
N
TRP
D
41
11.944
−101.169
−11.946
1.00
183.45


ATOM
1517
CA
TRP
D
41
11.190
−102.385
−11.691
1.00
184.49


ATOM
1518
C
TRP
D
41
10.837
−103.067
−12.981
1.00
187.31


ATOM
1519
O
TRP
D
41
10.413
−102.427
−13.937
1.00
188.26


ATOM
1520
CB
TRP
D
41
9.919
−102.093
−10.960
1.00
183.88


ATOM
1521
CG
TRP
D
41
10.169
−101.797
−9.529
1.00
186.39


ATOM
1522
CD1
TRP
D
41
10.266
−100.562
−8.969
1.00
189.18


ATOM
1523
CD2
TRP
D
41
10.392
−102.749
−8.457
1.00
187.73


ATOM
1524
NE1
TRP
D
41
10.465
−100.674
−7.607
1.00
190.36


ATOM
1525
CE2
TRP
D
41
10.559
−102.006
−7.270
1.00
192.78


ATOM
1526
CE3
TRP
D
41
10.418
−104.155
−8.375
1.00
189.82


ATOM
1527
CZ2
TRP
D
41
10.761
−102.622
−6.022
1.00
193.13


ATOM
1528
CZ3
TRP
D
41
10.593
−104.760
−7.134
1.00
192.09


ATOM
1529
CH2
TRP
D
41
10.757
−104.001
−5.979
1.00
192.98


ATOM
1530
N
TYR
D
42
11.016
−104.366
−13.020
1.00
181.80


ATOM
1531
CA
TYR
D
42
10.707
−105.155
−14.195
1.00
180.50


ATOM
1532
C
TYR
D
42
9.705
−106.215
−13.795
1.00
184.45


ATOM
1533
O
TYR
D
42
9.661
−106.629
−12.623
1.00
186.48


ATOM
1534
CB
TYR
D
42
11.973
−105.818
−14.764
1.00
180.95


ATOM
1535
CG
TYR
D
42
12.925
−104.867
−15.436
1.00
180.26


ATOM
1536
CD2
TYR
D
42
12.943
−104.736
−16.813
1.00
181.92


ATOM
1537
CD1
TYR
D
42
13.851
−104.139
−14.697
1.00
181.56


ATOM
1538
CE2
TYR
D
42
13.840
−103.882
−17.443
1.00
183.61


ATOM
1539
CE1
TYR
D
42
14.733
−103.259
−15.310
1.00
184.24


ATOM
1540
CZ
TYR
D
42
14.730
−103.137
−16.685
1.00
193.71


ATOM
1541
OH
TYR
D
42
15.596
−102.248
−17.271
1.00
197.14


ATOM
1542
N
GLN
D
43
8.885
−106.640
−14.767
1.00
177.47


ATOM
1543
CA
GLN
D
43
7.921
−107.716
−14.589
1.00
176.61


ATOM
1544
C
GLN
D
43
8.240
−108.761
−15.628
1.00
184.12


ATOM
1545
O
GLN
D
43
8.422
−108.406
−16.800
1.00
183.39


ATOM
1546
CB
GLN
D
43
6.503
−107.238
−14.768
1.00
176.04


ATOM
1547
CG
GLN
D
43
5.525
−108.365
−14.844
1.00
158.91


ATOM
1548
CD
GLN
D
43
4.384
−108.045
−15.754
1.00
182.31


ATOM
1549
OE1
GLN
D
43
3.227
−107.999
−15.335
1.00
182.46


ATOM
1550
NE2
GLN
D
43
4.687
−108.013
−17.060
1.00
169.98


ATOM
1551
N
GLN
D
44
8.346
−110.046
−15.197
1.00
183.45


ATOM
1552
CA
GLN
D
44
8.643
−111.156
−16.097
1.00
184.72


ATOM
1553
C
GLN
D
44
7.600
−112.226
−15.966
1.00
190.81


ATOM
1554
O
GLN
D
44
7.619
−112.960
−14.982
1.00
191.68


ATOM
1555
CB
GLN
D
44
10.058
−111.721
−15.893
1.00
185.24


ATOM
1556
CG
GLN
D
44
10.364
−112.825
−16.882
1.00
195.88


ATOM
1557
CD
GLN
D
44
11.762
−113.364
−16.797
1.00
224.89


ATOM
1558
OE1
GLN
D
44
12.291
−113.660
−15.721
1.00
221.88


ATOM
1559
NE2
GLN
D
44
12.370
−113.578
−17.954
1.00
222.77


ATOM
1560
N
LYS
D
45
6.687
−112.313
−16.950
1.00
187.58


ATOM
1561
CA
LYS
D
45
5.672
−113.358
−16.967
1.00
189.76


ATOM
1562
C
LYS
D
45
6.398
−114.637
−17.389
1.00
196.87


ATOM
1563
O
LYS
D
45
7.409
−114.542
−18.115
1.00
197.53


ATOM
1564
CB
LYS
D
45
4.537
−113.030
−17.916
1.00
192.28


ATOM
1565
CG
LYS
D
45
3.884
−111.724
−17.557
1.00
187.20


ATOM
1566
CD
LYS
D
45
2.637
−111.444
−18.364
1.00
190.01


ATOM
1567
CE
LYS
D
45
2.132
−110.050
−18.078
1.00
188.70


ATOM
1568
NZ
LYS
D
45
0.802
−109.799
−18.689
1.00
194.46


ATOM
1569
N
PRO
D
46
5.970
−115.831
−16.897
1.00
192.55


ATOM
1570
CA
PRO
D
46
6.750
−117.029
−17.158
1.00
192.53


ATOM
1571
C
PRO
D
46
6.814
−117.376
−18.624
1.00
197.88


ATOM
1572
O
PRO
D
46
5.821
−117.254
−19.329
1.00
198.74


ATOM
1573
CB
PRO
D
46
6.058
−118.066
−16.287
1.00
196.19


ATOM
1574
CG
PRO
D
46
5.409
−117.278
−15.200
1.00
198.93


ATOM
1575
CD
PRO
D
46
4.855
−116.142
−15.979
1.00
194.21


ATOM
1576
N
GLY
D
47
8.016
−117.694
−19.082
1.00
195.71


ATOM
1577
CA
GLY
D
47
8.267
−118.078
−20.470
1.00
198.62


ATOM
1578
C
GLY
D
47
8.411
−116.902
−21.407
1.00
201.22


ATOM
1579
O
GLY
D
47
8.686
−117.071
−22.603
1.00
202.74


ATOM
1580
N
GLN
D
48
8.226
−115.707
−20.866
1.00
194.79


ATOM
1581
CA
GLN
D
48
8.359
−114.502
−21.656
1.00
194.24


ATOM
1582
C
GLN
D
48
9.596
−113.738
−21.245
1.00
197.72


ATOM
1583
O
GLN
D
48
10.218
−114.049
−20.233
1.00
196.48


ATOM
1584
CB
GLN
D
48
7.112
−113.619
−21.498
1.00
194.64


ATOM
1585
CG
GLN
D
48
5.900
−114.116
−22.276
1.00
202.71


ATOM
1586
CD
GLN
D
48
4.734
−113.183
−22.150
1.00
220.40


ATOM
1587
OE1
GLN
D
48
4.871
−111.970
−22.322
1.00
222.06


ATOM
1588
NE2
GLN
D
48
3.557
−113.727
−21.857
1.00
206.68


ATOM
1589
N
SER
D
49
9.953
−112.725
−22.027
1.00
194.86


ATOM
1590
CA
SER
D
49
11.063
−111.870
−21.675
1.00
192.73


ATOM
1591
C
SER
D
49
10.567
−110.819
−20.674
1.00
195.32


ATOM
1592
O
SER
D
49
9.372
−110.502
−20.634
1.00
194.16


ATOM
1593
CB
SER
D
49
11.650
−111.211
−22.912
1.00
196.02


ATOM
1594
OG
SER
D
49
12.543
−112.137
−23.498
1.00
208.08


ATOM
1595
N
PRO
D
50
11.471
−110.278
−19.843
1.00
191.78


ATOM
1596
CA
PRO
D
50
11.070
−109.248
−18.887
1.00
189.02


ATOM
1597
C
PRO
D
50
10.615
−107.962
−19.571
1.00
190.86


ATOM
1598
O
PRO
D
50
10.927
−107.708
−20.743
1.00
192.21


ATOM
1599
CB
PRO
D
50
12.346
−109.018
−18.074
1.00
190.22


ATOM
1600
CG
PRO
D
50
13.135
−110.218
−18.275
1.00
197.48


ATOM
1601
CD
PRO
D
50
12.908
−110.550
−19.710
1.00
194.92


ATOM
1602
N
LYS
D
51
9.865
−107.152
−18.827
1.00
183.40


ATOM
1603
CA
LYS
D
51
9.313
−105.921
−19.348
1.00
181.41


ATOM
1604
C
LYS
D
51
9.588
−104.776
−18.386
1.00
182.97


ATOM
1605
O
LYS
D
51
9.421
−104.962
−17.177
1.00
183.82


ATOM
1606
CB
LYS
D
51
7.802
−106.112
−19.573
1.00
183.96


ATOM
1607
CG
LYS
D
51
7.059
−104.848
−19.981
1.00
198.44


ATOM
1608
CD
LYS
D
51
5.537
−105.025
−19.942
1.00
207.89


ATOM
1609
CE
LYS
D
51
4.785
−103.726
−20.195
1.00
200.67


ATOM
1610
NZ
LYS
D
51
3.297
−103.848
−20.021
1.00
187.98


ATOM
1611
N
LEU
D
52
10.001
−103.595
−18.906
1.00
175.19


ATOM
1612
CA
LEU
D
52
10.227
−102.444
−18.037
1.00
170.84


ATOM
1613
C
LEU
D
52
8.894
−101.864
−17.608
1.00
173.17


ATOM
1614
O
LEU
D
52
8.038
−101.591
−18.439
1.00
173.34


ATOM
1615
CB
LEU
D
52
11.079
−101.375
−18.719
1.00
169.58


ATOM
1616
CG
LEU
D
52
11.354
−100.126
−17.876
1.00
170.91


ATOM
1617
CD1
LEU
D
52
12.123
−100.472
−16.642
1.00
169.69


ATOM
1618
CD2
LEU
D
52
12.105
−99.092
−18.673
1.00
174.06


ATOM
1619
N
LEU
D
53
8.708
−101.699
−16.322
1.00
169.53


ATOM
1620
CA
LEU
D
53
7.467
−101.131
−15.830
1.00
170.08


ATOM
1621
C
LEU
D
53
7.708
−99.702
−15.294
1.00
174.31


ATOM
1622
O
LEU
D
53
6.959
−98.751
−15.592
1.00
174.79


ATOM
1623
CB
LEU
D
53
6.923
−101.981
−14.674
1.00
170.94


ATOM
1624
CG
LEU
D
53
6.491
−103.368
−14.923
1.00
178.24


ATOM
1625
CD1
LEU
D
53
6.296
−104.078
−13.604
1.00
179.59


ATOM
1626
CD2
LEU
D
53
5.215
−103.378
−15.721
1.00
183.03


ATOM
1627
N
ILE
D
54
8.719
−99.580
−14.432
1.00
167.68


ATOM
1628
CA
ILE
D
54
8.971
−98.347
−13.752
1.00
164.55


ATOM
1629
C
ILE
D
54
10.417
−98.009
−13.695
1.00
173.06


ATOM
1630
O
ILE
D
54
11.238
−98.869
−13.415
1.00
175.53


ATOM
1631
CB
ILE
D
54
8.390
−98.470
−12.346
1.00
166.02


ATOM
1632
CG1
ILE
D
54
6.881
−98.589
−12.395
1.00
165.36


ATOM
1633
CG2
ILE
D
54
8.766
−97.266
−11.538
1.00
166.83


ATOM
1634
CD1
ILE
D
54
6.275
−98.936
−11.109
1.00
168.49


ATOM
1635
N
TYR
D
55
10.721
−96.743
−13.905
1.00
171.69


ATOM
1636
CA
TYR
D
55
12.064
−96.213
−13.788
1.00
174.22


ATOM
1637
C
TYR
D
55
12.052
−94.961
−12.959
1.00
181.10


ATOM
1638
O
TYR
D
55
10.990
−94.391
−12.712
1.00
179.27


ATOM
1639
CB
TYR
D
55
12.733
−96.016
−15.137
1.00
177.05


ATOM
1640
CG
TYR
D
55
11.989
−95.146
−16.109
1.00
180.63


ATOM
1641
CD2
TYR
D
55
12.411
−93.848
−16.372
1.00
182.07


ATOM
1642
CD1
TYR
D
55
10.910
−95.641
−16.833
1.00
183.13


ATOM
1643
CE2
TYR
D
55
11.735
−93.039
−17.291
1.00
182.80


ATOM
1644
CE1
TYR
D
55
10.228
−94.845
−17.757
1.00
184.38


ATOM
1645
CZ
TYR
D
55
10.644
−93.543
−17.986
1.00
189.41


ATOM
1646
OH
TYR
D
55
9.968
−92.764
−18.897
1.00
187.27


ATOM
1647
N
TRP
D
56
13.213
−94.552
−12.479
1.00
182.07


ATOM
1648
CA
TRP
D
56
13.279
−93.416
−11.593
1.00
183.64


ATOM
1649
C
TRP
D
56
12.486
−93.692
−10.341
1.00
188.89


ATOM
1650
O
TRP
D
56
11.987
−92.759
−9.706
1.00
190.14


ATOM
1651
CB
TRP
D
56
12.885
−92.121
−12.297
1.00
182.29


ATOM
1652
CG
TRP
D
56
14.073
−91.571
−12.997
1.00
185.37


ATOM
1653
CD1
TRP
D
56
15.360
−91.557
−12.537
1.00
190.33


ATOM
1654
CD2
TRP
D
56
14.103
−90.985
−14.282
1.00
185.74


ATOM
1655
NE1
TRP
D
56
16.188
−90.995
−13.465
1.00
191.25


ATOM
1656
CE2
TRP
D
56
15.450
−90.665
−14.565
1.00
192.12


ATOM
1657
CE3
TRP
D
56
13.117
−90.675
−15.227
1.00
186.47


ATOM
1658
CZ2
TRP
D
56
15.825
−89.994
−15.728
1.00
193.13


ATOM
1659
CZ3
TRP
D
56
13.501
−90.093
−16.420
1.00
189.44


ATOM
1660
CH2
TRP
D
56
14.844
−89.771
−16.669
1.00
192.37


ATOM
1661
N
ALA
D
57
12.356
−95.000
−10.004
1.00
184.34


ATOM
1662
CA
ALA
D
57
11.611
−95.519
−8.870
1.00
184.25


ATOM
1663
C
ALA
D
57
10.110
−95.246
−8.937
1.00
186.13


ATOM
1664
O
ALA
D
57
9.374
−96.057
−8.389
1.00
187.32


ATOM
1665
CB
ALA
D
57
12.167
−94.981
−7.572
1.00
186.33


ATOM
1666
N
SER
D
58
9.635
−94.131
−9.562
1.00
178.39


ATOM
1667
CA
SER
D
58
8.207
−93.819
−9.613
1.00
175.61


ATOM
1668
C
SER
D
58
7.633
−93.545
−10.994
1.00
176.39


ATOM
1669
O
SER
D
58
6.416
−93.568
−11.126
1.00
174.82


ATOM
1670
CB
SER
D
58
7.878
−92.684
−8.654
1.00
178.29


ATOM
1671
OG
SER
D
58
8.085
−91.418
−9.263
1.00
187.42


ATOM
1672
N
THR
D
59
8.472
−93.263
−12.011
1.00
173.68


ATOM
1673
CA
THR
D
59
7.972
−92.995
−13.366
1.00
174.53


ATOM
1674
C
THR
D
59
7.487
−94.255
−14.062
1.00
183.41


ATOM
1675
O
THR
D
59
8.267
−95.168
−14.320
1.00
184.87


ATOM
1676
CB
THR
D
59
9.006
−92.298
−14.238
1.00
183.90


ATOM
1677
OG1
THR
D
59
9.411
−91.079
−13.604
1.00
184.39


ATOM
1678
CG2
THR
D
59
8.484
−92.043
−15.658
1.00
183.39


ATOM
1679
N
ARG
D
60
6.211
−94.277
−14.413
1.00
181.92


ATOM
1680
CA
ARG
D
60
5.577
−95.397
−15.097
1.00
183.19


ATOM
1681
C
ARG
D
60
5.912
−95.346
−16.580
1.00
187.22


ATOM
1682
O
ARG
D
60
5.802
−94.288
−17.205
1.00
185.93


ATOM
1683
CB
ARG
D
60
4.065
−95.270
−14.924
1.00
185.11


ATOM
1684
CG
ARG
D
60
3.299
−96.565
−15.017
1.00
198.01


ATOM
1685
CD
ARG
D
60
1.979
−96.402
−14.289
1.00
202.10


ATOM
1686
NE
ARG
D
60
2.180
−95.673
−13.026
1.00
210.51


ATOM
1687
CZ
ARG
D
60
1.250
−95.458
−12.098
1.00
221.41


ATOM
1688
NH1
ARG
D
60
0.027
−95.935
−12.251
1.00
214.54


ATOM
1689
NH2
ARG
D
60
1.551
−94.793
−10.991
1.00
196.32


ATOM
1690
N
GLU
D
61
6.301
−96.490
−17.146
1.00
185.56


ATOM
1691
CA
GLU
D
61
6.623
−96.590
−18.564
1.00
186.94


ATOM
1692
C
GLU
D
61
5.345
−96.447
−19.367
1.00
192.95


ATOM
1693
O
GLU
D
61
4.284
−96.841
−18.891
1.00
193.89


ATOM
1694
CB
GLU
D
61
7.297
−97.945
−18.852
1.00
189.90


ATOM
1695
CG
GLU
D
61
7.662
−98.218
−20.307
1.00
203.82


ATOM
1696
CD
GLU
D
61
8.649
−97.249
−20.915
1.00
230.96


ATOM
1697
OE1
GLU
D
61
9.687
−96.963
−20.275
1.00
242.81


ATOM
1698
OE2
GLU
D
61
8.400
−96.815
−22.061
1.00
221.22


ATOM
1699
N
SER
D
62
5.431
−95.892
−20.573
1.00
190.41


ATOM
1700
CA
SER
D
62
4.235
−95.776
−21.389
1.00
191.83


ATOM
1701
C
SER
D
62
3.711
−97.148
−21.777
1.00
194.60


ATOM
1702
O
SER
D
62
4.492
−98.036
−22.098
1.00
193.38


ATOM
1703
CB
SER
D
62
4.481
−94.925
−22.621
1.00
198.54


ATOM
1704
OG
SER
D
62
3.212
−94.498
−23.092
1.00
212.77


ATOM
1705
N
GLY
D
63
2.400
−97.304
−21.682
1.00
192.56


ATOM
1706
CA
GLY
D
63
1.708
−98.552
−21.958
1.00
195.44


ATOM
1707
C
GLY
D
63
1.649
−99.451
−20.743
1.00
199.81


ATOM
1708
O
GLY
D
63
1.404
−100.657
−20.876
1.00
202.47


ATOM
1709
N
VAL
D
64
1.910
−98.872
−19.555
1.00
192.98


ATOM
1710
CA
VAL
D
64
1.899
−99.603
−18.298
1.00
192.43


ATOM
1711
C
VAL
D
64
0.658
−99.205
−17.526
1.00
201.14


ATOM
1712
O
VAL
D
64
0.464
−98.023
−17.196
1.00
199.33


ATOM
1713
CB
VAL
D
64
3.222
−99.513
−17.475
1.00
191.77


ATOM
1714
CG1
VAL
D
64
3.066
−100.060
−16.067
1.00
190.89


ATOM
1715
CG2
VAL
D
64
4.346
−100.244
−18.171
1.00
191.38


ATOM
1716
N
PRO
D
65
−0.187
−100.216
−17.232
1.00
203.43


ATOM
1717
CA
PRO
D
65
−1.408
−99.961
−16.457
1.00
205.77


ATOM
1718
C
PRO
D
65
−1.163
−99.136
−15.199
1.00
208.08


ATOM
1719
O
PRO
D
65
−0.107
−99.252
−14.565
1.00
206.69


ATOM
1720
CB
PRO
D
65
−1.881
−101.374
−16.100
1.00
210.71


ATOM
1721
CG
PRO
D
65
−1.401
−102.213
−17.233
1.00
215.95


ATOM
1722
CD
PRO
D
65
−0.049
−101.654
−17.552
1.00
207.75


ATOM
1723
N
ASP
D
66
−2.142
−98.314
−14.831
1.00
203.72


ATOM
1724
CA
ASP
D
66
−2.040
−97.491
−13.640
1.00
201.67


ATOM
1725
C
ASP
D
66
−2.024
−98.341
−12.374
1.00
202.63


ATOM
1726
O
ASP
D
66
−1.806
−97.836
−11.277
1.00
200.56


ATOM
1727
CB
ASP
D
66
−3.184
−96.473
−13.612
1.00
205.67


ATOM
1728
CG
ASP
D
66
−3.390
−95.763
−14.935
1.00
221.39


ATOM
1729
OD1
ASP
D
66
−2.382
−95.342
−15.547
1.00
219.88


ATOM
1730
OD2
ASP
D
66
−4.555
−95.653
−15.373
1.00
232.60


ATOM
1731
N
ARG
D
67
−2.218
−99.636
−12.542
1.00
200.16


ATOM
1732
CA
ARG
D
67
−2.249
−100.610
−11.465
1.00
201.55


ATOM
1733
C
ARG
D
67
−0.911
−100.708
−10.764
1.00
200.30


ATOM
1734
O
ARG
D
67
−0.869
−100.986
−9.566
1.00
199.69


ATOM
1735
CB
ARG
D
67
−2.643
−101.992
−12.027
1.00
206.89


ATOM
1736
CG
ARG
D
67
−3.955
−102.002
−12.812
1.00
219.57


ATOM
1737
CD
ARG
D
67
−4.566
−103.387
−12.907
1.00
228.88


ATOM
1738
NE
ARG
D
67
−3.611
−104.405
−13.346
1.00
234.98


ATOM
1739
CZ
ARG
D
67
−3.447
−104.757
−14.612
1.00
251.02


ATOM
1740
NH1
ARG
D
67
−4.163
−104.174
−15.568
1.00
247.70


ATOM
1741
NH2
ARG
D
67
−2.542
−105.656
−14.944
1.00
226.98


ATOM
1742
N
PHE
D
68
0.170
−100.453
−11.507
1.00
194.12


ATOM
1743
CA
PHE
D
68
1.545
−100.551
−11.015
1.00
192.37


ATOM
1744
C
PHE
D
68
2.039
−99.219
−10.489
1.00
192.59


ATOM
1745
O
PHE
D
68
1.997
−98.229
−11.210
1.00
192.74


ATOM
1746
CB
PHE
D
68
2.445
−101.140
−12.109
1.00
193.96


ATOM
1747
CG
PHE
D
68
1.983
−102.514
−12.582
1.00
198.33


ATOM
1748
CD2
PHE
D
68
2.585
−103.672
−12.102
1.00
201.09


ATOM
1749
CD1
PHE
D
68
0.913
−102.646
−13.472
1.00
203.37


ATOM
1750
CE2
PHE
D
68
2.131
−104.935
−12.501
1.00
206.41


ATOM
1751
CE1
PHE
D
68
0.449
−103.911
−13.855
1.00
206.98


ATOM
1752
CZ
PHE
D
68
1.074
−105.048
−13.382
1.00
206.64


ATOM
1753
N
THR
D
69
2.458
−99.183
−9.218
1.00
185.83


ATOM
1754
CA
THR
D
69
2.849
−97.959
−8.515
1.00
182.81


ATOM
1755
C
THR
D
69
4.142
−98.137
−7.718
1.00
184.84


ATOM
1756
O
THR
D
69
4.167
−98.814
−6.674
1.00
185.13


ATOM
1757
CB
THR
D
69
1.660
−97.407
−7.660
1.00
185.26


ATOM
1758
OG1
THR
D
69
0.812
−98.456
−7.136
1.00
179.57


ATOM
1759
CG2
THR
D
69
0.766
−96.457
−8.467
1.00
182.32


ATOM
1760
N
GLY
D
70
5.179
−97.455
−8.173
1.00
179.49


ATOM
1761
CA
GLY
D
70
6.506
−97.521
−7.581
1.00
179.16


ATOM
1762
C
GLY
D
70
6.711
−96.437
−6.560
1.00
184.70


ATOM
1763
O
GLY
D
70
6.380
−95.271
−6.819
1.00
185.83


ATOM
1764
N
SER
D
71
7.294
−96.813
−5.412
1.00
180.30


ATOM
1765
CA
SER
D
71
7.521
−95.930
−4.264
1.00
178.95


ATOM
1766
C
SER
D
71
8.924
−96.155
−3.657
1.00
176.12


ATOM
1767
O
SER
D
71
9.622
−97.110
−4.027
1.00
174.41


ATOM
1768
CB
SER
D
71
6.417
−96.171
−3.220
1.00
185.24


ATOM
1769
OG
SER
D
71
5.606
−97.332
−3.449
1.00
191.46


ATOM
1770
N
GLY
D
72
9.305
−95.289
−2.729
1.00
170.35


ATOM
1771
CA
GLY
D
72
10.571
−95.412
−2.020
1.00
170.68


ATOM
1772
C
GLY
D
72
11.660
−94.487
−2.501
1.00
170.89


ATOM
1773
O
GLY
D
72
11.625
−94.034
−3.651
1.00
167.84


ATOM
1774
N
SER
D
73
12.660
−94.241
−1.617
1.00
167.43


ATOM
1775
CA
SER
D
73
13.757
−93.328
−1.908
1.00
166.67


ATOM
1776
C
SER
D
73
14.978
−93.690
−1.111
1.00
168.74


ATOM
1777
O
SER
D
73
14.857
−94.291
−0.035
1.00
165.24


ATOM
1778
CB
SER
D
73
13.337
−91.886
−1.624
1.00
171.60


ATOM
1779
OG
SER
D
73
14.204
−90.938
−2.224
1.00
181.40


ATOM
1780
N
GLY
D
74
16.135
−93.358
−1.690
1.00
169.50


ATOM
1781
CA
GLY
D
74
17.440
−93.627
−1.114
1.00
174.48


ATOM
1782
C
GLY
D
74
17.842
−95.078
−1.246
1.00
184.14


ATOM
1783
O
GLY
D
74
18.356
−95.469
−2.293
1.00
183.08


ATOM
1784
N
THR
D
75
17.621
−95.888
−0.185
1.00
185.46


ATOM
1785
CA
THR
D
75
18.002
−97.305
−0.161
1.00
186.96


ATOM
1786
C
THR
D
75
16.836
−98.278
−0.080
1.00
192.46


ATOM
1787
O
THR
D
75
17.062
−99.473
−0.225
1.00
191.52


ATOM
1788
CB
THR
D
75
18.981
−97.572
0.993
1.00
198.02


ATOM
1789
OG1
THR
D
75
18.339
−97.329
2.247
1.00
199.48


ATOM
1790
CG2
THR
D
75
20.239
−96.746
0.888
1.00
198.65


ATOM
1791
N
ASP
D
76
15.612
−97.799
0.195
1.00
191.12


ATOM
1792
CA
ASP
D
76
14.453
−98.673
0.391
1.00
190.88


ATOM
1793
C
ASP
D
76
13.360
−98.376
−0.585
1.00
189.06


ATOM
1794
O
ASP
D
76
12.939
−97.221
−0.698
1.00
187.77


ATOM
1795
CB
ASP
D
76
13.940
−98.587
1.843
1.00
196.37


ATOM
1796
CG
ASP
D
76
15.013
−98.565
2.931
1.00
217.24


ATOM
1797
OD1
ASP
D
76
15.076
−97.558
3.684
1.00
219.21


ATOM
1798
OD2
ASP
D
76
15.788
−99.558
3.034
1.00
228.14


ATOM
1799
N
PHE
D
77
12.913
−99.416
−1.305
1.00
183.27


ATOM
1800
CA
PHE
D
77
11.924
−99.300
−2.384
1.00
181.25


ATOM
1801
C
PHE
D
77
10.842
−100.332
−2.342
1.00
182.19


ATOM
1802
O
PHE
D
77
11.042
−101.397
−1.786
1.00
181.92


ATOM
1803
CB
PHE
D
77
12.617
−99.324
−3.766
1.00
182.29


ATOM
1804
CG
PHE
D
77
13.637
−98.235
−3.932
1.00
184.58


ATOM
1805
CD1
PHE
D
77
14.969
−98.459
−3.612
1.00
190.09


ATOM
1806
CD2
PHE
D
77
13.267
−96.983
−4.402
1.00
186.38


ATOM
1807
CE1
PHE
D
77
15.913
−97.443
−3.720
1.00
192.50


ATOM
1808
CE2
PHE
D
77
14.206
−95.954
−4.484
1.00
190.61


ATOM
1809
CZ
PHE
D
77
15.524
−96.182
−4.108
1.00
191.09


ATOM
1810
N
THR
D
78
9.692
−100.012
−2.932
1.00
177.56


ATOM
1811
CA
THR
D
78
8.548
−100.906
−2.986
1.00
178.90


ATOM
1812
C
THR
D
78
7.844
−100.821
−4.331
1.00
184.34


ATOM
1813
O
THR
D
78
7.777
−99.759
−4.958
1.00
183.53


ATOM
1814
CB
THR
D
78
7.504
−100.627
−1.877
1.00
188.40


ATOM
1815
OG1
THR
D
78
6.836
−99.394
−2.135
1.00
192.49


ATOM
1816
CG2
THR
D
78
8.079
−100.641
−0.480
1.00
187.10


ATOM
1817
N
LEU
D
79
7.292
−101.942
−4.759
1.00
182.10


ATOM
1818
CA
LEU
D
79
6.500
−102.000
−5.972
1.00
180.69


ATOM
1819
C
LEU
D
79
5.115
−102.409
−5.546
1.00
190.01


ATOM
1820
O
LEU
D
79
4.967
−103.361
−4.777
1.00
192.54


ATOM
1821
CB
LEU
D
79
7.046
−102.978
−7.010
1.00
179.15


ATOM
1822
CG
LEU
D
79
6.153
−103.104
−8.238
1.00
181.84


ATOM
1823
CD1
LEU
D
79
6.053
−101.824
−8.970
1.00
179.61


ATOM
1824
CD2
LEU
D
79
6.651
−104.123
−9.156
1.00
186.16


ATOM
1825
N
THR
D
80
4.106
−101.697
−6.034
1.00
186.79


ATOM
1826
CA
THR
D
80
2.743
−101.989
−5.679
1.00
188.77


ATOM
1827
C
THR
D
80
1.892
−102.273
−6.908
1.00
193.47


ATOM
1828
O
THR
D
80
1.973
−101.553
−7.905
1.00
191.42


ATOM
1829
CB
THR
D
80
2.184
−100.826
−4.846
1.00
195.92


ATOM
1830
OG1
THR
D
80
3.007
−100.615
−3.703
1.00
195.43


ATOM
1831
CG2
THR
D
80
0.747
−101.044
−4.425
1.00
196.44


ATOM
1832
N
ILE
D
81
1.052
−103.311
−6.809
1.00
192.77


ATOM
1833
CA
ILE
D
81
0.032
−103.634
−7.797
1.00
193.20


ATOM
1834
C
ILE
D
81
−1.331
−103.428
−7.173
1.00
200.67


ATOM
1835
O
ILE
D
81
−1.751
−104.204
−6.313
1.00
201.01


ATOM
1836
CB
ILE
D
81
0.152
−105.017
−8.401
1.00
196.53


ATOM
1837
CG1
ILE
D
81
1.545
−105.177
−9.029
1.00
193.45


ATOM
1838
CG2
ILE
D
81
−1.002
−105.216
−9.420
1.00
198.93


ATOM
1839
CD1
ILE
D
81
1.940
−106.547
−9.327
1.00
196.84


ATOM
1840
N
SER
D
82
−1.986
−102.335
−7.590
1.00
199.40


ATOM
1841
CA
SER
D
82
−3.324
−101.937
−7.222
1.00
203.31


ATOM
1842
C
SER
D
82
−4.127
−102.884
−8.098
1.00
210.21


ATOM
1843
O
SER
D
82
−3.753
−103.163
−9.247
1.00
208.34


ATOM
1844
CB
SER
D
82
−3.576
−100.484
−7.626
1.00
206.99


ATOM
1845
OG
SER
D
82
−2.605
−99.594
−7.081
1.00
215.69


ATOM
1846
N
SER
D
83
−5.100
−103.517
−7.476
1.00
210.94


ATOM
1847
CA
SER
D
83
−5.990
−104.558
−7.996
1.00
214.12


ATOM
1848
C
SER
D
83
−5.351
−105.552
−8.948
1.00
214.79


ATOM
1849
O
SER
D
83
−5.291
−105.299
−10.147
1.00
212.61


ATOM
1850
CB
SER
D
83
−7.289
−103.979
−8.548
1.00
220.53


ATOM
1851
OG
SER
D
83
−7.943
−104.843
−9.467
1.00
231.50


ATOM
1852
N
VAL
D
84
−4.892
−106.684
−8.417
1.00
211.27


ATOM
1853
CA
VAL
D
84
−4.267
−107.749
−9.197
1.00
209.85


ATOM
1854
C
VAL
D
84
−5.289
−108.341
−10.195
1.00
214.07


ATOM
1855
O
VAL
D
84
−6.425
−108.646
−9.823
1.00
218.37


ATOM
1856
CB
VAL
D
84
−3.642
−108.833
−8.273
1.00
214.57


ATOM
1857
CG1
VAL
D
84
−3.155
−110.027
−9.074
1.00
215.31


ATOM
1858
CG2
VAL
D
84
−2.494
−108.270
−7.443
1.00
210.40


ATOM
1859
N
LYS
D
85
−4.882
−108.448
−11.466
1.00
205.27


ATOM
1860
CA
LYS
D
85
−5.696
−109.023
−12.514
1.00
206.16


ATOM
1861
C
LYS
D
85
−5.084
−110.331
−12.885
1.00
209.74


ATOM
1862
O
LYS
D
85
−3.893
−110.549
−12.658
1.00
205.61


ATOM
1863
CB
LYS
D
85
−5.791
−108.092
−13.720
1.00
204.13


ATOM
1864
CG
LYS
D
85
−6.994
−107.169
−13.609
1.00
188.93


ATOM
1865
CD
LYS
D
85
−6.871
−105.991
−14.516
1.00
193.08


ATOM
1866
CE
LYS
D
85
−7.774
−104.843
−14.103
1.00
206.34


ATOM
1867
NZ
LYS
D
85
−7.555
−103.596
−14.911
1.00
209.61


ATOM
1868
N
ALA
D
86
−5.921
−111.204
−13.450
1.00
210.66


ATOM
1869
CA
ALA
D
86
−5.631
−112.558
−13.894
1.00
212.08


ATOM
1870
C
ALA
D
86
−4.171
−112.752
−14.360
1.00
211.52


ATOM
1871
O
ALA
D
86
−3.395
−113.573
−13.813
1.00
209.68


ATOM
1872
CB
ALA
D
86
−6.632
−112.956
−14.995
1.00
216.81


ATOM
1873
N
GLU
D
87
−3.789
−111.936
−15.324
1.00
205.45


ATOM
1874
CA
GLU
D
87
−2.488
−112.114
−15.894
1.00
202.29


ATOM
1875
C
GLU
D
87
−1.367
−111.429
−15.250
1.00
202.93


ATOM
1876
O
GLU
D
87
−0.270
−111.456
−15.806
1.00
200.02


ATOM
1877
CB
GLU
D
87
−2.472
−111.997
−17.417
1.00
203.98


ATOM
1878
CG
GLU
D
87
−3.198
−110.822
−18.010
1.00
206.37


ATOM
1879
CD
GLU
D
87
−2.779
−110.681
−19.452
1.00
210.19


ATOM
1880
OE1
GLU
D
87
−1.858
−109.874
−19.718
1.00
211.63


ATOM
1881
OE2
GLU
D
87
−3.262
−111.483
−20.284
1.00
184.05


ATOM
1882
N
ASP
D
88
−1.573
−110.892
−14.046
1.00
200.66


ATOM
1883
CA
ASP
D
88
−0.477
−110.217
−13.353
1.00
197.72


ATOM
1884
C
ASP
D
88
0.558
−111.167
−12.749
1.00
204.14


ATOM
1885
O
ASP
D
88
1.615
−110.729
−12.269
1.00
200.68


ATOM
1886
CB
ASP
D
88
−0.970
−109.158
−12.376
1.00
198.54


ATOM
1887
CG
ASP
D
88
−1.752
−107.998
−13.001
1.00
206.72


ATOM
1888
OD1
ASP
D
88
−1.605
−107.764
−14.220
1.00
205.23


ATOM
1889
OD2
ASP
D
88
−2.470
−107.292
−12.252
1.00
212.88


ATOM
1890
N
LEU
D
89
0.283
−112.484
−12.856
1.00
205.96


ATOM
1891
CA
LEU
D
89
1.203
−113.548
−12.434
1.00
206.34


ATOM
1892
C
LEU
D
89
2.552
−113.308
−13.099
1.00
208.82


ATOM
1893
O
LEU
D
89
2.613
−113.160
−14.325
1.00
207.67


ATOM
1894
CB
LEU
D
89
0.686
−114.925
−12.906
1.00
209.73


ATOM
1895
CG
LEU
D
89
1.339
−116.220
−12.348
1.00
213.51


ATOM
1896
CD1
LEU
D
89
0.812
−116.556
−11.000
1.00
215.07


ATOM
1897
CD2
LEU
D
89
2.903
−116.335
−12.466
1.00
209.74


ATOM
1898
N
ALA
D
90
3.628
−113.297
−12.299
1.00
204.73


ATOM
1899
CA
ALA
D
90
4.975
−113.111
−12.804
1.00
202.90


ATOM
1900
C
ALA
D
90
5.995
−112.947
−11.676
1.00
206.56


ATOM
1901
O
ALA
D
90
5.634
−112.964
−10.498
1.00
206.82


ATOM
1902
CB
ALA
D
90
5.012
−111.897
−13.711
1.00
201.60


ATOM
1903
N
VAL
D
91
7.283
−112.814
−12.055
1.00
201.49


ATOM
1904
CA
VAL
D
91
8.410
−112.579
−11.143
1.00
198.71


ATOM
1905
C
VAL
D
91
8.779
−111.120
−11.324
1.00
198.81


ATOM
1906
O
VAL
D
91
8.942
−110.662
−12.459
1.00
198.17


ATOM
1907
CB
VAL
D
91
9.631
−113.478
−11.422
1.00
202.32


ATOM
1908
CG1
VAL
D
91
10.739
−113.205
−10.419
1.00
200.40


ATOM
1909
CG2
VAL
D
91
9.239
−114.946
−11.384
1.00
205.18


ATOM
1910
N
TYR
D
92
8.911
−110.392
−10.215
1.00
191.93


ATOM
1911
CA
TYR
D
92
9.237
−108.975
−10.248
1.00
187.56


ATOM
1912
C
TYR
D
92
10.666
−108.729
−9.774
1.00
192.96


ATOM
1913
O
TYR
D
92
11.112
−109.317
−8.787
1.00
194.80


ATOM
1914
CB
TYR
D
92
8.190
−108.196
−9.456
1.00
185.58


ATOM
1915
CG
TYR
D
92
6.789
−108.290
−10.057
1.00
185.71


ATOM
1916
CD2
TYR
D
92
5.982
−109.418
−9.854
1.00
187.79


ATOM
1917
CD1
TYR
D
92
6.322
−107.318
−10.927
1.00
186.38


ATOM
1918
CE2
TYR
D
92
4.701
−109.510
−10.419
1.00
189.42


ATOM
1919
CE1
TYR
D
92
5.034
−107.380
−11.465
1.00
187.75


ATOM
1920
CZ
TYR
D
92
4.222
−108.471
−11.207
1.00
194.58


ATOM
1921
OH
TYR
D
92
2.968
−108.515
−11.786
1.00
196.32


ATOM
1922
N
TYR
D
93
11.402
−107.908
−10.514
1.00
188.88


ATOM
1923
CA
TYR
D
93
12.790
−107.599
−10.174
1.00
189.71


ATOM
1924
C
TYR
D
93
13.010
−106.112
−10.046
1.00
192.90


ATOM
1925
O
TYR
D
93
12.288
−105.333
−10.654
1.00
193.36


ATOM
1926
CB
TYR
D
93
13.750
−108.118
−11.248
1.00
192.77


ATOM
1927
CG
TYR
D
93
13.688
−109.606
−11.492
1.00
198.17


ATOM
1928
CD2
TYR
D
93
14.533
−110.481
−10.813
1.00
200.41


ATOM
1929
CD1
TYR
D
93
12.824
−110.140
−12.442
1.00
201.67


ATOM
1930
CE2
TYR
D
93
14.493
−111.856
−11.049
1.00
203.05


ATOM
1931
CE1
TYR
D
93
12.791
−111.511
−12.704
1.00
206.17


ATOM
1932
CZ
TYR
D
93
13.628
−112.367
−12.008
1.00
213.37


ATOM
1933
OH
TYR
D
93
13.558
−113.719
−12.264
1.00
217.03


ATOM
1934
N
CYS
D
94
14.005
−105.715
−9.263
1.00
187.97


ATOM
1935
CA
CYS
D
94
14.379
−104.324
−9.147
1.00
186.24


ATOM
1936
C
CYS
D
94
15.782
−104.274
−9.620
1.00
183.58


ATOM
1937
O
CYS
D
94
16.537
−105.215
−9.392
1.00
181.58


ATOM
1938
CB
CYS
D
94
14.232
−103.775
−7.721
1.00
188.19


ATOM
1939
SG
CYS
D
94
15.336
−104.522
−6.456
1.00
194.79


ATOM
1940
N
GLN
D
95
16.124
−103.202
−10.303
1.00
178.44


ATOM
1941
CA
GLN
D
95
17.463
−102.998
−10.810
1.00
179.23


ATOM
1942
C
GLN
D
95
17.951
−101.614
−10.455
1.00
183.94


ATOM
1943
O
GLN
D
95
17.194
−100.657
−10.595
1.00
181.63


ATOM
1944
CB
GLN
D
95
17.491
−103.163
−12.327
1.00
179.69


ATOM
1945
CG
GLN
D
95
18.879
−102.956
−12.896
1.00
180.44


ATOM
1946
CD
GLN
D
95
18.854
−102.687
−14.356
1.00
200.87


ATOM
1947
OE1
GLN
D
95
18.392
−101.647
−14.821
1.00
183.33


ATOM
1948
NE2
GLN
D
95
19.400
−103.603
−15.105
1.00
215.32


ATOM
1949
N
GLN
D
96
19.210
−101.503
−10.022
1.00
183.00


ATOM
1950
CA
GLN
D
96
19.809
−100.209
−9.769
1.00
183.65


ATOM
1951
C
GLN
D
96
20.645
−99.867
−10.991
1.00
191.02


ATOM
1952
O
GLN
D
96
21.311
−100.742
−11.526
1.00
193.49


ATOM
1953
CB
GLN
D
96
20.644
−100.202
−8.472
1.00
186.66


ATOM
1954
CG
GLN
D
96
21.955
−100.972
−8.473
1.00
202.10


ATOM
1955
CD
GLN
D
96
23.108
−100.243
−9.144
1.00
224.37


ATOM
1956
OE1
GLN
D
96
23.194
−99.010
−9.169
1.00
213.64


ATOM
1957
NE2
GLN
D
96
24.009
−100.998
−9.741
1.00
227.63


ATOM
1958
N
TYR
D
97
20.596
−98.630
−11.456
1.00
187.39


ATOM
1959
CA
TYR
D
97
21.413
−98.236
−12.594
1.00
189.45


ATOM
1960
C
TYR
D
97
22.182
−96.969
−12.256
1.00
195.65


ATOM
1961
O
TYR
D
97
22.461
−96.129
−13.112
1.00
196.37


ATOM
1962
CB
TYR
D
97
20.574
−98.110
−13.868
1.00
189.29


ATOM
1963
CG
TYR
D
97
19.325
−97.259
−13.751
1.00
188.50


ATOM
1964
CD2
TYR
D
97
19.285
−95.969
−14.271
1.00
189.72


ATOM
1965
CD1
TYR
D
97
18.152
−97.779
−13.214
1.00
187.16


ATOM
1966
CE2
TYR
D
97
18.128
−95.202
−14.213
1.00
188.12


ATOM
1967
CE1
TYR
D
97
16.990
−97.024
−13.158
1.00
183.43


ATOM
1968
CZ
TYR
D
97
16.985
−95.736
−13.656
1.00
191.55


ATOM
1969
OH
TYR
D
97
15.853
−94.974
−13.622
1.00
191.58


ATOM
1970
N
PHE
D
98
22.553
−96.859
−10.985
1.00
193.06


ATOM
1971
CA
PHE
D
98
23.288
−95.729
−10.449
1.00
194.54


ATOM
1972
C
PHE
D
98
24.736
−95.873
−10.852
1.00
199.60


ATOM
1973
O
PHE
D
98
25.283
−95.021
−11.563
1.00
199.35


ATOM
1974
CB
PHE
D
98
23.138
−95.725
−8.924
1.00
196.79


ATOM
1975
CG
PHE
D
98
23.602
−94.450
−8.292
1.00
200.38


ATOM
1976
CD2
PHE
D
98
22.779
−93.326
−8.272
1.00
200.51


ATOM
1977
CD1
PHE
D
98
24.851
−94.373
−7.690
1.00
207.68


ATOM
1978
CE2
PHE
D
98
23.217
−92.137
−7.697
1.00
205.47


ATOM
1979
CE1
PHE
D
98
25.293
−93.182
−7.115
1.00
210.90


ATOM
1980
CZ
PHE
D
98
24.484
−92.065
−7.145
1.00
208.04


ATOM
1981
N
ARG
D
99
25.335
−96.985
−10.419
1.00
197.90


ATOM
1982
CA
ARG
D
99
26.691
−97.337
−10.765
1.00
202.02


ATOM
1983
C
ARG
D
99
26.708
−98.772
−11.257
1.00
203.73


ATOM
1984
O
ARG
D
99
26.411
−99.731
−10.518
1.00
201.16


ATOM
1985
CB
ARG
D
99
27.714
−96.997
−9.671
1.00
207.32


ATOM
1986
CG
ARG
D
99
29.083
−96.572
−10.260
1.00
219.16


ATOM
1987
CD
ARG
D
99
28.950
−95.521
−11.369
1.00
213.79


ATOM
1988
NE
ARG
D
99
29.938
−95.671
−12.444
1.00
207.97


ATOM
1989
CZ
ARG
D
99
29.693
−96.166
−13.658
1.00
202.38


ATOM
1990
NH1
ARG
D
99
28.474
−96.614
−13.972
1.00
161.04


ATOM
1991
NH2
ARG
D
99
30.663
−96.227
−14.564
1.00
194.17


ATOM
1992
N
TYR
D
100
26.952
−98.901
−12.573
1.00
200.41


ATOM
1993
CA
TYR
D
100
26.862
−100.171
−13.269
1.00
199.62


ATOM
1994
C
TYR
D
100
25.351
−100.478
−13.190
1.00
196.13


ATOM
1995
O
TYR
D
100
24.531
−99.578
−12.992
1.00
194.78


ATOM
1996
CB
TYR
D
100
27.658
−101.279
−12.538
1.00
203.81


ATOM
1997
CG
TYR
D
100
29.140
−101.030
−12.416
1.00
211.93


ATOM
1998
CD1
TYR
D
100
30.009
−101.426
−13.415
1.00
218.30


ATOM
1999
CD2
TYR
D
100
29.681
−100.441
−11.273
1.00
214.67


ATOM
2000
CE1
TYR
D
100
31.385
−101.215
−13.306
1.00
226.00


ATOM
2001
CE2
TYR
D
100
31.054
−100.196
−11.163
1.00
221.29


ATOM
2002
CZ
TYR
D
100
31.906
−100.594
−12.183
1.00
233.84


ATOM
2003
OH
TYR
D
100
33.267
−100.399
−12.096
1.00
241.18


ATOM
2004
N
ARG
D
101
24.980
−101.733
−13.312
1.00
187.76


ATOM
2005
CA
ARG
D
101
23.582
−102.115
−13.190
1.00
182.13


ATOM
2006
C
ARG
D
101
23.530
−103.432
−12.500
1.00
186.38


ATOM
2007
O
ARG
D
101
24.337
−104.270
−12.797
1.00
190.29


ATOM
2008
CB
ARG
D
101
22.876
−102.178
−14.546
1.00
179.52


ATOM
2009
CG
ARG
D
101
22.825
−100.851
−15.291
1.00
186.38


ATOM
2010
CD
ARG
D
101
21.875
−100.875
−16.449
1.00
195.88


ATOM
2011
NE
ARG
D
101
21.789
−99.563
−17.074
1.00
214.61


ATOM
2012
CZ
ARG
D
101
20.641
−98.972
−17.390
1.00
239.43


ATOM
2013
NH1
ARG
D
101
19.489
−99.595
−17.182
1.00
233.84


ATOM
2014
NH2
ARG
D
101
20.638
−97.766
−17.953
1.00
224.93


ATOM
2015
N
THR
D
102
22.697
−103.605
−11.499
1.00
180.66


ATOM
2016
CA
THR
D
102
22.627
−104.893
−10.789
1.00
181.37


ATOM
2017
C
THR
D
102
21.181
−105.213
−10.521
1.00
184.97


ATOM
2018
O
THR
D
102
20.426
−104.301
−10.177
1.00
184.42


ATOM
2019
CB
THR
D
102
23.426
−104.876
−9.460
1.00
188.22


ATOM
2020
OG1
THR
D
102
22.903
−103.861
−8.622
1.00
186.90


ATOM
2021
CG2
THR
D
102
24.932
−104.662
−9.642
1.00
188.81


ATOM
2022
N
PHE
D
103
20.785
−106.490
−10.657
1.00
181.86


ATOM
2023
CA
PHE
D
103
19.395
−106.882
−10.388
1.00
180.59


ATOM
2024
C
PHE
D
103
19.243
−107.488
−9.024
1.00
191.12


ATOM
2025
O
PHE
D
103
20.172
−108.145
−8.559
1.00
195.00


ATOM
2026
CB
PHE
D
103
18.908
−107.918
−11.400
1.00
181.68


ATOM
2027
CG
PHE
D
103
18.625
−107.369
−12.763
1.00
181.62


ATOM
2028
CD2
PHE
D
103
19.619
−107.342
−13.737
1.00
184.31


ATOM
2029
CD1
PHE
D
103
17.359
−106.889
−13.085
1.00
182.06


ATOM
2030
CE2
PHE
D
103
19.356
−106.844
−15.010
1.00
186.35


ATOM
2031
CE1
PHE
D
103
17.095
−106.389
−14.357
1.00
182.37


ATOM
2032
CZ
PHE
D
103
18.094
−106.388
−15.320
1.00
182.53


ATOM
2033
N
GLY
D
104
18.063
−107.333
−8.417
1.00
188.14


ATOM
2034
CA
GLY
D
104
17.759
−107.993
−7.154
1.00
189.56


ATOM
2035
C
GLY
D
104
17.440
−109.459
−7.444
1.00
195.67


ATOM
2036
O
GLY
D
104
17.351
−109.882
−8.614
1.00
194.85


ATOM
2037
N
GLY
D
105
17.244
−110.236
−6.387
1.00
193.90


ATOM
2038
CA
GLY
D
105
16.913
−111.651
−6.533
1.00
194.96


ATOM
2039
C
GLY
D
105
15.532
−111.950
−7.099
1.00
197.55


ATOM
2040
O
GLY
D
105
15.254
−113.084
−7.493
1.00
198.82


ATOM
2041
N
GLY
D
106
14.667
−110.943
−7.123
1.00
191.42


ATOM
2042
CA
GLY
D
106
13.300
−111.072
−7.602
1.00
190.05


ATOM
2043
C
GLY
D
106
12.310
−111.603
−6.588
1.00
194.19


ATOM
2044
O
GLY
D
106
12.677
−112.321
−5.645
1.00
193.29


ATOM
2045
N
THR
D
107
11.031
−111.244
−6.798
1.00
192.34


ATOM
2046
CA
THR
D
107
9.900
−111.717
−5.997
1.00
194.83


ATOM
2047
C
THR
D
107
8.846
−112.415
−6.869
1.00
202.67


ATOM
2048
O
THR
D
107
8.360
−111.821
−7.830
1.00
202.14


ATOM
2049
CB
THR
D
107
9.290
−110.667
−5.065
1.00
203.22


ATOM
2050
OG1
THR
D
107
7.903
−110.441
−5.321
1.00
202.67


ATOM
2051
CG2
THR
D
107
10.156
−109.442
−4.777
1.00
200.85


ATOM
2052
N
LYS
D
108
8.504
−113.671
−6.542
1.00
202.28


ATOM
2053
CA
LYS
D
108
7.532
−114.446
−7.315
1.00
203.84


ATOM
2054
C
LYS
D
108
6.094
−114.219
−6.822
1.00
210.93


ATOM
2055
O
LYS
D
108
5.816
−114.367
−5.637
1.00
211.53


ATOM
2056
CB
LYS
D
108
7.906
−115.940
−7.291
1.00
207.66


ATOM
2057
CG
LYS
D
108
6.853
−116.891
−7.874
1.00
216.06


ATOM
2058
CD
LYS
D
108
7.318
−118.353
−7.932
1.00
219.36


ATOM
2059
CE
LYS
D
108
7.021
−119.112
−6.653
1.00
223.84


ATOM
2060
NZ
LYS
D
108
7.844
−120.347
−6.528
1.00
231.67


ATOM
2061
N
LEU
D
109
5.184
−113.874
−7.744
1.00
208.77


ATOM
2062
CA
LEU
D
109
3.769
−113.687
−7.437
1.00
210.43


ATOM
2063
C
LEU
D
109
2.963
−114.893
−7.948
1.00
216.86


ATOM
2064
O
LEU
D
109
2.945
−115.165
−9.162
1.00
217.24


ATOM
2065
CB
LEU
D
109
3.192
−112.372
−8.037
1.00
208.67


ATOM
2066
CG
LEU
D
109
1.685
−112.136
−7.770
1.00
215.64


ATOM
2067
CD1
LEU
D
109
1.483
−111.618
−6.405
1.00
216.20


ATOM
2068
CD2
LEU
D
109
1.081
−111.163
−8.753
1.00
216.91


ATOM
2069
N
GLU
D
110
2.292
−115.591
−7.002
1.00
213.68


ATOM
2070
CA
GLU
D
110
1.368
−116.697
−7.252
1.00
215.12


ATOM
2071
C
GLU
D
110
−0.069
−116.175
−7.064
1.00
216.63


ATOM
2072
O
GLU
D
110
−0.266
−115.181
−6.345
1.00
217.00


ATOM
2073
CB
GLU
D
110
1.645
−117.809
−6.268
1.00
218.29


ATOM
2074
CG
GLU
D
110
2.682
−118.778
−6.763
1.00
223.34


ATOM
2075
CD
GLU
D
110
2.011
−120.116
−6.983
1.00
241.29


ATOM
2076
OE1
GLU
D
110
2.049
−120.939
−6.042
1.00
231.39


ATOM
2077
OE2
GLU
D
110
1.304
−120.275
−8.006
1.00
235.24


ATOM
2078
N
ILE
D
111
−1.058
−116.786
−7.734
1.00
209.72


ATOM
2079
CA
ILE
D
111
−2.427
−116.298
−7.592
1.00
209.45


ATOM
2080
C
ILE
D
111
−3.282
−117.272
−6.841
1.00
213.92


ATOM
2081
O
ILE
D
111
−3.237
−118.457
−7.146
1.00
216.23


ATOM
2082
CB
ILE
D
111
−3.038
−115.742
−8.918
1.00
211.76


ATOM
2083
CG1
ILE
D
111
−2.371
−114.401
−9.272
1.00
206.29


ATOM
2084
CG2
ILE
D
111
−4.569
−115.572
−8.873
1.00
216.45


ATOM
2085
CD1
ILE
D
111
−2.039
−114.276
−10.603
1.00
204.47


ATOM
2086
N
LYS
D
112
−4.034
−116.783
−5.837
1.00
209.55


ATOM
2087
CA
LYS
D
112
−4.971
−117.588
−5.055
1.00
214.52


ATOM
2088
C
LYS
D
112
−6.340
−117.653
−5.834
1.00
225.19


ATOM
2089
O
LYS
D
112
−6.885
−116.609
−6.217
1.00
224.58


ATOM
2090
CB
LYS
D
112
−5.132
−117.015
−3.634
1.00
215.44


ATOM
2091
CG
LYS
D
112
−5.190
−118.071
−2.526
1.00
210.41


ATOM
2092
CD
LYS
D
112
−6.095
−117.694
−1.337
1.00
208.37


ATOM
2093
CE
LYS
D
112
−6.059
−118.727
−0.235
1.00
210.21


ATOM
2094
NZ
LYS
D
112
−4.692
−118.905
0.343
1.00
208.55


ATOM
2095
N
ARG
D
113
−6.833
−118.898
−6.118
1.00
226.17


ATOM
2096
CA
ARG
D
113
−8.029
−119.303
−6.898
1.00
230.36


ATOM
2097
C
ARG
D
113
−7.993
−120.819
−7.000
1.00
234.06


ATOM
2098
O
ARG
D
113
−6.990
−121.445
−6.636
1.00
230.63


ATOM
2099
CB
ARG
D
113
−7.984
−118.769
−8.364
1.00
229.82


ATOM
2100
CG
ARG
D
113
−6.619
−119.003
−9.064
1.00
234.74


ATOM
2101
CD
ARG
D
113
−6.637
−118.853
−10.556
1.00
235.50


ATOM
2102
NE
ARG
D
113
−6.924
−120.127
−11.198
1.00
236.25


ATOM
2103
CZ
ARG
D
113
−6.687
−120.385
−12.479
1.00
235.48


ATOM
2104
NH1
ARG
D
113
−6.136
−119.452
−13.263
1.00
208.20


ATOM
2105
NH2
ARG
D
113
−6.991
−121.577
−12.989
1.00
220.17


ATOM
2106
N
ALA
D
114
−9.049
−121.409
−7.562
1.00
231.62


ATOM
2107
CA
ALA
D
114
−9.061
−122.849
−7.801
1.00
234.83


ATOM
2108
C
ALA
D
114
−8.547
−123.086
−9.225
1.00
244.40


ATOM
2109
O
ALA
D
114
−8.026
−122.178
−9.886
1.00
190.32


ATOM
2110
CB
ALA
D
114
−10.464
−123.424
−7.630
1.00
237.35


ATOM
2112
N
GLY
E
5
27.912
−80.762
−36.382
1.00
190.30


ATOM
2113
CA
GLY
E
5
29.114
−79.940
−36.433
1.00
191.93


ATOM
2114
C
GLY
E
5
29.761
−79.669
−35.086
1.00
196.83


ATOM
2115
O
GLY
E
5
29.401
−80.286
−34.080
1.00
195.48


ATOM
2116
N
GLU
E
6
30.705
−78.711
−35.051
1.00
195.47


ATOM
2117
CA
GLU
E
6
31.470
−78.372
−33.845
1.00
194.57


ATOM
2118
C
GLU
E
6
30.702
−77.628
−32.773
1.00
195.54


ATOM
2119
O
GLU
E
6
29.643
−77.039
−32.995
1.00
193.14


ATOM
2120
CB
GLU
E
6
32.749
−77.570
−34.207
1.00
198.44


ATOM
2121
CG
GLU
E
6
33.928
−77.704
−33.241
1.00
211.27


ATOM
2122
CD
GLU
E
6
34.262
−79.084
−32.693
1.00
241.32


ATOM
2123
OE1
GLU
E
6
34.560
−79.985
−33.510
1.00
249.04


ATOM
2124
OE2
GLU
E
6
34.232
−79.262
−31.452
1.00
230.42


ATOM
2125
N
VAL
E
7
31.266
−77.689
−31.589
1.00
192.06


ATOM
2126
CA
VAL
E
7
30.891
−76.891
−30.460
1.00
189.19


ATOM
2127
C
VAL
E
7
31.946
−75.786
−30.491
1.00
199.28


ATOM
2128
O
VAL
E
7
33.138
−76.061
−30.428
1.00
201.59


ATOM
2129
CB
VAL
E
7
30.872
−77.656
−29.121
1.00
190.79


ATOM
2130
CG1
VAL
E
7
32.072
−78.598
−28.938
1.00
193.75


ATOM
2131
CG2
VAL
E
7
30.748
−76.695
−27.947
1.00
187.49


ATOM
2132
N
CYS
E
8
31.529
−74.554
−30.682
1.00
198.67


ATOM
2133
CA
CYS
E
8
32.488
−73.462
−30.686
1.00
201.29


ATOM
2134
C
CYS
E
8
32.291
−72.683
−29.398
1.00
201.30


ATOM
2135
O
CYS
E
8
31.240
−72.781
−28.771
1.00
199.02


ATOM
2136
CB
CYS
E
8
32.344
−72.569
−31.916
1.00
204.24


ATOM
2137
SG
CYS
E
8
32.038
−73.461
−33.461
1.00
211.47


ATOM
2138
N
PRO
E
9
33.299
−71.936
−28.961
1.00
197.03


ATOM
2139
CA
PRO
E
9
33.147
−71.179
−27.714
1.00
194.11


ATOM
2140
C
PRO
E
9
32.463
−69.851
−27.968
1.00
195.35


ATOM
2141
O
PRO
E
9
32.379
−69.426
−29.121
1.00
195.82


ATOM
2142
CB
PRO
E
9
34.588
−70.952
−27.293
1.00
198.59


ATOM
2143
CG
PRO
E
9
35.338
−70.828
−28.622
1.00
206.81


ATOM
2144
CD
PRO
E
9
34.629
−71.736
−29.582
1.00
202.38


ATOM
2145
N
GLY
E
10
32.035
−69.184
−26.897
1.00
189.98


ATOM
2146
CA
GLY
E
10
31.445
−67.856
−26.990
1.00
189.31


ATOM
2147
C
GLY
E
10
32.311
−66.912
−27.810
1.00
196.49


ATOM
2148
O
GLY
E
10
33.537
−66.938
−27.684
1.00
199.14


ATOM
2149
N
MET
E
11
31.683
−66.108
−28.692
1.00
192.03


ATOM
2150
CA
MET
E
11
32.379
−65.166
−29.562
1.00
193.51


ATOM
2151
C
MET
E
11
31.907
−63.765
−29.453
1.00
195.34


ATOM
2152
O
MET
E
11
30.729
−63.504
−29.210
1.00
192.66


ATOM
2153
CB
MET
E
11
32.337
−65.603
−31.009
1.00
197.71


ATOM
2154
CG
MET
E
11
32.927
−66.939
−31.196
1.00
202.78


ATOM
2155
SD
MET
E
11
33.316
−67.250
−32.893
1.00
211.19


ATOM
2156
CE
MET
E
11
34.526
−68.607
−32.682
1.00
210.07


ATOM
2157
N
ASP
E
12
32.846
−62.859
−29.715
1.00
193.90


ATOM
2158
CA
ASP
E
12
32.706
−61.411
−29.626
1.00
194.03


ATOM
2159
C
ASP
E
12
33.312
−60.813
−30.887
1.00
196.66


ATOM
2160
O
ASP
E
12
34.519
−60.595
−30.959
1.00
198.31


ATOM
2161
CB
ASP
E
12
33.418
−60.915
−28.337
1.00
196.74


ATOM
2162
CG
ASP
E
12
33.175
−59.468
−27.883
1.00
206.69


ATOM
2163
OD2
ASP
E
12
33.758
−59.057
−26.838
1.00
209.66


ATOM
2164
OD1
ASP
E
12
32.513
−58.720
−28.617
1.00
207.35


ATOM
2165
N
ILE
E
13
32.464
−60.570
−31.886
1.00
191.03


ATOM
2166
CA
ILE
E
13
32.863
−60.091
−33.208
1.00
192.87


ATOM
2167
C
ILE
E
13
32.586
−58.596
−33.365
1.00
194.77


ATOM
2168
O
ILE
E
13
31.440
−58.168
−33.261
1.00
191.51


ATOM
2169
CB
ILE
E
13
32.249
−60.995
−34.301
1.00
196.03


ATOM
2170
CG1
ILE
E
13
32.430
−62.477
−33.916
1.00
195.15


ATOM
2171
CG2
ILE
E
13
32.904
−60.730
−35.650
1.00
200.28


ATOM
2172
CD1
ILE
E
13
31.462
−63.378
−34.481
1.00
203.72


ATOM
2173
N
ARG
E
14
33.670
−57.816
−33.587
1.00
193.23


ATOM
2174
CA
ARG
E
14
33.711
−56.361
−33.646
1.00
193.96


ATOM
2175
C
ARG
E
14
34.471
−55.816
−34.836
1.00
200.99


ATOM
2176
O
ARG
E
14
35.374
−56.474
−35.347
1.00
202.06


ATOM
2177
CB
ARG
E
14
34.453
−55.833
−32.399
1.00
191.71


ATOM
2178
CG
ARG
E
14
33.705
−55.993
−31.094
1.00
189.87


ATOM
2179
CD
ARG
E
14
34.596
−55.826
−29.914
1.00
190.07


ATOM
2180
NE
ARG
E
14
33.873
−56.184
−28.707
1.00
199.20


ATOM
2181
CZ
ARG
E
14
33.594
−55.329
−27.729
1.00
216.94


ATOM
2182
NH1
ARG
E
14
33.993
−54.060
−27.809
1.00
207.91


ATOM
2183
NH2
ARG
E
14
32.912
−55.733
−26.663
1.00
198.07


ATOM
2184
N
ASN
E
15
34.161
−54.565
−35.209
1.00
199.96


ATOM
2185
CA
ASN
E
15
34.894
−53.748
−36.179
1.00
204.97


ATOM
2186
C
ASN
E
15
34.910
−54.183
−37.651
1.00
213.03


ATOM
2187
O
ASN
E
15
34.493
−53.403
−38.515
1.00
215.01


ATOM
2188
CB
ASN
E
15
36.331
−53.485
−35.676
1.00
207.54


ATOM
2189
CG
ASN
E
15
36.406
−53.008
−34.242
1.00
216.10


ATOM
2190
OD1
ASN
E
15
35.688
−52.097
−33.819
1.00
206.15


ATOM
2191
ND2
ASN
E
15
37.268
−53.622
−33.458
1.00
203.36


ATOM
2192
N
ASN
E
16
35.452
−55.394
−37.924
1.00
210.46


ATOM
2193
CA
ASN
E
16
35.647
−56.051
−39.233
1.00
213.61


ATOM
2194
C
ASN
E
16
34.786
−57.316
−39.320
1.00
218.81


ATOM
2195
O
ASN
E
16
34.679
−58.046
−38.328
1.00
216.04


ATOM
2196
CB
ASN
E
16
37.091
−56.632
−39.293
1.00
214.01


ATOM
2197
CG
ASN
E
16
38.239
−55.953
−40.033
1.00
242.03


ATOM
2198
OD1
ASN
E
16
38.056
−54.969
−40.754
1.00
239.62


ATOM
2199
ND2
ASN
E
16
39.466
−56.579
−39.858
1.00
240.96


ATOM
2200
N
LEU
E
17
34.371
−57.709
−40.527
1.00
218.96


ATOM
2201
CA
LEU
E
17
33.734
−59.013
−40.663
1.00
217.56


ATOM
2202
C
LEU
E
17
34.717
−60.180
−40.676
1.00
224.83


ATOM
2203
O
LEU
E
17
34.265
−61.314
−40.585
1.00
221.43


ATOM
2204
CB
LEU
E
17
32.913
−59.063
−41.924
1.00
219.82


ATOM
2205
CG
LEU
E
17
31.597
−58.368
−41.832
1.00
223.48


ATOM
2206
CD1
LEU
E
17
30.910
−58.391
−43.169
1.00
226.56


ATOM
2207
CD2
LEU
E
17
30.724
−59.000
−40.756
1.00
221.66


ATOM
2208
N
THR
E
18
36.040
−59.936
−40.820
1.00
227.88


ATOM
2209
CA
THR
E
18
37.034
−61.027
−40.886
1.00
230.30


ATOM
2210
C
THR
E
18
36.804
−62.178
−39.878
1.00
231.66


ATOM
2211
O
THR
E
18
36.685
−63.335
−40.283
1.00
231.95


ATOM
2212
CB
THR
E
18
38.483
−60.514
−40.826
1.00
241.80


ATOM
2213
OG1
THR
E
18
38.776
−60.077
−39.491
1.00
240.89


ATOM
2214
CG2
THR
E
18
38.775
−59.436
−41.869
1.00
243.03


ATOM
2215
N
ARG
E
19
36.704
−61.853
−38.587
1.00
224.73


ATOM
2216
CA
ARG
E
19
36.583
−62.832
−37.505
1.00
221.13


ATOM
2217
C
ARG
E
19
35.330
−63.703
−37.580
1.00
223.17


ATOM
2218
O
ARG
E
19
35.301
−64.783
−36.994
1.00
220.80


ATOM
2219
CB
ARG
E
19
36.636
−62.125
−36.133
1.00
217.49


ATOM
2220
CG
ARG
E
19
37.883
−61.298
−35.834
1.00
226.76


ATOM
2221
CD
ARG
E
19
38.075
−61.094
−34.336
1.00
235.47


ATOM
2222
NE
ARG
E
19
38.089
−62.379
−33.615
1.00
249.17


ATOM
2223
CZ
ARG
E
19
37.363
−62.645
−32.533
1.00
260.55


ATOM
2224
NH1
ARG
E
19
36.611
−61.706
−31.986
1.00
246.40


ATOM
2225
NH2
ARG
E
19
37.403
−63.850
−31.975
1.00
242.85


ATOM
2226
N
LEU
E
20
34.293
−63.213
−38.275
1.00
220.49


ATOM
2227
CA
LEU
E
20
32.989
−63.863
−38.393
1.00
218.02


ATOM
2228
C
LEU
E
20
33.027
−65.238
−39.031
1.00
224.59


ATOM
2229
O
LEU
E
20
32.211
−66.098
−38.698
1.00
222.15


ATOM
2230
CB
LEU
E
20
32.003
−62.944
−39.117
1.00
218.05


ATOM
2231
CG
LEU
E
20
30.533
−63.341
−39.105
1.00
218.49


ATOM
2232
CD1
LEU
E
20
30.010
−63.581
−37.695
1.00
214.22


ATOM
2233
CD2
LEU
E
20
29.723
−62.298
−39.790
1.00
219.46


ATOM
2234
N
HIS
E
21
33.994
−65.456
−39.911
1.00
225.92


ATOM
2235
CA
HIS
E
21
34.172
−66.727
−40.588
1.00
228.56


ATOM
2236
C
HIS
E
21
34.668
−67.819
−39.653
1.00
230.28


ATOM
2237
O
HIS
E
21
34.638
−68.989
−40.023
1.00
231.01


ATOM
2238
CB
HIS
E
21
35.061
−66.543
−41.812
1.00
235.48


ATOM
2239
CG
HIS
E
21
34.549
−65.479
−42.743
1.00
241.44


ATOM
2240
ND1
HIS
E
21
33.581
−65.754
−43.699
1.00
244.47


ATOM
2241
CD2
HIS
E
21
34.867
−64.165
−42.814
1.00
244.74


ATOM
2242
CE1
HIS
E
21
33.367
−64.612
−44.338
1.00
245.81


ATOM
2243
NE2
HIS
E
21
34.120
−63.629
−43.846
1.00
246.37


ATOM
2244
N
GLU
E
22
35.040
−67.448
−38.406
1.00
223.60


ATOM
2245
CA
GLU
E
22
35.408
−68.410
−37.365
1.00
221.30


ATOM
2246
C
GLU
E
22
34.196
−69.263
−36.978
1.00
222.53


ATOM
2247
O
GLU
E
22
34.357
−70.309
−36.342
1.00
221.67


ATOM
2248
CB
GLU
E
22
35.939
−67.707
−36.120
1.00
220.49


ATOM
2249
CG
GLU
E
22
37.420
−67.914
−35.903
1.00
231.75


ATOM
2250
CD
GLU
E
22
38.116
−66.656
−35.436
1.00
251.97


ATOM
2251
OE1
GLU
E
22
37.775
−66.173
−34.332
1.00
243.41


ATOM
2252
OE2
GLU
E
22
39.063
−66.206
−36.123
1.00
247.26


ATOM
2253
N
LEU
E
23
32.986
−68.825
−37.364
1.00
217.35


ATOM
2254
CA
LEU
E
23
31.748
−69.551
−37.082
1.00
214.21


ATOM
2255
C
LEU
E
23
31.372
−70.555
−38.151
1.00
221.41


ATOM
2256
O
LEU
E
23
30.379
−71.270
−37.981
1.00
219.32


ATOM
2257
CB
LEU
E
23
30.588
−68.559
−36.941
1.00
211.66


ATOM
2258
CG
LEU
E
23
30.644
−67.668
−35.738
1.00
213.96


ATOM
2259
CD1
LEU
E
23
29.462
−66.731
−35.719
1.00
211.96


ATOM
2260
CD2
LEU
E
23
30.711
−68.506
−34.477
1.00
215.69


ATOM
2261
N
GLU
E
24
32.118
−70.586
−39.271
1.00
222.24


ATOM
2262
CA
GLU
E
24
31.756
−71.401
−40.422
1.00
224.40


ATOM
2263
C
GLU
E
24
31.467
−72.878
−40.175
1.00
226.88


ATOM
2264
O
GLU
E
24
30.574
−73.414
−40.819
1.00
227.07


ATOM
2265
CB
GLU
E
24
32.683
−71.169
−41.604
1.00
230.80


ATOM
2266
CG
GLU
E
24
34.049
−71.821
−41.473
1.00
243.35


ATOM
2267
CD
GLU
E
24
34.958
−71.526
−42.649
1.00
266.86


ATOM
2268
OE1
GLU
E
24
34.680
−70.559
−43.391
1.00
259.23


ATOM
2269
OE2
GLU
E
24
35.948
−72.267
−42.837
1.00
265.59


ATOM
2270
N
ASN
E
25
32.188
−73.522
−39.245
1.00
221.65


ATOM
2271
CA
ASN
E
25
31.979
−74.919
−38.891
1.00
220.65


ATOM
2272
C
ASN
E
25
31.492
−74.881
−37.462
0.70
218.45


ATOM
2273
O
ASN
E
25
32.292
−74.953
−36.524
0.70
216.67


ATOM
2274
CB
ASN
E
25
33.284
−75.728
−39.030
1.00
226.31


ATOM
2275
CG
ASN
E
25
34.021
−75.610
−40.369
1.00
251.67


ATOM
2276
OD1
ASN
E
25
33.444
−75.728
−41.464
1.00
245.70


ATOM
2277
ND2
ASN
E
25
35.338
−75.400
−40.293
1.00
246.35


ATOM
2278
N
CYS
E
26
30.177
−74.669
−37.296
1.00
212.32


ATOM
2279
CA
CYS
E
26
29.587
−74.494
−35.965
1.00
208.26


ATOM
2280
C
CYS
E
26
28.104
−74.852
−35.833
1.00
207.15


ATOM
2281
O
CYS
E
26
27.267
−74.237
−36.493
1.00
206.78


ATOM
2282
CB
CYS
E
26
29.843
−73.074
−35.470
1.00
207.62


ATOM
2283
SG
CYS
E
26
30.083
−72.950
−33.687
1.00
208.34


ATOM
2284
N
SER
E
27
27.780
−75.761
−34.894
1.00
198.98


ATOM
2285
CA
SER
E
27
26.405
−76.160
−34.617
1.00
195.08


ATOM
2286
C
SER
E
27
25.891
−75.518
−33.378
1.00
192.07


ATOM
2287
O
SER
E
27
24.737
−75.093
−33.327
1.00
188.85


ATOM
2288
CB
SER
E
27
26.311
−77.667
−34.458
1.00
199.87


ATOM
2289
OG
SER
E
27
26.007
−78.232
−35.720
1.00
213.74


ATOM
2290
N
VAL
E
28
26.725
−75.516
−32.347
1.00
187.21


ATOM
2291
CA
VAL
E
28
26.392
−74.968
−31.051
1.00
184.64


ATOM
2292
C
VAL
E
28
27.454
−73.975
−30.689
1.00
188.85


ATOM
2293
O
VAL
E
28
28.629
−74.295
−30.774
1.00
190.85


ATOM
2294
CB
VAL
E
28
26.351
−76.082
−29.953
1.00
188.60


ATOM
2295
CG1
VAL
E
28
26.108
−75.503
−28.563
1.00
185.75


ATOM
2296
CG2
VAL
E
28
25.306
−77.144
−30.252
1.00
188.82


ATOM
2297
N
ILE
E
29
27.066
−72.806
−30.223
1.00
184.12


ATOM
2298
CA
ILE
E
29
28.014
−71.870
−29.641
1.00
184.41


ATOM
2299
C
ILE
E
29
27.829
−72.042
−28.125
1.00
189.86


ATOM
2300
O
ILE
E
29
26.751
−71.766
−27.583
1.00
190.05


ATOM
2301
CB
ILE
E
29
27.822
−70.413
−30.104
1.00
186.88


ATOM
2302
CG1
ILE
E
29
28.375
−70.236
−31.528
1.00
189.31


ATOM
2303
CG2
ILE
E
29
28.493
−69.436
−29.112
1.00
186.14


ATOM
2304
CD1
ILE
E
29
27.912
−68.987
−32.200
1.00
192.49


ATOM
2305
N
GLU
E
30
28.860
−72.538
−27.453
1.00
186.81


ATOM
2306
CA
GLU
E
30
28.823
−72.802
−26.018
1.00
185.57


ATOM
2307
C
GLU
E
30
29.345
−71.539
−25.372
1.00
191.48


ATOM
2308
O
GLU
E
30
30.558
−71.336
−25.288
1.00
194.45


ATOM
2309
CB
GLU
E
30
29.688
−74.044
−25.734
1.00
188.36


ATOM
2310
CG
GLU
E
30
29.660
−74.566
−24.311
1.00
194.02


ATOM
2311
CD
GLU
E
30
30.392
−75.875
−24.111
1.00
199.03


ATOM
2312
OE1
GLU
E
30
31.614
−75.912
−24.375
1.00
215.71


ATOM
2313
OE2
GLU
E
30
29.739
−76.875
−23.741
1.00
167.96


ATOM
2314
N
GLY
E
31
28.414
−70.665
−25.011
1.00
186.77


ATOM
2315
CA
GLY
E
31
28.691
−69.299
−24.574
1.00
187.62


ATOM
2316
C
GLY
E
31
27.776
−68.312
−25.305
1.00
191.54


ATOM
2317
O
GLY
E
31
26.683
−68.692
−25.755
1.00
193.21


ATOM
2318
N
HIS
E
32
28.175
−67.036
−25.423
1.00
183.86


ATOM
2319
CA
HIS
E
32
27.309
−66.073
−26.097
1.00
181.26


ATOM
2320
C
HIS
E
32
27.808
−65.743
−27.484
1.00
182.85


ATOM
2321
O
HIS
E
32
28.927
−66.115
−27.835
1.00
185.20


ATOM
2322
CB
HIS
E
32
27.177
−64.796
−25.255
1.00
181.54


ATOM
2323
CG
HIS
E
32
28.473
−64.104
−25.001
1.00
186.07


ATOM
2324
ND1
HIS
E
32
28.933
−63.901
−23.721
1.00
187.47


ATOM
2325
CD2
HIS
E
32
29.363
−63.581
−25.879
1.00
189.88


ATOM
2326
CE1
HIS
E
32
30.092
−63.281
−23.853
1.00
188.92


ATOM
2327
NE2
HIS
E
32
30.388
−63.061
−25.137
1.00
190.66


ATOM
2328
N
LEU
E
33
26.988
−65.024
−28.264
1.00
174.23


ATOM
2329
CA
LEU
E
33
27.397
−64.510
−29.549
1.00
173.06


ATOM
2330
C
LEU
E
33
27.045
−63.057
−29.552
1.00
175.61


ATOM
2331
O
LEU
E
33
25.870
−62.713
−29.418
1.00
173.66


ATOM
2332
CB
LEU
E
33
26.742
−65.241
−30.728
1.00
172.19


ATOM
2333
CG
LEU
E
33
27.166
−64.773
−32.121
1.00
177.04


ATOM
2334
CD1
LEU
E
33
28.656
−64.738
−32.279
1.00
177.86


ATOM
2335
CD2
LEU
E
33
26.562
−65.599
−33.180
1.00
179.00


ATOM
2336
N
GLN
E
34
28.073
−62.207
−29.632
1.00
173.47


ATOM
2337
CA
GLN
E
34
27.942
−60.759
−29.755
1.00
174.45


ATOM
2338
C
GLN
E
34
28.561
−60.343
−31.103
1.00
181.80


ATOM
2339
O
GLN
E
34
29.724
−60.665
−31.380
1.00
185.61


ATOM
2340
CB
GLN
E
34
28.663
−60.015
−28.622
1.00
175.69


ATOM
2341
CG
GLN
E
34
28.107
−60.200
−27.221
1.00
189.85


ATOM
2342
CD
GLN
E
34
28.846
−59.389
−26.162
1.00
207.69


ATOM
2343
OE1
GLN
E
34
28.478
−59.395
−24.983
1.00
205.33


ATOM
2344
NE2
GLN
E
34
29.914
−58.690
−26.544
1.00
197.23


ATOM
2345
N
ILE
E
35
27.773
−59.663
−31.951
1.00
176.21


ATOM
2346
CA
ILE
E
35
28.236
−59.111
−33.217
1.00
178.19


ATOM
2347
C
ILE
E
35
27.950
−57.637
−33.107
1.00
185.67


ATOM
2348
O
ILE
E
35
26.789
−57.238
−32.939
1.00
184.68


ATOM
2349
CB
ILE
E
35
27.600
−59.743
−34.452
1.00
180.97


ATOM
2350
CG1
ILE
E
35
27.684
−61.263
−34.394
1.00
178.55


ATOM
2351
CG2
ILE
E
35
28.268
−59.180
−35.722
1.00
186.08


ATOM
2352
CD1
ILE
E
35
26.981
−61.971
−35.497
1.00
183.95


ATOM
2353
N
LEU
E
36
29.007
−56.824
−33.154
1.00
186.01


ATOM
2354
CA
LEU
E
36
28.841
−55.418
−32.872
1.00
188.00


ATOM
2355
C
LEU
E
36
29.854
−54.463
−33.440
1.00
194.09


ATOM
2356
O
LEU
E
36
30.974
−54.824
−33.793
1.00
195.15


ATOM
2357
CB
LEU
E
36
28.735
−55.209
−31.329
1.00
186.42


ATOM
2358
CG
LEU
E
36
29.940
−55.531
−30.446
1.00
191.59


ATOM
2359
CD1
LEU
E
36
29.782
−54.895
−29.103
1.00
191.87


ATOM
2360
CD2
LEU
E
36
30.075
−56.989
−30.204
1.00
190.62


ATOM
2361
N
LEU
E
37
29.447
−53.206
−33.434
1.00
191.02


ATOM
2362
CA
LEU
E
37
30.281
−52.099
−33.777
1.00
194.35


ATOM
2363
C
LEU
E
37
30.990
−52.258
−35.128
1.00
205.69


ATOM
2364
O
LEU
E
37
32.214
−52.182
−35.222
1.00
207.67


ATOM
2365
CB
LEU
E
37
31.244
−51.804
−32.607
1.00
193.19


ATOM
2366
CG
LEU
E
37
30.612
−51.458
−31.264
1.00
194.32


ATOM
2367
CD1
LEU
E
37
31.625
−51.555
−30.167
1.00
192.32


ATOM
2368
CD2
LEU
E
37
30.010
−50.072
−31.283
1.00
201.76


ATOM
2369
N
MET
E
38
30.194
−52.465
−36.178
1.00
205.24


ATOM
2370
CA
MET
E
38
30.674
−52.532
−37.556
1.00
208.91


ATOM
2371
C
MET
E
38
30.133
−51.379
−38.316
1.00
213.96


ATOM
2372
O
MET
E
38
29.020
−51.415
−38.844
1.00
213.31


ATOM
2373
CB
MET
E
38
30.330
−53.850
−38.166
1.00
210.41


ATOM
2374
CG
MET
E
38
31.136
−54.859
−37.507
1.00
212.57


ATOM
2375
SD
MET
E
38
30.965
−56.474
−38.132
1.00
216.21


ATOM
2376
CE
MET
E
38
31.890
−57.271
−36.932
1.00
210.50


ATOM
2377
N
PHE
E
39
30.926
−50.324
−38.318
1.00
211.67


ATOM
2378
CA
PHE
E
39
30.538
−49.050
−38.856
1.00
214.01


ATOM
2379
C
PHE
E
39
30.725
−48.879
−40.337
1.00
220.85


ATOM
2380
O
PHE
E
39
30.068
−48.011
−40.918
1.00
223.10


ATOM
2381
CB
PHE
E
39
31.258
−47.940
−38.109
1.00
216.79


ATOM
2382
CG
PHE
E
39
30.981
−47.854
−36.631
1.00
214.43


ATOM
2383
CD1
PHE
E
39
32.009
−47.685
−35.728
1.00
218.04


ATOM
2384
CD2
PHE
E
39
29.695
−47.958
−36.141
1.00
212.97


ATOM
2385
CE1
PHE
E
39
31.753
−47.550
−34.363
1.00
216.47


ATOM
2386
CE2
PHE
E
39
29.446
−47.862
−34.773
1.00
213.33


ATOM
2387
CZ
PHE
E
39
30.476
−47.655
−33.891
1.00
211.86


ATOM
2388
N
LYS
E
40
31.620
−49.665
−40.958
1.00
216.91


ATOM
2389
CA
LYS
E
40
31.898
−49.475
−42.383
1.00
220.65


ATOM
2390
C
LYS
E
40
31.346
−50.530
−43.329
1.00
222.92


ATOM
2391
O
LYS
E
40
31.478
−50.405
−44.553
1.00
224.72


ATOM
2392
CB
LYS
E
40
33.377
−49.150
−42.637
1.00
226.35


ATOM
2393
CG
LYS
E
40
33.757
−47.711
−42.249
1.00
231.72


ATOM
2394
CD
LYS
E
40
35.116
−47.256
−42.817
1.00
236.87


ATOM
2395
CE
LYS
E
40
36.353
−47.900
−42.205
1.00
234.87


ATOM
2396
NZ
LYS
E
40
36.489
−47.639
−40.743
1.00
231.80


ATOM
2397
N
THR
E
41
30.683
−51.544
−42.760
1.00
216.48


ATOM
2398
CA
THR
E
41
30.031
−52.612
−43.518
1.00
216.23


ATOM
2399
C
THR
E
41
28.849
−52.045
−44.331
1.00
222.87


ATOM
2400
O
THR
E
41
28.281
−50.999
−43.977
1.00
223.52


ATOM
2401
CB
THR
E
41
29.660
−53.820
−42.608
1.00
217.13


ATOM
2402
OG1
THR
E
41
29.104
−53.363
−41.371
1.00
212.47


ATOM
2403
CG2
THR
E
41
30.854
−54.681
−42.278
1.00
214.22


ATOM
2404
N
ARG
E
42
28.520
−52.721
−45.445
1.00
220.22


ATOM
2405
CA
ARG
E
42
27.473
−52.327
−46.376
1.00
221.62


ATOM
2406
C
ARG
E
42
26.653
−53.567
−46.756
1.00
224.84


ATOM
2407
O
ARG
E
42
27.093
−54.685
−46.488
1.00
223.17


ATOM
2408
CB
ARG
E
42
28.113
−51.682
−47.612
1.00
224.41


ATOM
2409
CG
ARG
E
42
29.142
−50.605
−47.288
1.00
230.96


ATOM
2410
CD
ARG
E
42
30.525
−50.980
−47.788
1.00
236.77


ATOM
2411
NE
ARG
E
42
30.995
−50.017
−48.789
1.00
244.00


ATOM
2412
CZ
ARG
E
42
32.134
−50.119
−49.469
1.00
249.77


ATOM
2413
NH1
ARG
E
42
32.941
−51.155
−49.274
1.00
233.66


ATOM
2414
NH2
ARG
E
42
32.475
−49.183
−50.349
1.00
241.43


ATOM
2415
N
PRO
E
43
25.442
−53.409
−47.323
1.00
222.40


ATOM
2416
CA
PRO
E
43
24.621
−54.594
−47.656
1.00
220.77


ATOM
2417
C
PRO
E
43
25.313
−55.669
−48.502
1.00
227.06


ATOM
2418
O
PRO
E
43
25.099
−56.866
−48.281
1.00
224.64


ATOM
2419
CB
PRO
E
43
23.414
−53.988
−48.366
1.00
225.14


ATOM
2420
CG
PRO
E
43
23.326
−52.591
−47.841
1.00
230.23


ATOM
2421
CD
PRO
E
43
24.735
−52.154
−47.650
1.00
226.84


ATOM
2422
N
GLU
E
44
26.191
−55.235
−49.420
1.00
228.77


ATOM
2423
CA
GLU
E
44
26.958
−56.117
−50.299
1.00
231.78


ATOM
2424
C
GLU
E
44
27.824
−57.103
−49.533
1.00
233.10


ATOM
2425
O
GLU
E
44
28.011
−58.217
−50.009
1.00
233.75


ATOM
2426
CB
GLU
E
44
27.803
−55.316
−51.296
1.00
239.38


ATOM
2427
CG
GLU
E
44
28.774
−54.336
−50.645
1.00
253.39


ATOM
2428
CD
GLU
E
44
29.113
−53.072
−51.414
1.00
277.00


ATOM
2429
OE1
GLU
E
44
28.651
−52.908
−52.568
1.00
277.81


ATOM
2430
OE2
GLU
E
44
29.855
−52.238
−50.848
1.00
275.47


ATOM
2431
N
ASP
E
45
28.320
−56.709
−48.343
1.00
226.13


ATOM
2432
CA
ASP
E
45
29.135
−57.560
−47.480
1.00
222.52


ATOM
2433
C
ASP
E
45
28.328
−58.734
−46.895
1.00
219.85


ATOM
2434
O
ASP
E
45
28.909
−59.735
−46.484
1.00
216.59


ATOM
2435
CB
ASP
E
45
29.787
−56.708
−46.373
1.00
223.04


ATOM
2436
CG
ASP
E
45
30.761
−55.657
−46.909
1.00
241.04


ATOM
2437
OD1
ASP
E
45
30.306
−54.732
−47.630
1.00
244.07


ATOM
2438
OD2
ASP
E
45
31.988
−55.831
−46.728
1.00
250.01


ATOM
2439
N
PHE
E
46
26.998
−58.626
−46.891
1.00
215.66


ATOM
2440
CA
PHE
E
46
26.102
−59.638
−46.343
1.00
212.72


ATOM
2441
C
PHE
E
46
25.268
−60.390
−47.371
1.00
222.83


ATOM
2442
O
PHE
E
46
24.539
−61.313
−47.004
1.00
218.72


ATOM
2443
CB
PHE
E
46
25.181
−59.002
−45.297
1.00
210.92


ATOM
2444
CG
PHE
E
46
25.912
−58.340
−44.158
1.00
210.43


ATOM
2445
CD2
PHE
E
46
25.721
−56.995
−43.880
1.00
213.14


ATOM
2446
CD1
PHE
E
46
26.818
−59.056
−43.380
1.00
211.07


ATOM
2447
CE2
PHE
E
46
26.412
−56.382
−42.835
1.00
214.23


ATOM
2448
CE1
PHE
E
46
27.489
−58.448
−42.323
1.00
210.11


ATOM
2449
CZ
PHE
E
46
27.280
−57.121
−42.055
1.00
209.86


ATOM
2450
N
ARG
E
47
25.358
−60.007
−48.651
1.00
229.04


ATOM
2451
CA
ARG
E
47
24.618
−60.683
−49.736
1.00
233.12


ATOM
2452
C
ARG
E
47
25.021
−62.169
−49.896
1.00
241.29


ATOM
2453
O
ARG
E
47
24.177
−63.009
−50.238
1.00
240.96


ATOM
2454
CB
ARG
E
47
24.843
−59.966
−51.073
1.00
237.88


ATOM
2455
CG
ARG
E
47
24.190
−58.604
−51.172
1.00
247.35


ATOM
2456
CD
ARG
E
47
24.204
−58.178
−52.615
1.00
266.76


ATOM
2457
NE
ARG
E
47
25.502
−57.624
−53.013
1.00
274.69


ATOM
2458
CZ
ARG
E
47
26.342
−58.186
−53.879
1.00
283.07


ATOM
2459
NH1
ARG
E
47
26.033
−59.339
−54.463
1.00
273.99


ATOM
2460
NH2
ARG
E
47
27.494
−57.597
−54.172
1.00
270.92


ATOM
2461
N
ASP
E
48
26.318
−62.466
−49.630
1.00
240.30


ATOM
2462
CA
ASP
E
48
27.009
−63.764
−49.769
1.00
240.95


ATOM
2463
C
ASP
E
48
27.293
−64.480
−48.452
1.00
238.74


ATOM
2464
O
ASP
E
48
28.084
−65.429
−48.442
1.00
238.53


ATOM
2465
CB
ASP
E
48
28.372
−63.537
−50.510
1.00
247.94


ATOM
2466
CG
ASP
E
48
29.584
−63.095
−49.647
1.00
257.66


ATOM
2467
OD1
ASP
E
48
30.715
−63.578
−49.909
1.00
260.92


ATOM
2468
OD2
ASP
E
48
29.387
−62.299
−48.688
1.00
259.51


ATOM
2469
N
LEU
E
49
26.711
−64.019
−47.354
1.00
230.65


ATOM
2470
CA
LEU
E
49
27.059
−64.490
−46.027
1.00
226.23


ATOM
2471
C
LEU
E
49
25.960
−65.271
−45.316
1.00
227.93


ATOM
2472
O
LEU
E
49
24.854
−64.768
−45.110
1.00
225.98


ATOM
2473
CB
LEU
E
49
27.507
−63.260
−45.238
1.00
224.43


ATOM
2474
CG
LEU
E
49
28.515
−63.451
−44.151
1.00
225.71


ATOM
2475
CD1
LEU
E
49
29.763
−64.144
−44.667
1.00
228.97


ATOM
2476
CD2
LEU
E
49
28.868
−62.120
−43.570
1.00
225.36


ATOM
2477
N
SER
E
50
26.282
−66.511
−44.942
1.00
223.93


ATOM
2478
CA
SER
E
50
25.344
−67.430
−44.321
1.00
220.52


ATOM
2479
C
SER
E
50
26.045
−68.407
−43.399
1.00
224.01


ATOM
2480
O
SER
E
50
27.121
−68.908
−43.746
1.00
226.92


ATOM
2481
CB
SER
E
50
24.625
−68.228
−45.405
1.00
225.59


ATOM
2482
OG
SER
E
50
23.463
−68.843
−44.880
1.00
230.25


ATOM
2483
N
PHE
E
51
25.417
−68.707
−42.240
1.00
216.19


ATOM
2484
CA
PHE
E
51
25.893
−69.705
−41.273
1.00
213.82


ATOM
2485
C
PHE
E
51
24.761
−70.696
−40.990
1.00
215.45


ATOM
2486
O
PHE
E
51
24.155
−70.687
−39.912
1.00
211.83


ATOM
2487
CB
PHE
E
51
26.445
−69.047
−40.011
1.00
213.12


ATOM
2488
CG
PHE
E
51
27.612
−68.169
−40.350
1.00
217.61


ATOM
2489
CD1
PHE
E
51
28.866
−68.719
−40.612
1.00
223.97


ATOM
2490
CD2
PHE
E
51
27.443
−66.802
−40.508
1.00
220.59


ATOM
2491
CE1
PHE
E
51
29.951
−67.902
−40.972
1.00
227.81


ATOM
2492
CE2
PHE
E
51
28.521
−65.986
−40.866
1.00
226.40


ATOM
2493
CZ
PHE
E
51
29.771
−66.539
−41.094
1.00
226.94


ATOM
2494
N
PRO
E
52
24.468
−71.563
−41.988
1.00
214.14


ATOM
2495
CA
PRO
E
52
23.326
−72.471
−41.874
1.00
212.52


ATOM
2496
C
PRO
E
52
23.517
−73.593
−40.886
1.00
214.19


ATOM
2497
O
PRO
E
52
22.547
−74.268
−40.559
1.00
212.68


ATOM
2498
CB
PRO
E
52
23.183
−73.015
−43.292
1.00
218.25


ATOM
2499
CG
PRO
E
52
24.571
−73.016
−43.819
1.00
225.74


ATOM
2500
CD
PRO
E
52
25.142
−71.737
−43.289
1.00
220.21


ATOM
2501
N
LYS
E
53
24.761
−73.802
−40.433
1.00
209.82


ATOM
2502
CA
LYS
E
53
25.087
−74.833
−39.459
1.00
206.87


ATOM
2503
C
LYS
E
53
24.665
−74.466
−38.042
1.00
204.87


ATOM
2504
O
LYS
E
53
24.495
−75.377
−37.234
1.00
203.12


ATOM
2505
CB
LYS
E
53
26.589
−75.157
−39.480
1.00
210.62


ATOM
2506
CG
LYS
E
53
27.036
−75.989
−40.658
1.00
221.74


ATOM
2507
CD
LYS
E
53
28.508
−76.418
−40.454
1.00
231.38


ATOM
2508
CE
LYS
E
53
28.989
−77.503
−41.403
1.00
248.74


ATOM
2509
NZ
LYS
E
53
30.481
−77.546
−41.497
1.00
260.38


ATOM
2510
N
LEU
E
54
24.557
−73.166
−37.709
1.00
197.84


ATOM
2511
CA
LEU
E
54
24.226
−72.750
−36.348
1.00
193.01


ATOM
2512
C
LEU
E
54
22.796
−73.053
−35.943
1.00
191.32


ATOM
2513
O
LEU
E
54
21.854
−72.573
−36.573
1.00
190.05


ATOM
2514
CB
LEU
E
54
24.584
−71.293
−36.116
1.00
192.64


ATOM
2515
CG
LEU
E
54
24.456
−70.815
−34.687
1.00
194.02


ATOM
2516
CD1
LEU
E
54
25.467
−71.507
−33.776
1.00
194.20


ATOM
2517
CD2
LEU
E
54
24.615
−69.334
−34.626
1.00
194.58


ATOM
2518
N
ILE
E
55
22.654
−73.878
−34.899
1.00
184.72


ATOM
2519
CA
ILE
E
55
21.369
−74.357
−34.414
1.00
182.14


ATOM
2520
C
ILE
E
55
21.089
−73.777
−33.071
1.00
181.29


ATOM
2521
O
ILE
E
55
19.931
−73.504
−32.736
1.00
179.11


ATOM
2522
CB
ILE
E
55
21.356
−75.912
−34.335
1.00
185.99


ATOM
2523
CG1
ILE
E
55
21.665
−76.548
−35.693
1.00
190.47


ATOM
2524
CG2
ILE
E
55
20.034
−76.450
−33.795
1.00
184.36


ATOM
2525
CD1
ILE
E
55
22.781
−77.507
−35.665
1.00
204.18


ATOM
2526
N
MET
E
56
22.134
−73.590
−32.287
1.00
176.70


ATOM
2527
CA
MET
E
56
21.905
−73.194
−30.930
1.00
175.02


ATOM
2528
C
MET
E
56
23.007
−72.361
−30.309
1.00
178.16


ATOM
2529
O
MET
E
56
24.178
−72.611
−30.569
1.00
179.68


ATOM
2530
CB
MET
E
56
21.792
−74.492
−30.151
1.00
177.15


ATOM
2531
CG
MET
E
56
20.912
−74.424
−28.978
1.00
179.44


ATOM
2532
SD
MET
E
56
21.562
−75.340
−27.563
1.00
183.29


ATOM
2533
CE
MET
E
56
22.142
−76.951
−28.344
1.00
181.96


ATOM
2534
N
ILE
E
57
22.629
−71.424
−29.430
1.00
171.34


ATOM
2535
CA
ILE
E
57
23.538
−70.593
−28.640
1.00
169.98


ATOM
2536
C
ILE
E
57
23.170
−70.873
−27.176
1.00
174.04


ATOM
2537
O
ILE
E
57
21.995
−70.764
−26.836
1.00
175.13


ATOM
2538
CB
ILE
E
57
23.366
−69.112
−29.013
1.00
172.38


ATOM
2539
CG1
ILE
E
57
23.758
−68.891
−30.477
1.00
174.79


ATOM
2540
CG2
ILE
E
57
24.157
−68.217
−28.058
1.00
170.82


ATOM
2541
CD1
ILE
E
57
23.390
−67.534
−31.079
1.00
182.82


ATOM
2542
N
THR
E
58
24.119
−71.256
−26.317
1.00
168.58


ATOM
2543
CA
THR
E
58
23.776
−71.595
−24.928
1.00
166.65


ATOM
2544
C
THR
E
58
23.419
−70.383
−24.055
1.00
170.17


ATOM
2545
O
THR
E
58
22.624
−70.497
−23.118
1.00
167.37


ATOM
2546
CB
THR
E
58
24.911
−72.407
−24.329
1.00
171.53


ATOM
2547
OG1
THR
E
58
25.212
−73.507
−25.198
1.00
168.23


ATOM
2548
CG2
THR
E
58
24.693
−72.788
−22.862
1.00
169.84


ATOM
2549
N
ASP
E
59
24.041
−69.241
−24.333
1.00
169.85


ATOM
2550
CA
ASP
E
59
23.826
−68.046
−23.523
1.00
170.97


ATOM
2551
C
ASP
E
59
22.881
−67.066
−24.198
1.00
176.29


ATOM
2552
O
ASP
E
59
21.666
−67.253
−24.152
1.00
177.93


ATOM
2553
CB
ASP
E
59
25.169
−67.380
−23.124
1.00
174.96


ATOM
2554
CG
ASP
E
59
26.064
−68.215
−22.203
1.00
197.37


ATOM
2555
OD1
ASP
E
59
25.616
−69.303
−21.752
1.00
200.42


ATOM
2556
OD2
ASP
E
59
27.214
−67.783
−21.930
1.00
205.45


ATOM
2557
N
TYR
E
60
23.420
−66.030
−24.832
1.00
170.89


ATOM
2558
CA
TYR
E
60
22.593
−65.026
−25.475
1.00
169.59


ATOM
2559
C
TYR
E
60
23.161
−64.595
−26.839
1.00
173.76


ATOM
2560
O
TYR
E
60
24.348
−64.814
−27.137
1.00
175.28


ATOM
2561
CB
TYR
E
60
22.408
−63.824
−24.527
1.00
170.01


ATOM
2562
CG
TYR
E
60
23.692
−63.093
−24.218
1.00
171.92


ATOM
2563
CD1
TYR
E
60
24.237
−62.178
−25.123
1.00
175.00


ATOM
2564
CD2
TYR
E
60
24.352
−63.289
−23.013
1.00
172.85


ATOM
2565
CE1
TYR
E
60
25.427
−61.513
−24.851
1.00
176.57


ATOM
2566
CE2
TYR
E
60
25.543
−62.626
−22.727
1.00
175.77


ATOM
2567
CZ
TYR
E
60
26.073
−61.738
−23.647
1.00
186.72


ATOM
2568
OH
TYR
E
60
27.235
−61.087
−23.333
1.00
193.30


ATOM
2569
N
LEU
E
61
22.297
−63.951
−27.651
1.00
167.80


ATOM
2570
CA
LEU
E
61
22.629
−63.354
−28.948
1.00
166.94


ATOM
2571
C
LEU
E
61
22.429
−61.856
−28.835
1.00
165.03


ATOM
2572
O
LEU
E
61
21.343
−61.409
−28.472
1.00
162.44


ATOM
2573
CB
LEU
E
61
21.721
−63.895
−30.057
1.00
167.08


ATOM
2574
CG
LEU
E
61
21.944
−63.361
−31.451
1.00
172.98


ATOM
2575
CD1
LEU
E
61
23.396
−63.592
−31.907
1.00
174.51


ATOM
2576
CD2
LEU
E
61
20.942
−63.965
−32.413
1.00
173.73


ATOM
2577
N
LEU
E
62
23.480
−61.099
−29.128
1.00
160.27


ATOM
2578
CA
LEU
E
62
23.474
−59.647
−29.093
1.00
160.75


ATOM
2579
C
LEU
E
62
24.011
−59.057
−30.408
1.00
169.79


ATOM
2580
O
LEU
E
62
25.129
−59.366
−30.836
1.00
170.96


ATOM
2581
CB
LEU
E
62
24.265
−59.150
−27.878
1.00
159.45


ATOM
2582
CG
LEU
E
62
24.775
−57.705
−27.808
1.00
164.24


ATOM
2583
CD1
LEU
E
62
23.703
−56.628
−27.963
1.00
164.66


ATOM
2584
CD2
LEU
E
62
25.523
−57.507
−26.557
1.00
165.61


ATOM
2585
N
LEU
E
63
23.185
−58.208
−31.049
1.00
167.84


ATOM
2586
CA
LEU
E
63
23.515
−57.499
−32.286
1.00
169.68


ATOM
2587
C
LEU
E
63
23.325
−56.012
−31.991
1.00
175.72


ATOM
2588
O
LEU
E
63
22.253
−55.562
−31.553
1.00
174.17


ATOM
2589
CB
LEU
E
63
22.631
−57.919
−33.472
1.00
169.93


ATOM
2590
CG
LEU
E
63
22.750
−59.299
−34.142
1.00
172.66


ATOM
2591
CD1
LEU
E
63
24.143
−59.765
−34.310
1.00
172.03


ATOM
2592
CD2
LEU
E
63
21.988
−60.315
−33.419
1.00
173.40


ATOM
2593
N
PHE
E
64
24.400
−55.261
−32.195
1.00
175.49


ATOM
2594
CA
PHE
E
64
24.453
−53.844
−31.870
1.00
177.54


ATOM
2595
C
PHE
E
64
25.294
−53.082
−32.877
1.00
179.72


ATOM
2596
O
PHE
E
64
26.457
−53.412
−33.096
1.00
180.08


ATOM
2597
CB
PHE
E
64
25.024
−53.674
−30.434
1.00
179.15


ATOM
2598
CG
PHE
E
64
25.415
−52.279
−30.000
1.00
184.16


ATOM
2599
CD1
PHE
E
64
24.447
−51.305
−29.764
1.00
189.52


ATOM
2600
CD2
PHE
E
64
26.745
−51.949
−29.793
1.00
188.36


ATOM
2601
CE1
PHE
E
64
24.810
−50.012
−29.360
1.00
193.78


ATOM
2602
CE2
PHE
E
64
27.104
−50.658
−29.389
1.00
194.53


ATOM
2603
CZ
PHE
E
64
26.134
−49.700
−29.176
1.00
194.39


ATOM
2604
N
ARG
E
65
24.726
−52.062
−33.489
1.00
174.49


ATOM
2605
CA
ARG
E
65
25.504
−51.262
−34.420
1.00
176.37


ATOM
2606
C
ARG
E
65
26.229
−52.050
−35.538
1.00
182.13


ATOM
2607
O
ARG
E
65
27.423
−51.865
−35.729
1.00
183.65


ATOM
2608
CB
ARG
E
65
26.482
−50.346
−33.651
1.00
172.01


ATOM
2609
CG
ARG
E
65
25.829
−49.285
−32.784
1.00
169.53


ATOM
2610
CD
ARG
E
65
25.318
−48.107
−33.575
1.00
173.21


ATOM
2611
NE
ARG
E
65
24.904
−47.037
−32.674
1.00
177.78


ATOM
2612
CZ
ARG
E
65
24.674
−45.784
−33.052
1.00
204.44


ATOM
2613
NH1
ARG
E
65
24.793
−45.434
−34.334
1.00
204.01


ATOM
2614
NH2
ARG
E
65
24.333
−44.867
−32.155
1.00
189.35


ATOM
2615
N
VAL
E
66
25.514
−52.910
−36.269
1.00
178.46


ATOM
2616
CA
VAL
E
66
26.086
−53.646
−37.402
1.00
179.53


ATOM
2617
C
VAL
E
66
25.443
−53.027
−38.645
1.00
190.01


ATOM
2618
O
VAL
E
66
24.255
−53.251
−38.947
1.00
186.65


ATOM
2619
CB
VAL
E
66
25.922
−55.189
−37.324
1.00
178.89


ATOM
2620
CG1
VAL
E
66
26.557
−55.875
−38.528
1.00
180.23


ATOM
2621
CG2
VAL
E
66
26.499
−55.744
−36.024
1.00
175.16


ATOM
2622
N
TYR
E
67
26.227
−52.176
−39.318
1.00
195.82


ATOM
2623
CA
TYR
E
67
25.773
−51.423
−40.487
1.00
201.79


ATOM
2624
C
TYR
E
67
25.695
−52.298
−41.732
1.00
211.76


ATOM
2625
O
TYR
E
67
26.472
−53.249
−41.892
1.00
210.90


ATOM
2626
CB
TYR
E
67
26.632
−50.170
−40.721
1.00
206.21


ATOM
2627
CG
TYR
E
67
26.453
−49.088
−39.675
1.00
207.15


ATOM
2628
CD2
TYR
E
67
26.306
−47.761
−40.042
1.00
212.69


ATOM
2629
CD1
TYR
E
67
26.504
−49.385
−38.312
1.00
204.56


ATOM
2630
CE2
TYR
E
67
26.197
−46.752
−39.085
1.00
214.55


ATOM
2631
CE1
TYR
E
67
26.364
−48.390
−37.346
1.00
204.99


ATOM
2632
CZ
TYR
E
67
26.217
−47.072
−37.737
1.00
219.62


ATOM
2633
OH
TYR
E
67
26.121
−46.075
−36.795
1.00
224.11


ATOM
2634
N
GLY
E
68
24.711
−52.005
−42.573
1.00
212.80


ATOM
2635
CA
GLY
E
68
24.493
−52.743
−43.812
1.00
215.07


ATOM
2636
C
GLY
E
68
23.714
−54.039
−43.681
1.00
215.47


ATOM
2637
O
GLY
E
68
23.319
−54.609
−44.698
1.00
217.98


ATOM
2638
N
LEU
E
69
23.480
−54.528
−42.446
1.00
205.53


ATOM
2639
CA
LEU
E
69
22.736
−55.771
−42.236
1.00
201.74


ATOM
2640
C
LEU
E
69
21.254
−55.460
−42.192
1.00
205.34


ATOM
2641
O
LEU
E
69
20.812
−54.702
−41.326
1.00
203.87


ATOM
2642
CB
LEU
E
69
23.221
−56.482
−40.964
1.00
197.47


ATOM
2643
CG
LEU
E
69
22.717
−57.892
−40.659
1.00
198.25


ATOM
2644
CD1
LEU
E
69
22.876
−58.819
−41.846
1.00
200.16


ATOM
2645
CD2
LEU
E
69
23.427
−58.448
−39.427
1.00
195.84


ATOM
2646
N
GLU
E
70
20.497
−56.034
−43.148
1.00
203.27


ATOM
2647
CA
GLU
E
70
19.066
−55.781
−43.391
1.00
203.50


ATOM
2648
C
GLU
E
70
18.075
−56.850
−42.877
1.00
202.93


ATOM
2649
O
GLU
E
70
16.884
−56.576
−42.688
1.00
201.71


ATOM
2650
CB
GLU
E
70
18.859
−55.528
−44.894
1.00
209.35


ATOM
2651
CG
GLU
E
70
19.653
−54.328
−45.388
1.00
222.87


ATOM
2652
CD
GLU
E
70
19.688
−54.070
−46.884
1.00
248.25


ATOM
2653
OE1
GLU
E
70
19.376
−52.929
−47.300
1.00
235.06


ATOM
2654
OE2
GLU
E
70
20.192
−54.950
−47.619
1.00
247.85


ATOM
2655
N
SER
E
71
18.567
−58.061
−42.694
1.00
196.85


ATOM
2656
CA
SER
E
71
17.792
−59.198
−42.245
1.00
193.81


ATOM
2657
C
SER
E
71
18.796
−60.204
−41.732
1.00
196.83


ATOM
2658
O
SER
E
71
19.961
−60.186
−42.140
1.00
198.66


ATOM
2659
CB
SER
E
71
17.014
−59.808
−43.412
1.00
198.99


ATOM
2660
OG
SER
E
71
16.265
−60.945
−43.011
1.00
205.64


ATOM
2661
N
LEU
E
72
18.342
−61.086
−40.846
1.00
189.69


ATOM
2662
CA
LEU
E
72
19.152
−62.176
−40.325
1.00
186.70


ATOM
2663
C
LEU
E
72
18.751
−63.499
−40.952
1.00
191.05


ATOM
2664
O
LEU
E
72
19.353
−64.507
−40.611
1.00
189.12


ATOM
2665
CB
LEU
E
72
19.008
−62.286
−38.803
1.00
182.94


ATOM
2666
CG
LEU
E
72
19.239
−61.017
−38.003
1.00
186.91


ATOM
2667
CD1
LEU
E
72
18.939
−61.238
−36.530
1.00
183.34


ATOM
2668
CD2
LEU
E
72
20.637
−60.505
−38.192
1.00
189.87


ATOM
2669
N
LYS
E
73
17.752
−63.516
−41.856
1.00
190.50


ATOM
2670
CA
LYS
E
73
17.232
−64.736
−42.475
1.00
191.52


ATOM
2671
C
LYS
E
73
18.271
−65.564
−43.237
1.00
198.31


ATOM
2672
O
LYS
E
73
18.098
−66.777
−43.357
1.00
197.77


ATOM
2673
CB
LYS
E
73
16.017
−64.426
−43.366
1.00
197.26


ATOM
2674
CG
LYS
E
73
16.392
−63.931
−44.769
1.00
221.92


ATOM
2675
CD
LYS
E
73
15.232
−63.426
−45.623
1.00
234.55


ATOM
2676
CE
LYS
E
73
14.275
−64.451
−46.195
1.00
246.97


ATOM
2677
NZ
LYS
E
73
12.950
−63.850
−46.530
1.00
257.96


ATOM
2678
N
ASP
E
74
19.303
−64.898
−43.800
1.00
197.32


ATOM
2679
CA
ASP
E
74
20.367
−65.557
−44.546
1.00
199.31


ATOM
2680
C
ASP
E
74
21.532
−65.804
−43.624
1.00
201.40


ATOM
2681
O
ASP
E
74
22.249
−66.782
−43.802
1.00
201.86


ATOM
2682
CB
ASP
E
74
20.838
−64.722
−45.750
1.00
205.61


ATOM
2683
CG
ASP
E
74
19.744
−64.026
−46.553
1.00
219.18


ATOM
2684
OD2
ASP
E
74
19.520
−64.413
−47.726
1.00
229.32


ATOM
2685
OD1
ASP
E
74
19.142
−63.061
−46.024
1.00
218.24


ATOM
2686
N
LEU
E
75
21.749
−64.919
−42.654
1.00
195.55


ATOM
2687
CA
LEU
E
75
22.846
−65.113
−41.729
1.00
193.35


ATOM
2688
C
LEU
E
75
22.624
−66.337
−40.804
1.00
197.60


ATOM
2689
O
LEU
E
75
23.466
−67.243
−40.790
1.00
197.65


ATOM
2690
CB
LEU
E
75
23.060
−63.838
−40.936
1.00
191.34


ATOM
2691
CG
LEU
E
75
24.434
−63.582
−40.354
1.00
194.18


ATOM
2692
CD1
LEU
E
75
25.527
−63.642
−41.409
1.00
196.90


ATOM
2693
CD2
LEU
E
75
24.434
−62.223
−39.680
1.00
196.18


ATOM
2694
N
PHE
E
76
21.478
−66.394
−40.071
1.00
192.83


ATOM
2695
CA
PHE
E
76
21.190
−67.490
−39.108
1.00
189.03


ATOM
2696
C
PHE
E
76
19.865
−68.177
−39.398
1.00
195.86


ATOM
2697
O
PHE
E
76
18.947
−68.154
−38.561
1.00
192.12


ATOM
2698
CB
PHE
E
76
21.197
−66.950
−37.683
1.00
186.33


ATOM
2699
CG
PHE
E
76
22.432
−66.170
−37.334
1.00
186.59


ATOM
2700
CD2
PHE
E
76
22.348
−64.826
−37.010
1.00
187.73


ATOM
2701
CD1
PHE
E
76
23.687
−66.779
−37.339
1.00
188.47


ATOM
2702
CE2
PHE
E
76
23.489
−64.109
−36.666
1.00
190.53


ATOM
2703
CE1
PHE
E
76
24.829
−66.058
−37.012
1.00
189.50


ATOM
2704
CZ
PHE
E
76
24.718
−64.735
−36.653
1.00
188.83


ATOM
2705
N
PRO
E
77
19.775
−68.827
−40.586
1.00
198.47


ATOM
2706
CA
PRO
E
77
18.492
−69.424
−41.004
1.00
199.27


ATOM
2707
C
PRO
E
77
17.974
−70.569
−40.140
1.00
201.11


ATOM
2708
O
PRO
E
77
16.758
−70.802
−40.092
1.00
200.33


ATOM
2709
CB
PRO
E
77
18.775
−69.889
−42.440
1.00
204.88


ATOM
2710
CG
PRO
E
77
20.282
−70.074
−42.503
1.00
210.19


ATOM
2711
CD
PRO
E
77
20.831
−69.030
−41.610
1.00
203.64


ATOM
2712
N
ASN
E
78
18.910
−71.290
−39.481
1.00
195.34


ATOM
2713
CA
ASN
E
78
18.638
−72.493
−38.706
1.00
191.99


ATOM
2714
C
ASN
E
78
18.737
−72.361
−37.204
1.00
190.82


ATOM
2715
O
ASN
E
78
18.559
−73.362
−36.505
1.00
189.91


ATOM
2716
CB
ASN
E
78
19.498
−73.637
−39.228
1.00
191.18


ATOM
2717
CG
ASN
E
78
19.082
−74.066
−40.605
1.00
207.69


ATOM
2718
OD1
ASN
E
78
17.889
−74.265
−40.872
1.00
196.81


ATOM
2719
ND2
ASN
E
78
20.044
−74.156
−41.522
1.00
201.87


ATOM
2720
N
LEU
E
79
19.017
−71.151
−36.698
1.00
183.87


ATOM
2721
CA
LEU
E
79
19.107
−70.919
−35.259
1.00
179.34


ATOM
2722
C
LEU
E
79
17.728
−71.173
−34.668
1.00
184.27


ATOM
2723
O
LEU
E
79
16.773
−70.459
−34.992
1.00
185.10


ATOM
2724
CB
LEU
E
79
19.606
−69.512
−34.942
1.00
177.52


ATOM
2725
CG
LEU
E
79
19.636
−69.171
−33.473
1.00
175.99


ATOM
2726
CD1
LEU
E
79
20.726
−69.923
−32.752
1.00
175.09


ATOM
2727
CD2
LEU
E
79
19.839
−67.746
−33.295
1.00
173.84


ATOM
2728
N
THR
E
80
17.638
−72.237
−33.842
1.00
179.71


ATOM
2729
CA
THR
E
80
16.404
−72.811
−33.289
1.00
178.14


ATOM
2730
C
THR
E
80
16.193
−72.529
−31.816
1.00
178.57


ATOM
2731
O
THR
E
80
15.050
−72.369
−31.374
1.00
177.86


ATOM
2732
CB
THR
E
80
16.367
−74.343
−33.593
1.00
187.50


ATOM
2733
OG1
THR
E
80
16.520
−74.564
−34.994
1.00
196.24


ATOM
2734
CG2
THR
E
80
15.058
−75.005
−33.188
1.00
180.91


ATOM
2735
N
VAL
E
81
17.281
−72.533
−31.046
1.00
172.91


ATOM
2736
CA
VAL
E
81
17.224
−72.354
−29.600
1.00
170.72


ATOM
2737
C
VAL
E
81
18.328
−71.421
−29.126
1.00
178.24


ATOM
2738
O
VAL
E
81
19.478
−71.492
−29.575
1.00
179.01


ATOM
2739
CB
VAL
E
81
17.328
−73.717
−28.843
1.00
171.97


ATOM
2740
CG1
VAL
E
81
17.314
−73.535
−27.324
1.00
169.77


ATOM
2741
CG2
VAL
E
81
16.240
−74.676
−29.261
1.00
171.64


ATOM
2742
N
ILE
E
82
17.966
−70.553
−28.201
1.00
175.53


ATOM
2743
CA
ILE
E
82
18.896
−69.721
−27.458
1.00
175.30


ATOM
2744
C
ILE
E
82
18.564
−70.134
−26.017
1.00
179.61


ATOM
2745
O
ILE
E
82
17.454
−69.879
−25.560
1.00
181.02


ATOM
2746
CB
ILE
E
82
18.712
−68.205
−27.703
1.00
178.35


ATOM
2747
CG1
ILE
E
82
18.911
−67.828
−29.167
1.00
178.59


ATOM
2748
CG2
ILE
E
82
19.665
−67.438
−26.803
1.00
179.79


ATOM
2749
CD1
ILE
E
82
18.393
−66.488
−29.491
1.00
175.19


ATOM
2750
N
ARG
E
83
19.471
−70.817
−25.334
1.00
174.24


ATOM
2751
CA
ARG
E
83
19.186
−71.349
−24.007
1.00
173.20


ATOM
2752
C
ARG
E
83
19.122
−70.332
−22.867
1.00
176.94


ATOM
2753
O
ARG
E
83
18.357
−70.514
−21.909
1.00
175.18


ATOM
2754
CB
ARG
E
83
20.118
−72.517
−23.688
1.00
173.12


ATOM
2755
CG
ARG
E
83
19.967
−73.668
−24.667
1.00
176.74


ATOM
2756
CD
ARG
E
83
20.701
−74.889
−24.193
1.00
184.58


ATOM
2757
NE
ARG
E
83
19.973
−75.623
−23.159
1.00
192.85


ATOM
2758
CZ
ARG
E
83
19.038
−76.534
−23.409
1.00
202.35


ATOM
2759
NH1
ARG
E
83
18.688
−76.811
−24.659
1.00
180.49


ATOM
2760
NH2
ARG
E
83
18.437
−77.167
−22.410
1.00
190.84


ATOM
2761
N
GLY
E
84
19.909
−69.279
−22.967
1.00
174.94


ATOM
2762
CA
GLY
E
84
19.871
−68.250
−21.946
1.00
175.76


ATOM
2763
C
GLY
E
84
20.458
−68.675
−20.620
1.00
181.73


ATOM
2764
O
GLY
E
84
19.985
−68.214
−19.582
1.00
181.69


ATOM
2765
N
SER
E
85
21.501
−69.542
−20.637
1.00
180.07


ATOM
2766
CA
SER
E
85
22.184
−70.025
−19.417
1.00
180.98


ATOM
2767
C
SER
E
85
22.790
−68.870
−18.646
1.00
186.48


ATOM
2768
O
SER
E
85
22.747
−68.870
−17.414
1.00
187.61


ATOM
2769
CB
SER
E
85
23.254
−71.054
−19.754
1.00
186.06


ATOM
2770
OG
SER
E
85
22.641
−72.211
−20.291
1.00
197.31


ATOM
2771
N
ARG
E
86
23.396
−67.918
−19.382
1.00
181.98


ATOM
2772
CA
ARG
E
86
23.864
−66.622
−18.915
1.00
181.47


ATOM
2773
C
ARG
E
86
23.139
−65.624
−19.804
1.00
181.77


ATOM
2774
O
ARG
E
86
22.841
−65.916
−20.970
1.00
181.26


ATOM
2775
CB
ARG
E
86
25.378
−66.462
−19.018
1.00
183.44


ATOM
2776
CG
ARG
E
86
26.120
−67.009
−17.823
1.00
195.04


ATOM
2777
CD
ARG
E
86
27.040
−68.131
−18.228
1.00
208.09


ATOM
2778
NE
ARG
E
86
26.574
−69.397
−17.659
1.00
217.74


ATOM
2779
CZ
ARG
E
86
27.244
−70.542
−17.700
1.00
222.22


ATOM
2780
NH1
ARG
E
86
28.433
−70.603
−18.290
1.00
209.39


ATOM
2781
NH2
ARG
E
86
26.736
−71.633
−17.141
1.00
196.49


ATOM
2782
N
LEU
E
87
22.799
−64.474
−19.240
1.00
175.98


ATOM
2783
CA
LEU
E
87
22.026
−63.474
−19.958
1.00
175.19


ATOM
2784
C
LEU
E
87
22.713
−62.127
−19.992
1.00
178.90


ATOM
2785
O
LEU
E
87
23.607
−61.852
−19.188
1.00
179.89


ATOM
2786
CB
LEU
E
87
20.656
−63.311
−19.288
1.00
174.99


ATOM
2787
CG
LEU
E
87
19.785
−64.536
−19.139
1.00
178.18


ATOM
2788
CD1
LEU
E
87
18.644
−64.247
−18.198
1.00
179.32


ATOM
2789
CD2
LEU
E
87
19.245
−64.983
−20.461
1.00
179.66


ATOM
2790
N
PHE
E
88
22.255
−61.266
−20.900
1.00
173.38


ATOM
2791
CA
PHE
E
88
22.765
−59.921
−21.019
1.00
173.37


ATOM
2792
C
PHE
E
88
21.701
−59.093
−20.345
1.00
178.78


ATOM
2793
O
PHE
E
88
20.647
−58.878
−20.939
1.00
178.53


ATOM
2794
CB
PHE
E
88
22.936
−59.554
−22.499
1.00
174.47


ATOM
2795
CG
PHE
E
88
23.702
−58.286
−22.706
1.00
176.61


ATOM
2796
CD1
PHE
E
88
25.086
−58.292
−22.733
1.00
179.18


ATOM
2797
CD2
PHE
E
88
23.043
−57.085
−22.881
1.00
180.57


ATOM
2798
CE1
PHE
E
88
25.795
−57.120
−22.907
1.00
183.05


ATOM
2799
CE2
PHE
E
88
23.754
−55.906
−23.047
1.00
186.38


ATOM
2800
CZ
PHE
E
88
25.128
−55.931
−23.071
1.00
185.07


ATOM
2801
N
PHE
E
89
21.931
−58.707
−19.078
1.00
176.57


ATOM
2802
CA
PHE
E
89
20.924
−57.998
−18.279
1.00
178.27


ATOM
2803
C
PHE
E
89
19.526
−58.612
−18.475
1.00
180.58


ATOM
2804
O
PHE
E
89
18.718
−57.987
−19.144
1.00
180.58


ATOM
2805
CB
PHE
E
89
20.806
−56.520
−18.691
1.00
183.00


ATOM
2806
CG
PHE
E
89
20.092
−55.627
−17.699
1.00
187.96


ATOM
2807
CD1
PHE
E
89
20.635
−54.403
−17.331
1.00
194.81


ATOM
2808
CD2
PHE
E
89
18.878
−56.017
−17.124
1.00
190.94


ATOM
2809
CE1
PHE
E
89
19.992
−53.586
−16.401
1.00
198.82


ATOM
2810
CE2
PHE
E
89
18.229
−55.202
−16.199
1.00
197.17


ATOM
2811
CZ
PHE
E
89
18.788
−53.986
−15.846
1.00
198.39


ATOM
2812
N
ASN
E
90
19.216
−59.801
−17.925
1.00
175.34


ATOM
2813
CA
ASN
E
90
17.913
−60.481
−18.103
1.00
173.68


ATOM
2814
C
ASN
E
90
17.481
−60.831
−19.540
1.00
172.91


ATOM
2815
O
ASN
E
90
16.408
−61.416
−19.688
1.00
172.46


ATOM
2816
CB
ASN
E
90
16.763
−59.806
−17.337
1.00
180.08


ATOM
2817
CG
ASN
E
90
17.065
−59.588
−15.884
1.00
232.02


ATOM
2818
OD1
ASN
E
90
18.013
−58.871
−15.525
1.00
231.93


ATOM
2819
ND2
ASN
E
90
16.267
−60.205
−15.017
1.00
231.15


ATOM
2820
N
TYR
E
91
18.282
−60.508
−20.580
1.00
165.62


ATOM
2821
CA
TYR
E
91
17.895
−60.795
−21.958
1.00
163.02


ATOM
2822
C
TYR
E
91
18.701
−61.872
−22.614
1.00
163.85


ATOM
2823
O
TYR
E
91
19.923
−61.922
−22.471
1.00
162.85


ATOM
2824
CB
TYR
E
91
17.922
−59.542
−22.829
1.00
165.33


ATOM
2825
CG
TYR
E
91
17.140
−58.402
−22.241
1.00
168.43


ATOM
2826
CD2
TYR
E
91
17.783
−57.296
−21.712
1.00
171.71


ATOM
2827
CD1
TYR
E
91
15.750
−58.407
−22.251
1.00
170.39


ATOM
2828
CE2
TYR
E
91
17.069
−56.257
−21.114
1.00
175.19


ATOM
2829
CE1
TYR
E
91
15.019
−57.367
−21.666
1.00
173.69


ATOM
2830
CZ
TYR
E
91
15.686
−56.302
−21.074
1.00
180.28


ATOM
2831
OH
TYR
E
91
14.974
−55.268
−20.511
1.00
178.14


ATOM
2832
N
ALA
E
92
18.012
−62.735
−23.346
1.00
160.00


ATOM
2833
CA
ALA
E
92
18.656
−63.791
−24.115
1.00
159.46


ATOM
2834
C
ALA
E
92
18.820
−63.345
−25.582
1.00
165.58


ATOM
2835
O
ALA
E
92
19.590
−63.960
−26.326
1.00
166.58


ATOM
2836
CB
ALA
E
92
17.853
−65.072
−24.030
1.00
158.87


ATOM
2837
N
LEU
E
93
18.082
−62.295
−26.001
1.00
161.68


ATOM
2838
CA
LEU
E
93
18.144
−61.760
−27.357
1.00
162.51


ATOM
2839
C
LEU
E
93
18.133
−60.237
−27.315
1.00
170.84


ATOM
2840
O
LEU
E
93
17.174
−59.638
−26.807
1.00
174.02


ATOM
2841
CB
LEU
E
93
16.978
−62.282
−28.218
1.00
161.93


ATOM
2842
CG
LEU
E
93
16.945
−61.780
−29.667
1.00
167.00


ATOM
2843
CD1
LEU
E
93
18.178
−62.252
−30.433
1.00
166.62


ATOM
2844
CD2
LEU
E
93
15.682
−62.190
−30.377
1.00
168.02


ATOM
2845
N
VAL
E
94
19.194
−59.609
−27.852
1.00
165.99


ATOM
2846
CA
VAL
E
94
19.338
−58.150
−27.862
1.00
166.45


ATOM
2847
C
VAL
E
94
19.626
−57.642
−29.283
1.00
171.68


ATOM
2848
O
VAL
E
94
20.628
−58.017
−29.896
1.00
171.86


ATOM
2849
CB
VAL
E
94
20.401
−57.679
−26.832
1.00
169.12


ATOM
2850
CG1
VAL
E
94
20.533
−56.164
−26.788
1.00
170.73


ATOM
2851
CG2
VAL
E
94
20.088
−58.204
−25.447
1.00
167.28


ATOM
2852
N
ILE
E
95
18.727
−56.791
−29.796
1.00
168.62


ATOM
2853
CA
ILE
E
95
18.814
−56.130
−31.102
1.00
169.60


ATOM
2854
C
ILE
E
95
18.740
−54.634
−30.781
1.00
172.68


ATOM
2855
O
ILE
E
95
17.658
−54.102
−30.487
1.00
170.08


ATOM
2856
CB
ILE
E
95
17.656
−56.578
−32.026
1.00
172.90


ATOM
2857
CG1
ILE
E
95
17.586
−58.109
−32.182
1.00
170.00


ATOM
2858
CG2
ILE
E
95
17.740
−55.886
−33.367
1.00
177.83


ATOM
2859
CD1
ILE
E
95
18.672
−58.757
−33.017
1.00
171.24


ATOM
2860
N
PHE
E
96
19.900
−53.974
−30.795
1.00
171.67


ATOM
2861
CA
PHE
E
96
20.011
−52.592
−30.371
1.00
174.46


ATOM
2862
C
PHE
E
96
20.809
−51.725
−31.324
1.00
180.83


ATOM
2863
O
PHE
E
96
21.924
−52.066
−31.693
1.00
177.59


ATOM
2864
CB
PHE
E
96
20.632
−52.563
−28.970
1.00
175.25


ATOM
2865
CG
PHE
E
96
20.729
−51.211
−28.313
1.00
179.66


ATOM
2866
CD1
PHE
E
96
19.592
−50.480
−28.021
1.00
183.82


ATOM
2867
CD2
PHE
E
96
21.952
−50.711
−27.899
1.00
184.28


ATOM
2868
CE1
PHE
E
96
19.682
−49.246
−27.380
1.00
187.85


ATOM
2869
CE2
PHE
E
96
22.045
−49.471
−27.262
1.00
190.09


ATOM
2870
CZ
PHE
E
96
20.908
−48.749
−27.001
1.00
189.46


ATOM
2871
N
GLU
E
97
20.226
−50.592
−31.724
1.00
182.89


ATOM
2872
CA
GLU
E
97
20.852
−49.641
−32.630
1.00
186.67


ATOM
2873
C
GLU
E
97
21.392
−50.336
−33.865
1.00
194.47


ATOM
2874
O
GLU
E
97
22.528
−50.122
−34.247
1.00
194.76


ATOM
2875
CB
GLU
E
97
21.888
−48.772
−31.901
1.00
188.95


ATOM
2876
CG
GLU
E
97
21.240
−47.843
−30.888
1.00
199.31


ATOM
2877
CD
GLU
E
97
22.080
−46.764
−30.229
1.00
219.81


ATOM
2878
OE1
GLU
E
97
21.449
−45.829
−29.683
1.00
197.61


ATOM
2879
OE2
GLU
E
97
23.329
−46.887
−30.164
1.00
218.54


ATOM
2880
N
MET
E
98
20.569
−51.229
−34.439
1.00
194.51


ATOM
2881
CA
MET
E
98
20.806
−51.944
−35.696
1.00
196.90


ATOM
2882
C
MET
E
98
20.191
−51.103
−36.823
1.00
206.23


ATOM
2883
O
MET
E
98
19.078
−51.352
−37.325
1.00
206.42


ATOM
2884
CB
MET
E
98
20.240
−53.366
−35.657
1.00
196.87


ATOM
2885
CG
MET
E
98
21.007
−54.269
−34.743
1.00
198.65


ATOM
2886
SD
MET
E
98
22.630
−54.733
−35.365
1.00
205.73


ATOM
2887
CE
MET
E
98
22.181
−55.901
−36.671
1.00
202.87


ATOM
2888
N
VAL
E
99
20.910
−50.021
−37.132
1.00
206.79


ATOM
2889
CA
VAL
E
99
20.515
−49.079
−38.142
1.00
211.29


ATOM
2890
C
VAL
E
99
20.782
−49.876
−39.370
1.00
217.99


ATOM
2891
O
VAL
E
99
21.882
−50.409
−39.537
1.00
218.07


ATOM
2892
CB
VAL
E
99
21.290
−47.745
−38.181
1.00
218.69


ATOM
2893
CG1
VAL
E
99
20.461
−46.717
−38.946
1.00
223.17


ATOM
2894
CG2
VAL
E
99
21.592
−47.221
−36.775
1.00
216.83


ATOM
2895
N
HIS
E
100
19.718
−50.108
−40.106
1.00
216.01


ATOM
2896
CA
HIS
E
100
19.564
−50.833
−41.368
1.00
217.10


ATOM
2897
C
HIS
E
100
18.745
−52.090
−41.285
1.00
216.04


ATOM
2898
O
HIS
E
100
18.309
−52.549
−42.334
1.00
217.47


ATOM
2899
CB
HIS
E
100
20.852
−51.066
−42.197
1.00
219.75


ATOM
2900
CG
HIS
E
100
21.659
−49.832
−42.452
1.00
226.79


ATOM
2901
ND1
HIS
E
100
23.034
−49.842
−42.326
1.00
228.43


ATOM
2902
CD2
HIS
E
100
21.258
−48.577
−42.751
1.00
232.39


ATOM
2903
CE1
HIS
E
100
23.430
−48.612
−42.586
1.00
231.74


ATOM
2904
NE2
HIS
E
100
22.398
−47.820
−42.870
1.00
234.63


ATOM
2905
N
LEU
E
101
18.512
−52.653
−40.089
1.00
206.81


ATOM
2906
CA
LEU
E
101
17.755
−53.901
−40.001
1.00
203.12


ATOM
2907
C
LEU
E
101
16.294
−53.662
−40.298
1.00
208.45


ATOM
2908
O
LEU
E
101
15.678
−52.787
−39.693
1.00
207.91


ATOM
2909
CB
LEU
E
101
17.974
−54.601
−38.656
1.00
198.42


ATOM
2910
CG
LEU
E
101
17.659
−56.100
−38.590
1.00
199.13


ATOM
2911
CD1
LEU
E
101
18.736
−56.937
−39.264
1.00
198.64


ATOM
2912
CD2
LEU
E
101
17.517
−56.548
−37.162
1.00
197.61


ATOM
2913
N
LYS
E
102
15.780
−54.378
−41.303
1.00
207.57


ATOM
2914
CA
LYS
E
102
14.408
−54.235
−41.788
1.00
210.19


ATOM
2915
C
LYS
E
102
13.472
−55.304
−41.218
1.00
214.61


ATOM
2916
O
LYS
E
102
12.260
−55.080
−41.117
1.00
214.77


ATOM
2917
CB
LYS
E
102
14.394
−54.215
−43.328
1.00
215.40


ATOM
2918
CG
LYS
E
102
15.008
−52.933
−43.887
1.00
224.14


ATOM
2919
CD
LYS
E
102
15.428
−52.992
−45.340
1.00
233.32


ATOM
2920
CE
LYS
E
102
15.833
−51.609
−45.824
1.00
239.02


ATOM
2921
NZ
LYS
E
102
16.816
−51.659
−46.942
1.00
243.77


ATOM
2922
N
GLU
E
103
14.037
−56.461
−40.840
1.00
210.55


ATOM
2923
CA
GLU
E
103
13.296
−57.581
−40.254
1.00
208.24


ATOM
2924
C
GLU
E
103
14.282
−58.425
−39.483
1.00
208.90


ATOM
2925
O
GLU
E
103
15.473
−58.372
−39.778
1.00
209.79


ATOM
2926
CB
GLU
E
103
12.632
−58.438
−41.351
1.00
211.49


ATOM
2927
CG
GLU
E
103
13.632
−58.996
−42.352
1.00
228.95


ATOM
2928
CD
GLU
E
103
13.073
−59.618
−43.616
1.00
269.43


ATOM
2929
OE1
GLU
E
103
11.993
−59.192
−44.092
1.00
274.44


ATOM
2930
OE2
GLU
E
103
13.766
−60.502
−44.168
1.00
269.87


ATOM
2931
N
LEU
E
104
13.803
−59.221
−38.517
1.00
201.53


ATOM
2932
CA
LEU
E
104
14.665
−60.178
−37.814
1.00
197.58


ATOM
2933
C
LEU
E
104
14.918
−61.343
−38.743
1.00
199.70


ATOM
2934
O
LEU
E
104
16.055
−61.662
−39.034
1.00
199.52


ATOM
2935
CB
LEU
E
104
14.049
−60.711
−36.507
1.00
194.78


ATOM
2936
CG
LEU
E
104
13.860
−59.717
−35.371
1.00
200.02


ATOM
2937
CD1
LEU
E
104
13.429
−60.413
−34.097
1.00
197.75


ATOM
2938
CD2
LEU
E
104
15.113
−58.948
−35.103
1.00
203.95


ATOM
2939
N
GLY
E
105
13.853
−61.991
−39.172
1.00
195.60


ATOM
2940
CA
GLY
E
105
13.947
−63.116
−40.085
1.00
196.11


ATOM
2941
C
GLY
E
105
14.530
−64.395
−39.530
1.00
197.63


ATOM
2942
O
GLY
E
105
14.964
−65.239
−40.310
1.00
197.55


ATOM
2943
N
LEU
E
106
14.530
−64.571
−38.194
1.00
192.36


ATOM
2944
CA
LEU
E
106
15.029
−65.789
−37.529
1.00
189.48


ATOM
2945
C
LEU
E
106
13.901
−66.807
−37.558
1.00
193.82


ATOM
2946
O
LEU
E
106
13.374
−67.171
−36.517
1.00
190.71


ATOM
2947
CB
LEU
E
106
15.482
−65.468
−36.080
1.00
186.35


ATOM
2948
CG
LEU
E
106
16.663
−64.487
−35.962
1.00
190.30


ATOM
2949
CD1
LEU
E
106
16.848
−63.990
−34.546
1.00
187.88


ATOM
2950
CD2
LEU
E
106
17.949
−65.087
−36.505
1.00
191.97


ATOM
2951
N
TYR
E
107
13.519
−67.251
−38.767
1.00
194.71


ATOM
2952
CA
TYR
E
107
12.353
−68.115
−39.008
1.00
195.93


ATOM
2953
C
TYR
E
107
12.354
−69.510
−38.410
1.00
196.21


ATOM
2954
O
TYR
E
107
11.284
−70.158
−38.364
1.00
195.35


ATOM
2955
CB
TYR
E
107
11.925
−68.124
−40.478
1.00
201.82


ATOM
2956
CG
TYR
E
107
12.935
−68.753
−41.412
1.00
206.44


ATOM
2957
CD1
TYR
E
107
12.830
−70.088
−41.788
1.00
208.80


ATOM
2958
CD2
TYR
E
107
13.981
−68.002
−41.948
1.00
209.16


ATOM
2959
CE1
TYR
E
107
13.755
−70.665
−42.654
1.00
211.84


ATOM
2960
CE2
TYR
E
107
14.910
−68.569
−42.810
1.00
212.05


ATOM
2961
CZ
TYR
E
107
14.785
−69.895
−43.174
1.00
219.83


ATOM
2962
OH
TYR
E
107
15.702
−70.428
−44.045
1.00
222.64


ATOM
2963
N
ASN
E
108
13.545
−69.956
−37.929
1.00
189.14


ATOM
2964
CA
ASN
E
108
13.691
−71.233
−37.241
1.00
185.35


ATOM
2965
C
ASN
E
108
13.776
−71.097
−35.736
1.00
182.34


ATOM
2966
O
ASN
E
108
13.872
−72.123
−35.058
1.00
179.59


ATOM
2967
CB
ASN
E
108
14.844
−72.058
−37.790
1.00
185.83


ATOM
2968
CG
ASN
E
108
14.423
−72.962
−38.914
1.00
214.49


ATOM
2969
OD1
ASN
E
108
13.673
−72.570
−39.812
1.00
215.20


ATOM
2970
ND2
ASN
E
108
14.962
−74.174
−38.920
1.00
206.12


ATOM
2971
N
LEU
E
109
13.707
−69.858
−35.194
1.00
176.36


ATOM
2972
CA
LEU
E
109
13.800
−69.663
−33.744
1.00
172.95


ATOM
2973
C
LEU
E
109
12.518
−70.066
−33.026
1.00
175.91


ATOM
2974
O
LEU
E
109
11.498
−69.393
−33.127
1.00
174.85


ATOM
2975
CB
LEU
E
109
14.248
−68.250
−33.390
1.00
172.61


ATOM
2976
CG
LEU
E
109
14.420
−67.956
−31.908
1.00
174.80


ATOM
2977
CD1
LEU
E
109
15.609
−68.722
−31.319
1.00
173.54


ATOM
2978
CD2
LEU
E
109
14.573
−66.472
−31.671
1.00
177.15


ATOM
2979
N
MET
E
110
12.585
−71.181
−32.307
1.00
173.32


ATOM
2980
CA
MET
E
110
11.441
−71.800
−31.662
1.00
173.48


ATOM
2981
C
MET
E
110
11.323
−71.568
−30.189
1.00
177.79


ATOM
2982
O
MET
E
110
10.209
−71.554
−29.638
1.00
179.61


ATOM
2983
CB
MET
E
110
11.490
−73.304
−31.926
1.00
175.77


ATOM
2984
CG
MET
E
110
11.299
−73.659
−33.372
1.00
182.02


ATOM
2985
SD
MET
E
110
9.517
−73.431
−33.776
1.00
188.77


ATOM
2986
CE
MET
E
110
9.444
−71.687
−34.553
1.00
187.26


ATOM
2987
N
ASN
E
111
12.468
−71.458
−29.539
1.00
171.64


ATOM
2988
CA
ASN
E
111
12.497
−71.354
−28.106
1.00
169.59


ATOM
2989
C
ASN
E
111
13.682
−70.542
−27.590
1.00
170.39


ATOM
2990
O
ASN
E
111
14.800
−70.648
−28.087
1.00
168.69


ATOM
2991
CB
ASN
E
111
12.502
−72.767
−27.514
1.00
170.07


ATOM
2992
CG
ASN
E
111
12.403
−72.854
−26.019
1.00
196.20


ATOM
2993
OD1
ASN
E
111
13.405
−72.725
−25.292
1.00
195.05


ATOM
2994
ND2
ASN
E
111
11.210
−73.094
−25.520
1.00
185.83


ATOM
2995
N
ILE
E
112
13.411
−69.732
−26.575
1.00
165.18


ATOM
2996
CA
ILE
E
112
14.374
−68.999
−25.779
1.00
162.75


ATOM
2997
C
ILE
E
112
14.111
−69.560
−24.381
1.00
169.44


ATOM
2998
O
ILE
E
112
13.095
−69.258
−23.756
1.00
170.64


ATOM
2999
CB
ILE
E
112
14.225
−67.489
−25.912
1.00
164.33


ATOM
3000
CG1
ILE
E
112
14.631
−67.061
−27.330
1.00
164.68


ATOM
3001
CG2
ILE
E
112
15.059
−66.813
−24.850
1.00
162.10


ATOM
3002
CD1
ILE
E
112
14.253
−65.647
−27.743
1.00
169.35


ATOM
3003
N
THR
E
113
14.987
−70.463
−23.949
1.00
166.28


ATOM
3004
CA
THR
E
113
14.808
−71.267
−22.767
1.00
166.87


ATOM
3005
C
THR
E
113
14.762
−70.510
−21.483
1.00
175.94


ATOM
3006
O
THR
E
113
14.000
−70.862
−20.582
1.00
177.47


ATOM
3007
CB
THR
E
113
15.784
−72.410
−22.767
1.00
173.29


ATOM
3008
OG1
THR
E
113
15.910
−72.888
−24.105
1.00
167.88


ATOM
3009
CG2
THR
E
113
15.329
−73.553
−21.862
1.00
174.83


ATOM
3010
N
ARG
E
114
15.571
−69.476
−21.391
1.00
173.86


ATOM
3011
CA
ARG
E
114
15.610
−68.633
−20.215
1.00
174.08


ATOM
3012
C
ARG
E
114
15.874
−67.232
−20.685
1.00
178.38


ATOM
3013
O
ARG
E
114
16.632
−67.043
−21.634
1.00
178.99


ATOM
3014
CB
ARG
E
114
16.714
−69.129
−19.255
1.00
172.10


ATOM
3015
CG
ARG
E
114
16.745
−68.406
−17.909
1.00
171.43


ATOM
3016
CD
ARG
E
114
17.862
−68.895
−17.026
1.00
163.95


ATOM
3017
NE
ARG
E
114
18.217
−67.895
−16.024
1.00
163.02


ATOM
3018
CZ
ARG
E
114
19.396
−67.285
−15.950
1.00
181.31


ATOM
3019
NH1
ARG
E
114
20.352
−67.570
−16.818
1.00
168.19


ATOM
3020
NH2
ARG
E
114
19.625
−66.377
−15.013
1.00
178.46


ATOM
3021
N
GLY
E
115
15.253
−66.270
−20.029
1.00
174.82


ATOM
3022
CA
GLY
E
115
15.478
−64.871
−20.348
1.00
175.81


ATOM
3023
C
GLY
E
115
14.423
−64.268
−21.239
1.00
179.59


ATOM
3024
O
GLY
E
115
13.497
−64.971
−21.650
1.00
178.34


ATOM
3025
N
SER
E
116
14.561
−62.946
−21.510
1.00
176.43


ATOM
3026
CA
SER
E
116
13.653
−62.125
−22.309
1.00
176.41


ATOM
3027
C
SER
E
116
14.301
−61.511
−23.570
1.00
176.19


ATOM
3028
O
SER
E
116
15.483
−61.712
−23.837
1.00
175.59


ATOM
3029
CB
SER
E
116
13.027
−61.039
−21.441
1.00
182.46


ATOM
3030
OG
SER
E
116
12.419
−61.584
−20.284
1.00
190.11


ATOM
3031
N
VAL
E
117
13.509
−60.769
−24.338
1.00
170.20


ATOM
3032
CA
VAL
E
117
13.924
−60.156
−25.585
1.00
169.52


ATOM
3033
C
VAL
E
117
13.904
−58.654
−25.470
1.00
175.72


ATOM
3034
O
VAL
E
117
12.898
−58.085
−25.034
1.00
178.51


ATOM
3035
CB
VAL
E
117
12.985
−60.648
−26.700
1.00
173.28


ATOM
3036
CG1
VAL
E
117
13.190
−59.895
−27.989
1.00
174.82


ATOM
3037
CG2
VAL
E
117
13.188
−62.119
−26.945
1.00
171.02


ATOM
3038
N
ARG
E
118
15.007
−58.004
−25.879
1.00
171.58


ATOM
3039
CA
ARG
E
118
15.095
−56.541
−25.947
1.00
173.70


ATOM
3040
C
ARG
E
118
15.444
−56.131
−27.347
1.00
179.38


ATOM
3041
O
ARG
E
118
16.557
−56.386
−27.784
1.00
177.40


ATOM
3042
CB
ARG
E
118
16.105
−55.940
−24.966
1.00
171.08


ATOM
3043
CG
ARG
E
118
16.047
−54.416
−24.969
1.00
169.45


ATOM
3044
CD
ARG
E
118
16.029
−53.908
−23.576
1.00
170.29


ATOM
3045
NE
ARG
E
118
16.190
−52.467
−23.477
1.00
183.64


ATOM
3046
CZ
ARG
E
118
15.942
−51.778
−22.366
1.00
211.82


ATOM
3047
NH1
ARG
E
118
15.452
−52.388
−21.291
1.00
201.35


ATOM
3048
NH2
ARG
E
118
16.116
−50.460
−22.341
1.00
208.19


ATOM
3049
N
ILE
E
119
14.486
−55.534
−28.055
1.00
179.89


ATOM
3050
CA
ILE
E
119
14.624
−55.049
−29.429
1.00
182.36


ATOM
3051
C
ILE
E
119
14.273
−53.561
−29.374
1.00
191.89


ATOM
3052
O
ILE
E
119
13.097
−53.182
−29.335
1.00
192.31


ATOM
3053
CB
ILE
E
119
13.715
−55.831
−30.393
1.00
184.83


ATOM
3054
CG1
ILE
E
119
14.037
−57.317
−30.394
1.00
180.96


ATOM
3055
CG2
ILE
E
119
13.811
−55.247
−31.780
1.00
189.22


ATOM
3056
CD1
ILE
E
119
13.064
−58.107
−31.131
1.00
183.23


ATOM
3057
N
GLU
E
120
15.307
−52.731
−29.366
1.00
192.13


ATOM
3058
CA
GLU
E
120
15.200
−51.309
−29.108
1.00
196.32


ATOM
3059
C
GLU
E
120
16.005
−50.410
−30.053
1.00
202.59


ATOM
3060
O
GLU
E
120
17.167
−50.704
−30.326
1.00
201.57


ATOM
3061
CB
GLU
E
120
15.674
−51.070
−27.644
1.00
197.26


ATOM
3062
CG
GLU
E
120
15.817
−49.606
−27.236
1.00
209.96


ATOM
3063
CD
GLU
E
120
15.394
−49.215
−25.838
1.00
217.56


ATOM
3064
OE1
GLU
E
120
15.834
−49.895
−24.887
1.00
198.71


ATOM
3065
OE2
GLU
E
120
14.694
−48.184
−25.694
1.00
204.24


ATOM
3066
N
LYS
E
121
15.413
−49.274
−30.478
1.00
201.45


ATOM
3067
CA
LYS
E
121
16.082
−48.224
−31.245
1.00
203.74


ATOM
3068
C
LYS
E
121
16.622
−48.689
−32.584
1.00
208.91


ATOM
3069
O
LYS
E
121
17.774
−48.422
−32.931
1.00
209.49


ATOM
3070
CB
LYS
E
121
17.170
−47.526
−30.392
1.00
205.56


ATOM
3071
CG
LYS
E
121
16.656
−46.597
−29.279
1.00
214.58


ATOM
3072
CD
LYS
E
121
17.817
−46.067
−28.401
1.00
213.98


ATOM
3073
CE
LYS
E
121
17.395
−45.545
−27.044
1.00
210.79


ATOM
3074
NZ
LYS
E
121
16.999
−44.129
−27.109
1.00
225.94


ATOM
3075
N
ASN
E
122
15.766
−49.385
−33.331
1.00
206.28


ATOM
3076
CA
ASN
E
122
16.050
−49.913
−34.656
1.00
206.85


ATOM
3077
C
ASN
E
122
15.175
−49.195
−35.680
1.00
216.44


ATOM
3078
O
ASN
E
122
14.016
−49.551
−35.915
1.00
215.56


ATOM
3079
CB
ASN
E
122
15.876
−51.416
−34.689
1.00
200.30


ATOM
3080
CG
ASN
E
122
16.653
−52.083
−33.599
1.00
216.25


ATOM
3081
OD1
ASN
E
122
17.887
−52.114
−33.628
1.00
208.77


ATOM
3082
ND2
ASN
E
122
15.953
−52.576
−32.582
1.00
207.65


ATOM
3083
N
ASN
E
123
15.723
−48.104
−36.213
1.00
218.26


ATOM
3084
CA
ASN
E
123
15.045
−47.347
−37.230
1.00
223.30


ATOM
3085
C
ASN
E
123
15.268
−48.194
−38.452
1.00
230.44


ATOM
3086
O
ASN
E
123
16.395
−48.609
−38.735
1.00
229.46


ATOM
3087
CB
ASN
E
123
15.600
−45.923
−37.437
1.00
226.78


ATOM
3088
CG
ASN
E
123
17.049
−45.649
−37.086
1.00
243.17


ATOM
3089
OD1
ASN
E
123
17.572
−46.092
−36.048
1.00
230.14


ATOM
3090
ND2
ASN
E
123
17.689
−44.804
−37.909
1.00
237.26


ATOM
3091
N
GLU
E
124
14.162
−48.578
−39.046
1.00
229.88


ATOM
3092
CA
GLU
E
124
13.929
−49.423
−40.210
1.00
230.93


ATOM
3093
C
GLU
E
124
13.267
−50.719
−39.802
1.00
232.06


ATOM
3094
O
GLU
E
124
12.734
−51.382
−40.680
1.00
232.44


ATOM
3095
CB
GLU
E
124
15.172
−49.726
−41.103
1.00
232.89


ATOM
3096
CG
GLU
E
124
15.894
−48.536
−41.730
1.00
248.34


ATOM
3097
CD
GLU
E
124
15.046
−47.443
−42.347
1.00
271.37


ATOM
3098
OE1
GLU
E
124
14.103
−47.772
−43.102
1.00
269.99


ATOM
3099
OE2
GLU
E
124
15.356
−46.252
−42.111
1.00
266.82


ATOM
3100
N
LEU
E
125
13.278
−51.100
−38.508
1.00
225.73


ATOM
3101
CA
LEU
E
125
12.798
−52.429
−38.116
1.00
222.62


ATOM
3102
C
LEU
E
125
11.310
−52.701
−38.116
1.00
230.85


ATOM
3103
O
LEU
E
125
10.568
−52.117
−37.321
1.00
231.16


ATOM
3104
CB
LEU
E
125
13.490
−52.944
−36.834
1.00
218.15


ATOM
3105
CG
LEU
E
125
13.308
−54.431
−36.414
1.00
217.44


ATOM
3106
CD1
LEU
E
125
13.748
−55.394
−37.493
1.00
216.47


ATOM
3107
CD2
LEU
E
125
14.100
−54.737
−35.180
1.00
215.38


ATOM
3108
N
CYS
E
126
10.894
−53.635
−38.991
1.00
230.78


ATOM
3109
CA
CYS
E
126
9.515
−54.098
−39.128
1.00
232.99


ATOM
3110
C
CYS
E
126
9.443
−55.597
−38.907
1.00
233.48


ATOM
3111
O
CYS
E
126
10.410
−56.174
−38.407
1.00
230.94


ATOM
3112
CB
CYS
E
126
8.924
−53.688
−40.470
1.00
238.89


ATOM
3113
SG
CYS
E
126
8.660
−51.906
−40.635
1.00
248.77


ATOM
3114
N
TYR
E
127
8.295
−56.226
−39.223
1.00
229.22


ATOM
3115
CA
TYR
E
127
8.067
−57.653
−39.001
1.00
225.30


ATOM
3116
C
TYR
E
127
8.226
−58.030
−37.523
1.00
220.39


ATOM
3117
O
TYR
E
127
8.716
−59.101
−37.192
1.00
215.83


ATOM
3118
CB
TYR
E
127
8.887
−58.524
−39.983
1.00
227.50


ATOM
3119
CG
TYR
E
127
8.292
−58.554
−41.379
1.00
235.61


ATOM
3120
CD1
TYR
E
127
8.812
−57.761
−42.404
1.00
242.00


ATOM
3121
CD2
TYR
E
127
7.194
−59.360
−41.673
1.00
237.27


ATOM
3122
CE1
TYR
E
127
8.248
−57.769
−43.688
1.00
247.85


ATOM
3123
CE2
TYR
E
127
6.632
−59.388
−42.953
1.00
242.32


ATOM
3124
CZ
TYR
E
127
7.156
−58.586
−43.958
1.00
254.90


ATOM
3125
OH
TYR
E
127
6.590
−58.621
−45.218
1.00
259.42


ATOM
3126
N
LEU
E
128
7.796
−57.125
−36.642
1.00
215.53


ATOM
3127
CA
LEU
E
128
7.813
−57.324
−35.201
1.00
211.50


ATOM
3128
C
LEU
E
128
6.422
−57.612
−34.680
1.00
213.42


ATOM
3129
O
LEU
E
128
6.263
−58.510
−33.852
1.00
209.21


ATOM
3130
CB
LEU
E
128
8.376
−56.089
−34.505
1.00
212.12


ATOM
3131
CG
LEU
E
128
9.840
−55.811
−34.755
1.00
214.78


ATOM
3132
CD1
LEU
E
128
10.268
−54.581
−34.011
1.00
215.14


ATOM
3133
CD2
LEU
E
128
10.701
−57.011
−34.385
1.00
213.22


ATOM
3134
N
ALA
E
129
5.411
−56.858
−35.159
1.00
212.72


ATOM
3135
CA
ALA
E
129
4.017
−57.062
−34.750
1.00
213.13


ATOM
3136
C
ALA
E
129
3.487
−58.426
−35.225
1.00
214.06


ATOM
3137
O
ALA
E
129
2.502
−58.934
−34.678
1.00
213.33


ATOM
3138
CB
ALA
E
129
3.140
−55.951
−35.293
1.00
218.57


ATOM
3139
N
THR
E
130
4.159
−59.014
−36.232
1.00
208.37


ATOM
3140
CA
THR
E
130
3.803
−60.280
−36.853
1.00
206.56


ATOM
3141
C
THR
E
130
4.315
−61.485
−36.115
1.00
210.00


ATOM
3142
O
THR
E
130
3.968
−62.601
−36.493
1.00
210.58


ATOM
3143
CB
THR
E
130
4.290
−60.330
−38.303
1.00
200.79


ATOM
3144
OG1
THR
E
130
5.685
−60.054
−38.370
1.00
187.94


ATOM
3145
CG2
THR
E
130
3.561
−59.372
−39.173
1.00
204.35


ATOM
3146
N
ILE
E
131
5.179
−61.282
−35.113
1.00
204.44


ATOM
3147
CA
ILE
E
131
5.778
−62.364
−34.340
1.00
200.07


ATOM
3148
C
ILE
E
131
4.979
−62.594
−33.065
1.00
201.36


ATOM
3149
O
ILE
E
131
4.775
−61.659
−32.283
1.00
201.51


ATOM
3150
CB
ILE
E
131
7.253
−62.038
−33.974
1.00
201.27


ATOM
3151
CG1
ILE
E
131
8.144
−61.852
−35.207
1.00
203.09


ATOM
3152
CG2
ILE
E
131
7.821
−63.107
−33.052
1.00
198.80


ATOM
3153
CD1
ILE
E
131
9.481
−61.142
−34.904
1.00
214.16


ATOM
3154
N
ASP
E
132
4.596
−63.844
−32.819
1.00
195.30


ATOM
3155
CA
ASP
E
132
3.991
−64.210
−31.548
1.00
193.98


ATOM
3156
C
ASP
E
132
5.123
−64.741
−30.655
1.00
192.77


ATOM
3157
O
ASP
E
132
5.545
−65.914
−30.743
1.00
190.71


ATOM
3158
CB
ASP
E
132
2.888
−65.262
−31.699
1.00
196.95


ATOM
3159
CG
ASP
E
132
2.243
−65.693
−30.384
1.00
209.98


ATOM
3160
OD2
ASP
E
132
1.429
−66.640
−30.405
1.00
215.84


ATOM
3161
OD1
ASP
E
132
2.554
−65.078
−29.326
1.00
210.44


ATOM
3162
N
TRP
E
133
5.608
−63.865
−29.789
1.00
186.19


ATOM
3163
CA
TRP
E
133
6.683
−64.215
−28.892
1.00
182.22


ATOM
3164
C
TRP
E
133
6.263
−65.219
−27.804
1.00
184.18


ATOM
3165
O
TRP
E
133
7.115
−65.921
−27.272
1.00
181.52


ATOM
3166
CB
TRP
E
133
7.278
−62.940
−28.300
1.00
181.16


ATOM
3167
CG
TRP
E
133
8.058
−62.099
−29.277
1.00
183.02


ATOM
3168
CD1
TRP
E
133
7.684
−60.898
−29.804
1.00
188.73


ATOM
3169
CD2
TRP
E
133
9.372
−62.372
−29.794
1.00
181.53


ATOM
3170
NE1
TRP
E
133
8.678
−60.408
−30.619
1.00
188.68


ATOM
3171
CE2
TRP
E
133
9.730
−61.289
−30.623
1.00
187.41


ATOM
3172
CE3
TRP
E
133
10.273
−63.442
−29.658
1.00
180.46


ATOM
3173
CZ2
TRP
E
133
10.943
−61.248
−31.319
1.00
186.25


ATOM
3174
CZ3
TRP
E
133
11.485
−63.388
−30.330
1.00
181.59


ATOM
3175
CH2
TRP
E
133
11.810
−62.300
−31.147
1.00
184.10


ATOM
3176
N
SER
E
134
4.962
−65.324
−27.500
1.00
183.16


ATOM
3177
CA
SER
E
134
4.473
−66.273
−26.490
1.00
182.84


ATOM
3178
C
SER
E
134
4.729
−67.708
−26.862
1.00
184.35


ATOM
3179
O
SER
E
134
4.722
−68.554
−25.981
1.00
182.42


ATOM
3180
CB
SER
E
134
3.000
−66.049
−26.146
1.00
192.31


ATOM
3181
OG
SER
E
134
2.111
−66.313
−27.220
1.00
209.64


ATOM
3182
N
ARG
E
135
5.000
−67.986
−28.144
1.00
182.10


ATOM
3183
CA
ARG
E
135
5.369
−69.331
−28.604
1.00
181.25


ATOM
3184
C
ARG
E
135
6.871
−69.627
−28.339
1.00
181.24


ATOM
3185
O
ARG
E
135
7.318
−70.775
−28.453
1.00
178.24


ATOM
3186
CB
ARG
E
135
5.131
−69.456
−30.121
1.00
184.72


ATOM
3187
CG
ARG
E
135
3.672
−69.329
−30.572
1.00
198.02


ATOM
3188
CD
ARG
E
135
2.824
−70.590
−30.311
1.00
204.52


ATOM
3189
NE
ARG
E
135
1.629
−70.298
−29.509
1.00
209.86


ATOM
3190
CZ
ARG
E
135
1.529
−70.509
−28.198
1.00
215.28


ATOM
3191
NH1
ARG
E
135
2.537
−71.047
−27.525
1.00
195.63


ATOM
3192
NH2
ARG
E
135
0.413
−70.193
−27.552
1.00
198.56


ATOM
3193
N
ILE
E
136
7.646
−68.571
−28.080
1.00
177.14


ATOM
3194
CA
ILE
E
136
9.090
−68.640
−27.956
1.00
174.94


ATOM
3195
C
ILE
E
136
9.593
−68.449
−26.524
1.00
178.02


ATOM
3196
O
ILE
E
136
10.495
−69.149
−26.103
1.00
177.22


ATOM
3197
CB
ILE
E
136
9.682
−67.638
−28.968
1.00
179.27


ATOM
3198
CG1
ILE
E
136
9.227
−67.984
−30.413
1.00
181.96


ATOM
3199
CG2
ILE
E
136
11.198
−67.562
−28.858
1.00
178.03


ATOM
3200
CD1
ILE
E
136
9.481
−66.904
−31.460
1.00
194.32


ATOM
3201
N
LEU
E
137
8.993
−67.544
−25.767
1.00
176.20


ATOM
3202
CA
LEU
E
137
9.372
−67.269
−24.381
1.00
176.29


ATOM
3203
C
LEU
E
137
8.233
−67.515
−23.453
1.00
184.73


ATOM
3204
O
LEU
E
137
7.100
−67.079
−23.727
1.00
186.97


ATOM
3205
CB
LEU
E
137
9.697
−65.799
−24.201
1.00
177.48


ATOM
3206
CG
LEU
E
137
10.738
−65.204
−25.046
1.00
182.54


ATOM
3207
CD1
LEU
E
137
10.142
−64.149
−25.904
1.00
185.04


ATOM
3208
CD2
LEU
E
137
11.747
−64.563
−24.203
1.00
184.43


ATOM
3209
N
ASP
E
138
8.531
−68.126
−22.311
1.00
182.69


ATOM
3210
CA
ASP
E
138
7.517
−68.299
−21.285
1.00
185.67


ATOM
3211
C
ASP
E
138
7.018
−66.927
−20.795
1.00
191.98


ATOM
3212
O
ASP
E
138
5.802
−66.701
−20.660
1.00
192.05


ATOM
3213
CB
ASP
E
138
8.106
−69.075
−20.101
1.00
188.08


ATOM
3214
CG
ASP
E
138
8.138
−70.577
−20.276
1.00
205.56


ATOM
3215
OD1
ASP
E
138
7.342
−71.106
−21.105
1.00
208.43


ATOM
3216
OD2
ASP
E
138
8.934
−71.239
−19.564
1.00
209.81


ATOM
3217
N
SER
E
139
7.992
−66.011
−20.551
1.00
190.10


ATOM
3218
CA
SER
E
139
7.785
−64.640
−20.046
1.00
192.18


ATOM
3219
C
SER
E
139
7.878
−63.590
−21.128
1.00
196.85


ATOM
3220
O
SER
E
139
8.983
−63.245
−21.527
1.00
196.63


ATOM
3221
CB
SER
E
139
8.809
−64.306
−18.962
1.00
194.45


ATOM
3222
OG
SER
E
139
10.122
−64.604
−19.421
1.00
198.39


ATOM
3223
N
VAL
E
140
6.738
−63.078
−21.599
1.00
194.15


ATOM
3224
CA
VAL
E
140
6.760
−62.050
−22.633
1.00
195.56


ATOM
3225
C
VAL
E
140
6.506
−60.712
−21.983
1.00
204.99


ATOM
3226
O
VAL
E
140
6.658
−59.652
−22.601
1.00
207.30


ATOM
3227
CB
VAL
E
140
5.801
−62.314
−23.795
1.00
199.97


ATOM
3228
CG1
VAL
E
140
6.143
−63.620
−24.482
1.00
197.15


ATOM
3229
CG2
VAL
E
140
4.347
−62.310
−23.333
1.00
202.09


ATOM
3230
N
GLU
E
141
6.145
−60.774
−20.703
1.00
202.82


ATOM
3231
CA
GLU
E
141
5.842
−59.645
−19.826
1.00
205.72


ATOM
3232
C
GLU
E
141
7.107
−58.777
−19.641
1.00
209.35


ATOM
3233
O
GLU
E
141
7.021
−57.554
−19.529
1.00
210.50


ATOM
3234
CB
GLU
E
141
5.370
−60.181
−18.456
1.00
207.63


ATOM
3235
CG
GLU
E
141
4.332
−61.299
−18.508
1.00
219.45


ATOM
3236
CD
GLU
E
141
4.877
−62.718
−18.508
1.00
249.96


ATOM
3237
OE1
GLU
E
141
5.854
−62.986
−17.770
1.00
256.95


ATOM
3238
OE2
GLU
E
141
4.298
−63.576
−19.214
1.00
246.57


ATOM
3239
N
ASP
E
142
8.285
−59.440
−19.650
1.00
203.77


ATOM
3240
CA
ASP
E
142
9.581
−58.802
−19.472
1.00
203.22


ATOM
3241
C
ASP
E
142
10.282
−58.370
−20.773
1.00
208.44


ATOM
3242
O
ASP
E
142
11.367
−57.778
−20.724
1.00
209.59


ATOM
3243
CB
ASP
E
142
10.465
−59.649
−18.556
1.00
202.08


ATOM
3244
CG
ASP
E
142
9.856
−59.921
−17.188
1.00
207.25


ATOM
3245
OD1
ASP
E
142
9.952
−61.080
−16.715
1.00
205.58


ATOM
3246
OD2
ASP
E
142
9.267
−58.982
−16.599
1.00
213.47


ATOM
3247
N
ASN
E
143
9.646
−58.625
−21.929
1.00
203.51


ATOM
3248
CA
ASN
E
143
10.155
−58.163
−23.219
1.00
202.44


ATOM
3249
C
ASN
E
143
10.146
−56.627
−23.250
1.00
207.21


ATOM
3250
O
ASN
E
143
9.318
−55.986
−22.581
1.00
209.60


ATOM
3251
CB
ASN
E
143
9.304
−58.704
−24.360
1.00
199.49


ATOM
3252
CG
ASN
E
143
9.610
−60.109
−24.679
1.00
207.69


ATOM
3253
OD1
ASN
E
143
10.479
−60.731
−24.069
1.00
203.81


ATOM
3254
ND2
ASN
E
143
8.893
−60.639
−25.636
1.00
197.37


ATOM
3255
N
HIS
E
144
11.073
−56.051
−24.017
1.00
200.69


ATOM
3256
CA
HIS
E
144
11.193
−54.623
−24.139
1.00
202.34


ATOM
3257
C
HIS
E
144
11.454
−54.311
−25.590
1.00
204.85


ATOM
3258
O
HIS
E
144
12.596
−54.293
−26.053
1.00
202.38


ATOM
3259
CB
HIS
E
144
12.286
−54.138
−23.204
1.00
203.11


ATOM
3260
CG
HIS
E
144
12.306
−52.668
−23.028
1.00
210.39


ATOM
3261
ND1
HIS
E
144
13.182
−51.887
−23.730
1.00
213.62


ATOM
3262
CD2
HIS
E
144
11.591
−51.889
−22.189
1.00
215.28


ATOM
3263
CE1
HIS
E
144
12.967
−50.648
−23.316
1.00
216.66


ATOM
3264
NE2
HIS
E
144
11.996
−50.600
−22.409
1.00
218.15


ATOM
3265
N
ILE
E
145
10.360
−54.149
−26.330
1.00
203.74


ATOM
3266
CA
ILE
E
145
10.375
−53.946
−27.772
1.00
204.97


ATOM
3267
C
ILE
E
145
9.800
−52.593
−28.075
1.00
215.22


ATOM
3268
O
ILE
E
145
8.581
−52.436
−28.183
1.00
216.85


ATOM
3269
CB
ILE
E
145
9.621
−55.093
−28.474
1.00
206.07


ATOM
3270
CG1
ILE
E
145
10.041
−56.506
−27.967
1.00
202.34


ATOM
3271
CG2
ILE
E
145
9.639
−54.943
−29.993
1.00
207.33


ATOM
3272
CD1
ILE
E
145
11.348
−56.912
−27.888
1.00
208.65


ATOM
3273
N
VAL
E
146
10.692
−51.599
−28.170
1.00
214.80


ATOM
3274
CA
VAL
E
146
10.333
−50.191
−28.330
1.00
219.35


ATOM
3275
C
VAL
E
146
11.261
−49.414
−29.266
1.00
225.24


ATOM
3276
O
VAL
E
146
12.398
−49.818
−29.521
1.00
223.68


ATOM
3277
CB
VAL
E
146
10.286
−49.495
−26.933
1.00
224.48


ATOM
3278
CG1
VAL
E
146
9.263
−50.149
−26.002
1.00
223.63


ATOM
3279
CG2
VAL
E
146
11.666
−49.463
−26.281
1.00
222.19


ATOM
3280
N
LEU
E
147
10.787
−48.244
−29.688
1.00
224.87


ATOM
3281
CA
LEU
E
147
11.510
−47.300
−30.522
1.00
226.99


ATOM
3282
C
LEU
E
147
12.042
−47.919
−31.838
1.00
231.64


ATOM
3283
O
LEU
E
147
13.180
−47.708
−32.235
1.00
230.97


ATOM
3284
CB
LEU
E
147
12.572
−46.522
−29.697
1.00
226.88


ATOM
3285
CG
LEU
E
147
12.080
−45.830
−28.397
1.00
232.35


ATOM
3286
CD1
LEU
E
147
13.241
−45.442
−27.475
1.00
231.82


ATOM
3287
CD2
LEU
E
147
11.183
−44.630
−28.692
1.00
238.45


ATOM
3288
N
ASN
E
148
11.183
−48.671
−32.522
1.00
229.80


ATOM
3289
CA
ASN
E
148
11.489
−49.258
−33.827
1.00
230.43


ATOM
3290
C
ASN
E
148
10.563
−48.648
−34.895
1.00
242.79


ATOM
3291
O
ASN
E
148
9.583
−47.982
−34.535
1.00
246.23


ATOM
3292
CB
ASN
E
148
11.333
−50.777
−33.764
1.00
225.00


ATOM
3293
CG
ASN
E
148
12.157
−51.412
−32.663
1.00
235.07


ATOM
3294
OD1
ASN
E
148
13.387
−51.329
−32.649
1.00
224.86


ATOM
3295
ND2
ASN
E
148
11.498
−52.065
−31.713
1.00
224.04


ATOM
3296
N
LYS
E
149
10.849
−48.871
−36.208
1.00
241.61


ATOM
3297
CA
LYS
E
149
9.963
−48.366
−37.276
1.00
245.96


ATOM
3298
C
LYS
E
149
8.519
−48.815
−37.010
1.00
253.72


ATOM
3299
O
LYS
E
149
7.590
−48.055
−37.255
1.00
258.37


ATOM
3300
CB
LYS
E
149
10.409
−48.819
−38.674
1.00
247.39


ATOM
3301
CG
LYS
E
149
9.583
−48.171
−39.788
1.00
250.74


ATOM
3302
CD
LYS
E
149
9.971
−48.599
−41.186
1.00
256.23


ATOM
3303
CE
LYS
E
149
8.844
−48.268
−42.142
1.00
264.82


ATOM
3304
NZ
LYS
E
149
8.847
−49.150
−43.342
1.00
271.66


ATOM
3305
N
ASP
E
150
8.361
−50.015
−36.444
1.00
247.57


ATOM
3306
CA
ASP
E
150
7.113
−50.668
−36.079
1.00
247.35


ATOM
3307
C
ASP
E
150
6.169
−49.838
−35.198
1.00
255.74


ATOM
3308
O
ASP
E
150
4.948
−49.999
−35.294
1.00
256.65


ATOM
3309
CB
ASP
E
150
7.471
−52.002
−35.426
1.00
243.96


ATOM
3310
CG
ASP
E
150
6.318
−52.712
−34.778
1.00
251.63


ATOM
3311
OD2
ASP
E
150
6.347
−52.879
−33.545
1.00
254.53


ATOM
3312
OD1
ASP
E
150
5.393
−53.118
−35.504
1.00
253.62


ATOM
3313
N
ASP
E
151
6.733
−48.971
−34.345
1.00
254.50


ATOM
3314
CA
ASP
E
151
5.981
−48.099
−33.442
1.00
257.73


ATOM
3315
C
ASP
E
151
5.222
−47.015
−34.182
1.00
263.97


ATOM
3316
O
ASP
E
151
4.195
−46.552
−33.685
1.00
264.91


ATOM
3317
CB
ASP
E
151
6.942
−47.343
−32.515
1.00
259.50


ATOM
3318
CG
ASP
E
151
7.599
−48.100
−31.392
1.00
269.11


ATOM
3319
OD1
ASP
E
151
7.741
−49.338
−31.506
1.00
265.36


ATOM
3320
OD2
ASP
E
151
8.056
−47.445
−30.433
1.00
276.45


ATOM
3321
N
ASN
E
152
5.795
−46.535
−35.303
1.00
261.70


ATOM
3322
CA
ASN
E
152
5.346
−45.396
−36.092
1.00
262.46


ATOM
3323
C
ASN
E
152
4.504
−45.787
−37.319
1.00
266.52


ATOM
3324
O
ASN
E
152
4.885
−45.520
−38.465
1.00
266.28


ATOM
3325
CB
ASN
E
152
6.554
−44.496
−36.412
1.00
259.59


ATOM
3326
CG
ASN
E
152
7.801
−44.838
−35.586
1.00
260.81


ATOM
3327
OD1
ASN
E
152
7.820
−44.784
−34.343
1.00
247.20


ATOM
3328
ND2
ASN
E
152
8.832
−45.319
−36.247
1.00
254.80


ATOM
3329
N
GLU
E
153
3.346
−46.450
−37.021
1.00
265.11


ATOM
3330
CA
GLU
E
153
2.176
−46.966
−37.775
1.00
265.17


ATOM
3331
C
GLU
E
153
2.306
−47.591
−39.172
1.00
267.34


ATOM
3332
O
GLU
E
153
1.491
−48.460
−39.515
1.00
267.13


ATOM
3333
CB
GLU
E
153
0.982
−45.975
−37.720
1.00
267.16


ATOM
3334
CG
GLU
E
153
−0.379
−46.652
−37.632
1.00
272.02


ATOM
3335
CD
GLU
E
153
−1.581
−45.758
−37.856
1.00
279.42


ATOM
3336
OE1
GLU
E
153
−1.604
−45.027
−38.873
1.00
276.01


ATOM
3337
OE2
GLU
E
153
−2.526
−45.831
−37.039
1.00
268.00


ATOM
3338
N
GLU
E
154
3.296
−47.152
−39.974
1.00
263.84


ATOM
3339
CA
GLU
E
154
3.413
−47.595
−41.351
1.00
262.91


ATOM
3340
C
GLU
E
154
4.496
−48.613
−41.739
1.00
261.68


ATOM
3341
O
GLU
E
154
5.308
−48.390
−42.647
1.00
261.48


ATOM
3342
CB
GLU
E
154
3.216
−46.432
−42.333
1.00
265.14


ATOM
3343
CG
GLU
E
154
1.799
−45.881
−42.248
1.00
271.87


ATOM
3344
CD
GLU
E
154
1.464
−44.804
−43.256
1.00
288.24


ATOM
3345
OE1
GLU
E
154
1.140
−45.150
−44.416
1.00
288.58


ATOM
3346
OE2
GLU
E
154
1.480
−43.611
−42.876
1.00
286.20


ATOM
3347
N
CYS
E
155
4.422
−49.776
−41.067
1.00
255.80


ATOM
3348
CA
CYS
E
155
5.201
−50.946
−41.415
1.00
254.35


ATOM
3349
C
CYS
E
155
4.222
−51.677
−42.303
1.00
255.43


ATOM
3350
O
CYS
E
155
3.222
−52.225
−41.812
1.00
253.60


ATOM
3351
CB
CYS
E
155
5.531
−51.812
−40.205
1.00
249.22


ATOM
3352
SG
CYS
E
155
7.107
−51.440
−39.393
1.00
249.63


ATOM
3353
N
GLY
E
156
4.502
−51.705
−43.589
1.00
252.77


ATOM
3354
CA
GLY
E
156
3.662
−52.429
−44.527
1.00
252.49


ATOM
3355
C
GLY
E
156
3.930
−53.921
−44.471
1.00
253.45


ATOM
3356
O
GLY
E
156
4.269
−54.524
−45.494
1.00
254.21


ATOM
3357
N
ASP
E
157
3.801
−54.532
−43.274
1.00
246.37


ATOM
3358
CA
ASP
E
157
4.050
−55.960
−43.078
1.00
241.60


ATOM
3359
C
ASP
E
157
3.095
−56.797
−43.886
1.00
243.77


ATOM
3360
O
ASP
E
157
1.891
−56.557
−43.852
1.00
244.57


ATOM
3361
CB
ASP
E
157
3.929
−56.332
−41.605
1.00
240.19


ATOM
3362
CG
ASP
E
157
5.045
−55.831
−40.694
1.00
255.63


ATOM
3363
OD2
ASP
E
157
4.820
−55.758
−39.466
1.00
260.85


ATOM
3364
OD1
ASP
E
157
6.161
−55.551
−41.202
1.00
258.38


ATOM
3365
N
ILE
E
158
3.640
−57.763
−44.638
1.00
238.32


ATOM
3366
CA
ILE
E
158
2.875
−58.643
−45.528
1.00
239.35


ATOM
3367
C
ILE
E
158
3.331
−60.080
−45.381
1.00
239.04


ATOM
3368
O
ILE
E
158
4.521
−60.348
−45.542
1.00
237.44


ATOM
3369
CB
ILE
E
158
2.915
−58.181
−47.021
1.00
247.07


ATOM
3370
CG1
ILE
E
158
4.348
−58.033
−47.609
1.00
246.79


ATOM
3371
CG2
ILE
E
158
2.016
−56.981
−47.311
1.00
249.81


ATOM
3372
CD1
ILE
E
158
4.634
−58.967
−48.780
1.00
249.78


ATOM
3373
N
CYS
E
159
2.396
−61.010
−45.093
1.00
233.45


ATOM
3374
CA
CYS
E
159
2.730
−62.421
−44.837
1.00
247.83


ATOM
3375
C
CYS
E
159
2.532
−63.412
−46.013
1.00
212.30


ATOM
3376
O
CYS
E
159
3.112
−64.515
−46.030
1.00
153.50


ATOM
3377
CB
CYS
E
159
2.054
−62.906
−43.555
1.00
245.20


ATOM
3378
SG
CYS
E
159
2.641
−62.090
−42.029
1.00
245.62


ATOM
3379
N
ASN
E
168
−2.106
−67.815
−45.399
1.00
237.72


ATOM
3380
CA
ASN
E
168
−1.440
−69.088
−45.099
1.00
234.29


ATOM
3381
C
ASN
E
168
−0.777
−69.160
−43.717
1.00
232.00


ATOM
3382
O
ASN
E
168
−0.555
−70.265
−43.213
1.00
228.54


ATOM
3383
CB
ASN
E
168
−0.419
−69.450
−46.186
1.00
236.07


ATOM
3384
CG
ASN
E
168
−0.946
−70.368
−47.277
1.00
253.02


ATOM
3385
OD1
ASN
E
168
−1.740
−71.292
−47.042
1.00
239.72


ATOM
3386
ND2
ASN
E
168
−0.460
−70.172
−48.493
1.00
249.53


ATOM
3387
N
CYS
E
169
−0.438
−68.006
−43.121
1.00
226.85


ATOM
3388
CA
CYS
E
169
0.208
−67.995
−41.815
1.00
222.25


ATOM
3389
C
CYS
E
169
−0.788
−68.180
−40.666
1.00
220.36


ATOM
3390
O
CYS
E
169
−1.925
−67.718
−40.754
1.00
221.65


ATOM
3391
CB
CYS
E
169
1.076
−66.755
−41.623
1.00
223.06


ATOM
3392
SG
CYS
E
169
2.448
−66.587
−42.805
1.00
228.60


ATOM
3393
N
PRO
E
170
−0.367
−68.864
−39.583
1.00
211.04


ATOM
3394
CA
PRO
E
170
−1.286
−69.097
−38.465
1.00
209.17


ATOM
3395
C
PRO
E
170
−1.502
−67.857
−37.609
1.00
209.64


ATOM
3396
O
PRO
E
170
−0.542
−67.237
−37.156
1.00
207.87


ATOM
3397
CB
PRO
E
170
−0.618
−70.248
−37.704
1.00
207.71


ATOM
3398
CG
PRO
E
170
0.831
−70.124
−38.013
1.00
210.62


ATOM
3399
CD
PRO
E
170
0.952
−69.506
−39.359
1.00
209.05


ATOM
3400
N
ALA
E
171
−2.745
−67.455
−37.440
1.00
205.68


ATOM
3401
CA
ALA
E
171
−2.960
−66.311
−36.584
1.00
204.94


ATOM
3402
C
ALA
E
171
−3.107
−66.796
−35.130
1.00
205.85


ATOM
3403
O
ALA
E
171
−3.464
−67.952
−34.885
1.00
204.01


ATOM
3404
CB
ALA
E
171
−4.178
−65.523
−37.027
1.00
209.84


ATOM
3405
N
THR
E
172
−2.745
−65.920
−34.172
1.00
201.52


ATOM
3406
CA
THR
E
172
−2.858
−66.098
−32.712
1.00
199.77


ATOM
3407
C
THR
E
172
−3.434
−64.821
−32.139
1.00
210.73


ATOM
3408
O
THR
E
172
−3.277
−63.777
−32.766
1.00
212.86


ATOM
3409
CB
THR
E
172
−1.514
−66.265
−32.021
1.00
194.04


ATOM
3410
OG1
THR
E
172
−0.722
−65.075
−32.155
1.00
187.31


ATOM
3411
CG2
THR
E
172
−0.782
−67.554
−32.396
1.00
187.40


ATOM
3412
N
VAL
E
173
−4.051
−64.872
−30.944
1.00
211.17


ATOM
3413
CA
VAL
E
173
−4.671
−63.688
−30.318
1.00
215.85


ATOM
3414
C
VAL
E
173
−3.775
−63.084
−29.253
1.00
222.92


ATOM
3415
O
VAL
E
173
−3.596
−63.707
−28.207
1.00
221.69


ATOM
3416
CB
VAL
E
173
−6.110
−63.989
−29.781
1.00
222.43


ATOM
3417
CG1
VAL
E
173
−6.152
−65.242
−28.908
1.00
219.96


ATOM
3418
CG2
VAL
E
173
−6.729
−62.787
−29.057
1.00
225.44


ATOM
3419
N
ILE
E
174
−3.209
−61.883
−29.475
1.00
222.60


ATOM
3420
CA
ILE
E
174
−2.369
−61.329
−28.408
1.00
221.73


ATOM
3421
C
ILE
E
174
−3.063
−60.263
−27.577
1.00
229.49


ATOM
3422
O
ILE
E
174
−3.118
−60.406
−26.354
1.00
228.87


ATOM
3423
CB
ILE
E
174
−0.869
−61.130
−28.759
1.00
222.48


ATOM
3424
CG1
ILE
E
174
−0.182
−62.518
−28.945
1.00
218.87


ATOM
3425
CG2
ILE
E
174
−0.105
−60.279
−27.732
1.00
223.62


ATOM
3426
CD1
ILE
E
174
−0.163
−63.538
−27.726
1.00
216.93


ATOM
3427
N
ASN
E
175
−3.666
−59.269
−28.226
1.00
229.53


ATOM
3428
CA
ASN
E
175
−4.479
−58.269
−27.544
1.00
233.02


ATOM
3429
C
ASN
E
175
−5.864
−58.935
−27.384
1.00
237.88


ATOM
3430
O
ASN
E
175
−6.012
−59.861
−26.593
1.00
234.63


ATOM
3431
CB
ASN
E
175
−4.503
−56.968
−28.370
1.00
237.61


ATOM
3432
CG
ASN
E
175
−3.158
−56.266
−28.492
1.00
255.94


ATOM
3433
OD1
ASN
E
175
−2.084
−56.851
−28.290
1.00
245.41


ATOM
3434
ND2
ASN
E
175
−3.189
−54.971
−28.818
1.00
250.90


ATOM
3435
N
GLY
E
176
−6.838
−58.508
−28.163
1.00
239.62


ATOM
3436
CA
GLY
E
176
−8.157
−59.127
−28.210
1.00
242.75


ATOM
3437
C
GLY
E
176
−8.441
−59.672
−29.599
1.00
248.34


ATOM
3438
O
GLY
E
176
−9.464
−60.327
−29.833
1.00
249.50


ATOM
3439
N
GLN
E
177
−7.487
−59.446
−30.519
1.00
243.43


ATOM
3440
CA
GLN
E
177
−7.594
−59.797
−31.929
1.00
243.13


ATOM
3441
C
GLN
E
177
−6.550
−60.783
−32.427
1.00
240.81


ATOM
3442
O
GLN
E
177
−5.415
−60.844
−31.926
1.00
235.92


ATOM
3443
CB
GLN
E
177
−7.626
−58.520
−32.797
1.00
247.86


ATOM
3444
CG
GLN
E
177
−6.340
−57.704
−32.740
1.00
248.66


ATOM
3445
CD
GLN
E
177
−6.444
−56.405
−33.468
1.00
251.12


ATOM
3446
OE1
GLN
E
177
−7.399
−55.632
−33.299
1.00
249.02


ATOM
3447
NE2
GLN
E
177
−5.410
−56.099
−34.225
1.00
238.39


ATOM
3448
N
PHE
E
178
−6.953
−61.542
−33.447
1.00
236.91


ATOM
3449
CA
PHE
E
178
−6.072
−62.497
−34.086
1.00
232.37


ATOM
3450
C
PHE
E
178
−5.169
−61.774
−35.058
1.00
235.27


ATOM
3451
O
PHE
E
178
−5.616
−60.901
−35.803
1.00
239.30


ATOM
3452
CB
PHE
E
178
−6.845
−63.667
−34.711
1.00
234.60


ATOM
3453
CG
PHE
E
178
−7.296
−64.675
−33.671
1.00
234.24


ATOM
3454
CD1
PHE
E
178
−8.545
−64.572
−33.074
1.00
239.70


ATOM
3455
CD2
PHE
E
178
−6.461
−65.715
−33.273
1.00
232.54


ATOM
3456
CE1
PHE
E
178
−8.956
−65.499
−32.108
1.00
239.20


ATOM
3457
CE2
PHE
E
178
−6.872
−66.637
−32.300
1.00
233.78


ATOM
3458
CZ
PHE
E
178
−8.118
−66.524
−31.727
1.00
234.26


ATOM
3459
N
VAL
E
179
−3.879
−62.088
−34.977
1.00
226.07


ATOM
3460
CA
VAL
E
179
−2.829
−61.487
−35.780
1.00
224.74


ATOM
3461
C
VAL
E
179
−2.061
−62.643
−36.440
1.00
228.36


ATOM
3462
O
VAL
E
179
−1.568
−63.525
−35.733
1.00
225.86


ATOM
3463
CB
VAL
E
179
−1.883
−60.604
−34.911
1.00
225.05


ATOM
3464
CG1
VAL
E
179
−0.966
−59.759
−35.779
1.00
225.44


ATOM
3465
CG2
VAL
E
179
−2.643
−59.728
−33.918
1.00
226.47


ATOM
3466
N
GLU
E
180
−1.973
−62.632
−37.787
1.00
227.03


ATOM
3467
CA
GLU
E
180
−1.261
−63.594
−38.656
1.00
225.74


ATOM
3468
C
GLU
E
180
0.230
−63.655
−38.264
1.00
226.04


ATOM
3469
O
GLU
E
180
0.810
−62.586
−38.045
1.00
226.81


ATOM
3470
CB
GLU
E
180
−1.363
−63.083
−40.091
1.00
231.18


ATOM
3471
CG
GLU
E
180
−1.520
−64.166
−41.136
1.00
247.47


ATOM
3472
CD
GLU
E
180
−1.340
−63.724
−42.580
1.00
282.69


ATOM
3473
OE1
GLU
E
180
−1.705
−62.572
−42.913
1.00
283.36


ATOM
3474
OE2
GLU
E
180
−0.882
−64.558
−43.394
1.00
283.91


ATOM
3475
N
ARG
E
181
0.835
−64.834
−38.102
1.00
217.91


ATOM
3476
CA
ARG
E
181
2.208
−64.829
−37.620
1.00
214.17


ATOM
3477
C
ARG
E
181
3.252
−65.238
−38.609
1.00
221.62


ATOM
3478
O
ARG
E
181
3.214
−66.330
−39.154
1.00
220.61


ATOM
3479
CB
ARG
E
181
2.329
−65.513
−36.273
1.00
207.37


ATOM
3480
CG
ARG
E
181
1.367
−64.998
−35.192
1.00
206.93


ATOM
3481
CD
ARG
E
181
1.690
−63.636
−34.617
1.00
201.28


ATOM
3482
NE
ARG
E
181
0.677
−63.182
−33.662
1.00
202.00


ATOM
3483
CZ
ARG
E
181
0.775
−62.071
−32.938
1.00
218.95


ATOM
3484
NH1
ARG
E
181
1.852
−61.300
−33.035
1.00
206.33


ATOM
3485
NH2
ARG
E
181
−0.211
−61.710
−32.127
1.00
207.74


ATOM
3486
N
CYS
E
182
4.168
−64.320
−38.880
1.00
223.20


ATOM
3487
CA
CYS
E
182
5.240
−64.510
−39.838
1.00
225.90


ATOM
3488
C
CYS
E
182
6.495
−63.714
−39.490
1.00
227.43


ATOM
3489
O
CYS
E
182
6.445
−62.789
−38.681
1.00
225.99


ATOM
3490
CB
CYS
E
182
4.747
−64.262
−41.266
1.00
232.28


ATOM
3491
SG
CYS
E
182
4.631
−62.525
−41.761
1.00
241.16


ATOM
3492
N
TRP
E
183
7.622
−64.127
−40.079
1.00
224.36


ATOM
3493
CA
TRP
E
183
8.941
−63.543
−39.872
1.00
224.03


ATOM
3494
C
TRP
E
183
9.344
−62.622
−41.003
1.00
233.48


ATOM
3495
O
TRP
E
183
10.030
−61.635
−40.753
1.00
233.18


ATOM
3496
CB
TRP
E
183
9.991
−64.640
−39.724
1.00
220.46


ATOM
3497
CG
TRP
E
183
9.909
−65.413
−38.441
1.00
218.03


ATOM
3498
CD1
TRP
E
183
9.310
−66.630
−38.246
1.00
219.93


ATOM
3499
CD2
TRP
E
183
10.486
−65.041
−37.181
1.00
215.13


ATOM
3500
NE1
TRP
E
183
9.476
−67.037
−36.938
1.00
216.20


ATOM
3501
CE2
TRP
E
183
10.208
−66.086
−36.266
1.00
216.57


ATOM
3502
CE3
TRP
E
183
11.203
−63.920
−36.729
1.00
215.81


ATOM
3503
CZ2
TRP
E
183
10.640
−66.045
−34.935
1.00
213.10


ATOM
3504
CZ3
TRP
E
183
11.640
−63.891
−35.412
1.00
214.32


ATOM
3505
CH2
TRP
E
183
11.352
−64.937
−34.530
1.00
212.52


ATOM
3506
N
THR
E
184
8.990
−62.989
−42.253
1.00
235.29


ATOM
3507
CA
THR
E
184
9.264
−62.235
−43.489
1.00
239.99


ATOM
3508
C
THR
E
184
8.097
−62.462
−44.478
1.00
247.12


ATOM
3509
O
THR
E
184
7.222
−63.294
−44.216
1.00
245.98


ATOM
3510
CB
THR
E
184
10.559
−62.725
−44.170
1.00
252.25


ATOM
3511
OG1
THR
E
184
10.287
−63.955
−44.839
1.00
252.93


ATOM
3512
CG2
THR
E
184
11.714
−62.941
−43.208
1.00
248.83


ATOM
3513
N
HIS
E
185
8.120
−61.786
−45.641
1.00
247.01


ATOM
3514
CA
HIS
E
185
7.086
−61.987
−46.653
1.00
249.51


ATOM
3515
C
HIS
E
185
7.050
−63.422
−47.155
1.00
248.27


ATOM
3516
O
HIS
E
185
5.998
−63.885
−47.583
1.00
249.08


ATOM
3517
CB
HIS
E
185
7.238
−60.993
−47.809
1.00
255.71


ATOM
3518
CG
HIS
E
185
8.579
−61.006
−48.478
1.00
260.62


ATOM
3519
ND1
HIS
E
185
9.668
−61.682
−47.929
1.00
259.01


ATOM
3520
CD2
HIS
E
185
8.970
−60.402
−49.624
1.00
267.23


ATOM
3521
CE1
HIS
E
185
10.671
−61.475
−48.765
1.00
261.09


ATOM
3522
NE2
HIS
E
185
10.299
−60.710
−49.801
1.00
266.32


ATOM
3523
N
SER
E
186
8.169
−64.145
−47.045
1.00
240.29


ATOM
3524
CA
SER
E
186
8.205
−65.514
−47.522
1.00
239.10


ATOM
3525
C
SER
E
186
8.359
−66.600
−46.441
1.00
236.82


ATOM
3526
O
SER
E
186
8.456
−67.774
−46.789
1.00
236.41


ATOM
3527
CB
SER
E
186
9.234
−65.657
−48.638
1.00
244.29


ATOM
3528
OG
SER
E
186
10.538
−65.397
−48.150
1.00
248.19


ATOM
3529
N
HIS
E
187
8.344
−66.241
−45.144
1.00
228.38


ATOM
3530
CA
HIS
E
187
8.467
−67.249
−44.087
1.00
223.73


ATOM
3531
C
HIS
E
187
7.427
−67.057
−42.980
1.00
223.51


ATOM
3532
O
HIS
E
187
7.453
−66.046
−42.262
1.00
221.36


ATOM
3533
CB
HIS
E
187
9.881
−67.259
−43.469
1.00
222.12


ATOM
3534
CG
HIS
E
187
11.005
−67.607
−44.402
1.00
227.30


ATOM
3535
ND1
HIS
E
187
11.314
−68.922
−44.710
1.00
229.11


ATOM
3536
CD2
HIS
E
187
11.921
−66.800
−44.989
1.00
230.75


ATOM
3537
CE1
HIS
E
187
12.373
−68.868
−45.507
1.00
230.50


ATOM
3538
NE2
HIS
E
187
12.767
−67.611
−45.711
1.00
231.93


ATOM
3539
N
CYS
E
188
6.538
−68.053
−42.806
1.00
218.88


ATOM
3540
CA
CYS
E
188
5.556
−68.016
−41.716
1.00
216.76


ATOM
3541
C
CYS
E
188
6.292
−68.373
−40.416
1.00
216.25


ATOM
3542
O
CYS
E
188
7.421
−68.923
−40.443
1.00
216.32


ATOM
3543
CB
CYS
E
188
4.388
−68.982
−41.956
1.00
218.21


ATOM
3544
SG
CYS
E
188
3.184
−68.453
−43.211
1.00
227.18


ATOM
3545
N
GLN
E
189
5.646
−68.049
−39.275
1.00
208.27


ATOM
3546
CA
GLN
E
189
6.112
−68.485
−37.972
1.00
203.19


ATOM
3547
C
GLN
E
189
5.493
−69.844
−37.818
1.00
205.06


ATOM
3548
O
GLN
E
189
4.287
−70.028
−38.054
1.00
205.15


ATOM
3549
CB
GLN
E
189
5.643
−67.582
−36.838
1.00
203.17


ATOM
3550
CG
GLN
E
189
6.157
−68.045
−35.470
1.00
201.08


ATOM
3551
CD
GLN
E
189
5.718
−67.165
−34.329
1.00
198.08


ATOM
3552
OE1
GLN
E
189
5.023
−66.157
−34.534
1.00
186.53


ATOM
3553
NE2
GLN
E
189
6.132
−67.519
−33.098
1.00
178.27


ATOM
3554
N
LYS
E
190
6.336
−70.806
−37.450
1.00
200.02


ATOM
3555
CA
LYS
E
190
5.905
−72.167
−37.252
1.00
198.97


ATOM
3556
C
LYS
E
190
5.136
−72.272
−35.958
1.00
200.06


ATOM
3557
O
LYS
E
190
5.558
−71.766
−34.914
1.00
197.60


ATOM
3558
CB
LYS
E
190
7.103
−73.121
−37.253
1.00
199.85


ATOM
3559
CG
LYS
E
190
6.695
−74.565
−37.055
1.00
201.00


ATOM
3560
CD
LYS
E
190
7.317
−75.479
−38.067
1.00
201.21


ATOM
3561
CE
LYS
E
190
6.892
−76.890
−37.824
1.00
196.41


ATOM
3562
NZ
LYS
E
190
5.436
−77.048
−38.088
1.00
200.37


ATOM
3563
N
VAL
E
191
3.992
−72.902
−36.042
1.00
196.89


ATOM
3564
CA
VAL
E
191
3.192
−73.131
−34.870
1.00
195.54


ATOM
3565
C
VAL
E
191
2.886
−74.600
−34.861
1.00
203.61


ATOM
3566
O
VAL
E
191
2.581
−75.213
−35.904
1.00
206.78


ATOM
3567
CB
VAL
E
191
1.956
−72.228
−34.778
1.00
199.71


ATOM
3568
CG1
VAL
E
191
1.022
−72.680
−33.664
1.00
198.45


ATOM
3569
CG2
VAL
E
191
2.372
−70.796
−34.539
1.00
199.28


ATOM
3570
N
CYS
E
192
3.079
−75.177
−33.679
1.00
197.95


ATOM
3571
CA
CYS
E
192
2.854
−76.575
−33.446
1.00
196.95


ATOM
3572
C
CYS
E
192
1.668
−76.657
−32.556
1.00
196.24


ATOM
3573
O
CYS
E
192
1.461
−75.725
−31.775
1.00
194.33


ATOM
3574
CB
CYS
E
192
4.079
−77.203
−32.797
1.00
195.85


ATOM
3575
SG
CYS
E
192
5.474
−77.452
−33.933
1.00
200.43


ATOM
3576
N
PRO
E
193
0.870
−77.738
−32.638
1.00
191.90


ATOM
3577
CA
PRO
E
193
−0.277
−77.834
−31.739
1.00
191.75


ATOM
3578
C
PRO
E
193
0.153
−77.624
−30.296
1.00
191.85


ATOM
3579
O
PRO
E
193
1.299
−77.876
−29.931
1.00
189.70


ATOM
3580
CB
PRO
E
193
−0.838
−79.242
−31.987
1.00
195.05


ATOM
3581
CG
PRO
E
193
0.146
−79.956
−32.838
1.00
199.45


ATOM
3582
CD
PRO
E
193
0.974
−78.917
−33.525
1.00
194.71


ATOM
3583
N
THR
E
194
−0.765
−77.097
−29.509
1.00
188.45


ATOM
3584
CA
THR
E
194
−0.674
−76.804
−28.083
1.00
186.94


ATOM
3585
C
THR
E
194
−0.080
−78.031
−27.305
1.00
187.89


ATOM
3586
O
THR
E
194
0.796
−77.867
−26.447
1.00
184.52


ATOM
3587
CB
THR
E
194
−2.116
−76.387
−27.652
1.00
200.85


ATOM
3588
OG1
THR
E
194
−3.045
−77.429
−28.026
1.00
206.95


ATOM
3589
CG2
THR
E
194
−2.599
−75.064
−28.329
1.00
196.58


ATOM
3590
N
ILE
E
195
−0.552
−79.256
−27.676
1.00
184.86


ATOM
3591
CA
ILE
E
195
−0.138
−80.561
−27.143
1.00
182.66


ATOM
3592
C
ILE
E
195
1.321
−80.910
−27.361
1.00
185.08


ATOM
3593
O
ILE
E
195
1.830
−81.696
−26.567
1.00
183.77


ATOM
3594
CB
ILE
E
195
−1.066
−81.706
−27.545
1.00
186.90


ATOM
3595
CG1
ILE
E
195
−1.539
−81.581
−28.998
1.00
188.35


ATOM
3596
CG2
ILE
E
195
−2.227
−81.740
−26.612
1.00
189.53


ATOM
3597
CD1
ILE
E
195
−0.701
−82.293
−29.975
1.00
193.63


ATOM
3598
N
CYS
E
196
2.004
−80.330
−28.403
1.00
182.07


ATOM
3599
CA
CYS
E
196
3.454
−80.532
−28.689
1.00
180.96


ATOM
3600
C
CYS
E
196
4.298
−79.810
−27.700
1.00
183.24


ATOM
3601
O
CYS
E
196
5.511
−80.068
−27.620
1.00
181.86


ATOM
3602
CB
CYS
E
196
3.857
−80.105
−30.098
1.00
182.26


ATOM
3603
SG
CYS
E
196
3.214
−81.133
−31.427
1.00
189.29


ATOM
3604
N
LYS
E
197
3.689
−78.817
−27.036
1.00
180.01


ATOM
3605
CA
LYS
E
197
4.386
−77.988
−26.088
1.00
179.37


ATOM
3606
C
LYS
E
197
5.592
−77.370
−26.801
1.00
183.81


ATOM
3607
O
LYS
E
197
5.460
−76.846
−27.925
1.00
183.81


ATOM
3608
CB
LYS
E
197
4.782
−78.820
−24.848
1.00
181.51


ATOM
3609
CG
LYS
E
197
3.567
−79.278
−24.101
1.00
201.75


ATOM
3610
CD
LYS
E
197
3.869
−80.374
−23.128
1.00
216.14


ATOM
3611
CE
LYS
E
197
3.010
−80.251
−21.886
1.00
233.01


ATOM
3612
NZ
LYS
E
197
1.773
−79.440
−22.108
1.00
246.37


ATOM
3613
N
SER
E
198
6.764
−77.499
−26.178
1.00
179.29


ATOM
3614
CA
SER
E
198
7.971
−76.926
−26.706
1.00
177.90


ATOM
3615
C
SER
E
198
8.762
−77.908
−27.513
1.00
182.02


ATOM
3616
O
SER
E
198
9.793
−77.516
−28.020
1.00
181.95


ATOM
3617
CB
SER
E
198
8.814
−76.376
−25.563
1.00
179.03


ATOM
3618
OG
SER
E
198
9.163
−77.392
−24.636
1.00
184.16


ATOM
3619
N
HIS
E
199
8.292
−79.152
−27.684
1.00
178.64


ATOM
3620
CA
HIS
E
199
9.076
−80.167
−28.388
1.00
178.99


ATOM
3621
C
HIS
E
199
9.260
−79.986
−29.852
1.00
182.92


ATOM
3622
O
HIS
E
199
10.212
−80.548
−30.400
1.00
183.12


ATOM
3623
CB
HIS
E
199
8.567
−81.560
−28.072
1.00
181.30


ATOM
3624
CG
HIS
E
199
8.419
−81.773
−26.603
1.00
184.43


ATOM
3625
ND1
HIS
E
199
7.245
−82.222
−26.060
1.00
187.26


ATOM
3626
CD2
HIS
E
199
9.309
−81.545
−25.602
1.00
185.15


ATOM
3627
CE1
HIS
E
199
7.454
−82.276
−24.755
1.00
186.09


ATOM
3628
NE2
HIS
E
199
8.684
−81.878
−24.433
1.00
185.13


ATOM
3629
N
GLY
E
200
8.388
−79.198
−30.472
1.00
180.45


ATOM
3630
CA
GLY
E
200
8.418
−78.996
−31.913
1.00
183.08


ATOM
3631
C
GLY
E
200
7.634
−80.085
−32.616
1.00
193.28


ATOM
3632
O
GLY
E
200
7.159
−81.035
−31.977
1.00
193.78


ATOM
3633
N
CYS
E
201
7.501
−79.968
−33.940
1.00
193.98


ATOM
3634
CA
CYS
E
201
6.724
−80.919
−34.716
1.00
197.23


ATOM
3635
C
CYS
E
201
7.224
−80.927
−36.143
1.00
205.27


ATOM
3636
O
CYS
E
201
7.975
−80.026
−36.543
1.00
204.56


ATOM
3637
CB
CYS
E
201
5.245
−80.535
−34.657
1.00
198.65


ATOM
3638
SG
CYS
E
201
4.876
−78.864
−35.290
1.00
203.52


ATOM
3639
N
THR
E
202
6.760
−81.916
−36.927
1.00
205.46


ATOM
3640
CA
THR
E
202
7.034
−82.008
−38.366
1.00
208.27


ATOM
3641
C
THR
E
202
6.047
−81.082
−39.109
1.00
213.53


ATOM
3642
O
THR
E
202
5.137
−80.510
−38.498
1.00
210.98


ATOM
3643
CB
THR
E
202
6.894
−83.459
−38.871
1.00
215.67


ATOM
3644
OG1
THR
E
202
5.535
−83.881
−38.722
1.00
214.92


ATOM
3645
CG2
THR
E
202
7.824
−84.423
−38.143
1.00
211.75


ATOM
3646
N
ALA
E
203
6.198
−80.976
−40.438
1.00
213.89


ATOM
3647
CA
ALA
E
203
5.324
−80.153
−41.274
1.00
215.97


ATOM
3648
C
ALA
E
203
3.875
−80.586
−41.142
1.00
221.64


ATOM
3649
O
ALA
E
203
2.973
−79.751
−41.183
1.00
220.99


ATOM
3650
CB
ALA
E
203
5.761
−80.239
−42.729
1.00
220.08


ATOM
3651
N
GLU
E
204
3.662
−81.885
−40.921
1.00
220.30


ATOM
3652
CA
GLU
E
204
2.331
−82.468
−40.796
1.00
221.75


ATOM
3653
C
GLU
E
204
1.722
−82.304
−39.405
1.00
222.36


ATOM
3654
O
GLU
E
204
0.619
−82.798
−39.179
1.00
223.65


ATOM
3655
CB
GLU
E
204
2.328
−83.946
−41.222
1.00
225.45


ATOM
3656
CG
GLU
E
204
2.751
−84.177
−42.660
1.00
240.95


ATOM
3657
CD
GLU
E
204
4.246
−84.260
−42.918
1.00
264.56


ATOM
3658
OE1
GLU
E
204
5.037
−84.278
−41.946
1.00
251.75


ATOM
3659
OE2
GLU
E
204
4.625
−84.334
−44.109
1.00
264.86


ATOM
3660
N
GLY
E
205
2.429
−81.620
−38.499
1.00
213.75


ATOM
3661
CA
GLY
E
205
1.973
−81.362
−37.133
1.00
209.67


ATOM
3662
C
GLY
E
205
2.233
−82.449
−36.104
1.00
207.40


ATOM
3663
O
GLY
E
205
1.697
−82.372
−34.999
1.00
204.50


ATOM
3664
N
LEU
E
206
3.068
−83.454
−36.442
1.00
202.15


ATOM
3665
CA
LEU
E
206
3.381
−84.583
−35.560
1.00
199.62


ATOM
3666
C
LEU
E
206
4.479
−84.229
−34.593
1.00
199.11


ATOM
3667
O
LEU
E
206
5.573
−83.817
−34.996
1.00
198.85


ATOM
3668
CB
LEU
E
206
3.711
−85.850
−36.353
1.00
201.68


ATOM
3669
CG
LEU
E
206
2.693
−86.250
−37.414
1.00
209.58


ATOM
3670
CD1
LEU
E
206
3.210
−87.386
−38.249
1.00
212.56


ATOM
3671
CD2
LEU
E
206
1.356
−86.603
−36.796
1.00
212.60


ATOM
3672
N
CYS
E
207
4.167
−84.346
−33.305
1.00
192.00


ATOM
3673
CA
CYS
E
207
5.103
−83.949
−32.268
1.00
188.28


ATOM
3674
C
CYS
E
207
6.402
−84.684
−32.320
1.00
191.81


ATOM
3675
O
CYS
E
207
6.453
−85.891
−32.576
1.00
192.11


ATOM
3676
CB
CYS
E
207
4.489
−83.992
−30.869
1.00
186.78


ATOM
3677
SG
CYS
E
207
2.987
−82.984
−30.648
1.00
190.37


ATOM
3678
N
CYS
E
208
7.460
−83.925
−32.101
1.00
188.67


ATOM
3679
CA
CYS
E
208
8.808
−84.445
−31.942
1.00
190.08


ATOM
3680
C
CYS
E
208
8.847
−85.221
−30.624
1.00
192.39


ATOM
3681
O
CYS
E
208
7.927
−85.055
−29.814
1.00
192.43


ATOM
3682
CB
CYS
E
208
9.793
−83.287
−31.907
1.00
190.05


ATOM
3683
SG
CYS
E
208
9.992
−82.455
−33.498
1.00
196.29


ATOM
3684
N
HIS
E
209
9.913
−86.034
−30.385
1.00
185.95


ATOM
3685
CA
HIS
E
209
10.066
−86.717
−29.114
1.00
183.68


ATOM
3686
C
HIS
E
209
10.130
−85.669
−27.956
1.00
183.96


ATOM
3687
O
HIS
E
209
10.622
−84.548
−28.150
1.00
182.44


ATOM
3688
CB
HIS
E
209
11.332
−87.557
−29.129
1.00
185.10


ATOM
3689
CG
HIS
E
209
11.464
−88.460
−27.945
1.00
188.59


ATOM
3690
ND1
HIS
E
209
12.135
−88.064
−26.806
1.00
188.81


ATOM
3691
CD2
HIS
E
209
11.003
−89.718
−27.766
1.00
192.23


ATOM
3692
CE1
HIS
E
209
12.056
−89.087
−25.973
1.00
189.35


ATOM
3693
NE2
HIS
E
209
11.377
−90.102
−26.505
1.00
191.71


ATOM
3694
N
SER
E
210
9.634
−86.063
−26.761
1.00
178.93


ATOM
3695
CA
SER
E
210
9.591
−85.232
−25.560
1.00
176.10


ATOM
3696
C
SER
E
210
10.960
−84.770
−25.079
1.00
181.15


ATOM
3697
O
SER
E
210
11.024
−83.809
−24.312
1.00
180.28


ATOM
3698
CB
SER
E
210
8.820
−85.921
−24.448
1.00
176.55


ATOM
3699
OG
SER
E
210
9.326
−87.221
−24.243
1.00
178.71


ATOM
3700
N
GLU
E
211
12.052
−85.411
−25.536
1.00
179.29


ATOM
3701
CA
GLU
E
211
13.379
−84.931
−25.193
1.00
179.19


ATOM
3702
C
GLU
E
211
13.925
−83.916
−26.196
1.00
187.23


ATOM
3703
O
GLU
E
211
14.968
−83.319
−25.927
1.00
186.54


ATOM
3704
CB
GLU
E
211
14.357
−86.045
−24.895
1.00
181.65


ATOM
3705
CG
GLU
E
211
15.003
−85.753
−23.552
1.00
190.28


ATOM
3706
CD
GLU
E
211
14.145
−86.008
−22.322
1.00
208.96


ATOM
3707
OE1
GLU
E
211
13.749
−87.175
−22.088
1.00
212.02


ATOM
3708
OE2
GLU
E
211
13.804
−85.032
−21.619
1.00
194.96


ATOM
3709
N
CYS
E
212
13.203
−83.699
−27.340
1.00
187.44


ATOM
3710
CA
CYS
E
212
13.573
−82.700
−28.363
1.00
188.30


ATOM
3711
C
CYS
E
212
13.136
−81.349
−27.962
1.00
185.37


ATOM
3712
O
CYS
E
212
12.213
−81.223
−27.153
1.00
184.16


ATOM
3713
CB
CYS
E
212
13.043
−83.038
−29.750
1.00
192.77


ATOM
3714
SG
CYS
E
212
13.437
−84.712
−30.321
1.00
201.00


ATOM
3715
N
LEU
E
213
13.778
−80.321
−28.560
1.00
178.14


ATOM
3716
CA
LEU
E
213
13.427
−78.939
−28.256
1.00
174.85


ATOM
3717
C
LEU
E
213
12.730
−78.115
−29.322
1.00
181.05


ATOM
3718
O
LEU
E
213
11.573
−77.842
−29.089
1.00
182.31


ATOM
3719
CB
LEU
E
213
14.430
−78.161
−27.391
1.00
172.00


ATOM
3720
CG
LEU
E
213
14.077
−76.733
−26.969
1.00
172.79


ATOM
3721
CD1
LEU
E
213
12.789
−76.657
−26.176
1.00
171.41


ATOM
3722
CD2
LEU
E
213
15.108
−76.186
−26.101
1.00
173.41


ATOM
3723
N
GLY
E
214
13.297
−77.710
−30.430
1.00
177.83


ATOM
3724
CA
GLY
E
214
12.408
−76.899
−31.267
1.00
178.80


ATOM
3725
C
GLY
E
214
11.798
−77.541
−32.491
1.00
185.25


ATOM
3726
O
GLY
E
214
10.802
−77.066
−33.055
1.00
185.58


ATOM
3727
N
ASN
E
215
12.465
−78.577
−32.942
1.00
183.59


ATOM
3728
CA
ASN
E
215
12.222
−79.239
−34.205
1.00
186.15


ATOM
3729
C
ASN
E
215
12.980
−80.578
−34.219
1.00
189.51


ATOM
3730
O
ASN
E
215
13.840
−80.836
−33.372
1.00
185.67


ATOM
3731
CB
ASN
E
215
12.724
−78.282
−35.357
1.00
190.80


ATOM
3732
CG
ASN
E
215
12.320
−78.672
−36.751
1.00
212.57


ATOM
3733
OD1
ASN
E
215
11.379
−79.463
−36.975
1.00
202.97


ATOM
3734
ND2
ASN
E
215
13.006
−78.138
−37.743
1.00
205.29


ATOM
3735
N
CYS
E
216
12.635
−81.429
−35.171
1.00
190.90


ATOM
3736
CA
CYS
E
216
13.277
−82.723
−35.367
1.00
194.18


ATOM
3737
C
CYS
E
216
13.199
−83.083
−36.851
1.00
201.56


ATOM
3738
O
CYS
E
216
12.308
−82.578
−37.560
1.00
201.85


ATOM
3739
CB
CYS
E
216
12.591
−83.788
−34.511
1.00
194.92


ATOM
3740
SG
CYS
E
216
10.785
−83.870
−34.741
1.00
199.66


ATOM
3741
N
SER
E
217
14.113
−83.963
−37.311
1.00
200.11


ATOM
3742
CA
SER
E
217
14.098
−84.484
−38.673
1.00
203.78


ATOM
3743
C
SER
E
217
13.097
−85.653
−38.815
1.00
209.57


ATOM
3744
O
SER
E
217
12.623
−85.934
−39.919
1.00
212.30


ATOM
3745
CB
SER
E
217
15.498
−84.893
−39.109
1.00
210.14


ATOM
3746
OG
SER
E
217
16.017
−85.929
−38.296
1.00
220.07


ATOM
3747
N
GLN
E
218
12.783
−86.324
−37.697
1.00
204.74


ATOM
3748
CA
GLN
E
218
11.811
−87.407
−37.629
1.00
206.27


ATOM
3749
C
GLN
E
218
11.078
−87.331
−36.295
1.00
207.67


ATOM
3750
O
GLN
E
218
11.672
−86.948
−35.272
1.00
204.11


ATOM
3751
CB
GLN
E
218
12.484
−88.776
−37.736
1.00
210.43


ATOM
3752
CG
GLN
E
218
13.193
−89.050
−39.044
1.00
231.64


ATOM
3753
CD
GLN
E
218
13.910
−90.374
−39.024
1.00
263.13


ATOM
3754
OE1
GLN
E
218
13.533
−91.321
−38.324
1.00
258.55


ATOM
3755
NE2
GLN
E
218
14.910
−90.497
−39.868
1.00
265.01


ATOM
3756
N
PRO
E
219
9.784
−87.686
−36.279
1.00
205.72


ATOM
3757
CA
PRO
E
219
9.056
−87.672
−35.012
1.00
203.13


ATOM
3758
C
PRO
E
219
9.403
−88.866
−34.151
1.00
205.03


ATOM
3759
O
PRO
E
219
9.939
−89.878
−34.629
1.00
205.21


ATOM
3760
CB
PRO
E
219
7.594
−87.720
−35.443
1.00
206.63


ATOM
3761
CG
PRO
E
219
7.630
−88.510
−36.699
1.00
215.16


ATOM
3762
CD
PRO
E
219
8.922
−88.137
−37.391
1.00
211.09


ATOM
3763
N
ASP
E
220
9.101
−88.713
−32.870
1.00
200.59


ATOM
3764
CA
ASP
E
220
9.259
−89.747
−31.865
1.00
201.51


ATOM
3765
C
ASP
E
220
10.610
−90.486
−31.922
1.00
204.79


ATOM
3766
O
ASP
E
220
10.659
−91.718
−31.944
1.00
205.26


ATOM
3767
CB
ASP
E
220
8.052
−90.722
−31.922
1.00
206.33


ATOM
3768
CG
ASP
E
220
8.007
−91.812
−30.842
1.00
222.73


ATOM
3769
OD2
ASP
E
220
7.492
−92.919
−31.132
1.00
229.67


ATOM
3770
OD1
ASP
E
220
8.482
−91.554
−29.708
1.00
223.65


ATOM
3771
N
ASP
E
221
11.703
−89.725
−31.970
1.00
200.14


ATOM
3772
CA
ASP
E
221
13.038
−90.301
−31.941
1.00
201.22


ATOM
3773
C
ASP
E
221
13.999
−89.308
−31.313
1.00
203.38


ATOM
3774
O
ASP
E
221
14.260
−88.263
−31.914
1.00
202.75


ATOM
3775
CB
ASP
E
221
13.516
−90.721
−33.331
1.00
206.38


ATOM
3776
CG
ASP
E
221
14.791
−91.563
−33.342
1.00
221.59


ATOM
3777
OD2
ASP
E
221
14.968
−92.352
−34.285
1.00
232.91


ATOM
3778
OD1
ASP
E
221
15.638
−91.399
−32.426
1.00
220.89


ATOM
3779
N
PRO
E
222
14.565
−89.638
−30.126
1.00
199.08


ATOM
3780
CA
PRO
E
222
15.479
−88.701
−29.436
1.00
197.26


ATOM
3781
C
PRO
E
222
16.913
−88.570
−29.989
1.00
204.12


ATOM
3782
O
PRO
E
222
17.751
−87.858
−29.422
1.00
202.08


ATOM
3783
CB
PRO
E
222
15.445
−89.194
−27.991
1.00
197.96


ATOM
3784
CG
PRO
E
222
15.219
−90.643
−28.125
1.00
204.83


ATOM
3785
CD
PRO
E
222
14.336
−90.847
−29.316
1.00
201.58


ATOM
3786
N
THR
E
223
17.193
−89.252
−31.091
1.00
204.83


ATOM
3787
CA
THR
E
223
18.475
−89.166
−31.774
1.00
206.77


ATOM
3788
C
THR
E
223
18.265
−88.332
−33.048
1.00
210.61


ATOM
3789
O
THR
E
223
19.205
−88.161
−33.815
1.00
211.99


ATOM
3790
CB
THR
E
223
18.994
−90.583
−32.137
1.00
222.91


ATOM
3791
OG1
THR
E
223
18.158
−91.150
−33.144
1.00
227.48


ATOM
3792
CG2
THR
E
223
19.050
−91.532
−30.941
1.00
221.75


ATOM
3793
N
LYS
E
224
17.029
−87.851
−33.293
1.00
205.97


ATOM
3794
CA
LYS
E
224
16.676
−87.085
−34.494
1.00
206.43


ATOM
3795
C
LYS
E
224
16.219
−85.668
−34.189
1.00
208.74


ATOM
3796
O
LYS
E
224
15.622
−85.000
−35.045
1.00
209.72


ATOM
3797
CB
LYS
E
224
15.666
−87.849
−35.372
1.00
210.22


ATOM
3798
CG
LYS
E
224
16.362
−88.550
−36.545
1.00
214.13


ATOM
3799
CD
LYS
E
224
16.587
−90.009
−36.317
1.00
216.78


ATOM
3800
CE
LYS
E
224
17.714
−90.548
−37.152
1.00
213.82


ATOM
3801
NZ
LYS
E
224
18.903
−90.885
−36.325
1.00
213.01


ATOM
3802
N
CYS
E
225
16.543
−85.199
−32.978
1.00
202.54


ATOM
3803
CA
CYS
E
225
16.201
−83.844
−32.539
1.00
200.01


ATOM
3804
C
CYS
E
225
17.100
−82.815
−33.166
1.00
203.64


ATOM
3805
O
CYS
E
225
18.322
−83.020
−33.218
1.00
205.98


ATOM
3806
CB
CYS
E
225
16.296
−83.710
−31.023
1.00
198.04


ATOM
3807
SG
CYS
E
225
15.449
−84.987
−30.074
1.00
201.76


ATOM
3808
N
VAL
E
226
16.544
−81.632
−33.446
1.00
195.63


ATOM
3809
CA
VAL
E
226
17.382
−80.527
−33.863
1.00
193.79


ATOM
3810
C
VAL
E
226
18.045
−79.938
−32.580
1.00
190.14


ATOM
3811
O
VAL
E
226
19.196
−79.528
−32.634
1.00
189.89


ATOM
3812
CB
VAL
E
226
16.545
−79.490
−34.665
1.00
198.51


ATOM
3813
CG1
VAL
E
226
17.259
−78.146
−34.790
1.00
198.10


ATOM
3814
CG2
VAL
E
226
16.154
−80.036
−36.045
1.00
201.38


ATOM
3815
N
ALA
E
227
17.377
−80.038
−31.421
1.00
181.68


ATOM
3816
CA
ALA
E
227
17.812
−79.360
−30.216
1.00
178.85


ATOM
3817
C
ALA
E
227
18.266
−79.977
−28.861
1.00
181.77


ATOM
3818
O
ALA
E
227
19.373
−79.662
−28.428
1.00
182.09


ATOM
3819
CB
ALA
E
227
16.840
−78.241
−29.943
1.00
178.09


ATOM
3820
N
CYS
E
228
17.397
−80.666
−28.122
1.00
177.28


ATOM
3821
CA
CYS
E
228
17.491
−81.179
−26.728
1.00
176.49


ATOM
3822
C
CYS
E
228
16.879
−80.252
−25.740
1.00
177.34


ATOM
3823
O
CYS
E
228
17.385
−79.160
−25.485
1.00
175.88


ATOM
3824
CB
CYS
E
228
18.846
−81.671
−26.228
1.00
178.06


ATOM
3825
SG
CYS
E
228
19.586
−82.982
−27.222
1.00
185.37


ATOM
3826
N
ARG
E
229
15.803
−80.725
−25.130
1.00
172.07


ATOM
3827
CA
ARG
E
229
15.107
−80.045
−24.060
1.00
169.32


ATOM
3828
C
ARG
E
229
16.037
−80.036
−22.845
1.00
171.94


ATOM
3829
O
ARG
E
229
16.181
−78.991
−22.222
1.00
170.44


ATOM
3830
CB
ARG
E
229
13.811
−80.811
−23.752
1.00
169.44


ATOM
3831
CG
ARG
E
229
13.005
−80.291
−22.557
1.00
176.78


ATOM
3832
CD
ARG
E
229
11.739
−81.110
−22.320
1.00
183.66


ATOM
3833
NE
ARG
E
229
11.602
−81.565
−20.933
1.00
196.67


ATOM
3834
CZ
ARG
E
229
11.248
−82.799
−20.566
1.00
216.76


ATOM
3835
NH1
ARG
E
229
10.938
−83.710
−21.482
1.00
205.45


ATOM
3836
NH2
ARG
E
229
11.187
−83.125
−19.278
1.00
205.62


ATOM
3837
N
ASN
E
230
16.702
−81.187
−22.542
1.00
168.77


ATOM
3838
CA
ASN
E
230
17.552
−81.313
−21.377
1.00
167.70


ATOM
3839
C
ASN
E
230
19.041
−81.350
−21.694
1.00
171.91


ATOM
3840
O
ASN
E
230
19.685
−80.295
−21.806
1.00
171.26


ATOM
3841
CB
ASN
E
230
17.068
−82.468
−20.498
1.00
166.39


ATOM
3842
CG
ASN
E
230
15.679
−82.257
−19.929
1.00
189.24


ATOM
3843
OD1
ASN
E
230
15.447
−81.349
−19.125
1.00
176.16


ATOM
3844
ND2
ASN
E
230
14.735
−83.113
−20.300
1.00
187.51


ATOM
3845
N
PHE
E
231
19.593
−82.542
−21.823
1.00
169.51


ATOM
3846
CA
PHE
E
231
21.027
−82.694
−22.051
1.00
170.03


ATOM
3847
C
PHE
E
231
21.338
−83.536
−23.258
1.00
180.57


ATOM
3848
O
PHE
E
231
20.502
−84.315
−23.732
1.00
183.15


ATOM
3849
CB
PHE
E
231
21.739
−83.248
−20.801
1.00
170.77


ATOM
3850
CG
PHE
E
231
21.669
−82.314
−19.631
1.00
168.59


ATOM
3851
CD2
PHE
E
231
20.826
−82.572
−18.573
1.00
168.66


ATOM
3852
CD1
PHE
E
231
22.460
−81.176
−19.585
1.00
169.39


ATOM
3853
CE2
PHE
E
231
20.730
−81.681
−17.518
1.00
170.35


ATOM
3854
CE1
PHE
E
231
22.371
−80.290
−18.526
1.00
168.72


ATOM
3855
CZ
PHE
E
231
21.483
−80.531
−17.517
1.00
167.63


ATOM
3856
N
TYR
E
232
22.553
−83.379
−23.758
1.00
178.78


ATOM
3857
CA
TYR
E
232
23.002
−84.076
−24.943
1.00
181.33


ATOM
3858
C
TYR
E
232
24.126
−85.031
−24.598
1.00
188.12


ATOM
3859
O
TYR
E
232
25.118
−84.640
−23.981
1.00
187.86


ATOM
3860
CB
TYR
E
232
23.434
−83.073
−26.048
1.00
182.96


ATOM
3861
CG
TYR
E
232
24.169
−83.761
−27.168
1.00
188.24


ATOM
3862
CD1
TYR
E
232
23.478
−84.463
−28.152
1.00
190.91


ATOM
3863
CD2
TYR
E
232
25.558
−83.851
−27.159
1.00
192.07


ATOM
3864
CE1
TYR
E
232
24.157
−85.193
−29.132
1.00
194.36


ATOM
3865
CE2
TYR
E
232
26.247
−84.589
−28.122
1.00
196.58


ATOM
3866
CZ
TYR
E
232
25.544
−85.254
−29.113
1.00
202.92


ATOM
3867
OH
TYR
E
232
26.242
−85.959
−30.066
1.00
204.39


ATOM
3868
N
LEU
E
233
24.009
−86.270
−25.055
1.00
186.93


ATOM
3869
CA
LEU
E
233
25.053
−87.255
−24.837
1.00
189.08


ATOM
3870
C
LEU
E
233
25.076
−88.271
−25.937
1.00
196.05


ATOM
3871
O
LEU
E
233
24.048
−88.894
−26.217
1.00
196.57


ATOM
3872
CB
LEU
E
233
24.803
−87.976
−23.499
1.00
188.91


ATOM
3873
CG
LEU
E
233
25.840
−88.976
−23.044
1.00
197.11


ATOM
3874
CD1
LEU
E
233
25.913
−88.996
−21.554
1.00
196.53


ATOM
3875
CD2
LEU
E
233
25.472
−90.343
−23.432
1.00
203.06


ATOM
3876
N
ASP
E
234
26.267
−88.508
−26.497
1.00
194.45


ATOM
3877
CA
ASP
E
234
26.513
−89.566
−27.469
1.00
197.78


ATOM
3878
C
ASP
E
234
25.394
−89.705
−28.523
1.00
200.31


ATOM
3879
O
ASP
E
234
24.749
−90.755
−28.626
1.00
200.30


ATOM
3880
CB
ASP
E
234
26.760
−90.901
−26.718
1.00
202.51


ATOM
3881
CG
ASP
E
234
27.990
−90.947
−25.793
1.00
218.00


ATOM
3882
OD1
ASP
E
234
28.975
−90.223
−26.068
1.00
220.21


ATOM
3883
OD2
ASP
E
234
27.991
−91.763
−24.832
1.00
224.79


ATOM
3884
N
GLY
E
235
25.157
−88.608
−29.246
1.00
194.76


ATOM
3885
CA
GLY
E
235
24.162
−88.491
−30.311
1.00
193.46


ATOM
3886
C
GLY
E
235
22.719
−88.267
−29.895
1.00
191.83


ATOM
3887
O
GLY
E
235
21.894
−87.848
−30.714
1.00
191.15


ATOM
3888
N
ARG
E
236
22.429
−88.425
−28.614
1.00
184.64


ATOM
3889
CA
ARG
E
236
21.075
−88.474
−28.098
1.00
181.72


ATOM
3890
C
ARG
E
236
20.665
−87.397
−27.115
1.00
184.51


ATOM
3891
O
ARG
E
236
21.499
−86.889
−26.383
1.00
183.01


ATOM
3892
CB
ARG
E
236
20.975
−89.845
−27.432
1.00
178.95


ATOM
3893
CG
ARG
E
236
19.605
−90.315
−27.004
1.00
168.89


ATOM
3894
CD
ARG
E
236
19.717
−91.687
−26.407
1.00
159.23


ATOM
3895
NE
ARG
E
236
20.237
−91.578
−25.056
1.00
145.55


ATOM
3896
CZ
ARG
E
236
20.763
−92.577
−24.373
1.00
164.02


ATOM
3897
NH1
ARG
E
236
20.892
−93.774
−24.929
1.00
174.66


ATOM
3898
NH2
ARG
E
236
21.169
−92.392
−23.125
1.00
136.33


ATOM
3899
N
CYS
E
237
19.367
−87.073
−27.074
1.00
181.84


ATOM
3900
CA
CYS
E
237
18.811
−86.151
−26.090
1.00
180.10


ATOM
3901
C
CYS
E
237
18.350
−86.975
−24.907
1.00
178.68


ATOM
3902
O
CYS
E
237
17.511
−87.879
−25.061
1.00
178.98


ATOM
3903
CB
CYS
E
237
17.657
−85.332
−26.663
1.00
180.99


ATOM
3904
SG
CYS
E
237
18.127
−84.191
−27.982
1.00
186.15


ATOM
3905
N
VAL
E
238
18.922
−86.671
−23.733
1.00
170.90


ATOM
3906
CA
VAL
E
238
18.649
−87.339
−22.460
1.00
170.29


ATOM
3907
C
VAL
E
238
18.136
−86.410
−21.367
1.00
171.95


ATOM
3908
O
VAL
E
238
18.523
−85.242
−21.307
1.00
171.49


ATOM
3909
CB
VAL
E
238
19.844
−88.155
−21.938
1.00
176.29


ATOM
3910
CG1
VAL
E
238
20.236
−89.229
−22.923
1.00
179.25


ATOM
3911
CG2
VAL
E
238
21.035
−87.273
−21.600
1.00
175.35


ATOM
3912
N
GLU
E
239
17.298
−86.952
−20.469
1.00
166.95


ATOM
3913
CA
GLU
E
239
16.746
−86.196
−19.350
1.00
164.49


ATOM
3914
C
GLU
E
239
17.816
−85.742
−18.361
1.00
165.04


ATOM
3915
O
GLU
E
239
17.792
−84.607
−17.898
1.00
162.71


ATOM
3916
CB
GLU
E
239
15.612
−86.966
−18.658
1.00
166.86


ATOM
3917
CG
GLU
E
239
15.056
−86.211
−17.458
1.00
178.27


ATOM
3918
CD
GLU
E
239
13.861
−86.812
−16.750
1.00
195.68


ATOM
3919
OE1
GLU
E
239
12.903
−87.223
−17.447
1.00
200.78


ATOM
3920
OE2
GLU
E
239
13.912
−86.933
−15.502
1.00
176.05


ATOM
3921
N
THR
E
240
18.731
−86.615
−18.036
1.00
163.00


ATOM
3922
CA
THR
E
240
19.809
−86.268
−17.128
1.00
163.69


ATOM
3923
C
THR
E
240
21.061
−86.950
−17.584
1.00
171.24


ATOM
3924
O
THR
E
240
20.979
−87.966
−18.279
1.00
172.30


ATOM
3925
CB
THR
E
240
19.466
−86.661
−15.676
1.00
171.77


ATOM
3926
OG1
THR
E
240
20.562
−86.291
−14.842
1.00
169.89


ATOM
3927
CG2
THR
E
240
19.126
−88.161
−15.518
1.00
171.47


ATOM
3928
N
CYS
E
241
22.225
−86.427
−17.172
1.00
170.09


ATOM
3929
CA
CYS
E
241
23.498
−87.092
−17.445
1.00
173.33


ATOM
3930
C
CYS
E
241
23.584
−88.247
−16.483
1.00
178.41


ATOM
3931
O
CYS
E
241
23.487
−88.022
−15.274
1.00
179.17


ATOM
3932
CB
CYS
E
241
24.685
−86.160
−17.243
1.00
174.36


ATOM
3933
SG
CYS
E
241
24.768
−84.789
−18.415
1.00
176.76


ATOM
3934
N
PRO
E
242
23.758
−89.493
−16.930
1.00
173.89


ATOM
3935
CA
PRO
E
242
23.875
−90.543
−15.937
1.00
174.49


ATOM
3936
C
PRO
E
242
25.338
−90.609
−15.497
1.00
177.38


ATOM
3937
O
PRO
E
242
26.222
−90.161
−16.253
1.00
178.05


ATOM
3938
CB
PRO
E
242
23.473
−91.782
−16.727
1.00
178.23


ATOM
3939
CG
PRO
E
242
23.988
−91.519
−18.120
1.00
182.91


ATOM
3940
CD
PRO
E
242
23.916
−90.012
−18.311
1.00
175.89


ATOM
3941
N
PRO
E
243
25.619
−91.159
−14.300
1.00
171.55


ATOM
3942
CA
PRO
E
243
27.010
−91.418
−13.921
1.00
172.24


ATOM
3943
C
PRO
E
243
27.573
−92.501
−14.863
1.00
175.78


ATOM
3944
O
PRO
E
243
26.833
−93.370
−15.337
1.00
173.94


ATOM
3945
CB
PRO
E
243
26.880
−91.929
−12.504
1.00
175.93


ATOM
3946
CG
PRO
E
243
25.482
−91.534
−12.068
1.00
178.13


ATOM
3947
CD
PRO
E
243
24.693
−91.678
−13.282
1.00
172.74


ATOM
3948
N
PRO
E
244
28.840
−92.402
−15.262
1.00
175.61


ATOM
3949
CA
PRO
E
244
29.867
−91.504
−14.730
1.00
176.16


ATOM
3950
C
PRO
E
244
30.045
−90.152
−15.388
1.00
176.33


ATOM
3951
O
PRO
E
244
31.144
−89.613
−15.282
1.00
175.83


ATOM
3952
CB
PRO
E
244
31.134
−92.347
−14.889
1.00
183.05


ATOM
3953
CG
PRO
E
244
30.899
−93.085
−16.183
1.00
188.34


ATOM
3954
CD
PRO
E
244
29.422
−93.399
−16.186
1.00
181.08


ATOM
3955
N
TYR
E
245
29.019
−89.620
−16.087
1.00
170.74


ATOM
3956
CA
TYR
E
245
29.122
−88.316
−16.765
1.00
168.23


ATOM
3957
C
TYR
E
245
28.647
−87.138
−15.899
1.00
171.37


ATOM
3958
O
TYR
E
245
27.802
−87.325
−15.029
1.00
171.59


ATOM
3959
CB
TYR
E
245
28.392
−88.297
−18.115
1.00
167.68


ATOM
3960
CG
TYR
E
245
28.817
−89.405
−19.037
1.00
172.59


ATOM
3961
CD2
TYR
E
245
28.012
−90.520
−19.228
1.00
174.89


ATOM
3962
CD1
TYR
E
245
30.026
−89.349
−19.720
1.00
177.10


ATOM
3963
CE2
TYR
E
245
28.418
−91.586
−20.036
1.00
179.69


ATOM
3964
CE1
TYR
E
245
30.440
−90.402
−20.550
1.00
183.64


ATOM
3965
CZ
TYR
E
245
29.642
−91.534
−20.690
1.00
190.76


ATOM
3966
OH
TYR
E
245
30.051
−92.601
−21.479
1.00
191.98


ATOM
3967
N
TYR
E
246
29.170
−85.927
−16.153
1.00
165.73


ATOM
3968
CA
TYR
E
246
28.772
−84.709
−15.443
1.00
162.26


ATOM
3969
C
TYR
E
246
28.029
−83.726
−16.339
1.00
166.24


ATOM
3970
O
TYR
E
246
28.310
−83.613
−17.542
1.00
165.15


ATOM
3971
CB
TYR
E
246
29.980
−84.019
−14.833
1.00
162.58


ATOM
3972
CG
TYR
E
246
30.714
−84.906
−13.866
1.00
164.56


ATOM
3973
CD2
TYR
E
246
31.876
−85.573
−14.245
1.00
167.65


ATOM
3974
CD1
TYR
E
246
30.226
−85.116
−12.577
1.00
166.35


ATOM
3975
CE2
TYR
E
246
32.541
−86.421
−13.363
1.00
171.41


ATOM
3976
CE1
TYR
E
246
30.870
−85.976
−11.693
1.00
170.13


ATOM
3977
CZ
TYR
E
246
32.027
−86.628
−12.092
1.00
177.60


ATOM
3978
OH
TYR
E
246
32.684
−87.446
−11.217
1.00
179.34


ATOM
3979
N
HIS
E
247
27.085
−83.002
−15.728
1.00
163.05


ATOM
3980
CA
HIS
E
247
26.303
−81.987
−16.423
1.00
161.74


ATOM
3981
C
HIS
E
247
27.214
−80.776
−16.692
1.00
170.39


ATOM
3982
O
HIS
E
247
27.809
−80.230
−15.763
1.00
171.17


ATOM
3983
CB
HIS
E
247
25.101
−81.561
−15.579
1.00
160.54


ATOM
3984
CG
HIS
E
247
24.178
−82.667
−15.188
1.00
163.97


ATOM
3985
ND1
HIS
E
247
23.055
−82.948
−15.924
1.00
164.60


ATOM
3986
CD2
HIS
E
247
24.184
−83.454
−14.087
1.00
166.55


ATOM
3987
CE1
HIS
E
247
22.413
−83.895
−15.261
1.00
164.36


ATOM
3988
NE2
HIS
E
247
23.069
−84.251
−14.166
1.00
166.21


ATOM
3989
N
PHE
E
248
27.341
−80.374
−17.963
1.00
168.62


ATOM
3990
CA
PHE
E
248
28.215
−79.291
−18.361
1.00
169.08


ATOM
3991
C
PHE
E
248
27.499
−78.194
−19.133
1.00
175.91


ATOM
3992
O
PHE
E
248
26.724
−78.488
−20.063
1.00
176.30


ATOM
3993
CB
PHE
E
248
29.387
−79.862
−19.160
1.00
172.45


ATOM
3994
CG
PHE
E
248
30.457
−78.856
−19.464
1.00
174.50


ATOM
3995
CD1
PHE
E
248
31.212
−78.298
−18.451
1.00
177.91


ATOM
3996
CD2
PHE
E
248
30.705
−78.456
−20.765
1.00
176.89


ATOM
3997
CE1
PHE
E
248
32.200
−77.371
−18.735
1.00
179.13


ATOM
3998
CE2
PHE
E
248
31.689
−77.513
−21.045
1.00
180.41


ATOM
3999
CZ
PHE
E
248
32.427
−76.981
−20.029
1.00
178.75


ATOM
4000
N
GLN
E
249
27.751
−76.920
−18.724
1.00
173.25


ATOM
4001
CA
GLN
E
249
27.217
−75.708
−19.365
1.00
172.30


ATOM
4002
C
GLN
E
249
25.660
−75.772
−19.522
1.00
174.09


ATOM
4003
O
GLN
E
249
25.060
−75.164
−20.407
1.00
171.77


ATOM
4004
CB
GLN
E
249
27.971
−75.540
−20.705
1.00
175.01


ATOM
4005
CG
GLN
E
249
27.918
−74.230
−21.454
1.00
212.46


ATOM
4006
CD
GLN
E
249
28.384
−72.999
−20.728
1.00
242.40


ATOM
4007
OE1
GLN
E
249
29.587
−72.741
−20.584
1.00
240.03


ATOM
4008
NE2
GLN
E
249
27.418
−72.132
−20.422
1.00
232.89


ATOM
4009
N
ASP
E
250
25.030
−76.530
−18.635
1.00
171.84


ATOM
4010
CA
ASP
E
250
23.605
−76.765
−18.636
1.00
171.66


ATOM
4011
C
ASP
E
250
22.980
−77.295
−19.965
1.00
174.25


ATOM
4012
O
ASP
E
250
21.773
−77.114
−20.211
1.00
174.56


ATOM
4013
CB
ASP
E
250
22.834
−75.618
−17.976
1.00
173.92


ATOM
4014
CG
ASP
E
250
21.608
−76.123
−17.221
1.00
200.91


ATOM
4015
OD1
ASP
E
250
21.786
−76.860
−16.201
1.00
202.99


ATOM
4016
OD2
ASP
E
250
20.469
−75.833
−17.672
1.00
215.48


ATOM
4017
N
TRP
E
251
23.781
−78.033
−20.776
1.00
168.06


ATOM
4018
CA
TRP
E
251
23.271
−78.643
−22.009
1.00
166.25


ATOM
4019
C
TRP
E
251
23.944
−79.943
−22.441
1.00
173.07


ATOM
4020
O
TRP
E
251
23.356
−80.646
−23.263
1.00
175.39


ATOM
4021
CB
TRP
E
251
23.284
−77.644
−23.156
1.00
163.41


ATOM
4022
CG
TRP
E
251
24.616
−77.534
−23.776
1.00
165.28


ATOM
4023
CD1
TRP
E
251
25.696
−76.885
−23.272
1.00
168.50


ATOM
4024
CD2
TRP
E
251
25.063
−78.217
−24.948
1.00
166.95


ATOM
4025
NE1
TRP
E
251
26.782
−77.077
−24.087
1.00
170.39


ATOM
4026
CE2
TRP
E
251
26.418
−77.884
−25.134
1.00
172.74


ATOM
4027
CE3
TRP
E
251
24.443
−79.062
−25.881
1.00
169.04


ATOM
4028
CZ2
TRP
E
251
27.165
−78.362
−26.219
1.00
174.17


ATOM
4029
CZ3
TRP
E
251
25.184
−79.533
−26.957
1.00
172.54


ATOM
4030
CH2
TRP
E
251
26.529
−79.189
−27.113
1.00
174.62


ATOM
4031
N
ARG
E
252
25.186
−80.237
−21.980
1.00
168.79


ATOM
4032
CA
ARG
E
252
25.840
−81.492
−22.374
1.00
170.03


ATOM
4033
C
ARG
E
252
26.469
−82.315
−21.262
1.00
178.09


ATOM
4034
O
ARG
E
252
26.754
−81.791
−20.188
1.00
178.84


ATOM
4035
CB
ARG
E
252
26.796
−81.308
−23.544
1.00
167.70


ATOM
4036
CG
ARG
E
252
27.994
−80.487
−23.234
1.00
171.56


ATOM
4037
CD
ARG
E
252
29.021
−80.721
−24.302
1.00
183.53


ATOM
4038
NE
ARG
E
252
30.069
−79.699
−24.295
1.00
187.68


ATOM
4039
CZ
ARG
E
252
31.184
−79.756
−25.024
1.00
199.10


ATOM
4040
NH1
ARG
E
252
31.386
−80.764
−25.865
1.00
186.77


ATOM
4041
NH2
ARG
E
252
32.100
−78.799
−24.925
1.00
181.29


ATOM
4042
N
CYS
E
253
26.669
−83.626
−21.526
1.00
176.45


ATOM
4043
CA
CYS
E
253
27.288
−84.589
−20.595
1.00
177.27


ATOM
4044
C
CYS
E
253
28.687
−84.805
−20.954
1.00
183.35


ATOM
4045
O
CYS
E
253
28.994
−85.060
−22.117
1.00
184.02


ATOM
4046
CB
CYS
E
253
26.548
−85.910
−20.583
1.00
178.03


ATOM
4047
SG
CYS
E
253
24.807
−85.752
−20.194
1.00
178.88


ATOM
4048
N
VAL
E
254
29.554
−84.701
−19.964
1.00
181.36


ATOM
4049
CA
VAL
E
254
30.980
−84.870
−20.183
1.00
184.69


ATOM
4050
C
VAL
E
254
31.527
−85.816
−19.096
1.00
190.53


ATOM
4051
O
VAL
E
254
30.858
−86.040
−18.088
1.00
189.11


ATOM
4052
CB
VAL
E
254
31.720
−83.495
−20.233
1.00
188.69


ATOM
4053
CG1
VAL
E
254
31.212
−82.589
−21.372
1.00
186.90


ATOM
4054
CG2
VAL
E
254
31.643
−82.770
−18.887
1.00
187.36


ATOM
4055
N
ASN
E
255
32.723
−86.388
−19.311
1.00
189.58


ATOM
4056
CA
ASN
E
255
33.352
−87.278
−18.324
1.00
191.47


ATOM
4057
C
ASN
E
255
34.287
−86.480
−17.415
1.00
195.05


ATOM
4058
O
ASN
E
255
34.640
−85.325
−17.713
1.00
194.41


ATOM
4059
CB
ASN
E
255
34.103
−88.461
−18.995
1.00
195.05


ATOM
4060
CG
ASN
E
255
35.103
−87.988
−20.011
1.00
225.86


ATOM
4061
OD1
ASN
E
255
35.831
−87.015
−19.779
1.00
226.15


ATOM
4062
ND2
ASN
E
255
35.139
−88.582
−21.197
1.00
221.41


ATOM
4063
N
PHE
E
256
34.721
−87.107
−16.331
1.00
192.04


ATOM
4064
CA
PHE
E
256
35.630
−86.449
−15.410
1.00
192.52


ATOM
4065
C
PHE
E
256
36.881
−85.874
−16.101
1.00
197.04


ATOM
4066
O
PHE
E
256
37.316
−84.764
−15.799
1.00
194.58


ATOM
4067
CB
PHE
E
256
36.040
−87.424
−14.304
1.00
197.52


ATOM
4068
CG
PHE
E
256
37.098
−86.838
−13.411
1.00
200.33


ATOM
4069
CD1
PHE
E
256
36.777
−85.858
−12.480
1.00
200.43


ATOM
4070
CD2
PHE
E
256
38.428
−87.189
−13.568
1.00
206.43


ATOM
4071
CE1
PHE
E
256
37.759
−85.272
−11.700
1.00
203.02


ATOM
4072
CE2
PHE
E
256
39.405
−86.614
−12.776
1.00
211.12


ATOM
4073
CZ
PHE
E
256
39.068
−85.650
−11.859
1.00
206.77


ATOM
4074
N
SER
E
257
37.456
−86.656
−17.005
1.00
196.92


ATOM
4075
CA
SER
E
257
38.682
−86.334
−17.705
1.00
199.31


ATOM
4076
C
SER
E
257
38.568
−85.023
−18.490
1.00
200.87


ATOM
4077
O
SER
E
257
39.512
−84.241
−18.510
1.00
202.11


ATOM
4078
CB
SER
E
257
39.086
−87.513
−18.586
1.00
205.82


ATOM
4079
OG
SER
E
257
39.990
−87.157
−19.616
1.00
215.57


ATOM
4080
N
PHE
E
258
37.417
−84.781
−19.107
1.00
194.67


ATOM
4081
CA
PHE
E
258
37.145
−83.573
−19.863
1.00
193.56


ATOM
4082
C
PHE
E
258
37.149
−82.383
−18.925
1.00
196.85


ATOM
4083
O
PHE
E
258
37.763
−81.360
−19.242
1.00
197.66


ATOM
4084
CB
PHE
E
258
35.769
−83.687
−20.533
1.00
193.47


ATOM
4085
CG
PHE
E
258
35.248
−82.433
−21.221
1.00
193.05


ATOM
4086
CD1
PHE
E
258
35.357
−82.279
−22.598
1.00
198.11


ATOM
4087
CD2
PHE
E
258
34.607
−81.430
−20.493
1.00
192.08


ATOM
4088
CE1
PHE
E
258
34.872
−81.125
−23.230
1.00
197.04


ATOM
4089
CE2
PHE
E
258
34.107
−80.286
−21.126
1.00
192.93


ATOM
4090
CZ
PHE
E
258
34.245
−80.137
−22.487
1.00
192.43


ATOM
4091
N
CYS
E
259
36.441
−82.507
−17.780
1.00
191.14


ATOM
4092
CA
CYS
E
259
36.347
−81.442
−16.785
1.00
189.04


ATOM
4093
C
CYS
E
259
37.716
−81.114
−16.228
1.00
195.62


ATOM
4094
O
CYS
E
259
38.018
−79.953
−15.933
1.00
193.72


ATOM
4095
CB
CYS
E
259
35.387
−81.839
−15.674
1.00
188.02


ATOM
4096
SG
CYS
E
259
34.884
−80.461
−14.613
1.00
189.48


ATOM
4097
N
GLN
E
260
38.538
−82.159
−16.079
1.00
196.22


ATOM
4098
CA
GLN
E
260
39.896
−82.059
−15.569
1.00
198.96


ATOM
4099
C
GLN
E
260
40.800
−81.343
−16.545
1.00
203.73


ATOM
4100
O
GLN
E
260
41.579
−80.476
−16.141
1.00
203.71


ATOM
4101
CB
GLN
E
260
40.425
−83.448
−15.247
1.00
203.52


ATOM
4102
CG
GLN
E
260
41.820
−83.432
−14.727
1.00
210.19


ATOM
4103
CD
GLN
E
260
42.046
−84.671
−13.967
1.00
235.24


ATOM
4104
OE1
GLN
E
260
42.017
−84.640
−12.741
1.00
232.48


ATOM
4105
NE2
GLN
E
260
42.127
−85.808
−14.653
1.00
230.43


ATOM
4106
N
ASP
E
261
40.693
−81.700
−17.824
1.00
201.21


ATOM
4107
CA
ASP
E
261
41.476
−81.068
−18.874
1.00
202.91


ATOM
4108
C
ASP
E
261
41.196
−79.563
−18.954
1.00
202.01


ATOM
4109
O
ASP
E
261
42.128
−78.776
−19.123
1.00
203.66


ATOM
4110
CB
ASP
E
261
41.274
−81.795
−20.219
1.00
206.74


ATOM
4111
CG
ASP
E
261
41.890
−83.205
−20.304
1.00
228.81


ATOM
4112
OD1
ASP
E
261
42.574
−83.631
−19.331
1.00
232.23


ATOM
4113
OD2
ASP
E
261
41.684
−83.885
−21.338
1.00
239.48


ATOM
4114
N
LEU
E
262
39.935
−79.166
−18.769
1.00
193.04


ATOM
4115
CA
LEU
E
262
39.545
−77.759
−18.762
1.00
190.09


ATOM
4116
C
LEU
E
262
40.206
−77.017
−17.621
1.00
196.98


ATOM
4117
O
LEU
E
262
40.779
−75.938
−17.810
1.00
196.58


ATOM
4118
CB
LEU
E
262
38.039
−77.651
−18.585
1.00
185.89


ATOM
4119
CG
LEU
E
262
37.254
−77.483
−19.842
1.00
188.37


ATOM
4120
CD1
LEU
E
262
37.318
−78.696
−20.776
1.00
190.26


ATOM
4121
CD2
LEU
E
262
35.888
−77.000
−19.522
1.00
187.72


ATOM
4122
N
HIS
E
263
40.101
−77.603
−16.430
1.00
196.60


ATOM
4123
CA
HIS
E
263
40.650
−77.059
−15.201
1.00
198.83


ATOM
4124
C
HIS
E
263
42.129
−76.750
−15.316
1.00
210.08


ATOM
4125
O
HIS
E
263
42.562
−75.667
−14.907
1.00
211.45


ATOM
4126
CB
HIS
E
263
40.425
−78.037
−14.046
1.00
200.25


ATOM
4127
CG
HIS
E
263
41.020
−77.545
−12.771
1.00
205.01


ATOM
4128
ND1
EIS
E
263
42.340
−77.810
−12.448
1.00
210.62


ATOM
4129
CD2
HIS
E
263
40.482
−76.759
−11.813
1.00
204.98


ATOM
4130
CE1
HIS
E
263
42.550
−77.204
−11.293
1.00
210.66


ATOM
4131
NE2
HIS
E
263
41.464
−76.548
−10.880
1.00
207.70


ATOM
4132
N
HIS
E
264
42.899
−77.700
−15.874
1.00
210.08


ATOM
4133
CA
HIS
E
264
44.334
−77.564
−16.006
1.00
213.83


ATOM
4134
C
HIS
E
264
44.745
−76.516
−17.015
1.00
215.60


ATOM
4135
O
HIS
E
264
44.679
−76.693
−18.232
1.00
214.86


ATOM
4136
CB
HIS
E
264
45.026
−78.908
−15.998
1.00
219.06


ATOM
4137
CG
HIS
E
264
44.974
−79.534
−14.624
1.00
224.14


ATOM
4138
ND1
HIS
E
264
44.109
−80.583
−14.325
1.00
225.26


ATOM
4139
CD2
HIS
E
264
45.647
−79.199
−13.494
1.00
228.36


ATOM
4140
CE1
HIS
E
264
44.321
−80.877
−13.047
1.00
226.38


ATOM
4141
NE2
HIS
E
264
45.233
−80.070
−12.503
1.00
228.58


ATOM
4142
N
LYS
E
265
44.952
−75.325
−16.420
1.00
210.25


ATOM
4143
CA
LYS
E
265
45.170
−74.012
−16.996
1.00
212.48


ATOM
4144
C
LYS
E
265
44.014
−73.568
−17.860
1.00
204.27


ATOM
4145
O
LYS
E
265
42.966
−73.290
−17.286
1.00
158.06


ATOM
4146
CB
LYS
E
265
46.562
−73.780
−17.597
1.00
218.46


ATOM
4147
CG
LYS
E
265
47.391
−72.837
−16.716
1.00
216.10


ATOM
4148
CD
LYS
E
265
48.501
−72.077
−17.458
1.00
214.34


ATOM
4149
CE
LYS
E
265
48.035
−70.937
−18.355
1.00
208.08


ATOM
4150
NZ
LYS
E
265
47.450
−69.785
−17.608
1.00
204.39


ATOM
4151
N
GLN
E
276
38.818
−72.227
−13.908
1.00
191.28


ATOM
4152
CA
GLN
E
276
39.360
−73.495
−13.359
1.00
193.77


ATOM
4153
C
GLN
E
276
38.189
−74.323
−12.838
1.00
193.67


ATOM
4154
O
GLN
E
276
37.746
−74.132
−11.701
1.00
193.21


ATOM
4155
CB
GLN
E
276
40.375
−73.253
−12.211
1.00
198.53


ATOM
4156
CG
GLN
E
276
41.429
−72.154
−12.456
1.00
218.34


ATOM
4157
CD
GLN
E
276
41.875
−71.447
−11.185
1.00
233.70


ATOM
4158
OE1
GLN
E
276
41.585
−70.260
−10.974
1.00
225.94


ATOM
4159
NE2
GLN
E
276
42.624
−72.138
−10.330
1.00
225.95


ATOM
4160
N
TYR
E
277
37.671
−75.217
−13.698
1.00
186.44


ATOM
4161
CA
TYR
E
277
36.472
−76.022
−13.470
1.00
182.61


ATOM
4162
C
TYR
E
277
36.538
−76.980
−12.316
1.00
184.61


ATOM
4163
O
TYR
E
277
37.590
−77.543
−12.025
1.00
187.17


ATOM
4164
CB
TYR
E
277
36.032
−76.708
−14.756
1.00
182.96


ATOM
4165
CG
TYR
E
277
35.346
−75.747
−15.691
1.00
183.67


ATOM
4166
CD2
TYR
E
277
33.962
−75.703
−15.780
1.00
183.09


ATOM
4167
CD1
TYR
E
277
36.078
−74.856
−16.470
1.00
186.37


ATOM
4168
CE2
TYR
E
277
33.316
−74.784
−16.612
1.00
182.67


ATOM
4169
CE1
TYR
E
277
35.446
−73.936
−17.312
1.00
186.04


ATOM
4170
CZ
TYR
E
277
34.061
−73.906
−17.386
1.00
190.12


ATOM
4171
OH
TYR
E
277
33.417
−73.015
−18.224
1.00
186.10


ATOM
4172
N
VAL
E
278
35.413
−77.137
−11.629
1.00
176.19


ATOM
4173
CA
VAL
E
278
35.323
−77.984
−10.450
1.00
175.95


ATOM
4174
C
VAL
E
278
34.146
−78.932
−10.576
1.00
178.94


ATOM
4175
O
VAL
E
278
33.281
−78.736
−11.417
1.00
175.49


ATOM
4176
CB
VAL
E
278
35.218
−77.125
−9.168
1.00
178.67


ATOM
4177
CG1
VAL
E
278
36.378
−76.158
−9.068
1.00
179.61


ATOM
4178
CG2
VAL
E
278
33.918
−76.351
−9.126
1.00
175.44


ATOM
4179
N
ILE
E
279
34.109
−79.950
−9.741
1.00
178.71


ATOM
4180
CA
ILE
E
279
32.983
−80.854
−9.704
1.00
177.96


ATOM
4181
C
ILE
E
279
32.185
−80.521
−8.481
1.00
180.61


ATOM
4182
O
ILE
E
279
32.747
−80.374
−7.387
1.00
182.45


ATOM
4183
CB
ILE
E
279
33.424
−82.324
−9.738
1.00
184.55


ATOM
4184
CG1
ILE
E
279
33.929
−82.646
−11.169
1.00
185.33


ATOM
4185
CG2
ILE
E
279
32.228
−83.245
−9.409
1.00
185.19


ATOM
4186
CD1
ILE
E
279
35.330
−82.731
−11.374
1.00
195.08


ATOM
4187
N
HIS
E
280
30.875
−80.395
−8.667
1.00
174.27


ATOM
4188
CA
HIS
E
280
29.936
−80.169
−7.585
1.00
174.67


ATOM
4189
C
HIS
E
280
28.530
−80.682
−7.960
1.00
178.26


ATOM
4190
O
HIS
E
280
28.011
−80.308
−9.018
1.00
175.61


ATOM
4191
CB
HIS
E
280
29.897
−78.697
−7.165
1.00
174.85


ATOM
4192
CG
HIS
E
280
28.883
−78.417
−6.086
1.00
178.88


ATOM
4193
ND1
HIS
E
280
29.041
−78.914
−4.799
1.00
183.74


ATOM
4194
CD2
HIS
E
280
27.723
−77.706
−6.139
1.00
178.62


ATOM
4195
CE1
HIS
E
280
27.997
−78.475
−4.111
1.00
182.69


ATOM
4196
NE2
HIS
E
280
27.175
−77.743
−4.873
1.00
179.98


ATOM
4197
N
ASN
E
281
27.909
−81.538
−7.091
1.00
176.15


ATOM
4198
CA
ASN
E
281
26.556
−82.079
−7.300
1.00
174.31


ATOM
4199
C
ASN
E
281
26.382
−82.688
−8.722
1.00
178.01


ATOM
4200
O
ASN
E
281
25.375
−82.431
−9.356
1.00
176.37


ATOM
4201
CB
ASN
E
281
25.533
−80.934
−7.067
1.00
170.92


ATOM
4202
CG
ASN
E
281
24.185
−81.288
−6.491
1.00
201.33


ATOM
4203
OD1
ASN
E
281
23.125
−80.951
−7.060
1.00
189.94


ATOM
4204
ND2
ASN
E
281
24.194
−81.867
−5.293
1.00
198.64


ATOM
4205
N
ASN
E
282
27.368
−83.445
−9.236
1.00
175.95


ATOM
4206
CA
ASN
E
282
27.313
−84.044
−10.583
1.00
174.61


ATOM
4207
C
ASN
E
282
27.289
−83.057
−11.779
1.00
172.46


ATOM
4208
O
ASN
E
282
26.823
−83.359
−12.888
1.00
169.71


ATOM
4209
CB
ASN
E
282
26.276
−85.140
−10.652
1.00
177.32


ATOM
4210
CG
ASN
E
282
26.653
−86.293
−9.757
1.00
199.67


ATOM
4211
OD1
ASN
E
282
26.041
−86.507
−8.709
1.00
198.11


ATOM
4212
ND2
ASN
E
282
27.675
−87.066
−10.152
1.00
186.89


ATOM
4213
N
LYS
E
283
27.864
−81.889
−11.526
1.00
166.53


ATOM
4214
CA
LYS
E
283
28.019
−80.843
−12.498
1.00
163.92


ATOM
4215
C
LYS
E
283
29.478
−80.479
−12.556
1.00
172.36


ATOM
4216
O
LYS
E
283
30.195
−80.562
−11.551
1.00
173.83


ATOM
4217
CB
LYS
E
283
27.208
−79.610
−12.100
1.00
163.61


ATOM
4218
CG
LYS
E
283
25.715
−79.854
−11.864
1.00
178.24


ATOM
4219
CD
LYS
E
283
25.133
−79.062
−10.645
1.00
180.11


ATOM
4220
CE
LYS
E
283
24.870
−77.611
−10.914
1.00
170.16


ATOM
4221
NZ
LYS
E
283
24.505
−76.911
−9.658
1.00
170.88


ATOM
4222
N
CYS
E
284
29.936
−80.122
−13.750
1.00
171.63


ATOM
4223
CA
CYS
E
284
31.280
−79.604
−13.969
1.00
174.37


ATOM
4224
C
CYS
E
284
31.036
−78.083
−14.085
1.00
172.81


ATOM
4225
O
CYS
E
284
30.343
−77.592
−14.975
1.00
170.16


ATOM
4226
CB
CYS
E
284
31.900
−80.212
−15.219
1.00
177.52


ATOM
4227
SG
CYS
E
284
33.468
−79.478
−15.699
1.00
184.66


ATOM
4228
N
ILE
E
285
31.514
−77.360
−13.110
1.00
167.81


ATOM
4229
CA
ILE
E
285
31.151
−75.983
−12.891
1.00
165.88


ATOM
4230
C
ILE
E
285
32.343
−75.039
−12.869
1.00
173.87


ATOM
4231
O
ILE
E
285
33.439
−75.431
−12.442
1.00
175.84


ATOM
4232
CB
ILE
E
285
30.439
−76.100
−11.509
1.00
168.65


ATOM
4233
CG1
ILE
E
285
29.599
−74.938
−11.039
1.00
167.76


ATOM
4234
CG2
ILE
E
285
31.313
−76.658
−10.386
1.00
171.28


ATOM
4235
CD1
ILE
E
285
29.100
−75.205
−9.547
1.00
169.44


ATOM
4236
N
PRO
E
286
32.141
−73.775
−13.303
1.00
169.87


ATOM
4237
CA
PRO
E
286
33.255
−72.821
−13.306
1.00
171.04


ATOM
4238
C
PRO
E
286
33.909
−72.619
−11.948
1.00
177.18


ATOM
4239
O
PRO
E
286
35.132
−72.598
−11.869
1.00
178.90


ATOM
4240
CB
PRO
E
286
32.606
−71.533
−13.800
1.00
171.25


ATOM
4241
CG
PRO
E
286
31.413
−71.988
−14.565
1.00
173.71


ATOM
4242
CD
PRO
E
286
30.904
−73.162
−13.832
1.00
168.94


ATOM
4243
N
GLU
E
287
33.086
−72.536
−10.886
1.00
175.35


ATOM
4244
CA
GLU
E
287
33.483
−72.227
−9.524
1.00
179.30


ATOM
4245
C
GLU
E
287
32.684
−72.941
−8.477
1.00
185.14


ATOM
4246
O
GLU
E
287
31.479
−73.114
−8.642
1.00
183.17


ATOM
4247
CB
GLU
E
287
33.149
−70.743
−9.329
1.00
181.09


ATOM
4248
CG
GLU
E
287
33.802
−70.009
−8.169
1.00
204.13


ATOM
4249
CD
GLU
E
287
33.543
−68.513
−8.237
1.00
236.59


ATOM
4250
OE1
GLU
E
287
32.369
−68.113
−8.051
1.00
235.43


ATOM
4251
OE2
GLU
E
287
34.501
−67.743
−8.497
1.00
228.91


ATOM
4252
N
CYS
E
288
33.319
−73.190
−7.323
1.00
185.23


ATOM
4253
CA
CYS
E
288
32.673
−73.748
−6.145
1.00
186.51


ATOM
4254
C
CYS
E
288
31.626
−72.785
−5.637
1.00
192.78


ATOM
4255
O
CYS
E
288
31.913
−71.589
−5.540
1.00
194.38


ATOM
4256
CB
CYS
E
288
33.701
−73.995
−5.052
1.00
189.71


ATOM
4257
SG
CYS
E
288
34.482
−75.631
−5.092
1.00
195.13


ATOM
4258
N
PRO
E
289
30.459
−73.289
−5.208
1.00
188.79


ATOM
4259
CA
PRO
E
289
29.454
−72.410
−4.617
1.00
188.26


ATOM
4260
C
PRO
E
289
29.840
−72.031
−3.189
1.00
195.65


ATOM
4261
O
PRO
E
289
30.821
−72.543
−2.630
1.00
196.23


ATOM
4262
CB
PRO
E
289
28.189
−73.258
−4.645
1.00
188.54


ATOM
4263
CG
PRO
E
289
28.670
−74.618
−4.528
1.00
194.14


ATOM
4264
CD
PRO
E
289
29.982
−74.678
−5.255
1.00
190.12


ATOM
4265
N
SER
E
290
29.055
−71.117
−2.612
1.00
194.08


ATOM
4266
CA
SER
E
290
29.224
−70.601
−1.266
1.00
197.22


ATOM
4267
C
SER
E
290
29.125
−71.737
−0.249
1.00
202.02


ATOM
4268
O
SER
E
290
28.219
−72.573
−0.338
1.00
199.64


ATOM
4269
CB
SER
E
290
28.168
−69.533
−0.992
1.00
201.26


ATOM
4270
OG
SER
E
290
27.960
−68.703
−2.129
1.00
206.63


ATOM
4271
N
GLY
E
291
30.084
−71.753
0.673
1.00
201.64


ATOM
4272
CA
GLY
E
291
30.202
−72.738
1.744
1.00
204.28


ATOM
4273
C
GLY
E
291
31.189
−73.842
1.441
1.00
208.32


ATOM
4274
O
GLY
E
291
31.483
−74.683
2.304
1.00
210.27


ATOM
4275
N
TYR
E
292
31.727
−73.815
0.212
1.00
202.91


ATOM
4276
CA
TYR
E
292
32.633
−74.827
−0.302
1.00
203.52


ATOM
4277
C
TYR
E
292
33.926
−74.254
−0.829
1.00
210.70


ATOM
4278
O
TYR
E
292
33.974
−73.088
−1.227
1.00
210.31


ATOM
4279
CB
TYR
E
292
31.954
−75.561
−1.462
1.00
200.66


ATOM
4280
CG
TYR
E
292
30.752
−76.382
−1.071
1.00
200.53


ATOM
4281
CD1
TYR
E
292
30.894
−77.700
−0.668
1.00
204.04


ATOM
4282
CD2
TYR
E
292
29.463
−75.891
−1.244
1.00
198.37


ATOM
4283
CE1
TYR
E
292
29.799
−78.468
−0.321
1.00
204.00


ATOM
4284
CE2
TYR
E
292
28.355
−76.653
−0.902
1.00
198.68


ATOM
4285
CZ
TYR
E
292
28.533
−77.941
−0.434
1.00
207.73


ATOM
4286
OH
TYR
E
292
27.471
−78.733
−0.102
1.00
211.91


ATOM
4287
N
THR
E
293
34.979
−75.090
−0.826
1.00
209.62


ATOM
4288
CA
THR
E
293
36.283
−74.817
−1.399
1.00
210.52


ATOM
4289
C
THR
E
293
36.746
−76.039
−2.123
1.00
215.50


ATOM
4290
O
THR
E
293
36.247
−77.141
−1.876
1.00
214.03


ATOM
4291
CB
THR
E
293
37.215
−74.011
−0.490
1.00
221.76


ATOM
4292
OG1
THR
E
293
37.439
−72.739
−1.109
1.00
217.80


ATOM
4293
CG2
THR
E
293
38.534
−74.711
−0.156
1.00
225.39


ATOM
4294
N
MET
E
294
37.655
−75.837
−3.055
1.00
214.96


ATOM
4295
CA
MET
E
294
38.078
−76.899
−3.914
1.00
216.78


ATOM
4296
C
MET
E
294
39.265
−77.742
−3.480
1.00
228.86


ATOM
4297
O
MET
E
294
40.423
−77.285
−3.527
1.00
230.42


ATOM
4298
CB
MET
E
294
38.253
−76.356
−5.322
1.00
216.89


ATOM
4299
CG
MET
E
294
38.077
−77.403
−6.379
1.00
220.00


ATOM
4300
SD
MET
E
294
39.633
−78.117
−6.943
1.00
228.32


ATOM
4301
CE
MET
E
294
40.351
−76.741
−7.795
1.00
224.44


ATOM
4302
N
ASN
E
295
38.951
−79.013
−3.095
1.00
229.33


ATOM
4303
CA
ASN
E
295
39.923
−80.081
−2.812
1.00
233.73


ATOM
4304
C
ASN
E
295
40.658
−80.256
−4.133
1.00
238.00


ATOM
4305
O
ASN
E
295
40.037
−80.467
−5.184
1.00
235.69


ATOM
4306
CB
ASN
E
295
39.237
−81.384
−2.402
1.00
235.01


ATOM
4307
CG
ASN
E
295
40.201
−82.395
−1.797
1.00
255.03


ATOM
4308
OD1
ASN
E
295
40.748
−82.218
−0.695
1.00
248.32


ATOM
4309
ND2
ASN
E
295
40.430
−83.483
−2.508
1.00
246.60


ATOM
4310
N
SER
E
296
41.975
−80.078
−4.077
1.00
236.65


ATOM
4311
CA
SER
E
296
42.835
−79.925
−5.236
1.00
236.02


ATOM
4312
C
SER
E
296
43.133
−81.164
−6.067
1.00
238.24


ATOM
4313
O
SER
E
296
43.296
−81.062
−7.290
1.00
236.25


ATOM
4314
CB
SER
E
296
44.110
−79.185
−4.837
1.00
242.87


ATOM
4315
OG
SER
E
296
43.798
−77.991
−4.134
1.00
249.02


ATOM
4316
N
SER
E
297
43.196
−82.326
−5.409
1.00
235.00


ATOM
4317
CA
SER
E
297
43.590
−83.584
−6.036
1.00
235.87


ATOM
4318
C
SER
E
297
42.527
−84.274
−6.879
1.00
232.12


ATOM
4319
O
SER
E
297
42.835
−85.250
−7.572
1.00
233.97


ATOM
4320
CB
SER
E
297
44.157
−84.540
−4.986
1.00
244.75


ATOM
4321
OG
SER
E
297
45.430
−84.124
−4.511
1.00
255.53


ATOM
4322
N
ASN
E
298
41.288
−83.782
−6.835
1.00
219.93


ATOM
4323
CA
ASN
E
298
40.180
−84.439
−7.516
1.00
215.01


ATOM
4324
C
ASN
E
298
39.086
−83.479
−7.942
1.00
210.76


ATOM
4325
O
ASN
E
298
37.946
−83.900
−8.138
1.00
207.74


ATOM
4326
CB
ASN
E
298
39.601
−85.484
−6.573
1.00
214.94


ATOM
4327
CG
ASN
E
298
39.090
−84.892
−5.280
1.00
232.71


ATOM
4328
OD1
ASN
E
298
39.452
−83.777
−4.882
1.00
219.13


ATOM
4329
ND2
ASN
E
298
38.207
−85.612
−4.613
1.00
230.17


ATOM
4330
N
LEU
E
299
39.411
−82.183
−8.030
1.00
204.53


ATOM
4331
CA
LEU
E
299
38.508
−81.110
−8.470
1.00
199.54


ATOM
4332
C
LEU
E
299
37.179
−81.013
−7.751
1.00
198.32


ATOM
4333
O
LEU
E
299
36.277
−80.327
−8.215
1.00
195.06


ATOM
4334
CB
LEU
E
299
38.237
−81.265
−9.966
1.00
198.11


ATOM
4335
CG
LEU
E
299
39.439
−81.418
−10.837
1.00
206.60


ATOM
4336
CD1
LEU
E
299
39.035
−81.605
−12.240
1.00
205.07


ATOM
4337
CD2
LEU
E
299
40.342
−80.220
−10.716
1.00
212.90


ATOM
4338
N
LEU
E
300
37.043
−81.677
−6.628
1.00
194.39


ATOM
4339
CA
LEU
E
300
35.761
−81.773
−5.966
1.00
191.51


ATOM
4340
C
LEU
E
300
35.534
−80.702
−4.933
1.00
195.80


ATOM
4341
O
LEU
E
300
36.339
−80.524
−4.010
1.00
198.92


ATOM
4342
CB
LEU
E
300
35.693
−83.156
−5.311
1.00
194.03


ATOM
4343
CG
LEU
E
300
34.398
−83.946
−5.293
1.00
195.93


ATOM
4344
CD1
LEU
E
300
34.475
−85.088
−6.308
1.00
196.73


ATOM
4345
CD2
LEU
E
300
34.219
−84.587
−3.942
1.00
199.61


ATOM
4346
N
CYS
E
301
34.403
−80.018
−5.049
1.00
189.73


ATOM
4347
CA
CYS
E
301
34.022
−79.049
−4.034
1.00
190.92


ATOM
4348
C
CYS
E
301
33.695
−79.784
−2.736
1.00
196.75


ATOM
4349
O
CYS
E
301
32.854
−80.684
−2.747
1.00
196.15


ATOM
4350
CB
CYS
E
301
32.831
−78.228
−4.499
1.00
189.17


ATOM
4351
SG
CYS
E
301
33.210
−77.054
−5.812
1.00
191.97


ATOM
4352
N
THR
E
302
34.374
−79.412
−1.638
1.00
195.57


ATOM
4353
CA
THR
E
302
34.148
−79.928
−0.285
1.00
198.15


ATOM
4354
C
THR
E
302
33.762
−78.747
0.606
1.00
203.83


ATOM
4355
O
THR
E
302
34.246
−77.636
0.406
1.00
202.44


ATOM
4356
CB
THR
E
302
35.387
−80.610
0.269
1.00
205.07


ATOM
4357
OG1
THR
E
302
36.446
−79.664
0.287
1.00
201.25


ATOM
4358
CG2
THR
E
302
35.801
−81.816
−0.543
1.00
203.88


ATOM
4359
N
PRO
E
303
32.903
−78.958
1.602
1.00
204.10


ATOM
4360
CA
PRO
E
303
32.479
−77.842
2.454
1.00
206.12


ATOM
4361
C
PRO
E
303
33.569
−77.344
3.369
1.00
218.64


ATOM
4362
O
PRO
E
303
34.543
−78.048
3.594
1.00
219.97


ATOM
4363
CB
PRO
E
303
31.322
−78.429
3.238
1.00
208.87


ATOM
4364
CG
PRO
E
303
31.643
−79.871
3.325
1.00
214.74


ATOM
4365
CD
PRO
E
303
32.247
−80.213
1.999
1.00
207.45


ATOM
4366
N
CYS
E
304
33.387
−76.148
3.912
1.00
222.04


ATOM
4367
CA
CYS
E
304
34.388
−75.520
4.747
1.00
228.93


ATOM
4368
C
CYS
E
304
34.337
−75.876
6.210
1.00
237.79


ATOM
4369
O
CYS
E
304
33.281
−75.776
6.827
1.00
237.52


ATOM
4370
CB
CYS
E
304
34.375
−74.010
4.546
1.00
230.31


ATOM
4371
SG
CYS
E
304
34.621
−73.503
2.833
1.00
231.42


ATOM
4372
N
LEU
E
305
35.502
−76.261
6.778
1.00
239.18


ATOM
4373
CA
LEU
E
305
35.682
−76.438
8.220
1.00
244.47


ATOM
4374
C
LEU
E
305
35.892
−74.976
8.675
1.00
250.42


ATOM
4375
O
LEU
E
305
36.947
−74.380
8.407
1.00
250.65


ATOM
4376
CB
LEU
E
305
36.916
−77.319
8.567
1.00
244.41


ATOM
4377
CG
LEU
E
305
37.176
−77.597
10.081
1.00
248.03


ATOM
4378
CD1
LEU
E
305
37.743
−78.988
10.318
1.00
247.74


ATOM
4379
CD2
LEU
E
305
38.113
−76.568
10.698
1.00
249.45


ATOM
4380
N
GLY
E
306
34.857
−74.403
9.292
1.00
249.91


ATOM
4381
CA
GLY
E
306
34.845
−73.004
9.706
1.00
250.65


ATOM
4382
C
GLY
E
306
34.681
−72.105
8.494
1.00
253.43


ATOM
4383
O
GLY
E
306
34.275
−72.601
7.430
1.00
249.28


ATOM
4384
N
PRO
E
307
35.019
−70.782
8.607
1.00
250.35


ATOM
4385
CA
PRO
E
307
34.885
−69.888
7.436
1.00
245.14


ATOM
4386
C
PRO
E
307
35.699
−70.349
6.234
1.00
244.34


ATOM
4387
O
PRO
E
307
36.746
−70.987
6.390
1.00
245.81


ATOM
4388
CB
PRO
E
307
35.378
−68.527
7.954
1.00
249.48


ATOM
4389
CG
PRO
E
307
35.309
−68.605
9.437
1.00
255.48


ATOM
4390
CD
PRO
E
307
35.527
−70.048
9.793
1.00
252.58


ATOM
4391
N
CYS
E
308
35.198
−70.042
5.035
1.00
235.87


ATOM
4392
CA
CYS
E
308
35.881
−70.399
3.794
1.00
233.11


ATOM
4393
C
CYS
E
308
37.032
−69.450
3.518
1.00
239.94


ATOM
4394
O
CYS
E
308
36.899
−68.242
3.743
1.00
240.32


ATOM
4395
CB
CYS
E
308
34.921
−70.406
2.609
1.00
227.97


ATOM
4396
SG
CYS
E
308
33.659
−71.705
2.660
1.00
229.62


ATOM
4397
N
PRO
E
309
38.126
−69.944
2.917
1.00
238.09


ATOM
4398
CA
PRO
E
309
39.201
−69.017
2.534
1.00
239.39


ATOM
4399
C
PRO
E
309
38.764
−68.208
1.310
1.00
239.61


ATOM
4400
O
PRO
E
309
38.110
−68.768
0.416
1.00
236.35


ATOM
4401
CB
PRO
E
309
40.383
−69.941
2.207
1.00
242.88


ATOM
4402
CG
PRO
E
309
39.931
−71.356
2.565
1.00
247.46


ATOM
4403
CD
PRO
E
309
38.436
−71.337
2.534
1.00
239.63


ATOM
4404
N
LYS
E
310
39.054
−66.892
1.300
1.00
236.04


ATOM
4405
CA
LYS
E
310
38.762
−66.027
0.145
1.00
237.75


ATOM
4406
C
LYS
E
310
39.630
−64.787
0.090
1.00
255.34


ATOM
4407
O
LYS
E
310
39.883
−64.282
−1.007
1.00
202.82


ATOM
4408
CB
LYS
E
310
37.258
−65.708
−0.086
1.00
235.92


ATOM
4409
CG
LYS
E
310
36.655
−66.350
−1.361
1.00
225.27


ATOM
4410
CD
LYS
E
310
36.786
−65.512
−2.634
1.00
218.67


ATOM
4411
CE
LYS
E
310
36.614
−66.371
−3.857
1.00
211.31


ATOM
4412
NZ
LYS
E
310
36.952
−65.619
−5.088
1.00
211.82


ATOM
4545
N
PHE
F
705
19.900
−49.424
−19.209
1.00
185.33


ATOM
4546
CA
PHE
F
705
20.275
−50.514
−20.103
1.00
185.17


ATOM
4547
C
PHE
F
705
21.295
−50.100
−21.117
1.00
193.52


ATOM
4548
O
PHE
F
705
22.257
−50.831
−21.309
1.00
194.56


ATOM
4549
CB
PHE
F
705
19.075
−51.099
−20.827
1.00
186.00


ATOM
4550
CG
PHE
F
705
19.446
−52.181
−21.814
1.00
186.21


ATOM
4551
CD2
PHE
F
705
19.444
−51.930
−23.178
1.00
187.56


ATOM
4552
CD1
PHE
F
705
19.825
−53.443
−21.375
1.00
188.11


ATOM
4553
CE2
PHE
F
705
19.776
−52.932
−24.088
1.00
189.94


ATOM
4554
CE1
PHE
F
705
20.160
−54.442
−22.285
1.00
188.66


ATOM
4555
CZ
PHE
F
705
20.122
−54.183
−23.636
1.00
187.83


ATOM
4556
N
GLU
F
706
21.063
−48.993
−21.844
1.00
191.84


ATOM
4557
CA
GLU
F
706
22.067
−48.476
−22.784
1.00
192.58


ATOM
4558
C
GLU
F
706
23.339
−48.321
−21.923
1.00
196.89


ATOM
4559
O
GLU
F
706
24.394
−48.869
−22.259
1.00
195.15


ATOM
4560
CB
GLU
F
706
21.595
−47.117
−23.360
1.00
194.19


ATOM
4561
CG
GLU
F
706
22.679
−46.223
−23.953
1.00
203.83


ATOM
4562
CD
GLU
F
706
22.396
−45.707
−25.350
1.00
220.71


ATOM
4563
OE1
GLU
F
706
23.044
−46.201
−26.303
1.00
212.69


ATOM
4564
OE2
GLU
F
706
21.523
−44.819
−25.496
1.00
210.82


ATOM
4565
N
ASP
F
707
23.146
−47.687
−20.732
1.00
195.23


ATOM
4566
CA
ASP
F
707
24.094
−47.455
−19.637
1.00
195.93


ATOM
4567
C
ASP
F
707
24.726
−48.781
−19.142
1.00
199.86


ATOM
4568
O
ASP
F
707
25.843
−48.770
−18.609
1.00
200.04


ATOM
4569
CB
ASP
F
707
23.422
−46.676
−18.471
1.00
198.28


ATOM
4570
CG
ASP
F
707
21.896
−46.628
−18.508
1.00
212.14


ATOM
4571
OD1
ASP
F
707
21.348
−45.809
−19.282
1.00
213.03


ATOM
4572
OD2
ASP
F
707
21.249
−47.421
−17.766
1.00
217.74


ATOM
4573
N
TYR
F
708
24.007
−49.916
−19.313
1.00
194.77


ATOM
4574
CA
TYR
F
708
24.530
−51.234
−18.976
1.00
193.75


ATOM
4575
C
TYR
F
708
25.375
−51.624
−20.181
1.00
192.06


ATOM
4576
O
TYR
F
708
26.595
−51.672
−20.059
1.00
191.67


ATOM
4577
CB
TYR
F
708
23.384
−52.238
−18.714
1.00
196.38


ATOM
4578
CG
TYR
F
708
23.785
−53.697
−18.550
1.00
200.12


ATOM
4579
CD2
TYR
F
708
23.982
−54.251
−17.287
1.00
201.14


ATOM
4580
CD1
TYR
F
708
23.825
−54.558
−19.646
1.00
202.45


ATOM
4581
CE2
TYR
F
708
24.249
−55.613
−17.121
1.00
201.97


ATOM
4582
CE1
TYR
F
708
24.139
−55.911
−19.495
1.00
203.66


ATOM
4583
CZ
TYR
F
708
24.332
−56.440
−18.228
1.00
209.05


ATOM
4584
OH
TYR
F
708
24.597
−57.783
−18.067
1.00
209.27


ATOM
4585
N
LEU
F
709
24.729
−51.780
−21.361
1.00
184.40


ATOM
4586
CA
LEU
F
709
25.309
−52.165
−22.642
1.00
182.32


ATOM
4587
C
LEU
F
709
26.686
−51.583
−22.902
1.00
184.12


ATOM
4588
O
LEU
F
709
27.588
−52.316
−23.284
1.00
182.43


ATOM
4589
CB
LEU
F
709
24.363
−51.826
−23.784
1.00
181.94


ATOM
4590
CG
LEU
F
709
24.516
−52.751
−24.968
1.00
186.75


ATOM
4591
CD1
LEU
F
709
23.177
−53.192
−25.479
1.00
187.35


ATOM
4592
CD2
LEU
F
709
25.339
−52.120
−26.071
1.00
189.52


ATOM
4593
N
HIS
F
710
26.844
−50.271
−22.675
1.00
179.97


ATOM
4594
CA
HIS
F
710
28.108
−49.569
−22.855
1.00
178.88


ATOM
4595
C
HIS
F
710
29.151
−50.089
−21.879
1.00
179.18


ATOM
4596
O
HIS
F
710
30.145
−50.663
−22.314
1.00
178.29


ATOM
4597
CB
HIS
F
710
27.929
−48.047
−22.692
1.00
179.80


ATOM
4598
CG
HIS
F
710
27.077
−47.378
−23.729
1.00
183.06


ATOM
4599
ND1
HIS
F
710
26.729
−48.015
−24.915
1.00
184.75


ATOM
4600
CD2
HIS
F
710
26.573
−46.122
−23.741
1.00
184.44


ATOM
4601
CE1
HIS
F
710
25.996
−47.143
−25.582
1.00
184.10


ATOM
4602
NE2
HIS
F
710
25.887
−45.985
−24.920
1.00
184.35


ATOM
4603
N
ASN
F
711
28.897
−49.943
−20.567
1.00
173.66


ATOM
4604
CA
ASN
F
711
29.771
−50.419
−19.498
1.00
173.15


ATOM
4605
C
ASN
F
711
30.283
−51.872
−19.699
1.00
176.40


ATOM
4606
O
ASN
F
711
31.379
−52.185
−19.246
1.00
176.64


ATOM
4607
CB
ASN
F
711
29.073
−50.271
−18.143
1.00
175.14


ATOM
4608
CG
ASN
F
711
29.275
−48.940
−17.447
1.00
198.08


ATOM
4609
OD1
ASN
F
711
30.290
−48.259
−17.635
1.00
193.99


ATOM
4610
ND2
ASN
F
711
28.307
−48.537
−16.614
1.00
185.99


ATOM
4611
O
VAL
F
712
31.806
−54.707
−22.029
1.00
169.94


ATOM
4612
N
VAL
F
712
29.501
−52.747
−20.384
1.00
171.53


ATOM
4613
CA
VAL
F
712
29.884
−54.143
−20.695
1.00
170.19


ATOM
4614
C
VAL
F
712
30.676
−54.213
−22.002
1.00
172.12


ATOM
4615
CB
VAL
F
712
28.708
−55.183
−20.661
1.00
173.30


ATOM
4616
CG1
VAL
F
712
27.351
−54.532
−20.818
1.00
172.82


ATOM
4617
CG2
VAL
F
712
28.890
−56.304
−21.688
1.00
172.86


ATOM
4618
O
VAL
F
713
32.557
−53.252
−25.667
1.00
169.23


ATOM
4619
N
VAL
F
713
30.043
−53.717
−23.078
1.00
168.79


ATOM
4620
CA
VAL
F
713
30.492
−53.669
−24.469
1.00
167.59


ATOM
4621
C
VAL
F
713
31.855
−52.928
−24.704
1.00
170.88


ATOM
4622
CB
VAL
F
713
29.285
−53.114
−25.275
1.00
170.11


ATOM
4623
CG1
VAL
F
713
29.682
−52.312
−26.495
1.00
170.05


ATOM
4624
CG2
VAL
F
713
28.310
−54.221
−25.627
1.00
169.52


ATOM
4625
O
PHE
F
714
35.718
−51.468
−23.045
1.00
156.77


ATOM
4626
N
PHE
F
714
32.239
−51.984
−23.790
1.00
167.63


ATOM
4627
CA
PHE
F
714
33.424
−51.114
−23.898
1.00
175.55


ATOM
4628
C
PHE
F
714
34.510
−51.293
−22.777
1.00
194.14


ATOM
4629
CB
PHE
F
714
32.947
−49.624
−24.032
1.00
176.93


ATOM
4630
CG
PHE
F
714
32.043
−49.243
−25.217
1.00
177.36


ATOM
4631
CD1
PHE
F
714
32.554
−49.151
−26.511
1.00
178.99


ATOM
4632
CD2
PHE
F
714
30.705
−48.921
−25.022
1.00
178.41


ATOM
4633
CE1
PHE
F
714
31.726
−48.817
−27.589
1.00
178.89


ATOM
4634
CE2
PHE
F
714
29.880
−48.582
−26.105
1.00
180.35


ATOM
4635
CZ
PHE
F
714
30.399
−48.524
−27.377
1.00
177.82


END





Note:


The coordinates in this Appendix describe the asymmetric unit of the crystal unit cell.





Claims
  • 1. (canceled)
  • 2. (canceled)
  • 3. A method of identifying, designing or screening for a compound that can potentially mimic insulin interacting with IR, including performing structure-based identification, design, or screening of a compound based on (i) the compound's interactions with an IR structure and/or (ii) the compound's similarity with an insulin structure in complex with an IR defined by the atomic coordinates shown in Appendix I or a subset thereof.
  • 4. A method for identifying an agonist or antagonist compound comprising an entity selected from the group consisting of an antibody, a peptide, a non-peptide molecule and a chemical compound, wherein said compound is capable of enhancing, eliciting or blocking biological activity resulting from an interaction with insulin and/or the IR, wherein said process includes: introducing into a suitable computer program parameters defining an interacting surface based on the conformation of insulin and/or IR corresponding to the atomic coordinates of Appendix I or a subset thereof, wherein said program displays a three-dimensional model of the interacting surface;creating a three-dimensional structure of a test compound in said computer program;displaying a superimposing model of said test compound on the three-dimensional model of the interacting surface;assessing whether said test compound model fits spatially into a binding site;optionally incorporating said test compound in a biological activity assay; andoptionally determining whether said test compound inhibits or enhances the biological activity of insulin or IR signalling or signalling by a derivative of insulin or IR.
  • 5. (canceled)
  • 6. (canceled)
  • 7. (canceled)
  • 8. (canceled)
  • 9. (canceled)
  • 10. (canceled)
  • 11. (canceled)
  • 12. (canceled)
  • 13. An agonist or antagonist of a site comprising one or more amino acids selected from 1 to 310 and 704 to 719 of the IR α-chain including one or more amino acids selected from the group consisting of Asp 12, Arg14, Leu36, Leu37, Phe39, Lys40, Leu62, Phe64, Arg65, Phe88, Phe89, Tyr91, Val94, Phe96, Arg118, Glu120, His144, Phe705, Tyr708, Leu709, His710, Asn711, Val712, Val713, Phe714 and Val715.
  • 14. An agonist or antagonist that can potentially mimic insulin interacting with IR, said agonist or antagonist comprising one or more amino acids selected from 1 to 30 from the insulin B-chain including one or more amino acids selected from the group consisting of Gly8, Ser9, Leu11, Val12, Leu15, Tyr16, Phe24, Phe25 and Tyr26, or one or more amino acids selected from the insulin A-chain including one or more amino acids selected from the group consisting of Gly1, Ile2, Val3, Glu4 and Tyr19.
  • 15. (canceled)
  • 16. A method of redesigning a compound which is known to bind to IR and/or IGF-1R comprising performing structure-based evaluation of the compound based on the compound's interactions with an IR structure defined by the atomic coordinates of Appendix I or a subset thereof and redesigning or chemically modifying the compound as a result of the evaluation, or the compound's similarity with an insulin structure in complex with an IR defined by the atomic coordinates of Appendix I or a subset thereof and redesigning or chemically modifying the compound as a result of the evaluation.
  • 17. (canceled)
  • 18. (canceled)
  • 19. (canceled)
  • 20. A computer-assisted method of identifying a compound that potentially interacts with IR and/or IGF-1R, which method comprises fitting the structure of: (i) the Site 1 binding site of IR, the structure being defined by a subset of the atomic coordinates shown in Appendix I; and/or(ii) portions of the N- and C-terminal regions of the IR α-chain, which are in complex with insulin, the structure being defined by a subset of the atomic coordinates shown in Appendix I,to the structure of a candidate compound.
  • 21. A computer-assisted method for identifying a molecule able to interact with IR and/or IGF-1R using a programmed computer comprising a processor, which method comprises the steps of: (a) generating, using computer methods, a set of atomic coordinates of a structure that possesses energetically favourable interactions with the atomic coordinates of: (i) the Site 1 binding site of IR, the structure being defined by a subset of the atomic coordinates shown in Appendix I; and/or(ii) portions of the N- and C-terminal regions of the IR α-chain, which are in complex with insulin, the structure being defined by a subset of the atomic coordinates shown in Appendix I, which coordinates are entered into the computer thereby generating a criteria data set;(b) comparing, using the processor, the criteria data set to a computer database of chemical structures;(c) selecting from the database, using computer methods, chemical structures which are complementary or similar to a region of the criteria data set; and(d) optionally outputting, to an output device, the selected chemical structures which are complementary to or similar to a region of the criteria data set.
  • 22. A computer-assisted method for identifying potential mimetics of IR, insulin and/or IGF-1R using a programmed computer comprising a processor, the method comprising the steps of: (a) generating a criteria data set from a set of atomic coordinates of: (i) the Site 1 binding site of IR, the structure being defined by a subset of the atomic coordinates shown in Appendix I;(ii) portions of the N- and C-terminal regions of the IR α-chain, which are in complex with insulin, the structure being defined by a subset of the atomic coordinates shown in Appendix I;(iii) insulin, the structure being defined by a subset of the atomic coordinates shown in Appendix I; and/or(iv) the Site 1 binding site of insulin or portions thereof, the structure being defined by a subset of the atomic coordinates shown in Appendix I, which coordinates are entered into the computer;(b): (i) comparing, using the processor, the criteria data set to a computer database of chemical structures stored in a computer data storage system and selecting from the database, using computer methods, chemical structures having a region that is structurally similar to the criteria data set; or (ii) constructing, using computer methods, a model of a chemical structure having a region that is structurally similar to the criteria data set; and, optionally,(c) optionally outputting to an output device: (i) the selected chemical structures from step (b)(i) having a region similar to the criteria data set; or(ii) the constructed model from step (b)(ii).
  • 23. A method for evaluating the ability of a compound to interact with IR and/or IGF-1R, the method comprising the steps of: (a) employing computational means to perform: (i) a fitting operation between the compound and the binding surface of a computer model of the Site 1 binding site for insulin on IR; and/or(ii) a superimposing operation between the compound and insulin, the Site 1 binding site of insulin, or a portion thereof, using atomic coordinates wherein the root mean square deviation between the atomic coordinates and a subset of atomic coordinates of Appendix I or a subset of atomic coordinates of one or more thereof at least representing the N-terminal region of the IR α-chain, the C-terminal region of IR α-chain, insulin, the Site 1 binding site of insulin, or a portion of the Site 1 binding site of insulin, is not more than 1.5 Å; and(b) analysing the results of the fitting operation and/or superimposing operation to quantify the association between the compound and the binding surface model.
  • 24. A method of using molecular replacement to obtain structural information about a molecule or a molecular complex of an unknown structure, comprising the steps of: (i) generating an X-ray diffraction pattern of the crystallized molecule or molecular complex; and(ii) applying the atomic coordinates of Appendix I, or a subset of atomic coordinates thereof at least representing the N-terminal region of the IR α-chain, the C-terminal region of IR α-chain, insulin, mimetics thereof, derivatives thereof, or portions thereof, to the X-ray diffraction pattern to generate a three-dimensional electron density map of at least a region of the molecule or molecular complex whose structure is unknown.
PCT Information
Filing Document Filing Date Country Kind
PCT/AU2013/001068 9/18/2013 WO 00
Provisional Applications (1)
Number Date Country
61705199 Sep 2012 US