The present invention relates to the pressurized pump of diaphragm type exclusively used in the reverse osmosis purification, particularly for the pressurized pump with diaphragm function to prevent water from leaking into the motor to thoroughly overcome the drawback of shortening the service life in premature defectively damage by electric short circuit due to water leakage seeping into motor, which always happens in the conventional pressurized pump currently.
Currently, there are many pressurized pumps of diaphragm type exclusively used in the reverse osmosis purification as disclosed in the U.S. Pat. Nos. 4,396,357, 4,610,605, 5,476,367, 5,571,000, 5,615,597, 5,626,464, 5,649,812, 5,706,715, 5,791,882, 5,816,133, 6,048,183, 6,089,838, 6,299,414, 6,604,909, 6,840,745 and 6,892,624; Their structure is as shown in the
Wherein, a ring of seal groove raised bar 21 is built on the top of the circumference at said diaphragm sheet 20, and some raised ribs 22 are radial built from its top center to joint with said seal groove raised bar 21, so that some piston acting regions 23 are partitioned by said raised ribs 22 and seal groove raised bar 21; And, a central perforated hole 24 is punched on each said piston acting regions 23 in alignment with the threaded hole 14 of each said wobble plate 13; By mean of each fixing screw 3 running through the internal ladder hole 31 on each said piston head pushing chunk 30 and each said corresponding central perforated hole 24 on each said piston acting region 23, said diaphragm sheet 20 and those said piston head pushing chunks 30 can be screwed on those said threaded holes 14 on said wobble plates 13 (as shown in the
Moreover, a hemispherical concaved water drain base 41 facing said pump cover body 50 is built in the center of said piston valve body 40 with a positioning hole 42 in its center; a partition indented groove 43 is formed on each 120° included angle along the radial line from its center so that three isolated sectors are separated by these said indented grooves 43; some water drain ports 44 are created on each said isolated sectors, and some water inlet ports 45 are created on the circumference in correspondence with each said water drain port 44; an upside down flare piston sheet 46 is punched in the center of each said water inlet ports 45 so that enable each said flare piston sheet 46 to block each said water inlet ports 45; Said anti-reverse baffle plastics pad 47, which being a soft elastic hollow hemisphere of unitary body with a positioning pole 48 protruding in the bottom center, stays closely against the top surface tightly of said water drain base 41 on said piston valve body 40; a partition rib plate 49 is formed on each 120° included angle along the radial line from its center so that three isolated sectors are separated by these said rib plates 49; a protruding peg 481 is also formed on the outer peripheral surface in correspondence with each said rib plate 49; By means of plugging said positioning pole 48 into said positioning hole 42 on said water drain base 41 together with insetting each said protruding peg 481 into each corresponding said indented groove 43, the outer hemisphere surface of said anti-reverse baffle plastics pad 47 will tightly contact against closely all said water drain ports 44 on each sector of said water drain base 41 (as shown in the
Furthermore, some perforated holes 51 and a water inlet orifice 52 as well as a water outlet orifice 53 are created on the outer surface of said pump cover body 50 (as shown in the
Please refer to
However, there is a common serious drawback in all the disclosed conventional pressurized pump of diaphragm type aforesaid as shown in the figures of 6 through 9. During the process of increasing water pressure after the start of the motor 10, each wobble plate 13 is tightly contacting with the diaphragm sheet 20 closely; hence, said diaphragm sheet 20 between said piston acting region 23 and wobble plate 13 will be pulled to stretch once when each time said wobble plate 13 moves in reciprocating motion to drive said piston acting region 23 on said diaphragm sheet 20 (as shown by the hypothetical line in the
Moreover, except the aforesaid vital drawback, the other problematical position often leaking is between the piston valve body 40 and the pump cover body 50 as shown in the
The main object of the present invention is to provide a structure of preventing water from leakage for the pressurized pump of diaphragm type with steps orderly comprises: corresponding to the threaded hole on each wobble plate, a hollow cylinder is first contrived on the top surface of each piston acting region of the diaphragm sheet; after sleeving the ladder hole of the piston head pushing chunk on the diaphragm sheet onto the peripheral of said hollow cylinder; drive the fixing screw via the center hole of said hollow cylinder into the threaded hole on each wobble plate of the pressurized pump of diaphragm type; and in the beginning of driving said fixing screw, the upper portion of said hollow cylinder will expand first; after thoroughly and tightly driving said fixing screw into the threaded hole on each wobble plate, the upper portion of said hollow cylinder will expanding deform and fill up the space between the bottom surface of the head of said fixing screw and the top surface of said ladder hole of said piston head pushing chunk; Thus, the function of said hollow cylinder becomes a blocking contrivance in preventing the water from leaking and seeping into the motor and avoiding the damage of pressurized pump of diaphragm type due to electric short circuit of the motor.
The other object of the present invention for providing a structure of preventing water from leakage for the pressurized pump of diaphragm type even more contrives an elastic soft washer between the outer peripheral of said piston valve body and the wall of said ladder groove on said pump cover body such that becoming a buffer region so as not only to reduce the rigid striking force and noise by said pump cover body and piston valve body, but also to achieve the effect in hermetical seal in preventing pressure loss and water leakage out of the pressurized pump.
Please refer to the figures of 11 through 13 shown as the present invention of a structure of preventing water from leakage for the pressurized pump of diaphragm type. Corresponding to the threaded hole 14 on each wobble plate 13, a hollow cylinder 64 is first contrived on the top surface of each piston acting region 63 of the diaphragm sheet 60 such that its outer diameter is equivalent to or slightly smaller than the internal diameter of the ladder hole 31 on the piston head pushing chunk 30; and both of said hollow cylinder 64 and diaphragm sheet 60 are made of same elastic plastics material in extruded unitary molded body (as shown in the
Please further refer to the figures of 14 through 16, when said wobble plate 13 acting in push and squeeze the feed water W (as shown in the
Please also further refer to the figures of 17 through 19, the present invention even more contrives an elastic soft washer 70 between the outer peripheral of said piston valve body 40 and the wall of said ladder groove 54 on said pump cover body 50 such that becoming a buffer region so as not only to reduce the rigid striking force and noise by said pump cover body 50 and piston valve body 40, but also to achieve the effect in hermetical seal in preventing pressure loss and water leakage out of the pressurized pump.
In conclusion, the present invention contrives the hollow cylinder 64 to replace the central perforated hole 24 of the piston acting region 23/63 on the diaphragm sheet 20/60, and employs the same original assemble steps to form the leakage-resistant structure; Therefore, it is really an innovative invention with industrial application value owing to not only eliminating any extra expense in manufacturing cost, but also achieving the effect in leakage-resistance.
Number | Date | Country | Kind |
---|---|---|---|
2005 2 0052387 U | Nov 2005 | CN | national |
2006 2 0050847 U | Apr 2006 | CN | national |
This application is a divisional of application Ser. No. 11/592,977, filed Nov. 6, 2006, now pending. The patent application identified above is incorporated here by reference in its entirety to provide continuity of disclosure.
Number | Name | Date | Kind |
---|---|---|---|
3354830 | Mortara | Nov 1967 | A |
4396357 | Hartley | Aug 1983 | A |
4610605 | Hartley | Sep 1986 | A |
5476367 | Zimmermann et al. | Dec 1995 | A |
5571000 | Zimmermann et al. | Nov 1996 | A |
5615597 | Schoenmeyr | Apr 1997 | A |
5626464 | Schoenmeyr et al. | May 1997 | A |
5649812 | Schoenmeyr et al. | Jul 1997 | A |
5706715 | Schoenmeyr | Jan 1998 | A |
5791882 | Stucker et al. | Aug 1998 | A |
5816133 | Schoenmeyr | Oct 1998 | A |
6048183 | Meza | Apr 2000 | A |
6089838 | Schoenmeyr | Jul 2000 | A |
6299414 | Schoenmeyr | Oct 2001 | B1 |
6604909 | Schoenmeyr | Aug 2003 | B2 |
6840745 | Macauley | Jan 2005 | B1 |
6892624 | Schoenmeyr et al. | May 2005 | B2 |
7013793 | Dang | Mar 2006 | B2 |
Number | Date | Country | |
---|---|---|---|
20110097227 A1 | Apr 2011 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 11592977 | Nov 2006 | US |
Child | 12983466 | US |