This disclosure relates to an improved detector device that uses one or more light emitting diodes (LEDs) in combination with a photochromic compound to mark the locations on a substrate (such as a wall) behind which objects (such as studs) are located.
Handheld detector devices, such as stud finders, are well-known in the art. In houses and other structures whose walls, ceilings, or floors comprise a substrate layer (such as wood or drywall) mounted to a frame of wood (or other material), it is sometimes desired to determine the locations where frame portions (such as studs or joists) or other objects are present behind the substrate. With prior art detector devices, a user typically slides the device along the substrate and the device activates one or more LEDs (or other user display device) to indicate the locations of objects behind the substrate. One problem with such prior art detector devices is that they do not create any mark or record of the object locations on the substrate, and instead the user must interpret the user display device and, if the user desires, mark the object locations on the substrate by hand. Thus, prior art detector devices do not allow for one-handed operation. The detector device described herein overcomes that limitation and others in the prior art.
One aspect of this disclosure is directed to a handheld detector device comprising one or more LEDs that mark in a photochromic compound the locations on a substrate behind which objects are located. Photochromic materials are those that undergo a reversible change in color upon exposure to certain wavelengths of light, such as ultraviolet light. With optional additional sensors, such as a magnetic sensor or current sensor, the detector device is able to identify and distinguish between different types of objects behind a substrate, such as studs, metal pipes, and electrical conductors. When so equipped, the detector device can apply marks to the substrate (via the photochromic compound) that distinguish between the various types of objects by using differing styles of marks-such as hashed or solid lines. By using multiple LEDs arranged in a row along its substrate-facing surface, the detector device can further vary the thickness or style of such lines.
Another aspect of this disclosure is directed to a photochromic compound which is applied to a substrate to aid in recording the location of objects behind the substrate. Such a compound may be applied to the substrate directly (such as by spray, brush, roller, or the like) or indirectly by way of a separate medium (such as a sticker, sheet of paper, sheet of plastic, or the like). The photochromic compound comprises one or more pigments that change color when illuminated with predetermined wavelengths of light, such as ultraviolet light. The color change may last for up to fifteen minutes. Such pigments are commercially available under brand names including Solar Color Dust and TechnoGlow. The photochromic compound consists of a photochromic pigment suspended in any suitable base such as resin, epoxy, paint base, lacquer, glue, gel, varnish, or clear coat.
The above aspects of this disclosure and other aspects will be explained in greater detail below with reference to the attached drawings.
The illustrated embodiments are disclosed with reference to the drawings. However, it is to be understood that the disclosed embodiments are intended to be merely examples that may be embodied in various and alternative forms. The figures are not necessarily to scale and some features may be exaggerated or minimized to show details of particular components. The specific structural and functional details disclosed are not to be interpreted as limiting, but as a representative basis for teaching one skilled in the art how to practice the disclosed concepts.
A user powers on the detector device by pressing the user input button 110. The control circuit 106 indicates that power is present by illuminating the power indicator LED 104. While the detector device is in use, the control circuit sends a sinusoidal waveform 116 to the capacitance sensor circuit 108. The waveform is generated by a waveform generator or digital-to-analog converter (DAC) (not shown) that is preferably integrated as part of the ASIC. Alternatively, the waveform generator or DAC, which are commercially available devices, may be separate from the ASIC and mounted on the PCB. The control circuit 106 receives back from the capacitance sensor circuit 108 a modified waveform 118—a version of the sinusoidal waveform that has been, e.g., delayed or distorted, according to the measured capacitance of the capacitance sensor circuit. The modified waveform 118 is input to the control circuit 106 by way of an analog-to-digital converter (ADC) (not shown) that is preferably integrated as part of the ASIC. Alternatively, the ADC, which is a commercially available device, may be separate from the ASIC and mounted on the PCB. The control circuit 106 and capacitance sensor circuit 108 may collectively be referred to as a stud-finding circuit 120.
The capacitance sensor circuit 108 comprises a conductive plate adjacent the substrate-facing surface of the detector device 100. As is well-known in the art, the measured capacitance of the capacitance sensor circuit 108 varies according to the dielectric constant of the substrate against which the detector device 100 is placed, which in turn varies with whether an object is present behind the substrate. For example, where an object such as a stud is present behind a substrate such as a wall, the dielectric constant at that location may be higher relative to the surrounding substrate, leading to a higher measured capacitance at that location. A higher measured capacitance results in a higher degree of modification (e.g., distortion or delay) in the modified waveform 118 that the capacitance sensor circuit 108 outputs back to the control circuit 106.
The control circuit 106 analyzes the modified waveform 118 and determines whether an object is present behind the substrate based on the waveform's degree of modification relative to a baseline measurement taken during a calibration step that occurs at device power-up. Where additional sensors (e.g., magnetic sensor or current sensor) are present, the control circuit 106 also receives signals from those sensors. Based on the modified waveform 118 and any additional sensor signals, the control circuit determines whether an object detected behind the substrate is a wooden frame portion (e.g., stud) or other object (e.g., pipe or electrical wire). The control circuit 106 provides status information, including whether an object is present and, optionally, the type of object detected, to a user by way of the user display 112, which is preferably a series of LEDs. Optionally, the LEDs are multicolor LEDs, where the illuminated color indicates the type of object detected.
Where an object is present, the control circuit 106 activates one or more of the marking LEDs 114, which are preferably ultraviolet LEDs, and which emit light from the substrate-facing surface (see
While exemplary embodiments are described above, it is not intended that these embodiments describe all possible forms of the disclosed apparatus and method. Rather, the words used in the specification are words of description rather than limitation, and it is understood that various changes may be made without departing from the spirit and scope of the disclosure as claimed. The features of various implementing embodiments may be combined to form further embodiments of the disclosed concepts.
Number | Name | Date | Kind |
---|---|---|---|
6502319 | Goodrich et al. | Jan 2003 | B1 |
6708782 | Turney | Mar 2004 | B1 |
7278223 | Dever et al. | Oct 2007 | B1 |
7668616 | Piasse et al. | Feb 2010 | B2 |
7977026 | Barr et al. | Jul 2011 | B2 |
10524592 | Sergyeyenko et al. | Jan 2020 | B2 |
20050078303 | Murray | Apr 2005 | A1 |
20070175054 | Murray | Aug 2007 | A1 |
20070290843 | Manneschi | Dec 2007 | A1 |
20100097212 | Wingate | Apr 2010 | A1 |
20180252832 | Smoot | Sep 2018 | A1 |
20200073006 | Guerrero, Sr. | Mar 2020 | A1 |
Number | Date | Country |
---|---|---|
436397 | Mar 1925 | DE |
0048469 | Mar 1982 | EP |
2007084250 | Jul 2007 | WO |
Number | Date | Country | |
---|---|---|---|
20220187487 A1 | Jun 2022 | US |