1. Field of the Invention
The present invention relates to a substrate cassette used to store various types of substrates such as glass substrates used in liquid crystal displays. More particularly, the present invention relates to a substrate cassette that prevents contact between substrates stored on support bars at the time of use.
2. Description of the Related Art
In the production process of liquid crystal displays, substrate cassettes that house a plurality of horizontally oriented glass substrates in multiple levels in the vertical direction are used to temporarily store glass substrates. These substrate cassettes, when viewed from the front of the substrate cassette in the state of storing substrates, normally contain a plurality of support bars that support each substrate by being alternately positioned with a plurality of substrates in the vertical direction.
From the viewpoint of production efficiency of the liquid crystal displays, the functions required of a substrate cassette include being able to house and store a large number of glass substrates. Consequently, the support bars, which are the constituent members of the substrate cassette and directly support the glass substrates, are required to be as thin as possible in the vertical direction and allow vertically adjacent glass substrates to be stored in extremely close proximity.
In addition, from the viewpoint of guaranteeing the quality of the glass substrates, another function required of the substrate cassette is to prevent the stored glass substrates from contacting each other. Namely, although a substrate cassette normally houses several tens of glass substrates, the vertically adjacent glass substrates must not be allowed to contact each other resulting in damage to the surfaces thereof. Consequently, the support bars that directly support the glass substrates are required to be resistant to bending.
Moreover, from the viewpoint of workability during liquid crystal display production, another function required of the substrate cassette is to be lightweight overall. In particular, since the glass substrates used in the production of liquid crystal displays have become increasingly large in recent years, the substrate cassettes used for the storage thereof are also becoming correspondingly larger. Therefore, the support bars serving as constituent members of these substrate cassettes are required to be as lightweight as possible.
In this manner, support bars are required to have the apparently offsetting characteristics of thinness and resistance to bending, while also being required to be as lightweight as possible.
Examples of support bars, storage cassettes containing support bars and related technology there to have been disclosed as indicated below.
Japanese Patent Application Laid-open No. 2000-7148 discloses a glass substrate cassette that houses or stores, for example, glass substrates used in liquid crystal display devices. This reference defines a glass substrate cassette that houses glass substrates that is provided with edge supports composed so as to support the edges of housed glass substrates, and a central support section composed so as to support the central portions of the glass substrates.
Japanese Patent Application Laid-open No. 2000-142876 discloses a substrate-housing cassette used to house, for example, plastic substrates used in the production process of liquid crystal display elements using plastic substrates. This reference defines a substrate housing cassette comprising a front panel having an opening for removing and inserting substrates, and upper, lower, right side, left side and back panels provided with holes, and provided with substrate edge supports protruding from both side panels towards the inside for supporting the left and right edges of the substrates, and a substrate central support protruding from the back panel towards the inside for supporting the central portion of the substrates.
Japanese Patent Application Laid-open No. 2004-146578 discloses a cassette substrate support member and a substrate cassette that enables the weight of the substrate cassette to be reduced. This reference defines a cassette substrate support member used in substrate cassettes that house substrates in a layered state for supporting the substrates from below at predetermined intervals that is provided so as to protrude to the inside from the substrate cassette frame, and has ribs made of long rod-like members, holding members provided on one end of the ribs for fixing the ribs to the frame, and auxiliary support members provided on the ribs at predetermined intervals along the axial direction of the ribs; wherein, the ribs have a carbon fiber-reinforced plastic material that contains carbon fibers oriented in the axial direction thereof.
US Patent Application Publication No. 2006/0011507 discloses a substrate housing cassette used in the production process of various types of substrates such as glass substrates used in liquid crystal display devices, and more particularly, a central support member (support bar) disposed at each level of the cassette. This reference defines a substrate cassette support bar for supporting each substrate so as to inhibit bending of the central portion thereof in a substrate cassette that houses a plurality of horizontally oriented substrates in multiple levels in the vertical direction; wherein, said support bar is formed with a carbon fiber composite material that contains highly elastic carbon fibers having a tensile elastic modulus of 490 to 950 GPa at 30% by volume or more.
In the past, when the angle of a support bar was found to have deviated from a desired angle after having attached a support bar, the support bar was reattached. However, since it is necessary to firmly attach the support bar to the frame of the substrate cassette, reattaching the support bar resulted in an extremely large burden in terms of time and labor. In the case of using a short support bar, even if there is a certain degree of distortion in the support bar angle, the distortion at the end of the support bar is not that great. However, the length of support bars in substrate cassettes that store large-sized glass substrates referred to as 8th generation substrates can be as much as about 2000 mm. Consequently, even the slightest amount of distortion when the support bars are installed can end up becoming quite large at the end of the support bars, potentially causing contact between glass substrates depending on the particular case.
Thus, an object of the present invention is to provide a substrate cassette capable of easily adjusting support bars to the proper angle in the case the angle of a support bar has deviated from a desired angle.
The present invention relates to a substrate cassette that houses a plurality of horizontally oriented substrates in multiple levels in the vertical direction and in which support bars are arranged that support the substrates so as to inhibit bending of the central portion of each substrate, wherein a vertical direction adjustment mechanism that adjusts distortion of the support bars in the vertical direction is provided between the support bars and a frame formed on the back of the opposite side from the substrate insertion side. In the substrate cassette of the present invention, the vertical direction adjustment mechanism preferably is a mechanism that adjusts the angle in the vertical direction of the support bars relative to the frame with a screw.
In addition, the present invention also includes a substrate cassette that houses a plurality of horizontally oriented substrates in multiple levels in the vertical direction and in which support bars are arranged that support the substrates so as to inhibit bending of the central portion of each substrate, wherein together with a vertical direction adjustment mechanism that adjusts distortion of the support bars in the vertical direction being provided between the support bars and a frame formed on the back of the opposite side from the substrate insertion side, a horizontal direction adjustment mechanism that adjusts distortion of the support bars in the horizontal direction is provided between the frame and the support bars. In this storage cassette of the present invention, the vertical direction adjustment mechanism preferably is a mechanism that adjusts the angle in the vertical direction of the support bars relative to the frame with a screw, and the horizontal direction adjustment mechanism preferably is a mechanism that adjusts the angle in the horizontal direction of the support bars relative to the frame with a screw.
In this type of substrate cassette, the support bars are preferably made of a carbon fiber composite material, or a carbon fiber composite material and a material other than a carbon fiber composite material.
The substrate cassette of the present invention is provided with a vertical direction adjustment mechanism that adjusts distortion of support bars in the vertical direction between a frame and the support bars. Consequently, any distortion of the support bars can be easily adjusted after the support bars have been fixed to the frame.
The present invention relates to a substrate cassette that uses predetermined constituent members. The substrate cassette of the present invention is provided with a vertical direction adjustment mechanism that adjusts distortion of support bars in the vertical direction between a frame and the support bars. Consequently, the angle of the support bars can be adjusted after the support bars have been attached to the frame of the substrate cassette. In other words, the angle of the support bars can be adjusted to a desired angle without having to carry out the bothersome work of reattaching the support bars.
The following provides a detailed explanation of the substrate cassette of the present invention with reference to the drawings.
Known materials can be used for the materials of those members other than the adjustment members to be described later, including the support bars 20 that compose substrate cassette 12. Moreover, there are no particular limitations on the materials of the edge support shelves 16 as well as other constituent members, such as a bottom frame, top frame and back frame serving as the opposing side from the substrate entrance, and can also be composed of, for example, a carbon fiber composite material. In this case, both light weight and rigidity of substrate cassette 12 can be simultaneously realized at a high level.
In the example shown in
Next, a detailed explanation is provided of support bars 20.
There are no particular limitations on the composition of the CFRP used for the material of upper plate 24 and lower plate 26.
There are no particular limitations on the composition of the CFRP used for the material of upper plate 14 and lower plate 16. A wide range of known materials can be applied for the CFRP. Lightweight CFRP that is also resistant to bending is used preferably. An example of a CFRP that is used is that which contains 30% by volume or more of highly elastic carbon fibers having a tensile elastic modulus of 490 to 950 GPa. If the content is 30% by volume or more, members are obtained that have adequate rigidity and high vibration attenuation characteristics. The content of the highly elastic carbon fibers is preferably 40% by volume or more. In addition, although all of the reinforcing fibers used may be highly elastic carbon fibers, a portion of the members may also be made of other reinforcing fibers such as carbon fibers having a tensile elastic modulus of less than 490 GPa, glass fibers, aramid fibers, silicon carbide fibers or other known reinforcing fibers. For example, a combination can be used in which the content of highly elastic carbon fibers is not more than 90% by volume, while the remainder consists of other reinforcing fibers, and particularly carbon fibers having a tensile elastic modulus of less than 490 GPa.
In addition, in the example shown in
As shown in
In support bar 22 shown in
In this manner, as shown in
In addition, an aspect in which the outer circumference becomes smaller moving in the direction of the free end is not limited to an aspect in which the outer circumference decreases uniformly from the fixed end towards the free end as shown in
Furthermore, although not shown in the drawings, a support bar applicable to the substrate cassette of the present invention may be of a shape in which both the widths and heights of the fixed end and the free end are of the same dimensions (for example, H1=H2, T1=T2 in
The free end of support bar 22 may remain open as shown in
Moreover, the length of the support bar 22 shown in
In support bar 22, in the case, for example, upper plate 24, lower plate 26 and intermediate member 28 arranged between these plates are composed of different materials as shown in
In addition, the vibration attenuation characteristics of the support bar can be improved by composing upper plate 24, lower plate 26 and intermediate member 28 from different materials. Consequently, contact between glass substrates during bending of the support bar can be effectively prevented. In addition, since vibrations are dampened quickly, insertion and removal of substrates can be carried out smoothly thereby improving workability. Moreover, the weight of the support bar can be reduced by using CFRP for the material of the upper plate 24 and lower plate 26, thereby making it possible to realize a reduction in weight for the entire substrate cassette. Even lighter weight support bars can be provided in the case of employing a hollow shape for the intermediate member.
The following provides an explanation of a production method of a support bar applicable to the substrate cassette of the present invention by focusing particularly on an example of a method for producing a tapered, hollow support bar as shown in
First, as a preliminary step, carbon fiber composite materials are prepared for the upper and lower plates, and an aluminum sheet is prepared for the intermediate member.
(Formation of Upper and Lower Plates)
The carbon fiber composite material used for the upper and lower plates is formed in the manner described below. First, a matrix resin is impregnated into a carbon fiber sheet to form an uncured prepreg sheet. This prepreg sheet, for example, preferably uses highly elastic carbon fibers having a tensile elastic modulus of 490 to 950 GPa at 30% by volume or more. In addition, glass fibers or other fibers can also be added to the carbon fiber composite material provided they do not impair the support performance of the upper and lower plates.
Thermosetting resins such as epoxy resin, phenolic resin, cyanate resin, unsaturated polyester resin, polyimide resin, bismaleimide resin and so on can be used for the matrix resin. In this case, that which is able to withstand high temperature and high humidity environments such as rubber vulcanization is preferable. In addition, a thermosetting resin in which fine particles made of rubber or resin have been added to a thermosetting resin for the purpose of improving impact resistance and toughness, or a thermosetting resin in which a thermoplastic resin has been dissolved in a thermosetting resin may also be used for the thermosetting resin.
Although types of carbon fibers include PAN-based carbon fibers having a tensile elastic modulus of less than 490 GPa and pitch-based carbon fibers having a tensile elastic modulus of 490 to 950 GPa, these can be used in combination in the present invention. In this case, the pitch-based fibers have the characteristic of a high elastic modulus, while the PAN-based fibers have the characteristic of high tensile strength. In addition, examples of prepreg sheets include unidirectional sheets in which the reinforcing fibers are oriented in the same direction, and cross-woven sheets such as flat weaves, twill weaves, satin weaves and triaxial weaves. Unidirectional sheets are particularly preferable for highly elastic carbon fiber prepreg sheets having a tensile elastic modulus of 490 to 950 GPa.
Various types of prepreg sheets can be prepared, such as those having different types of reinforcing fibers, those having different usage ratios of reinforcing fibers to the matrix resin, or those having different orientations of reinforcing fibers. Consequently, the prepreg sheet to be used is preferably suitably selected according to the glass substrates to be held so that support bars having the optimum bending rigidity are formed.
The outer surface of the prepreg sheet may be covering with a cross-woven prepreg sheet as necessary. A cross-woven prepreg sheet refers to an uncured sheet in which the above-mentioned matrix resin is impregnated into reinforcing fibers woven in a plurality of directions. Woven carbon fibers, glass fibers, aramid fibers or silicon carbide fibers and so on are preferably used for the reinforcing fibers. In addition, a flexible, highly adhesive sheet is preferable so as to be able to closely adhere to and coat the prepreg sheet. Coating can be carried out closely adhering to the prepreg sheet while applying heat with an iron and so on.
As a result of coating with this cross-woven prepreg sheet, fluffing, unraveling and so on occurring at processed portions during post-processing such as cutting and boring following heat treatment can be prevented. Thus, the use of a cross-woven prepreg sheet offers the advantages of not only improving processability, but also reducing the generation of debris and so on without risk of damaging liquid crystal display substrates, plasma display substrates, silicon wafers or other precision substrates.
Next, the prepreg sheet is formed into a prepreg sheet section of predetermined dimensions. The shape of this prepreg sheet section is, for example, the shape of upper plate 24 and lower plate 26 shown in
The uncured prepreg sheet section obtained in this manner is placed in a vacuum bag and so on and then heated in an oven or similar apparatus while applying pressure to obtain the upper and lower plates. Heating conditions in this case consist of heating from room temperature at the rate of 2 to 10° C. per minute, holding at a temperature of about 100 to 190° C. for about 10 to 180 minutes, and then discontinuing heating and returning to room temperature by natural cooling. Here, the purpose of placing the uncured prepreg section in a vacuum bag is to apply external pressure (namely, atmospheric pressure) to the uncured members roughly uniformly.
(Formation of Intermediate Member)
The material used for the intermediate member is preferably a metal material having superior corrosion resistance such as aluminum or stainless steel. However, aluminum is used preferably in the case of realizing a high level of weight reduction for the support bar in particular. In addition, honeycomb-shaped aramid fibers are used more preferably in place of aluminum when desiring to further reduce the weight of the support bar.
These metal materials or aramid fibers are formed into a metal member and so on of predetermined dimensions according to known forming methods to obtain the intermediate member. For example, the intermediate member may have the shape of intermediate member 18 shown in
(Formation of Support Bar)
The support bar is formed according to known forming methods using the upper plate, lower plate and intermediate member obtained in the manner described above. The support bar can be formed by, for example, by adhering these members. A two-liquid mixed type of epoxy adhesive, for example, can be used for the adhesive. Although there are no particular limitations on the adhesion conditions, an adhesive that can be cured at room temperature is used preferably in consideration of workability.
A support bar obtained in this manner can be manufactured easily as previously explained. In addition, since the support bar is in the form of a composite member with the upper plate, lower plate and other members, the entire support bar is highly effective in inhibiting bending. Consequently, contact between glass substrates during bending of the support bar can be effectively prevented. Moreover, an even lighter weight support bar can be provided by suitably selecting the above-mentioned materials and adopting a hollow structure for the upper and lower plates.
Although the preceding paragraphs have provided explanations of each of the constituent members of the substrate cassette of the present invention, the following provides an explanation of a structure serving as one of these constituent members for fixing support member 18 and support bar 20 shown in
As shown in
Here, vertical direction adjustment mechanism 110 can be made of any material provided it can be firmly coupled with support member 18 and bolted to horizontal direction adjustment mechanism 120. For example, the use of aluminum is preferable in terms of light weight and processing ease. In addition, horizontal direction adjustment mechanism 120 can also be made of any material provided it can support a support bar 20 and be bolted to vertical direction adjustment mechanism 110. Similar to the vertical direction adjustment mechanism, the use of aluminum is preferable in terms of light weight and processing ease.
In addition, formation of adjustment mechanism 100 can be carried out by separately forming each adjustment mechanism 110 and 120, in which bolt holes of predetermined diameters have been formed at predetermined locations, and then bolting these adjustment mechanisms 110 and 120 with bolts 139 and 140 corresponding to the mode of use of angle adjustment in the horizontal direction.
Next, an explanation is provided of a mode of use of this adjustment mechanism 100.
First, support bar 20 and horizontal direction mechanism 120 are firmly joined with the projecting portion of horizontal direction adjustment mechanism 120 inserted into a hollow support bar 20.
Next, horizontal direction adjustment mechanism 120 is rotated by predetermined angle relative to vertical direction adjustment mechanism 110 when coupling horizontal direction adjustment mechanism 120 and vertical direction adjustment mechanism 110, which as a result, determines the angle in the horizontal direction of support bar 20 relative to support member 18. Here, although the dimensions of the bolt hole of bolt 139 perfectly match the dimensions of bolt 139, the dimensions of the bolt hole of bolt 140 is slightly larger than the dimensions of bolt 140, thereby enabling support bar 20 to move in the horizontal direction. The bolt hole of bolt 140 can have, for example, a roughly elliptical shape having its major axis in the horizontal direction as shown in
Moreover, vertical direction adjustment mechanism 110 is rotated by predetermined angle in the vertical plane relative to support member 18 when coupling vertical direction adjustment mechanism 110 and support member 38, which as a result, determines the angle in the vertical direction of support bar 20 relative to support member 18. Here, although the dimensions of the bolt hole of bolt 131 perfectly matches the dimensions of bolt 131, the dimensions of the bolt hole of bolt 132 are slightly larger than the dimensions of bolt 132, thereby enabling support bar 20 to move in the vertical direction. The bolt hole of bolt 132 can have, for example, a roughly elliptical shape having its major axis in the vertical direction as shown in
Vertical direction adjustment mechanism 110 and horizontal direction adjustment mechanism 120 can be finely adjusted after having produced the substrate cassette. For example, in the case the direction of a single support bar has shifted during the course of use of the substrate cassette, the direction of the support bar can be adjusted to a suitable direction simply by adjusting the adjustment mechanism.
Another example of a usage form of the adjustment mechanism is that which adjusts the angle corresponding to the weight of the glass substrates. In other words, bolt 132 is positioned towards the right side of the bolt hole thereof and tightened for support bars for which the weight of the glass substrates held is comparatively light, while conversely, bolt 132 is positioned towards the left side of the bolt hole and tightened incase the glass substrates are comparatively heavy to prevent contact between vertically adjacent glass substrates.
In addition, as a result of employing adjustment mechanism 100 having the structure and function described above, by tightening bolt 140 at the same position in the bolt hole thereof for, for example, all support bars 20 fixed to the substrate cassette, the direction in which support bars 20 extend within the substrate cassette can be made to be uniform, thereby giving the substrate cassette an overall superior appearance. In addition, since the ends of the support bars are aligned, it becomes easy to insert and remove substrates thereby making it possible to improve workability.
Furthermore, although the example shown in
The substrate cassette of the present invention enables the angle of the support bars to be adjusted easily using an adjustment mechanism after the support bars have been attached to the substrate cassette. Consequently, the amount of time and labor required to adjust the support bars can be reduced, thereby contributing to improved productivity of work involving the use of glass substrates such as the manufacturing of liquid crystal panels. The substrate cassette of the present invention is particularly useful for storing large-sized glass substrates referred to as 8th generation substrates. However, the present invention is not limited to 8th generation substrates, but naturally can also be applied to other sizes of glass substrates as well.
Number | Date | Country | Kind |
---|---|---|---|
2006-106676 | Apr 2006 | JP | national |
Filing Document | Filing Date | Country | Kind | 371c Date |
---|---|---|---|---|
PCT/US2007/008485 | 4/4/2007 | WO | 00 | 8/19/2008 |