These and other features of this invention will be more readily understood from the following detailed description of the various aspects of the invention taken in conjunction with the accompanying drawings in which:
Referring now to drawings,
The vacuum chamber 12 includes two 3-axis (vacuum) robots 18, 20, an aligner 16, a transfer mechanism 22, and a process platen 14. Note that while the embodiments are generally directed to the handling of wafers, the systems and methods described herein could be utilized for handling any type of substrate that needs to be processed in a controlled environment.
In the illustrative embodiments described with reference to
The dual pick track robot 29 is an atmospheric robot that provides fast swapping between the load ports 30 and the sets of dual single wafer load locks 24, 26. The sets of dual single wafer load locks 24, 26 provide a transition platform for substrates (i.e., wafers) being transitioned between the vacuum chamber 12 and the atmosphere within mini-environment 28.
Each of the two vacuum robots 18, 20 are configured to: (1) pick a substrate from an associated load lock and place the substrate onto the aligner 16; and (2) pick a substrate off the process platen 14 and place it into an associated load lock. Note that the illustrative embodiments described herein utilize aligner 16 to align substrates within vacuum chamber 12. However, it is understood that aligner 16 could be replaced by another type of preprocessing station. For instance, aligner 16 could be replaced with or include an orientor for orienting the substrate, e.g., by determining centering information and notch location. If alignment and orientation are not needed, then the preprocessing station could be implemented as a simple transfer station. Moreover, the preprocessing station may also be equipped with a substrate ID reader. Accordingly, it us understood that aligner 16 could be replaced with any type of preprocessing station. Transfer mechanism 22, which may for instance comprise a linear transfer arm, picks substrates from the aligner 16 and places them onto the process platen 14. Transfer mechanism 22 may also provide temporary storage for a substrate.
Also included as part of substrate handler 10 is a control system 11 for controlling all of the operations relating to the flow of substrates. These operations include the movements of robots 18, 20, aligner 16, and transfer mechanism 22; pumping and venting of load ports; movement of dual pick track robot 29, etc. It is understood that control system 11 may be implemented in any fashion, e.g., using a computer system comprising hardware, software, or a combination of hardware and software. Accordingly, the flows described herein may be controlled via a program product (i.e., software program) that can be executed within control system 11. It is also understood that control system 11 may be implemented in a distributed fashion, such that the processing and/or memory storage associated with control system 11 can be integrated into one or more of the components described herein and/or reside remotely, e.g., on a network.
The substrate handler 10 supports at least two substrate flows, both of which can support 500 wafers per hour (wph).
In the first substrate flow (
In the second substrate flow (
The transfer mechanism 22 (i.e., “XFER”) that transfers substrates from aligner 16 to process platen 14 is used to reduce the workload on the two main vacuum robots 18, 20 to maximize throughput.
Actions relevant to Wafers 4 and 5 are highlighted in
In this illustrative embodiment, each cycle in the timing diagram represents 1.75 seconds, resulting in a throughput of 500 wph. However, the described actions may be optimized to increase throughput. The process flow shown in
Highlighted in
Obviously, other substrate flows could be utilized by substrate handler 10 without departing from the scope of the invention. Moreover, substrate handler 10 can be scaled by removing from operation two load locks (e.g., LL3 and LL4), a vacuum robot (e.g., Robot 2), two load ports (e.g., 3 and 4) and the atmospheric track utilized in mini-environment 28. This cost reduced configuration would have a slightly different substrate flow and lower throughput.
Illustrative timing throughputs for these flows are as follows:
A. Platen Throughput
C. Flow 2 (Three Substrates in Vacuum)—28 Seconds per Loadlock Cycle
D. Aligning<4 sec
E. Pick/Place<2 sec
As noted, the systems, functions, mechanisms, methods, engines and modules described herein can be implemented via control system 11 in hardware, software, or a combination of hardware and software. They may be implemented by any type of computer system or other apparatus adapted for carrying out the methods described herein. A typical combination of hardware and software could be a general-purpose computer system with a computer program that, when loaded and executed, controls the computer system such that it carries out the methods described herein. Alternatively, a specific use computer, containing specialized hardware for carrying out one or more of the functional tasks of the invention could be utilized. In a further embodiment, part or all of the invention could be implemented in a distributed manner, e.g., over a network such as the Internet.
The present invention can also be embedded in a computer program product, which comprises all the features enabling the implementation of the methods and functions described herein, and which—when loaded in a computer system—is able to carry out these methods and functions. Terms such as computer program, software program, program, program product, software, etc., in the present context mean any expression, in any language, code or notation, of a set of instructions intended to cause a system having an information processing capability to perform a particular function either directly or after either or both of the following: (a) conversion to another language, code or notation; and/or (b) reproduction in a different material form.
The foregoing description of the invention has been presented for purposes of illustration and description. It is not intended to be exhaustive or to limit the invention to the precise form disclosed, and obviously, many modifications and variations are possible. Such modifications and variations that may be apparent to a person skilled in the art are intended to be included within the scope of this invention as defined by the accompanying claims.