The present subject matter relates generally to a device and system for tracking usage of a sump pump and the water level within the sump basin.
Depending on the terrain surrounding a building, rain or water from another source may infiltrate into the lower levels of a building through the foundation. Water may seep through joints between the floor and walls of the foundation, foundation cracks, small cavities around steel reinforcement, or any other small opening in the foundation. Infiltration may become problematic only during heavy rain events or, in some cases, may be a relatively consistent issue due to deteriorated foundation below a water table. Removal of water is necessary to maintain the structural integrity of the foundation as well as to minimize the growth of mold, which could damage property and lead to poor air quality.
To collect infiltration, a building may include a sump pit at the lowest elevation of the basement. Referring to
Under normal circumstances, water accumulates in the sump pit 102 without the owner's knowledge because the sump pit 102 is often located in a position far from the living area of the home and typically includes a circular lid 108 affixed to the top of the sump pit 102 level with the floor. Because the sump pump 100 is activated by a float switch 106, the owner may not be aware that the sump pump 100 has been turned on and is removing water from the sump pit. As a result, when there is sump pump failure (e.g., the pump has become unplugged or otherwise lost power, the backup battery has died, the mechanical float switch fails, the pump has diminished capacity, the water inflow is in excess of pump's capacity, etc.), the owner may not be aware of the failure until after the lowest level of the home is flooded.
In addition, in current systems, the owner is not provided with information useful to assess the function of the sump pump system. There is no practical solution for an owner to know when a sump pump is nearing the end of its life cycle and has reduced capacity, the discharge pipe is partially blocked, or there is some other performance reduction in the system.
Accordingly, there is a need for a device that monitors a water level in a sump pit to ensure that a sump pump is working properly and further creates a historical log of the water level.
To meet the needs described above and others, the present disclosure provides a sump pump tracking device and system that monitors the water elevation in a sump pit and triggers an alarm if the water level reaches an alarm elevation. The alarm threshold elevation is set at a point higher than the water level sensor of the sump pump. Triggering of the alarm of the sump pump tracking device indicates that the sump pump is failing to remove water from the sump pit at an appropriate rate and action is required before the water level breaches the sump pit. In one embodiment, the alarm is triggered to allow sufficient time for the owner to take action and prevent an overflow of the sump pit.
The sump pump tracking device includes a processor programmed with computer executable instructions that calculate a pressure differential between first and second ports. The first port is open to atmospheric conditions outside of the sump pit at the height of the sensor. A tube extending from the second port into the sump pit allows the second port to measure the pressure at an elevation within the sump pit adjacent to the sump pump. The sump pump tracking device may include an air pump that injects air into the tube on a periodic basis to force out excess water within the tube.
As the water level in the sump pit rises, the water level in the tube of the second port also rises, thus increasing the air pressure in the tube. The processor converts the air pressure reading to kPa, which determines the water level within the sump pit. The sump pump tracking device is in communication with a remote server which is configured to be programmed to trigger an alarm when the water level exceeds an alarm threshold elevation.
In one embodiment, the server may also be programmed to record water level readings at intervals. The intervals may be 15 seconds, 30 seconds, one hour, or any other period of time.
The device may include a database and/or may be connected to wireless services such as data logging and alert notification via text message, email, telephone call, smartphone alert, etc. In a further embodiment, the device communicates with a remote database and other cloud-based services wirelessly over the Internet. A user may access data in the database from an electronic device, such as a computer, tablet, smartphone, etc.
An object of the invention is to monitor water levels within a sump pit.
An advantage of the invention is to ensure that the sump pump is removing water from the sump pit as expected or needed.
Another advantage of the invention is collecting historical information related to water infiltration and/or sump pump usage that may be used for many purposes, including the failure risk assessment and other performance variables in the system.
Additional objects, advantages and novel features of the examples will be set forth in part in the description which follows, and in part will become apparent to those skilled in the art upon examination of the following description and the accompanying drawings or may be learned by production or operation of the examples. The objects and advantages of the concepts may be realized and attained by means of the methodologies, instrumentalities and combinations particularly described herein.
The drawing figures depict one or more implementations in accord with the present concepts, by way of example only, not by way of limitations. In the figures, like reference numerals refer to the same or similar elements.
Referring to
During use, water accumulates within the sump pit 202 such that the water level in the tube 204 rises as the water level in the sump pit 202 rises. The processor 212 calculates the water level within the sump pit 202 based on the dimensions of the sump pit 202 and the air pressure measured via the first port 218.
Also shown in
Operation of the sump pump tracking device 200 is controlled through a web-based software as a service (SaaS) platform or a mobile application downloaded to a mobile device. In one embodiment of the sump pump tracking system, the pressure sensor 210 is in communication with a remote server 203 that receives the pressure sensor readings, records the pressure sensor readings at specified intervals, and provides data to users upon request. In some embodiments, the processor 212 may record water level readings at timed intervals, such as 15 seconds, 30 seconds, one hour, or any other period of time as desired. The graph 300 of
The user may also program one or more alarm threshold elevations via the web-based SaaS platform or the mobile application. The server 203 will compare the pressure sensor readings with pre-programmed alarm threshold elevation and trigger an alarm when the water level in the sump pit 202 exceeds an alarm threshold elevation. The user may specify one or more alarm threshold elevations that correspond to different levels of emergency. For example, first, second, and third alarm threshold elevations may correspond to a low-level warning, a mid-level warning, and a high alert.
The sump pump tracking device 200 may include a database and/or may be connected to wireless services such as data logging and alert notification. For example, the sump pump tracking device 200 may send alerts via text message or email to users. In a further embodiment, the sump pump tracking device 200 communicates with a database and other cloud-based services wirelessly over the internet. A user may access data in the database from an electronic device, such as a computer, tablet, smartphone, etc.
It should be noted that various changes and modifications to the presently preferred embodiments described herein will be apparent to those skilled in the art. Such changes and modifications may be made without departing from the spirit and scope of the present invention and without diminishing its attendant advantages.
This application incorporates by reference and claims the benefit of priority to U.S. Provisional Application No. 62/363,027 filed on Jul. 15, 2016.
Number | Name | Date | Kind |
---|---|---|---|
3671954 | Clay | Jun 1972 | A |
3941507 | Niedermeyer | Mar 1976 | A |
3972647 | Niedermeyer | Aug 1976 | A |
4087204 | Niedermeyer | May 1978 | A |
4651670 | Silverwater | Mar 1987 | A |
5672050 | Webber | Sep 1997 | A |
6632072 | Lipscomb | Oct 2003 | B2 |
6676382 | Leighton | Jan 2004 | B2 |
7755318 | Panosh | Jul 2010 | B1 |
8043069 | Bialick et al. | Oct 2011 | B2 |
9383244 | Bishop et al. | Jul 2016 | B2 |
20040011127 | Huemer | Jan 2004 | A1 |
20070147190 | Mons | Jun 2007 | A1 |
20090123295 | Abbott | May 2009 | A1 |
20090123296 | Bialick | May 2009 | A1 |
20130201316 | Binder et al. | Aug 2013 | A1 |
20140119946 | Boese et al. | May 2014 | A1 |
20140119947 | Bishop et al. | May 2014 | A1 |
20140119950 | Bishop | May 2014 | A1 |
20140199180 | Schoendorff | Jul 2014 | A1 |
20150143897 | Cummings | May 2015 | A1 |
20150355254 | Rothbart | Dec 2015 | A1 |
20160201665 | Hirata | Jul 2016 | A1 |
20170260977 | Binks | Sep 2017 | A1 |
20170292513 | Haddad | Oct 2017 | A1 |
Number | Date | Country | |
---|---|---|---|
20180017459 A1 | Jan 2018 | US |
Number | Date | Country | |
---|---|---|---|
62363027 | Jul 2016 | US |