This application relates to positive displacement pumps such as Roots-type rotary blowers and screw-type air pumps. More specifically, the application provides damping structures and torsional compliance features for torque transmitting parts of a supercharger.
Positive displacement pumps, such as Roots or screw-type superchargers can suffer from vibrations as torque is transmitted from a crankshaft of a motor or engine to the shafts that turn the lobes of the supercharger. The vibrations can occur along the shafts and, when a clutch or transmission is used to transfer torque, “chatter” can occur between facing surfaces in the clutch or transmission.
In addition, when the pump is used to supply air to an engine of a motive device, the user may notice “lurching” as the pump turns abruptly on and off.
The methods disclosed herein overcome the above disadvantages and improves the art by way of a positive displacement pump which may comprise a cylindrical input shaft comprising a first area with a first diameter, a second area with a second diameter, and a third area with a third diameter, where the second diameter is greater than the first diameter and the third diameter. A first bearing may surround a portion of the first area. A second bearing may surround a portion of the third area. A stator assembly may be press fit to another portion of the third area. A cylindrical bushing may be press fit around the second area. When the input shaft rotates, the bushing resists the rotation, thereby creating heat.
An armature assembly may comprise a plurality of coupling means, a friction disc with a plurality of spaced holes, a plurality of springs, each spring comprising a first end and a second end, and an armature.
The armature may comprise a cylindrical, hollow passageway, radially extending arms, each arm comprising, an opening, at least one slot passing through the arm, and at least one void abutting the slot, the void passing through the arm.
The plurality of springs may be distributed on the disc such that every other spaced hole of the friction disc is coupled via respective coupling means to a respective first end of a respective spring. The remaining spaced holes of the friction disc may coupled via respective coupling means to respective second ends of the plurality of springs. Respective second ends of the plurality of springs may be coupled to respective openings of the armature
Additional objects and advantages will be set forth in part in the description which follows, and in part will be obvious from the description, or may be learned by practice of the disclosure. The objects and advantages will also be realized and attained by means of the elements and combinations particularly pointed out in the appended claims.
It is to be understood that both the foregoing general description and the following detailed description are exemplary and explanatory only and are not restrictive of the claimed invention.
Reference will now be made in detail to the examples which are illustrated in the accompanying drawings. Wherever possible, the same reference numbers will be used throughout the drawings to refer to the same or like parts. Directional references such as “left” and “right” are for ease of reference to the figures.
An input pulley hub 11 connects to a drive mechanism such as a pulley belt to receive rotational energy from a driver, such as a crankshaft of an engine of a vehicle. The drive mechanism connects to a cylindrical input shaft 13. The input shaft is fitted with bearings 17 to align the input shaft 13 in the housing 9 and to allow the input shaft 13 to rotate in the housing 9. The input shaft 13 has a first area A1 with a first diameter D1, a second area A2 with an increased diameter D2, and a third area A3 of reduced diameter D3. In the illustrated example of
In
As shown in
Returning to
For
Reducing the interference between the inner surface of the damper, such as by increasing inner damper diameter DD or decreasing the diameter of the touching areas of the input shaft, will allow the input shaft 13 to twist more inside the damper 15; and, as the thinner inner shaft 13 twists more, the amplitude of vibration increases and the damper 15 provides more damping.
Additional damper modifications can include a lengthwise slit 15B in the press fit damper 15A.
While not shown in
Other alternatives to the sleeve-like friction damper 15 are shown in
Alternatively, a liquid may be injected in to a cavity formed by cap 71 and sleeve 73.
To couple torque from the input shaft 13 to the transmission assembly of the supercharger, a stator 19 is press fit to the input shaft 13. An electrically controllable electromagnetic coil assembly 23 is seated in the stator 19. When a signal actuates the coil assembly 23, it attracts an armature assembly 21 such that a surface of the stator 19 may grip a disc 28 of the armature assembly 21. The face of the stator 19 may include a friction grip material 31, which may be disc-shaped. Or, the stator 19 may comprise a powder-metal composite that is configured to grip disc 28. The armature assembly 21 may comprise a magnetic material that is attracted when the coil assembly 23 is powered, but that is not attracted when the coil assembly 23 is not powered. The magnetic material may be included in the armature 29, the disc 28, or in both the armature 29 and the disc 28. The disc 28 additionally comprises a friction grip surface to couple to the stator 19.
The stator 19 and disc 28 act as a clutch to selectively couple torque from the input shaft 13 to intermediate shaft 10. When the torque is transferring, it is possible that the interface experiences stick-slip, which excites torsional vibration which is composed of torsional stiffness of input shaft 13 and torsional inertia of stator 19. As one example, first mode vibration of 500 Hz may occur as the disc 28 and stator 19 resist one another. As above, the torsional vibration may be damped by damper 15. When torque transfer is complete, the coil assembly 23 may be deactivated and the disc 28 may uncouple from the stator 19.
Affiliated bearings 24 and 20 brace the intermediate shaft 10 against a housing section 26 and enables the intermediate shaft 10 to rotate when torque is transferred to intermediate shaft 10. A transmission 16 may include step up and other timing gears to transfer torque to gears 18 holding lobes 12. The illustrated example shows a first lobe shaft 14 rotationally coupled to the transmission 16 and to a first of the gears 18. The first gear 18 is coupled to turn the second gear 18. The lobe shaft 14 is supported for rotation against an end of the outer housing along with an end of the other lobe 12. Thus, the lobes 12 of the supercharger may turn as torque is transferred from the drive mechanism, across the clutch assembly and through the transmission 16 on the intermediate shaft 10.
The clutch assembly 21 is illustrated in more detail in
Turning to
Fingers 291 at the ends of the arms 39 may seat against the disc 28. The armature may comprise threaded or unthreaded openings 293 for receiving screws. A first side of the armature 29 may include a central lip 298 around the passageway 290. A recess 299 may surround the central lip 298. The armature 29 may then transition from the recess 299 to the arms 39, which may have a thickness greater than or equal to the height of the lip 298.
A second side of the armature may include a neck 292 that extends the passageway 290. Passageway 290 press fits to intermediate shaft 10. The neck 292 is generally cylindrical and may include diameter changes, such as recess 296 in
The springs 27 provide a torque or speed-sensitive mechanism. The springs can flex should the disc 28 receive a sufficient amount of torque from stator 19. The springs 27 allow relative motion between disc 28 and armature 29.
A generally rectangular slot 295 may pass through each arm of armature 29. A generally circular void 297 may abut each slot 295. The voids 297 and slots 295 cooperate to reduce the mass of the armature 29, and the mass change adjusts the Hertz at which the armature vibrates. The slots 295 and voids 297 also provide a selective weakness in the armature 29 that enables twisting of the armature 29. The increased flexing of the armature and increased ability to vibrate at specific frequencies allows armature 29 to damp other vibrations in the supercharger 8, such as vibrations caused by the coupling “chatter” between the stator 19 and the disc 28. Thus, in addition to the relative motion between disc 28 and armature 29 afforded by use of springs 27, armature 29 can twist relative to disc 28 to concentrate strain at armature 29. This alleviates strain in other parts of the supercharger 8 as the lobes 12 resist torque applied by the drive mechanism. Since the twist in armature 29, and the bend of springs 27 can be loaded and unloaded gradually relative to other instantaneous on/off couplings, “lurching” can be reduced or avoided. That is, lobes 12 can be spun up more gradually and can be unpowered more gradually so that an affiliated compressed air receiving system, such as an engine of a motive device, experiences less abrupt changes in air supply.
The vibration range of the armature may be chosen to cancel out other vibrations and thus reduce the operating noise of the supercharger. Thus, the size and placement of the slots and voids can be changed for intended operating conditions. For example, the slot width does not have to be uniform and can be varied along the length of the slot to achieve a desired effect.
The added compliance of the armature also enables the selection of resonance ranges that occur before stick-slip occurs between the stator 19 and disc 28. And, if the vibration cannot be cancelled out completely, the timing of the chatter can be controlled and the frequency of the damping can be adjusted to less detectable ranges. Thus, with appropriate selection of the size of slots 295 and voids 297, the operating noise of the supercharger can be adjusted along audible and non-audible ranges of frequencies.
Ordinarily, the stator 19 assembly and armature assembly 21 shake, or chatter, as torque transfers from the input shaft 13 to the intermediate shaft 10. The armature 29 illustrated drops the natural frequency of the rotor vibration by almost 4. The slots 295 and voids 297 in the armature 29 can also result in a reduction in the number of cycles available to build resonant amplitudes.
By combining the press fit damper 15 and the armature 29, significant noise and chatter reduction occurs. An end user driver experiences less perceptible changes as the supercharger engages, both via the reduced noise, and also because of the smoother transition from powered to unpowered supercharger states.
Other implementations will be apparent to those skilled in the art from consideration of the specification and practice of the examples disclosed herein. For example, it may be advantageous to vary number of arms 39 on armature 29, such that more than three arms are spaced about the cylindrical, hollow passageway 290. Such an increase would require an increased number of springs 27 and holes 231 and 233. It is intended that the specification and examples be considered as exemplary only, with a true scope and spirit of the invention being indicated by the following claims.
Number | Date | Country | |
---|---|---|---|
61821219 | May 2013 | US | |
61843096 | Jul 2013 | US | |
61884720 | Sep 2013 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 29459965 | Jul 2013 | US |
Child | 14147188 | US |