This invention relates to image sensors, and more particularly to active pixel sensors having superposed regions.
CMOS image sensors have a significant advantage of allowing lower power consumption. An active pixel sensor (APS) is one example of a low power consumption image sensor which has photoreceptors, and buffer circuitry, and processing circuitry, all on one substrate.
Many different things can be done using the CMOS technology. For example, many of the applications by Photobit, Inc. of Pasadena, Calif. have enabled various operations to be carried out on the same substrate as the image sensor.
Certain resolutions are desired for different operations. For example, for a still camera, one often wants very high resolution, e.g. similar to the resolution that one could get from a photograph. This could require more than 1½ megapixels. However, people are accustomed to obtaining less resolution in a video environment, which shows a progression of information, e.g., 30 to 60 frames per second.
Another consideration is the way in which one obtains color from a color sensor. Each pixel value includes an indication of values for red, green and blue at the location of that pixel. However, in actuality, the system obtains red values from one pixel area, green from another, and blue from yet another. The three values are neighboring values, so the actually-obtained information is interpolated to obtain postulated magnitudes of colors at other locations.
Another way in which this can be done is by putting small prisms at each pixel. A lot of adjustment can be required.
The present invention obtains color in a CMOS image sensor with the use of two or three superposed layers. Each pixel in the image sensor includes a plurality of superposed photosensitive p-n junctions with individual charge integration regions. The combination of each of the superposed layers provides increased sensitivity and resolution of a single chip color imager.
One aspect of the invention includes a photosensor comprising a first charge collection region having a first absorption length and a second charge collection region having a second absorption length. The first charge collection region and the second charge collection region are superposed. The photosensor further comprises a third charge collection region having a third absorption length. The third charge collection region is superposed with the first and second charge collection region.
Another aspect of the invention is a method of generating color in an active pixel sensor comprising generating light of a first color in a first charge collection region and generating light of a second color in a second charge collection region. The method further superposes the light of the first color with the light of the second color.
These and other features and advantages of the invention will become more apparent upon reading the following detailed description and upon reference to the accompanying drawings.
During video signal processing, numerous data formats are used to represent image information associated with each pixel of a video field so that an original image can be faithfully reproduced. For example, one common color format represents a color using red, green, and blue color components. With this color format, the color of each pixel is represented by quantities of red (R), green (G) and blue (B) color components detected in the original.
The superposed charge collection regions 105 may be used with a pixel having a 4:2:2 sampling mode. The 4:2:2 mode is a ratio of sampling frequencies used to digitize the luminance (Y) and color difference components (R-Y and B-Y). For example, the first color difference component may represent the difference between the red image information and the luminance image information (R-Y) and the second color difference component may represent the difference between the blue image information and the luminance image information (B-Y). The term 4:2:2 denotes that for every four samples of Y, there are 2 samples each of R-Y and B-Y, giving more chrominance bandwidth in relation to luminance compared to standard 4:1:1 sampling.
The color components of the pixel 300 are provided by the output transistors 345, 350, 355. In one embodiment, the output transistor 345 outputs the red component, the output transistor 350 outputs the blue component, and the output transistor 355 outputs the green component. If only two output transistors are desired, the green component may be omitted.
The color APS 300 is capable of performing 4:4:4 sampling mode. In the 4:4:4 sampling mode, there are always an equal number of samples of luminance (Y) and color difference components (R-Y and B-Y). The 4:4:4 sampling mode provides for more data to form the images, and thus the potential of images having a higher resolution and clarity. To perform 4:4:4 sampling, the color APS 300 preferably has at least two separate reset control lines. The number of reset control line is dependent upon the number of implemented superposed layers, with each layer having a separate reset control line.
Numerous variations and modifications of the invention will become readily apparent to those skilled in the art. Accordingly, the invention may be embodied in other specific forms without departing from its spirit or essential characteristics.
This application is a divisional of U.S. application Ser. No. 10/254,140, filed on Sep. 24, 2002, now U.S. Pat. No. 6,870,149, which is a continuation of U.S. application Ser. No. 09/522,286, filed Mar. 9, 2000, now U.S. Pat. No. 6,455,833, which claims the benefit of the U.S. provisional application Ser. No. 60/124,084, filed Mar. 9, 1999, the disclosures of which are hereby incorporated by reference.
Number | Name | Date | Kind |
---|---|---|---|
3860956 | Kubo et al. | Jan 1975 | A |
5614744 | Merrill | Mar 1997 | A |
5757840 | Hiroki | May 1998 | A |
5945722 | Tsuei et al. | Aug 1999 | A |
5965875 | Merrill | Oct 1999 | A |
6028612 | Belakrishnan et al. | Feb 2000 | A |
6066510 | Merrill | May 2000 | A |
6111247 | Sengupta | Aug 2000 | A |
6150683 | Merrill et al. | Nov 2000 | A |
6166768 | Fossum et al. | Dec 2000 | A |
6300612 | Yu | Oct 2001 | B1 |
6330113 | Slagle et al. | Dec 2001 | B1 |
6606120 | Merrill et al. | Aug 2003 | B1 |
6632701 | Merrill | Oct 2003 | B2 |
6714239 | Guidash | Mar 2004 | B2 |
20020058353 | Merrill | May 2002 | A1 |
20020171881 | Merrill et al. | Nov 2002 | A1 |
20030038296 | Merrill | Feb 2003 | A1 |
20030169359 | Merrill et al. | Sep 2003 | A1 |
Number | Date | Country | |
---|---|---|---|
20050087679 A1 | Apr 2005 | US |
Number | Date | Country | |
---|---|---|---|
60124084 | Mar 1999 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 10254140 | Sep 2002 | US |
Child | 10975075 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 09522286 | Mar 2000 | US |
Child | 10254140 | US |