The present invention is directed to supplemental spine fixation devices and methods which are used as an adjunct to a primary spine fusion device, such as by way of example only, an interbody fusion device.
A common procedure for handling pain associated with degenerative spinal disk disease is the use of devices for fusing together two or more adjacent vertebral bodies. The procedure is known by a number of terms, one of which is interbody fusion. Interbody fusion can be accomplished through the use of a number of devices and methods known in the art. These include screw arrangements, solid bone implant methodologies, and fusion devices which include a cage or other mechanism which is packed with bone and/or bone growth inducing substances. All of the above are implanted between adjacent vertebral bodies in order to fuse the vertebral bodies together, alleviating associated pain.
Associated with such primary fusion devices and methods are supplemental devices which assist in the fusion process. These supplemental devices assist during the several month period when bone from the adjacent vertebral bodies is growing together through the primary fusion device in order to fuse the adjacent vertebral bodies. During this period it is advantageous to have the vertebral bodies held immobile with respect to each other so that sufficient bone growth can be established.
Such supplemental devices can include hook and rod arrangements, screw arrangements, and a number of other devices which include straps, wires, and bands, all of which are used to immobilize one portion of the spine relative to another.
All of these devices generally require extensive surgical procedures in addition to the extensive procedure surrounding the primary fusion implant.
It would be advantageous if the device and procedure for supplemental spine fixation were as simple and easy to perform as possible, and would leave intact all bone, ligament, and other tissue which comprise and surround the spine.
Accordingly, there needs to be developed procedures and implants which are minimally invasive and are supplemental to spine fixation devices and methods.
The present invention is directed to providing a minimally invasive supplemental spine fixation implant and method for alleviating discomfort associated with the spine.
The present invention provides for a method and apparatus for assisting in the fusing together of vertebral bodies of the spine. One of the features and purposes of the invention is to immobilize the vertebral bodies while spine fusion is accomplished. Generally fusion requires upwards of six months for bone cells from the upper and lower vertebral bodies to grow towards each other, generally through a primary fusion device.
In order to assist in the fusing process, the supplemental spinal fixation device and method of the invention immobilizes the vertebral bodies by immobilizing the respective spinous processes extending therefrom. In addition, the present invention and method can be used to distract apart the posterior sides of the vertebral bodies in order to put additional force and compression on the anterior sides of the vertebral bodies, further assisting in the interbody fusion process.
The present invention and method is minimally invasive such that it does not add to the trauma of the primary fusion procedure, especially if the fusion procedure is from a posterior approach. With an anterior fusion approach additional posterior incisions are required. However, these are minimal when compared to other devices and methods.
Accordingly an object of the present invention is to increase the rigidity and stability with respect to the adjacent spinous process and vertebral bodies in order to promote interbody fusion between the vertebral bodies.
It is further an object of the present invention to be as minimally invasive as possible.
It is yet a further object of the present invention to provide for an implant and method which does not require modification of the bone, ligaments, or adjoining tissues. In other words, it is an object of the present invention to provide for an implant and method which does not require that the bone be reshaped, notched, or in any way modified. Further it is an object of the present invention to provide for an implant and method which does not require that any of the ligaments associated with the spinous processes be altered.
It is a further object of the present invention to provide for an implant and method which can be inserted from one side of adjacent spinous processes, in order to immobilize the spinous processes and resultingly immobilize the adjacent vertebral bodies. By addressing the spinous processes from one side, the objects and advantages of a minimally invasive procedure, with reduced trauma, can be accomplished.
It is another object of the present invention to provide for a device and method which provides for distraction of the spinous processes in order to place pressure on at least the anterior portion of the vertebral bodies in order to assist in the primary fusion.
It is still a further object of the present invention to provide for an implant and method which can increase the space between spinous processes in order to adjust the height between vertebral bodies.
It is yet a further object of the present invention to provide for a device which has securing and/or hook elements which can easily and conveniently be secured about the spinous processes, which hook devices are preferably designed in order to accommodate the shape of the spinous processes and are preferably swivelable or pivotable in order to accommodate the position and shape of one spinous processes relative to another.
It is another object of the invention to provide for a device which has several degrees of freedom in order to allow a portion of the device to be positioned between spinous processes in order to distract apart the spinous processes and other portions of the device to engage the spinous processes in order to rigidly immobilize the spinous processes. These degrees of freedom allow the device to conform to the bones, ligaments, and tissues of each individual patient. Thus, the present device allows for adjustments along two and three axises in order to successfully distract and immobilize spinous processes.
It is yet a further object of the present invention to have at least one portion of the device selectably positionable with respect to other portions of the device in order to accommodate the anatomy of the spine and in particular of the spinous processes.
It is still a further object of the present invention to provide for a device and method which can be used with both primary anterior or posterior interbody fusion.
Accordingly, it is an object and aspect of the invention to provide a device and method for augmentation of single or multiple level lumbar spinal fusion. Ideally the fusion and the device and method of this invention are addressed at the L4/L5 vertebral bodies and above, and also at the L5/S1 vertebral bodies. The device and method can also be used with other vertebral bodies located along the spine.
The present invention provides for rigidity without risk to the neural elements. The present invention is cost effective and minimally invasive.
Accordingly, an aspect of the present invention includes an implant for rigidly positioning spinous processes, which implant includes a first means adapted for engaging the first spinous process and a second means adapted for engaging the second spinous process. The implant includes a body means adapted for positioning between the first spinous process and the second spinous process and a hub means for engaging the first means, the second means, and the body means.
Further, the invention includes at least one of the hub means and the body means allowing for the body means to move relative to at least one of the first and second means.
In a further aspect and object of the present invention, an implant includes a first hook adapted to engage a first spinous process and a second hook adapted to engage a second spinous process. The implant has a body adapted to the position between the spinous processes and a hub to which mounts the first and second hooks and the body. The body is moveable relative to at least one of the first and second hooks.
It is further an aspect and object of the present invention to provide an implant for rigidly positioning spinous processes as an adjunct to spine fusion, where the improvement includes a sleeve position between adjacent spinous processes.
It is a further aspect of the present invention to provide an implant for rigidly positioning spinous processes as an adjunct to spine fusion wherein the improvement comprises a sleeve or spacer positioned between adjacent spinous processes and a first hook which is adapted to engage a first spinous process and a second hook which is adapted to engage a second spinous process.
The method of the present invention is for rigidly positioning a first spinous process relative to a second spinous process and includes the steps in any desired order of placing a first hook around a first spinous process and a second hook around a second spinous process. The steps include placing a sleeve or spacer between the first and second spinous processes, which spacer mounts to a hub. The hub is used to interlock the first hook relative to the second hook.
It is a further object of the present invention to provide a supplemental spine fixation device and method which has additional freedom in the placement of the hooks and the spacer relative to the hub. In one aspect of the invention, the spacer is mounted on a shaft relative to hub and is pivotable about a pivot point relative to the hub. This is in addition to the spacer being rotatable about the shaft relative to the hub in a particular embodiment.
The hook themselves have a lead-in nose which is adapted to separate tissues between the spinous process in order to allow the hook to be urged into engagement with a spinous process.
In another aspect of the invention, the hub is designed in order to on assembly, lock in the spacer and the hooks by locking in the shafts upon which they are mounted.
In still a further aspect of the invention, the spacer is egg-shaped in order to accommodate the shape of the spinous process and the space there between. In a further aspect of the invention, in particular with respect to the egg-shaped spacer, the spacer has a bore therethrough on which the spacer can rotate, which bore is offset, being closer to the blunt end of the shape spacer than the pointed end. This allows the spacer to have the pointed end positioned closer to the spine. According, more surface area of the spacer supports the spinous processes in areas where the spinous processes are stronger.
Other embodiments of the implants and methods, within the spirit and scope of the invention, can be understood by a review of the specification, the claims, and the figures.
a and 3b depict side and end views of a first forked and of the embodiment of FIG. 1.
a and 4b depict side sectioned and end views of an interbody piece of the implant of FIG. 1.
a and 5b depict side and end views of a second forked end of the embodiment of FIG. 1.
a and 119b depict side and plan views of still a further embodiment of the present invention.
a and 120b depict side and plan views of the second wing which can be used in conjunction with the embodiment of the invention of
a and 121b depict side and plan views of the first wing and central body of the embodiment of the invention depicted in
a,
122
b, and 122c depict top, side and end views of a guide which is a portion of the embodiment of the invention of
a,
124
b and 124c depict a view of the embodiment of the invention of
a,
133
b,
133
c, and 133d are perspective, first end, second end, and sectional views of a spacer or sleeve of the embodiment of the invention depicted in FIG. 130.
a-135f are various views of an embodiment of the hook mechanism of the embodiment of the invention of FIG. 130.
a is an alternative component of the embodiment of FIG. 137.
b is an upside down perspective view of a component of the embodiment of FIG. 138.
a,
146
b, and 146c depict yet a further embodiment of a body portion of the invention.
a and 147b are side and top views of yet another embodiment of the invention depicting a mechanism for adjusting the positions of the hook mechanisms of, for example, the embodiment of the invention of
a and 148b are sectional top and side views of yet another embodiment of the invention for adjusting the position of the hook mechanisms.
a and 149b are perspective and side views of yet a further mechanism of an embodiment of the invention for adjusting the position of hook mechanisms of the invention.
a is a sectioned view of the spacer and lead-in nose tissue expander of the invention.
b is an end view of a spacer of
c is an exploded view of several of the components of
a is a plan, partially sectioned view of an embodiment of a hook of the invention.
b is a sectioned view taken through line 155b—155b of
c is a sectioned view taken through line 155c—155c of
d is a bottom view of the embodiment of the hook of the invention of 155a.
e is an end view of
a and 158b are sectioned views of an alternate embodiment of the hub mechanism of the invention.
The present invention, although directed to embodiments for providing supplemental spine fixation devices and methodologies depicted in
Embodiment of
A first embodiment of the invention is shown in
The second forked end 24 (
For purposes of implantation between adjacent first and second spinous processes of the spinal column, the implant 20 is configured as shown in FIG. 2. The first and second spinous processes are exposed using appropriate surgical techniques and thereafter, the implant 20 is positioned so that saddle 26 engages the first spinous process, and saddle 28 engages the second spinous process. At this point, the interbody piece 30 can be rotated by placing an appropriate tool or pin into the cross holes 40 and upon rotation, the saddle 26 is moved relative to the saddle 28. Such rotation spreads apart or distracts the spinous processes with the resultant and beneficial effect of enlarging the volume of the spinal canal in order to alleviate any restrictions on blood vessels and nerves.
It is noted that this implant as well as the several other implants described herein act as an extension stop. That means that as the back is bent backwardly and thereby placed in extension the spacing between adjacent spinous processes cannot be reduced to a distance less than the distance between the lowest point of saddle 26 and the lowest point of saddle 28. This implant, however, does not inhibit or in any way limit the flexion of the spinal column, wherein the spinal column is bent forward.
Preferably, such a device provides for distraction in the range of about 5 mm to about 15 mm. However, devices which can distract up to and above 22 mm may be used depending on the characteristics of the individual patient.
With all the ligaments (such as the superspinous ligament) and tissues associated with the spinous processes left intact, the implant 20 can be implanted essentially floating in position in order to gain the benefits of the aforementioned extension stop and flexion non-inhibitor. If desired, one of the saddles 26 can be laterally pinned with pin 29 to one of the spinous processes and the other saddle can be loosely associated with the other spinous processes by using a tether 31 which either pierces or surrounds the other spinous process and then is attached to the saddle in order to position the saddle relative to the spinous process. Alternatively, both saddles can be loosely tethered to the adjacent spinous process in order to allow the saddles to move relative to the spinous processes.
The shape of the saddles, being concave, gives the advantage of distributing the forces between the saddle and the respective spinous process. This ensures that the bone is not resorbed due to the placement of the implant 20 and that the structural integrity of the bone is maintained.
The implant 20 in this embodiment can be made of a number of materials, including but not limited to, stainless steel, titanium, ceramics, plastics, elastics, composite materials or any combination of the above. In addition, the modulus of elasticity of the implant can be matched to that of bone, so that the implant 20 is not too rigid. The flexibility of the implant can further be enhanced by providing additional apertures or perforations throughout the implant in addition to the holes 40 which also have the above stated purpose of allowing the interbody piece 30 to be rotated in order to expand the distance between the saddle 26, 28.
In the present embodiment, it is understood that the spinous processes can be accessed and distracted initially using appropriate instrumentation, and that the implant 20 can be inserted and adjusted in order to maintain and achieve the desired distraction. Alternatively, the spinous process can be accessed and the implant 20 appropriately positioned. Once positioned, the length of the implant can be adjusted in order to distract the spinous processes or extend the distraction of already distracted spinous processes. Thus, the implant can be used to create a distraction or to maintain a distraction which has already been created.
The placement of implants such as implant 20 relative to the spinous process will be discussed hereinbelow with other embodiments. However, it is to be noted that ideally, the implant 20 would be placed close to the instantaneous axis of rotation of the spinal column so that the forces placed on the implant 20 and the forces that the implant 20 places on the spinal column are minimized.
Further, it is noted that during the actual process of installing or implanting the implant 20, that the method uses the approach of extending the length of the implant 20 a first amount and then allowing the spine to creep or adjust to this distraction. Thereafter, implant 20 would be lengthened another amount, followed by a period where the spine is allowed to creep or adjust to this new level of distraction. This process could be repeated until the desired amount of distraction has been accomplished. This same method can be used with insertion tools prior to the installation of an implant. The tools can be used to obtain the desired distraction using a series of spinal distraction and spine creep periods before an implant is installed.
Embodiment of
The embodiment of the invention shown in the above
Embodiment of
Another embodiment of the apparatus and method of the invention is shown in
Embodiments of
In
An alternative embodiment of the implant can be seen in
The embodiment of implant 130 is not circular in overall outside appearance, as is the embodiment 110 of
If it is desired, and in order to assure that the first member 132 and the second member 134 are aligned, key 148 and keyway 150 are designed to mate in a particular manner. Key 148 includes at least one flattened surface, such as flattened surface 152, which mates to an appropriately flattened surface 154 of the keyway 150. In this manner, the first member is appropriately mated to the second member in order to form appropriate upper and lower saddles holding the implant 130 relative to the upper and lower spinous processes.
a depicts second member 134 in combination with a rounded nose lead-in plug 135. Lead-in plug 135 includes a bore 137 which can fit snugly over key 148. In this configuration, the lead-in plug 135 can be used to assist in the placement of the second member 134 between spinous processes. Once the second member 134 is appropriately positioned, the lead-in plug 135 can be removed. It is to be understood that the lead-in plug 135 can have other shapes such as pyramids and cones to assist in urging apart the spinous processes and soft tissues in order to position the second member 134.
Embodiment of
The implant 330 as shown in
The first or second wedges 332, 334 have a mating arrangement which includes a channel 344 and a projection of 346 which can be urged into the channel in order to lock the wedges 332, 334 together. The channel 334 is undercut in order to keep the projection from separating therefrom. Further, as in other devices described herein, a detent can be located in one of the channel and the projection, with a complimentary recess in the other of the channel and the projection. Once these two snap together, the wedges are prevented from sliding relative to the other in the channel 344.
While the above embodiment was described with respect to wedges, the wedges could also have been designed substantially as cones with all the same features and advantages.
Embodiments of
The implant 370 is comprised of first and second distraction cone 372, 374. These cones are made of a flexible material. The cones are positioned on either side of the spinous processes 376, 378 as shown in FIG. 21. Using appropriate tool as shown hereinabove, the distraction cones 372, 374 are urged together. As they are urged together, the cones distract the spinous processes as shown in FIG. 22. Once this has occurred, an appropriate screw or other type of fastening mechanism 380 can be used to maintain the position of the distraction cones 372, 374. The advantage of this arrangement is that the implant 370 is self-distracting and also that the implant, being flexible, molds about the spinous processes as shown in FIG. 22.
Embodiments of
In
Implant 170 can be made of a deformable material so that it can be urged into place and so that it can somewhat conform to the shape of the upper and lower spinous processes. This deformable material would be preferably an elastic material. The advantage of such a material would be that the load forces between the implant and the spinous processes would be distributed over a much broader surface area. Further, the implant would mold itself to an irregular spinous process shape in order to locate the implant relative to spinous processes.
With respect to
Embodiment of
The embodiment shown in
The distraction tool 190 can be inserted through a small incision in the back in order to spread apart the spinous processes. Through the same incision which has been slightly enlarged laterally, an upper end 202 of ring 200 can be initially inserted followed by the remainder of the ring 200. Once the ring is inserted, the ring can be rotated slightly by moving handle 198 downwardly in order to further wedge the spinous processes apart. Once this has been accomplished, an implant such as implant 204 can be inserted through the ring and properly positioned using implant handle 206. Thereafter, the implant handle 206 and the insertion tool 196 can be removed.
Embodiments of
As can be seen in
As can be seen in
As can be seen in
Embodiment of
Another embodiment of the invention is shown in
Embodiments of
The embodiments of
The implant 230 is inserted laterally throughout the opening between upper and lower spinous processes. The first body 238 causes the initial distraction. Each successive conical body distracts the spinous processes a further incremental amount. When the desired distraction has been reached, the spinous processes are locked into position by steps 236. At this point, if desired, the initial nose body 238 of the implant and other bodies 240 can be broken, snapped or sawed off if desired in order to minimize the size of the implant 230. In order for a portion of the implant 230 to be broken or snapped off, the intersection between bodies such as body 238 and 240, which is intersection line 242, would be somewhat weaken with the appropriate removal of material. It is noted that only the intersection lines of the initial conical bodies need to be so weakened. Thus, intersection line 244 between the bodies which remain between the spinous processes would not need to be weaker, as there would be no intention that the implant would be broken off at this point.
Turning to
Embodiment of
In the embodiment of
Further, a plurality of cannula can be used instead of one, with each cannula being slightly bigger than one before. In the method of the invention, the first smaller cannula would be inserted followed by successively larger cannula being placed over the previous smaller cannula. The smaller cannula would then be withdrawn from the center of the larger cannula. Once the largest cannula is in place, and the opening of the skin accordingly expanded, the implant, which is accommodated by only the larger cannula, is inserted through the larger cannula and into position.
Embodiments of
The precurved implant 270 in
Although only two break lines 280, 282 are depicted, multiple break lines can be provided on implant 270 so that the implant can continue to be fed over the guide wire 278 until the appropriate width of the implant 270 creates the desired amount of distraction. As described hereinabove, the break lines can be created by perforating or otherwise weakening the implant 270 so that the appropriate portions can be snapped or sawed off.
With respect to the precurved implant 272, this implant is similar in design to the implant 230 shown in FIG. 36. This implant 272 in
Embodiment of
A further embodiment of the invention is shown in FIG. 44. This embodiment includes a combination insertion tool and implant 290. The insertion tool and implant 290 is in the shape of a ring which is hinged at point 292. The ring is formed by a first elongated and conically shaped member 294 and a second elongated and conically shaped member 296. Members 294 and 296 terminate in points and through the use of hinge 292 are aligned and meet. Through similar incisions on both sides of the spinous processes, first member and second member are inserted through the skins of the patient and are mated together between the spinous processes. After this has occurred, the implant 290 is rotated, for example clockwise, so that increasingly widening portions of the first member 292 are used to distract the first and second spinous processes. When the appropriate level of distraction has occurred, the remainder of the ring before and after the section which is located between the spinous processes can be broken off as taught hereinabove in order to maintain the desired distraction. Alternatively, with a small enough ring, the entire ring can be left in place with the spinous processes distracted.
Embodiment of
In
Embodiment of
Implant 310 of
Embodiments of
As can be seen in
Alternatively, the insertion tool 326 can be used to insert multiple implants 320, 321 into the space between the spinous processes 322, 324 (FIG. 51). Multiple implants 320, 321 can be inserted until the appropriate amount of distraction is built up. It is to be understood in this situation that one implant would lock to another implant by use of, for example, a channel arrangement wherein a projection from one of the implants would be received into and locked into a channel of the other implant. Such a channel arrangement is depicted with respect to the other embodiment.
Embodiment of
The embodiment of
A variety of materials can be used to make the implant and the fluid which is forced into the implant. By way of example only, viscoelastic substances such as methylcellulose, or hyaluronic acid can be used to fill the implant. Further, materials which are initially a fluid, but later solidify, can be inserted in order to cause the necessary distraction. As the materials solidify, they mold into a custom shape about the spinous processes and accordingly are held in position at least with respect to one of two adjacent spinous processes. Thus, it can be appreciated that using this embodiment and appropriate insertion tools the implant can be formed about one spinous process in such a manner that the implant stays positioned with respect to that spinous process (
It is to be understood that many of the other implants disclosed herein can be modified so that they receive a fluid in order to establish and maintain a desired distraction much in the manner as implant 350 receives a fluid.
Embodiment of
The implant 360 as shown in
Embodiments of
In this embodiment, the implant 380 is comprised of a plurality of interlocking leaves 382. Initially, a first leaf is positioned between opposed spinous processes 384, 386. Then subsequently, leafs 382 are interposed between the spinous processes until the desired distraction has been built up. The leaves are somewhat spring-like in order to absorb the shock and can somewhat conform to the spinous processes.
Embodiment of
The implant 390 of
Embodiment of
Implant 410 of
As shown in
Embodiment of
The embodiments of
In the embodiment of
The embodiment of
Embodiments of
The implant 550 is Z-shaped and includes a central body 552 and first and second arms 554, 556, extending in opposite directions therefrom. The central body 552 of the implant 550 includes first and second saddles 558 and 560. The first and second saddles 558 and 560 would receive upper and lower spinous processes 562, 568. The arms 554, 556 are accordingly located adjacent the distal end 566 (
Embodiment of
The second arm 590, projecting from second saddle 586, is located somewhat rearward of the distal end 600, and extends partially along the length of the central body 582. The second arm 590 projects at a compound angle from the central body 582. As can be seen in
In a preferred embodiment, the first and second arms 588, 590 have a length which is about the same as the width of the central body 582. Preferably, the length of each arm is about 10 mm and the width of the central body is about 10 mm. However, the bodies with the widths of 24 mm and greater are within the spirit and scope of the invention, along with first and second arms ranging from about 10 mm to greater than about 24 mm. Further, it is contemplated that the embodiment could include a central body having a width of about or greater than 24 mm with arms being at about 10 mm.
It is to be understood that the embodiment of
The embodiment of
The implant 610 of
Embodiment of
Implant 630 is also designed so that it can be inserted from one side of adjacent spinous processes. This insert 630 includes a central body 632 with the first and second arms 634, 636 extending on either side thereof. As can be seen in
For purposes of positioning the implant 630 between adjacent spinous processes, the plunger 638 is pulled outwardly as shown in FIG. 72. The central body 632 is then positioned between adjacent spinous processes and the plunger 638 is allowed to move to the position of
Plunger 638 can be spring biased to the position as shown in
Embodiments of
Other embodiments of the invention are shown in
Implant 700 includes first and second saddle 706, 708 which are used to receive and spread the load from the upper and lower spinous processes. The saddle 706 is defined by first and second arms 710 and 712. The second saddle 708 is defined by third and fourth arms 714 and 716. As can be seen in
First arm 710 is in addition designed to accommodate the shape of the vertebra. As can be seen in
The second arm 712 is small so that it is easy to insert between the spinous processes, yet still define the saddle 706. The fourth arm 716 is larger than the third arm 714, both of which are smaller than the first arm 710. The third and fourth arms are designed so that they define the saddle 706, guide the spinous processes relative to the implant 700 during movement of the spinal column, and yet are of a size which makes the implant easy to position between the spinous processes.
The procedure, by way of example only, for implanting the implant 700 can be to make an incision laterally between two spinous processes and then initially insert first arm 710 between the spinous processes. The implant and/or appropriate tools would be used to distract the spinous processes allowing the third leg 714 and the central body 702 to fit through the space between the spinous processes. The third leg 714 would then come to rest adjacent the lower spinous processes on the opposite side with the spinous processes resting in the first and second saddle 706, 708. The longer fourth leg 716 would then assist in the positioning of the implant 700.
The implant 760 as shown in
Embodiment of
Another embodiment of the invention is shown in
The threaded bore 820 in this embodiment slopes at approximately 45° angle and intersects the slot 806. With the second wing 824 in position, the set screw 822 when it is positioned in the threaded bore 820 can engage and hold the second wing 824 in position in the slot 806.
Turning to
As can be seen in
The implant 800 includes, as assembled, an upper saddle 844 and the lower saddle 846. The upper saddle 844 has an upper width identified by the dimension “UW”. The lower saddle 846 has a lower width identified by the dimension “LW”. In a preferred embodiment, the upper width is greater than the lower width. In other embodiments, the “UW” can be smaller than the “LW” depending on the anatomical requirements. The height between the upper and lower saddles 844, 846 is identified by the letter “h”. These dimensions are carried over into
For the above table, all dimensions are given in millimeters.
For purposes of surgical implantation of the implant 800 into a patient, the patient is preferably positioned on his side (arrow 841 points up from an operating table) and placed in a flexed (tucked) position in order to distract the upper and lower vertebrae.
In a preferred procedure, a small incision is made on the midline of the spinous processes. The spinous processes are spread apart or distracted with a spreader. The incision is spread downwardly toward the table, and the distracting unit 802 is preferably inserted upwardly between the spinous processes 840 and 842 in a manner that maintains the distraction of spinous processes. The distracting unit 802 is urged upwardly until the distracting or bulbous end 808 and the slot 806 are visible on the other wide of the spinous process. Once this is visible, the incision is spread upwardly away from the table and the retaining unit or second wing 824 is inserted into the slot 806 and the screw 822 is used to secure the second wing in position. After this had occurred, the incisions can be closed.
An alternative surgical approach requires that small incisions be made on either side of the space located between the spinous processes. The spinous processes are spread apart or distracted using a spreader placed through the upper incision. From the lower incision, the distracting unit 802 is preferably inserted upwardly between the spinous processes 840 and 842 in a manner that urges the spinous processes apart. The distracting unit 802 is urged upwardly until the distracting or bulbous end 808 and the slot 806 are visible through the second small incision in the patient's back. Once this is visible, the retaining unit or second wing 824 is inserted into the slot 806 and the screw 822 is used to secure the second wing in position. After this has occurred, the incisions can be closed.
The advantage of either of the above present surgical procedures is that a surgeon is able to observe the entire operation, where he can look directly down onto the spinous processes as opposed to having to view the procedure from positions which are to the right and to the left of the spinous processes. Generally, the incision is as small as possible and the surgeon is working in a bloody and slippery environment. Thus, an implant that can be positioned directly in front of a surgeon is easier to insert and assemble than an implant which requires the surgeon to shift from side to side. Accordingly, a top-down approach, as an approach along a position to anterior line is preferred so that all aspects of the implantation procedure are fully visible to the surgeon at all times. This aides in the efficient location of (i) the distracting unit between the spinous processes, (ii) the retaining unit in the distracting unit, and (iii) finally the set screw in the distracting unit.
a shows an alternative embodiment of the distracting unit 802a. This distracting unit 802a is similar to distracting unit 802 in
Embodiment of
Another embodiment of the invention is shown in
The end 908 of implant 900 is different in that it is more pointed, having sides 909 and 911 which are provided at about 45° angles (other angles, such as by way of example only, from about 30° to about 60° are within the spirit of the invention), with a small flat tip 913 so that the body 904 can be more easily urged between the spinous processes.
The distracting unit 902 further includes a tongue-shaped recess 919 which extends from the slot 906. Located in the tongue-shaped recess is a threaded bore 920.
As can be seen in
Embodiment of
Still a further embodiment of the invention is depicted in
Alternatively, the first wing can be secured to the central body with a press fit and detent arrangement as seen in
In yet another alternative embodiment, the first wing can be designed as shown in
Positioned at the other end of the central body 1002 is a guide 1010. In this particular embodiment, guide 1010 is essentially triangularly-shaped so as to be a pointed and arrow-shaped guide. Alternatively, guide 1010 could be in the shape of a cone with lateral truncated sides along the longitudinal axis 1008. Guide 1010 includes a recess 1012 having a threaded bore 1014. Recess 1012 is for receiving a second wing 1032 as will be described hereinbelow.
Additionally, it is also to be understood that the guide 1010 can be bulbous, cone-shaped, pointed, arrow-shaped, and the like, in order to assist in the insertion of the implant 1000 between adjacent spinous processes. It is advantageous that the insertion technique disturb as little of the bone and surrounding tissue or ligaments as possible in order to (1) reduce trauma to the site and facilitate early healing, and (2) not destabilize the normal anatomy. It is to be noted that with the present embodiment, there is no requirement to remove any of the bone of the spinous processes and depending on the anatomy of the patient, there may be no requirement to remove or sever ligaments and tissues immediately associated with the spinous processes.
The implant 1000 further includes a sleeve 1016 which fits around and is at least partially spaced from the central body 1002. As will be explained in greater detail below, while the implant may be comprised of a bio-compatible material such as titanium, the sleeve is comprised preferably of a super-elastic material which is by way of example only, a nickel titanium material (NiTi), which has properties which allow it to withstand repeated deflection without fatigue, while returning to its original shape. The sleeve could be made of other materials, such as for example titanium, but these materials do not have the advantages of a super-elastic material.
a is a cross-section through the implant 1000 depicting the central body 1002 and the sleeve 1016. As can be seen from the cross-section of
In this particular embodiment, the central body 1002 includes elongated grooves 1018, along axis 1008, which receives elongated spokes 1020 extending from the internal surface of the cylinder 1016.
In a preferred embodiment, both the cross-section of the central body and the sleeve have a major dimension along axis 1022 and a minor dimensional along axis 1024 (
Alternatively as can be seen in
In other embodiments, the sleeve can have minor and major dimensions as follows:
In one preferred embodiment, said sleeve has a cross-section with a major dimension and a minor dimension and said major dimension is greater than said minor dimension and less than about two times said minor dimension. In said embodiment, said guide has a cross-section which is adjacent to said sleeve with a guide major dimension about equal to said sleeve major dimension and a guide minor dimension about equal to said sleeve minor dimension. Further in said embodiment, said guide extends from said central body with a cross-section which reduces in size in a direction away from said central body.
In another preferred embodiment, said guide is cone-shaped with a base located adjacent to said sleeve. Further, said guide has a base cross-section about the same as the oval cross-section of said sleeve.
Thus, from the above, it is evident that preferably a major dimension of the sleeve correspond with a major dimension of the central body and a minor dimension of the sleeve corresponds with a minor dimension of the central body. Additionally, it is evident that the major dimension of the sleeve 1016 is substantially perpendicular to a major dimension of the first wing 1004 along longitudinal axis 1030 (
As indicated above, the preferred material for the sleeve 1016 is a super-elastic material and more preferably one comprised of an alloy of nickel and titanium. Such materials are available under the trademark Nitinol. Other super-elastic materials can be used as long as they are bio-compatible and have the same general characteristics of super-elastic materials. In this particular embodiment, a preferred super-elastic material is made up of the following composition of nickel, titanium, carbon, and other materials as follows:
In particular, this composition of materials is able to absorb about 8% recoverable strain. Of course, other materials which can absorb greater and less than 8% can come within the spirit and scope of the invention. This material can be repeatably deflected toward the central body and returned to about its original shape without fatigue. Preferably and additionally, this material can withstand the threshold stress with only a small amount of initial deforming strain and above the threshold stress exhibit substantial and about instantaneous deformation strain which is many times the small amount of initial deforming strain. Such a characteristic is demonstrated in
Preferably, the above super-elastic material is selected to allow deformation of up to about, by way of example only, 8%, at about 20 lbs. to 50 lbs. force applied between a spinous processes. This would cause a sleeve to deflect toward the central body absorbing a substantial amount of the force of the spinous processes in extension. Ideally, the sleeves are designed to absorb 20 lbs. to 100 lbs. before exhibiting the super-elastic effect (threshold stress level) described above. Further, it is possible, depending on the application of the sleeve and the anatomy of the spinal column and the pairs of spinous processes for a particular individual, that the sleeve can be designed for a preferable range of 20 lbs. to 500 lbs. of force before the threshold stress level is reached. Experimental results indicate that with spinous processes of an older individual, that at about 400 pounds force, the spinous process may fracture. Further, such experimental results also indicate that with at least 100 pounds force, the spinous process may experience some compression. Accordingly, ideally the super-elastic material is designed to deform or flex at less than 100 pounds force.
In a preferred embodiment, the wall thickness of the sleeve is about 1 mm or 40/1000 of an inch (0.040 in.). Preferably the sleeve is designed to experience a combined 1 mm deflection. The combined 1 mm deflection means that there is ½ mm of deflection at the top of the minor dimension and a ½ mm deflection at the bottom of the minor dimension. Both deflections are toward the central body.
In a particular embodiment where the sleeve is more circular in cross-section, with an outer dimension of 0.622 in. and a wall thickness of 0.034 in., a 20 lb. load causes a 0.005 in. deflection and a 60 lb. load causes a 0.020 in. deflection (approximately ½ mm). A 100 lb. load would cause a deflection of about 0.04 in. or approximately 1 mm.
Thus in summary, the above preferred super-elastic material means that the sleeve can be repeatedly deflected and returned to about its original shape without showing fatigue. The sleeve can withstand a threshold stress with a small amount of deforming strain and at about said threshold stress exhibit about substantially instantaneous deformation strain which is many times the small amount of the forming strain. In other words, such super-elastic qualities mean that the material experiences a plateau stress where the material supports a constant force (stress) over very large strain range as exhibited in FIG. 118.
It is to be understood that for this particular embodiment, bar stock of the super-elastic material is machined into the appropriate form and then heat treated to a final temperature to set the shape of the material by increasing the temperature of the material to 932° Fahrenheit and holding that temperature for five (5) minutes and then quickly quenching the sleeve in water. It is also to be understood that preferably the present nickel titanium super-elastic alloy is selected to have a transition temperature Af of about 59° Fahrenheit (15° C.). Generally for such devices the transition temperature can be between 15° C. to 65° C. (59° F. to 149° F.), and more preferably 10° C. to 40° C. (50° F. to 104° Preferably, the material is maintained in the body above the transition temperature in order to exhibit optimal elasticity qualities.
Alternatively, and preferably, the sleeve can be fabricated by wire Electrical Discharge Machining (EDM) rather than machined. Additionally, the sleeve can be finished using a shot blast technique in order to increase the surface strength and elasticity of the sleeve.
Top and side views of the second wing 1032 are shown in
An alternative configuration of the second wing 1032 is depicted in
With respect to the alternative second wing 1032 depicted in
Embodiment of
Implant 1050 of
Embodiment of
Implant 1060 is depicted in FIG. 98. This implant is similar to the implants 1000 of FIG. 92 and the implant 1050 of
Embodiment of
Embodiment of
Another embodiment of the invention can be seen in
As with implant 1000, implant 1100 includes a central body 1002 (
In this particular embodiment, the sleeve 1016 is preferably oval or elliptical in shape as can be seen in
It is to be understood that the sleeve in this embodiment has all the characteristics and advantages described hereinabove with respect to the above-referenced super-elastic sleeves.
The second wing as discussed above, can come in a variety of shapes in order to provide for variations in the anatomical form of the spinous processes. Such shapes are depicted in
Alternative embodiments of second wings, as shown in
It is to be understood that in this embodiment, if desired, the second wing may not have to be used, depending on the anatomy of the spinal column of the body, and this embodiment still has the significant advantages attributable to the guide 1010 and the functionality of the sleeve 1016.
Embodiment of
The implant 1120 as shown in
Embodiment of
An additional embodiment of the implant 1150 is shown in FIG. 111. Implant 1150 has features similar to those described with respect to
Implant 1150 includes a central body 1152 with a first wing 1154, where central body 1152 includes elongated groove 1156 which extends to the guide 1158. A screw 1160 is received in a threaded bore located in the elongated groove 1156.
The second wing 1162 includes a central body 1164 which is substantially perpendicular to the second wing 1162.
The central body 1164 includes a plurality of bores 1166 provided therein. These bores are formed adjacent to each other in order to define a plurality of scallops, each scallop capable of retaining bolt 1160 therein. As can be seen in
It is to be understood that preferably during the surgical process, the central body 1152 is urged between spinous processes. After this has occurred, the second wing is guided by the other sides of the spinous processes from a path which causes the plane of the second wing to move substantially parallel to the plane of the first wing until the central body 1164 associated with the second wing 1162 is received in the groove of 1156 of the central body 1152 associated with the first wing 1154. After this has occurred, the bolt 1160 is positioned through aligned bores associated with the second wing 1162 and the central body 1152 in order to secure the second wing to the central body.
While embodiment 1150 does not depict a sleeve such as sleeve 1016, such a sleeve 1016 could be placed over body 1152 and be within the spirit of the invention.
Embodiments of
Implant 1200 of the invention is depicted in
As can be seen in
As can be seen in
As can be seen in
The sleeve 1204 is received over the central body 1210 of the implant 1200 and can rotate thereon about the longitudinal axis 1214 of the central body 1210. When this particular embodiment is assembled, the grooves 1222 have received therein the pins 1212 that extend from the first wing 1202. Accordingly, the pins inserted in the grooves 1222 assist in the positioning of the sleeve relative to the remainder of the implant 1200. With the pins 1212 received in the curved grooves 1222, the pins limit the extent of the rotation of the sleeve about the central body and relative to the first wing.
As can be seen in
It is to be understood that the sleeve can be comprised of biologically acceptable material such as titanium. Additionally, it can be comprised of super-elastic material such as an alloy of nickel and titanium, much as described hereinabove with respect to other embodiments.
The great advantage of the use of the sleeve 1204 as depicted in the embodiment of
Embodiments of
In
An alternative embodiment is shown in FIG. 126. In this embodiment, the sleeve 1204 is essentially a thin wall cylinder which is spaced from the central body 1210. Sleeve 1204 is free to move relative to central body 1210. Sleeve 1204 can rotate relative to central body 1210. In addition, sleeve 1204 can take a somewhat cocked or skewed position relative to central body 1210.
A further embodiment, it is shown in FIG. 127. This embodiment is somewhat similar to the embodiment shown in
Embodiments of
The embodiments of
An alternative embodiment of the invention is shown in FIG. 128. This embodiment is most favorably used with the embodiment of
Embodiments of
Embodiment 2000 of the supplemental spine fixation device of the invention is depicted in FIG. 130. This embodiment 2000 includes a hub 2002 to which is adjustably secured a first hook member 2004 and a second hook member 2006. First hook member 2004 includes a hook 2008 which is more fully described hereinbelow, and a shaft 2010 extending therefrom. Similarly, second hook member 2006 includes a hook 2012 and a shaft 2014 extending therefrom. As described more fully hereinbelow, hook 2008 is swivelly or pivotably mounted to shaft 2010. It is to be understood that the description and functionality of first hook member 2004 applies equally well to that of second hook member 2006. The shaft 2010 in this embodiment includes a rack 2016 which can mate selectively with rack 2018 of hook member 2006. These two racks 2016 and 2018 interlock in a multitude of positions in order to adjust the position of first and second hook members 2004 and 2006, relative to each other and relative to the hub 2002. The shafts 2010 and 2014 are positioned through bore 2020 in the hub 2002, selectively interlocked together and are then lockingly positioned using a locking mechanism such as the screw 2022. As is described more fully below, the hooks 2008 and 2012 are designed and shaped to fit around spinous processes. Further, the hooks 2008 and 2012 are swivelly mounted to the shafts 2010 and 2014 in order to accommodate the various sizes, shapes, and positions of spinous processes of the human population.
Movably mounted to the hub 2002 is a shaft 2024 (
Movably mounted on the shaft 2024 is a spacer or sleeve 2032. Spacer 2032 includes a central bore 2034 through which the shaft 2024 extends. The spacer 2032 is thus able to rotate about the shaft 2034. The spacer 2032 is cylindrical and in this particular embodiment is oval or elliptical in shape. In addition, the base of the guide 2026 is also somewhat elliptical in shape in order to make a smooth transition between the guide 2026 and the spacer 2032 as the guide and spacer are inserted between the spinous processes in order to distract apart the spinous processes during the insertion process. As the spacer 2032 is rotatable on the shaft 2024, and as the spacer 2032 is elliptically shaped, it can be inserted in one position and then as the entire embodiment 2000 is positioned to the final securing position, the spacer 2032 can rotate about the shaft 2024 to accommodate the shape of the space between the spinous processes as the spacer is moved from a posterior position to an anterior position.
The spacer 2032 can include a second alternative spacer embodiment 2036 (
Before proceeding to more specific details of this embodiment 2000, it is to be understood that the same features of the spacer, the shaft, and the lead-in guide, which are found in other embodiments such as by way of example only, the embodiments of
The shape of the guide 2026 and the spacer 2032 is such that for purposes of insertion between spinous processes, the spinous processes to do not need to be altered or cut away in any manner in order to accommodate this implant. Further, the associated ligaments do not need to be cut away and there would be very little or no damage to the other adjacent and surrounding tissues. Similarly, the hook members 2004, 2006, are appropriately shaped and also pivotable so that alteration of the spinous process is not required.
Returning to
Additionally with respect to the hook 2008, as can be seen in
The embodiment 2000 can be implanted in a number of methods, preferably, once a spine fixation device is implanted between the vertebral bodies. In this particular embodiment, through a small incision the hub, spacer, and guide are inserted with the guide and spacer inserted between the spinous processes. Once this is accomplished, a first hook member and then a second hook member is secured about the respective spinous processes. The shafts of the hook members are then inserted through the bore of the hub 2002 until the spinous processes are brought tight against the spacer. The hooks are appropriately positioned on the spinous processes as depicted in FIG. 136. After this has been accomplished, the securing mechanism 2022 is tightened in order to lock the hooks in place and to secure the spinous processes in a rigid manner relative to each other and relative to the distracting spacer 2032. Alternatively, the spinous ligaments can hold the spinous processes tightly against the spacer and the hooks can be moved and locked into tight contact with the spinous processes.
The above procedure can have variations. By way of example only, the hooks can be inserted first through the incision and then the guide, spacer and hub can be inserted. Once this is accomplished the hooks can be mated to the hub.
In another embodiment and method not depicted, the physician can insert the shaft 2024 on which the spacer 2032 is mounted into the slot 2030 of the hub 2002 and can close off the slot with a securing screw in order to retain shaft 2024. This process is in contrast to the shaft being secured in the slot during the manufacturing process. The securing screw would be similar to securing screw 2022 and would be placed in a bore made at the top of slot 2030. The physician could accordingly insert the tab 2028 of the shaft 2024 in the slot 2030, and then secure the tab in place with the securing screw.
Still an alternative method would be for the device 2000 to be inserted through a larger incision, with device 2000 fully assembled. Once inserted the screw 2022 could be loosened so that the hook members could be positioned around spinous processes at about the same time that the guide and spacer are inserted between the spinous processes. Once this is accomplished, the spinous processes could be drawn down tightly around the spacer, with the hooks tightly around the spinous processes and secured firmly into the hub 2002 with the securing screw 2022.
In all of the above procedures, it is advantageous that the device 2000 can address the adjacent spinous processes from one side of the spinous processes and not require exposure of both sides of the spinous processes and thus the procedure is less traumatic to the surgical site.
Still an alternate insertion method would be to insert the device fully assembled with the hook rotated at 90° to the final position shown in FIG. 130. Once the hooks are positioned adjacent to the spinous processes, the hooks could be rotated to the position shown in FIG. 130. Then simultaneously the guide and spacer could be inserted between the spinous processes, as the hooks are positioned about the spinous processes. The hooks are then drawn together, causing the spinous processes to be held firmly against the spacer. Once this is accomplished the screw 2022 can be securely fastened to the hub 2002.
With respect to the embodiment of
Embodiments of
Another embodiment 2100 of the invention can be seen in
All the other features, dimensions, characteristics, materials, methods of insertion, and methods of operation of the embodiment shown in
Embodiments of
Another embodiment of the invention is depicted in
In this particular embodiment, the hub has rigidly affixed thereto shaft 2224. Here shaft 2224 does not slide in a slot as happens with respect to the prior two embodiments 200 and 2100. Shaft 2224 can be screwed into hub 2202 or integrally formed with hub 2202. Additionally, the guide 2226 can be integrally formed with the shaft 2224 or in other manners fastened to the shaft 2224 as with a thread mechanism. In this particular embodiment, as can be seen in
In this particular embodiment the shaft 2210 and 2214 are similar to those depicted with respect to the embodiment 2000. In other words each has a rack or teeth which mate with the other. Shafts 2210 and 2214 are inserted through the semi-circular bore 2220 of the hub 2202, and then the cap 2203 is mated on top of the hub 2202. The cap includes a semi-circular bore 2207 which is positioned over the upper shaft 2210. Both bores 2207 and 2220 include ribs, teeth, or threads that run along the length of the bores. These ribs, teeth, or threads are urged against the shafts in order to assist in locking the shafts in place. Alternatively, the ribs, teeth, or threads of the bores can be across the length of the bores. The shafts 2210 and 2214 can have teeth, ribs, or threads that are positioned all about the shafts so that the shafts can lock to each other, and so that the teeth, racks or threads on the bores can lock the shafts in place. Once the cap 2203 is positioned over the hub 2202, the screw 2222 is positioned in the bore of the hub 2202 in order to lockingly position the first and second hook members 2204 and 2206 relative to the hub. In particular, with respect to embodiment 2200, the degrees of freedom are attributable to (1) the slot 2238 in the spacer 2236, (2) the shafts 2210 and 2224 which can be positioned relative to each other to position the hooks 2204 and 2206 relative to the hub, and accordingly relative to the spacer, and (3) the ability of the hooks 2204 and 2206 to swivel or pivot.
As indicated above, all the other features, materials, aspects, dimensions, and so forth, of the embodiment 2200 are similar to and can be specified according to the other embodiments 2000 and 2100.
A preferred method of insertion of this embodiment 2200 into a patient is as follows. Initially through a small incision the guide, spacer and hub are inserted so that the guide is positioned between and distracts apart adjacent spinous processes, allowing the spacer to come between the spinous processes. The spacer and guide can be moved in a posterior to anterior direction, and the spacer is able to rotate and translate in order to accommodate such movement. After this is accomplished, the first and second hook members are positioned through the incision and around upper and lower spinous processes. Once that is accomplished, the spinous processes are urged towards each other and about the spacer, if this is not already the condition caused by the insertion of the spacer in order to distract the spinous processes. Then the racks of the shafts are meshed together, and the cap is placed upon the hub in order to secure the hooks firmly to the hub and thus to secure the spinous processes rigidly in position about the spinous processes.
Embodiments of
A further embodiment 2300 of the invention is depicted in FIG. 144. In
Once this is accomplished, a screw 2322 is received in the threaded bore 2323 in order to lockingly position the mated shafts 2310, 2324. As this embodiment has an open bore 2320 and no cap, mating of the shafts 2310, 2314 to the open bore 2320 of the hub 2302 can be done quickly and efficiently.
a, 146b, and 146c depict a hub arrangement 2502 of an embodiment 2500 of the invention. In this embodiment, hub 2502 has two components 2511 and 2513. Component 2511 includes an open bore 2520 which is specially shaped in order to register shafts 2510, 2514 of the first and second hook members. In this particular embodiment, shaft 2510 is semi-circular in cross-section while shaft 2514 is triangular-shaped in cross-section. The triangular shape of shaft 2514 mates with the corner 2525 of the open bore 2520. The term open bore refers to 2520 and also to bores 2320 and 2420 in
Other features, functions, dimensions, and so forth of this embodiment are similar to the other embodiments as, for example, the embodiment of FIG. 141.
For purposes of insertion, one insertion methodology can be to insert the second hub portion 2513 with the guide 2526 into the position between the spinous processes. After this is accomplished, the hook members can be positioned about the spinous processes and locked into the first hub portion 2511. Then the first hub portion 2511 could be slid or snapped into engagement with the second hub portion 2513. Following that, the cam 2527 can be turned in order to secure the first hub portion 2511 to the second hub portion 2513.
Embodiments of
a and 147b depict another embodiment 2600 of the invention. This embodiment 2600 includes a hub 2602 and a rack and pinion arrangement. The rack and pinion arrangement includes first and second pinions 2660 and 2662. These pinions engage shafts 2610 and 2614 respectively. In these embodiments, these shafts 2610 and 2614 have rounded ends to which the hook is secured as depicted in, for example, FIG. 131. For simplicity, these hooks have been left off of
Another embodiment of the invention, embodiment 2700 is depicted in
In this embodiment 2700, a shaft 2724 extends therefrom in order to receive a spacer and a guide in the same manner that, for example, the embodiment of
a and 149b depict embodiment 2800 of the invention. Embodiment 2800 includes a hub 2802 which houses a turnbuckle arrangement 2880 which is actuated by a worm gear drive 2882. Turnbuckle 2880 receives the threaded shaft 2810 and 2814 of the hook members 2804, 2806 respectively. As with the past embodiments, the actual hooks of these hook members are not depicted in order to simplify the drawing. By turning the turnbuckle 2880, the threaded shafts 2810, 2814 are either drawn into or urged out of the turnbuckle. Thus, by turning the worm gear 2882 with a tool placed in the slot 2884, the turnbuckle turns, causing the hook members to extend out of or be urged into the hub 2802.
Extending from the hub is a shaft 2824 with a threaded end 2825. As with the other embodiments, such as the embodiment in
The preferred method of inserting this embodiment is to insert the embodiment as a whole, placing the guide and spacer between the spinous processes. The hooks would be initially rotated 90° from their final orientation. Once inserted adjacent to the spinous processes, the hooks would be rotated by 90° and the spacer and the hooks would be further urged into contact with the spinous processes. Once this has occurred, the turnbuckle would be turned in order to tighten the hooks about the spinous processes.
Embodiment of
Another embodiment 2900 of the invention is depicted in FIG. 150. This embodiment is similar to several of the other embodiments and, in particular, to the embodiment shown in FIG. 130. Accordingly, similar elements will have similar least significant numbers. By way of example, the hub is designated 2902. In this particular embodiment, the hub is comprised of two components, the first hub component 2911 and the second hub component 2913. This is somewhat similar to the hub components shown in
The two hook members are secured to the first hub component 2911 in much the same manner as the hook members of
The hub 2902 is divided into first hub component 2911 and second hub component 2913 in order to add flexibility in the positioning of the guide and spacer fitted to second hub component 2913 with respect to the first and second hook members 2904 and 2906 which are secured to the first hub component 2911. Thus, should the anatomy of the spine and in particular the spinous process require, the spacer 2936 and the guide 2926 can be moved relative to the first and second hook members 2904 and 2906 by selectively positioning the second hub component 2913 relative to the first hub component 2911. This can be accomplished by aligning the bore 2980 over one of the plurality of bores 2982 positioned through the first hub component 2911. After this is accomplished, a threaded screw 2984 can be inserted through smooth bore 2980 and engage one of the threaded bores 2982 in order to secure the second hub component 2913 to the first hub component 2911, thus positioning the sleeve or spacer 2936 in a desired location relative to the first and second hook members.
Embodiment of
Yet another embodiment of the invention 3000 is depicted in FIG. 151. Embodiment 3000 is meant for a double level spinous process fixation. That is to say that three spinous processes are engaged and rigidly fixed together. Such a situation would occur, for example, when there is a double level primary fusion. That is, three adjacent vertebral bodies are all fused together. In such a situation a double level supplemental spine fixation device 3000 would be used. This embodiment 3000 could be designed using any of the other embodiments depicted heretofore. Embodiment 3000 is in this particular instance modeled after the embodiment 2000 shown in FIG. 141. Accordingly, the elements that are similar to
A preferred method of insertion of the device relative to three spinous processes would be to insert the guides and spacer between the first and second, and then the second and third spinous processes in order to distract apart the first and second spinous processes and also to distract apart the second and third spinous processes. After this is accomplished, the first hook member would be placed about the first spinous process and the second hook member would be placed about the third spinous process. The shafts of the hook members would be inserted in the respective hubs 3002. In this situation, the shafts are both up-facing racks or teeth as shown in
Embodiments of
An alternate embodiment 3100 of the supplemental spine fixation device of the invention is depicted in FIG. 152. This embodiment 3100 includes a hub 3102 to which is adjustably secured a first hook member 3104 and second hook member 3106. First hook member 3104 includes a hook 3108 which is more fully described herein below, and a shaft 3110 extending therefrom. Similarly, second hook member 3106 includes a second hook 3112 and shaft 3114 extending therefrom. Shaft 3110 and 3114 are assembled together in a manner as will be described hereinbelow.
As described more fully below, hook 3108 is swivelly or pivotally mounted to shaft 3110. It is to be understood that the description and functionality of the first hook member 3108 applies equally well to that of the second hook member 3106. The shaft 3110, onto which hook 3108 is mounted in this embodiment, is received inside of the shaft 3114. Shaft 3110 can extend from shaft 3114 in a telescoping or sliding manner relative to shaft 3114 or alternatively shaft 3110 can be threaded into shaft 3114 and the rotation of shaft 3110 would allow it to extend from or be retracted into shaft 3114. Shafts 3110 and 3114 are received in a bore 3120 of the hub 3102. In this particular embodiment shaft 3114 can be press fit or otherwise secured in bore 3120. Shaft 3110 is thus free to move relative to the hub 3102 and the shaft 3114, until the hub 3102 is assembled, locking shaft 3110 into position in this particular embodiment. This locking arrangement will be discussed more fully below.
The hooks 3108 and 3112 are designed and shaped to fit to spinous processes. Further the hooks 3108 and 3112 are swivelly mounted to the shafts 3110 and 3114, respectively, in order to accommodate the various sizes, shapes, and positions of the spinous processes of the human population.
Swivelly mounted to the hub 3102 is a shaft 3124, and extending from the shaft 3124 is an inner-spinous process guide, or lead-in nose, or tissue expander 3126. The shaft 3124 at its proximal end includes a ball 3125, which is received in socket 3127 which is formed by the two portions of the hub 3102. At this ball and socket mechanism, the shaft 3124 is pivotable with respect to the hub 3102. With this arrangement, the tissue expand 3126 has some freedom of movement with respect to the hub 3102. The other end of the shaft 3124 (
In this particular embodiment, a sleeve or spacer 3132 is pivotally mounted on the shaft 3124 along with the guide 3126. In other embodiments as described below, the sleeve spacer 3132 is free to rotate relative to the guide 3126. Spacer 3132 includes a central bore 3134 in which the shaft 3124 extends. The spacer 3132 as well as guide 3136 are thus able to pivot and rotate about the shaft 3124. The spacer 3132 in this embodiment is cylindrical and in this particular embodiment is oval or elliptical in shape. For such shapes, the spacer can have minor diameters of 6 mm, 8 mm, 10 mm, and 12 mm. Smaller and larger diameters are within the spirit and scope of the invention. In addition, the spacer can be egg shaped as more fully described below. Further, the base of the guide 3126 is somewhat elliptical in shape in order to make a smooth transition between the guide 3126 and the spacer 3132 as the guide and spacer are inserted between the spinous processes in order to distract apart the spinous processes. As the guide 3126 and the spacer 3132 are rotatable and pivotable on the shaft 3124, and as the spacer 3132 is elliptically shaped, it can be inserted into one position and then as the entire embodiment 3100 is positioned to the final securing position, the spacer 3132 can be rotated about the shaft 3124 and pivoted relative thereto in order to accommodate the shape of the space between the spinous processes as the spacer is moved generally from a posturing position to an anterior position closer to the spine.
As can be seen in FIG. 152 and also in
The spacer 3132 can include an alternate embodiment spacer 3136 as shown in FIG. 160. This spacer 3136 can be substituted for spacer 3132. Spacer 3136 includes an egg-shape cross-section with a central bore 3138 upon which the shaft 3124 can be inserted so as to allow the spacer 3136 to rotate about the shaft 3124. As can be seen in
In another arrangement, the embodiment as shown in
Before proceeding to more specific details of this embodiment 3100, it is to be understood that the same features of the spacer, the shaft, and the lead-in guide, which are found on other embodiments such as by way of example only the embodiments of
The shape of the guide 3126 and the spacer 3132 or the spacer 3136 is such that for purposes of insertion between the spinous processes, the spinous processes do not need to be altered or cut away in any manner in order to accommodate this implant. Further, the associated ligaments do not need to be cut away and there would be very little or no damage to the other adjacent and surrounding tissues. Similarly, the hook members 3104 and 3106 are appropriately shaped, as described below and are also pivotable so that alterations of the spinous processes is not required.
Referring to
Again with respect to the lead in nose 3150 in a preferred embodiment, this nose is essentially shaped in the form of a pyramid with all of its sides rounded and curved. This allows the nose 3150 to easily be inserted over and past the spinous process, until the concave recess 3152 rests over the spinous process with the hook element 3154 caught by the spinous process in order to retain the hook 3108 in place.
As can be seen in
a and 158b depict alternative embodiments of a hub arrangement. This alternative hub 3160 includes lower hub portion 3162 and upper hub portion 3164. In this embodiment, the ball end of the shaft 3124 is captured in the lower half of the hub 3160. The upper half 3164 of the hub is mated to the lower half with a screw 3166 which is placed through a leaf spring 3168 carried with the screw 3166. The leaf spring bias the upper hub portion 3164 towards the lower hub portion 3162 in order to trap and capture the shaft 3114. Once this is accomplished, the screw 3166 is tightened in order to complete the assembly.
Embodiment 3100 can be implanted in a number of methods in accordance with the teachings for the implantation of the embodiment 2000. Preferably this would occur once a spine fixation devices is implanted between the vertibral bodies in order to fuse together adjacent vertribral bodies.
In one preferred embodiment of implantation, in particular with respect to the embodiment of
It is also to be understood that in other situations the fully assembled embodiment can be inserted in place relative to the adjacent spinous processes. Once this accomplished, a screw such as the screw in
In all of the above procedures, and also in the procedures with respect to prior embodiment 2000, it is advantageous that the embodiments can address the adjacent spinous processes from one side of the spinous processes and do not require exposure to both sides of the spinous processes. Thus, this procedure is less traumatic to the surgical site.
From the above, it can be seen that the present invention can be used to successfully provide for supplemental spine fixation as an adjunct to primary spine fixation. Also spinous fixation without vertebral body fusion could be accomplished if that is desired. The embodiments of the invention provides the correct amount of rigidity between spinous processes with a minimally invasive device and methodology. The present invention does not require that structures associated with the spinous process, including bone and ligament, be altered for purposes of implantation, thus the device and method do not add to the trauma associated with spinal fusion.
Other features, aspects and objects of the invention can be obtained from a review of the figures and the claims.
It is to be understood that other embodiments of the invention can be developed and fall within the spirit and scope of the invention and claims.
This U.S. Patent Application claims priority from U.S. Provisional Patent Application, 60/219,985, filed Jul. 21, 2000, and is a continuation-in-part of U.S. patent application Ser. No. 09/579,039, filed on May 26, 2000 and entitled SUPPLEMENTAL SPINE FIXATION DEVICE AND METHOD, now U.S. Pat. No. 6,451,019 issued Sep. 17, 2002 which is a continuation-in-part of U.S. patent application Ser. No. 09/473,173 filed on Dec. 28, 1999 and entitled SPINE DISTRACTION IMPLANT, now U.S. Pat. No. 6,235,030 issued May 22, 2001 which is a continuation of U.S. patent application Ser. No. 09/179,570 filed on Oct. 27, 1998 and entitled SPINE DISTRACTION IMPLANT, now U.S. Pat. No. 6,048,342 issued Apr. 11, 2000, which is a continuation-in-part of U.S. patent application Ser. No. 09/175,645 filed on Oct. 20, 1998 and entitled SPINE DISTRACTION IMPLANT, now U.S. Pat. No. 6,068,630 issued May 30, 2000, which is a continuation-in-part of U.S. patent application Ser. No. 08/958,281 filed on Oct. 27, 1997 and entitled SPINE DISTRACTION IMPLANT AND METHOD, now U.S. Pat. No. 5,860,977 issued Jan. 19 1999, which is a continuation-in-part of U.S. patent application Ser. No. 08/778,093 filed Jan. 2, 1997 entitled SPINE DISTRACTION IMPLANT AND METHOD, now U.S. Pat. No. 5,836,948 issued Nov. 17, 1998. All of the above application and patents are incorporated herein by reference.
Number | Name | Date | Kind |
---|---|---|---|
2677369 | Knowles | May 1954 | A |
3426364 | Lumb | Feb 1969 | A |
3648691 | Lumb et al. | Mar 1972 | A |
3867728 | Stubstad et al. | Feb 1975 | A |
3875595 | Froning | Apr 1975 | A |
4309777 | Patil | Jan 1982 | A |
4349921 | Kuntz | Sep 1982 | A |
4369769 | Edwards | Jan 1983 | A |
4401112 | Rezaian | Aug 1983 | A |
4479491 | Martin | Oct 1984 | A |
4501269 | Bagby | Feb 1985 | A |
4553273 | Wu | Nov 1985 | A |
4554914 | Kapp et al. | Nov 1985 | A |
4599084 | Nashef | Jul 1986 | A |
4599086 | Doty | Jul 1986 | A |
4604995 | Stephens et al. | Aug 1986 | A |
4611582 | Duff | Sep 1986 | A |
4636217 | Ogilvie et al. | Jan 1987 | A |
4643178 | Nastari et al. | Feb 1987 | A |
4657550 | Daher | Apr 1987 | A |
4685447 | Iversen et al. | Aug 1987 | A |
4696290 | Steffee | Sep 1987 | A |
4714469 | Kenna | Dec 1987 | A |
4743256 | Brantigan | May 1988 | A |
4772287 | Ray et al. | Sep 1988 | A |
4790303 | Steffee | Dec 1988 | A |
4834757 | Brantigan | May 1989 | A |
4878915 | Brantigan | Nov 1989 | A |
4904260 | Ray et al. | Feb 1990 | A |
4904261 | Dove et al. | Feb 1990 | A |
4913134 | Luque | Apr 1990 | A |
4932975 | Main et al. | Jun 1990 | A |
4936848 | Bagby | Jun 1990 | A |
4946378 | Hirayama et al. | Aug 1990 | A |
4961740 | Ray et al. | Oct 1990 | A |
4969888 | Scholten et al. | Nov 1990 | A |
5011484 | Breard | Apr 1991 | A |
5015247 | Michelson | May 1991 | A |
5026373 | Ray et al. | Jun 1991 | A |
5035716 | Downey | Jul 1991 | A |
5047055 | Bao et al. | Sep 1991 | A |
5055104 | Ray | Oct 1991 | A |
5059193 | Kuslich | Oct 1991 | A |
5059194 | Michelson | Oct 1991 | A |
5084049 | Asher et al. | Jan 1992 | A |
5092866 | Breard et al. | Mar 1992 | A |
5123926 | Pisharodi | Jun 1992 | A |
5167662 | Hayes et al. | Dec 1992 | A |
5180381 | Aust et al. | Jan 1993 | A |
5192327 | Brantigan | Mar 1993 | A |
5258031 | Salib et al. | Nov 1993 | A |
5263953 | Bagby | Nov 1993 | A |
5290312 | Kojimoto et al. | Mar 1994 | A |
5304178 | Stahurski | Apr 1994 | A |
5306309 | Wagner et al. | Apr 1994 | A |
5352225 | Yuan et al. | Oct 1994 | A |
5387213 | Breard et al. | Feb 1995 | A |
5390683 | Pisharodi | Feb 1995 | A |
5395372 | Holt et al. | Mar 1995 | A |
5415661 | Holmes | May 1995 | A |
5443514 | Steffee | Aug 1995 | A |
5454812 | Lin | Oct 1995 | A |
5458638 | Kuslich et al. | Oct 1995 | A |
5458641 | Ramirez Jimenez | Oct 1995 | A |
5458643 | Oka et al. | Oct 1995 | A |
5470333 | Ray | Nov 1995 | A |
5496318 | Howland et al. | Mar 1996 | A |
5505732 | Michelson | Apr 1996 | A |
5514180 | Heggeness et al. | May 1996 | A |
5527312 | Ray | Jun 1996 | A |
5534028 | Bao et al. | Jul 1996 | A |
5534029 | Shima | Jul 1996 | A |
5540689 | Sanders et al. | Jul 1996 | A |
5549679 | Kuslich | Aug 1996 | A |
5554191 | Lahille et al. | Sep 1996 | A |
5562736 | Ray et al. | Oct 1996 | A |
5593409 | Michelson | Jan 1997 | A |
5609634 | Voydeville | Mar 1997 | A |
5645597 | Krapiva | Jul 1997 | A |
5645599 | Samani | Jul 1997 | A |
5653761 | Pisharodi | Aug 1997 | A |
5674295 | Ray et al. | Oct 1997 | A |
5674296 | Bryan et al. | Oct 1997 | A |
5676702 | Ratron | Oct 1997 | A |
5702455 | Saggar | Dec 1997 | A |
5725582 | Bevan et al. | Mar 1998 | A |
5766252 | Henry et al. | Jun 1998 | A |
5824098 | Stein | Oct 1998 | A |
5865846 | Bryan et al. | Feb 1999 | A |
5885299 | Winslow | Mar 1999 | A |
5888224 | Beckers et al. | Mar 1999 | A |
5888226 | Rogozinski | Mar 1999 | A |
5976186 | Bao et al. | Nov 1999 | A |
6001130 | Bryan et al. | Dec 1999 | A |
6022376 | Assell et al. | Feb 2000 | A |
6048342 | Zucherman et al. | Apr 2000 | A |
6068630 | Zucherman et al. | May 2000 | A |
6113639 | Ray et al. | Sep 2000 | A |
6156067 | Bryan et al. | Dec 2000 | A |
6190414 | Young et al. | Feb 2001 | B1 |
6234705 | Troxel | May 2001 | B1 |
6368351 | Glenn et al. | Apr 2002 | B1 |
6458131 | Ray | Oct 2002 | B1 |
6582437 | Dorchak et al. | Jun 2003 | B2 |
6755841 | Fraser et al. | Jun 2004 | B2 |
20010012938 | Zucherman et al. | Aug 2001 | A1 |
Number | Date | Country |
---|---|---|
2015507 | Jan 1991 | CA |
2821 678 | Nov 1979 | DE |
31 13 142 | Jan 1982 | DE |
140790 | May 1985 | EP |
146347 | Jun 1985 | EP |
322334 | Jun 1989 | EP |
0677277 | Oct 1995 | EP |
0767636 | Apr 1997 | EP |
113268 | Oct 2001 | EP |
2 681 525 | Mar 1993 | FR |
2 705 227 | Nov 1994 | FR |
2707864 | Jan 1995 | FR |
2717675 | Sep 1995 | FR |
2 722 088 | Jan 1996 | FR |
2722980 | Feb 1996 | FR |
2 724 554 | Mar 1996 | FR |
2780269 | Dec 1999 | FR |
2782911 | Mar 2000 | FR |
2806614 | Sep 2001 | FR |
2806616 | Sep 2001 | FR |
780652 | Aug 1957 | GB |
1484348 | Jun 1989 | SU |
WO 9000037 | Jan 1990 | WO |
WO 9116018 | Oct 1991 | WO |
WO 9421185 | Sep 1994 | WO |
WO 9426192 | Nov 1994 | WO |
WO 9848717 | Nov 1998 | WO |
WO 9926562 | Jun 1999 | WO |
WO 9940866 | Aug 1999 | WO |
WO 9942051 | Aug 1999 | WO |
WO 9959669 | Nov 1999 | WO |
WO 0004851 | Feb 2000 | WO |
WO 0013619 | Mar 2000 | WO |
WO 0013620 | Mar 2000 | WO |
WO 0128442 | Apr 2001 | WO |
Number | Date | Country | |
---|---|---|---|
20020029039 A1 | Mar 2002 | US |
Number | Date | Country | |
---|---|---|---|
60219985 | Jul 2000 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 09179570 | Oct 1998 | US |
Child | 09473173 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 09579039 | May 2000 | US |
Child | 09842819 | US | |
Parent | 09473173 | Dec 1999 | US |
Child | 09579039 | US | |
Parent | 09175645 | Oct 1998 | US |
Child | 09179570 | US | |
Parent | 08958281 | Oct 1997 | US |
Child | 09175645 | US | |
Parent | 08778093 | Jan 1997 | US |
Child | 08958281 | US |