Suppressing HF cable oscillations during dynamic measurements of cells and batteries

Information

  • Patent Grant
  • 9851411
  • Patent Number
    9,851,411
  • Date Filed
    Tuesday, March 12, 2013
    11 years ago
  • Date Issued
    Tuesday, December 26, 2017
    7 years ago
  • Inventors
  • Examiners
    • Pelton; Nathaniel
    • Bui; Dung V
    Agents
    • Westman, Champlin & Koehler, P.A.
Abstract
Kelvin (4-wire) connecting cables are routinely used when performing dynamic measurements (i.e., measurements with time-varying signals) on electrochemical cells and batteries. Current-carrying and voltage-sensing conductor pairs within such cables comprise distributed-parameter two-wire transmission lines which may extend several meters in length. As with all such transmission lines, internally reflected waves can oscillate back and forth at high frequency (hf) whenever the lines are not terminated in their characteristic impedances. Such hf reflected waves, by interacting with measuring circuitry, can seriously degrade low-frequency measurement accuracy. Apparatus is disclosed herein that suppresses hf reflected waves oscillating on Kelvin connecting cables during dynamic measurements of cells and batteries.
Description
BACKGROUND OF THE INVENTION

Electrical parameters measured with time-varying signals are referred to as dynamic parameters. The present invention relates to measuring dynamic parameters of electrochemical cells and batteries through Kelvin (4-wire) connecting cables. More specifically, it relates to suppressing high-frequency (hf) waves oscillating back and forth on a Kelvin cable's current-carrying and/or voltage-sensing conductors.


Measuring automotive and standby cell/battery parameters with time-varying signals (i.e., measuring dynamic parameters) are now commonly accepted maintenance and diagnostic procedures. (See, e.g., U.S. Pat. Nos. 5,140,269, 6,262,563, 6,534,993, and 6,623,314). Because of the very small impedances of such cells/batteries, Kelvin (4-point) connections are routinely employed to reduce the influence of the contact and lead-wire resistances. Kelvin connections couple to each cell/battery terminal at two separate contact points—one for current and one for voltage. Apparatus for measuring a two-terminal cell/battery by means of Kelvin connections therefore requires a four-wire interconnecting cable.


When using Kelvin cables with time-varying signals, distributed mutual-inductance between current-carrying and voltage-sensing conductors has been a problem. As disclosed in U.S. Pat. Nos. 7,106,070 and 7,425,833, mutual-inductance can be reduced by inserting a special cable section in tandem with the original Kelvin cable. This special section transposes conductors thereby introducing a negative mutual-inductance section to cancel the positive mutual-inductance of the original Kelvin cable.


However, even after canceling a cable's mutual-inductance, a significant problem remains. The current-carrying conductors and the voltage-sensing conductors comprise two twisted-pair distributed-parameter transmission lines—not unlike those found in Category-5 Ethernet cables. These lines may extend over several meters in length. As with all distributed-parameter transmission lines, internal wave reflections can occur unless the lines are terminated in their characteristic impedances—a situation which virtually never occurs in practice. Such hf waves, oscillating back and forth, can interact with measuring circuitry to seriously degrade the accuracy of low-frequency dynamic measurements performed with circuitry connected through the Kelvin cables. Ironically, the very technique for reducing mutual-inductance described above introduces discontinuities that can actually contribute to such oscillations. Solving this previously-unrecognized wave-oscillation problem is the purpose of the present invention.


Consider FIG. 1. FIG. 1 depicts prior-art measuring circuitry 10 connected to cell/battery 20 by means of four-wire cable 30, Y-junction 40, and Kelvin conductors A, B, C, and D. Current-carrying conductors A and B couple to positive and negative cell/battery terminals at contact points 50 and 60, respectively. Voltage-sensing conductors C and D separately couple to positive and negative cell/battery terminals at contact points 70 and 80, respectively. During dynamic measurements, a time-varying current flows through current-carrying conductors A and B and also flows inside cell/battery 20 along an internal current path 90.



FIG. 2 shows a typical arrangement of conductors employed in prior-art apparatus such as that shown in FIG. 1. Measuring circuitry 10 comprises current-excitation circuitry 160, voltage-sensing circuitry 170, computation/control circuitry 180, and display circuitry 190. Current-excitation circuitry 160 and voltage-sensing circuitry 170 couple, respectively, to the A-B conductor-pair 140 of four-wire cable 30 at terminals 200 and 210, and to the C-D conductor-pair 150 of four-wire cable 30 at terminals 220 and 230. Computation/control circuitry 180 communicates bilaterally with both current-excitation circuitry 160 and voltage-sensing circuitry 170 and receives current- and voltage-signal inputs with which it computes dynamic parameters of cell/battery 20. The results of this computation are communicated to the user through display 190.



FIG. 2 further discloses a spaced-apart cable section 35 comprising an A-C pair of insulated wires 120 contacting the positive terminal of cell/battery 20 at points 50 and 70, respectively, and a B-D pair of insulated wires 130 contacting the negative cell/battery terminal at points 60 and 80, respectively. Each of these conductor-pairs comprises a current-carrying conductor paired with a voltage-sensing conductor. Pairs 120 and 130 are necessarily spaced-apart at the cell/battery terminals but are brought into close proximity at Y-junction 40 where they are re-arranged for connection to four-wire cable section 30. Throughout section 30, the A-B current-carrying conductors and the C-D voltage-sensing conductors are separately paired and twisted together, pair 140 and pair 150, respectively, to reduce mutual inductance between current-carrying and voltage-sensing circuits. The A-B and C-D conductors therefore comprise two twisted-pair distributed-parameter transmission lines of approximate length l.



FIG. 3 shows current-excitation circuitry 160 of a type commonly employed in prior-art dynamic battery testing apparatus. Feedback excitation circuitry of this kind was first described by Wurst, et al., in U.S. Pat. No. 5,047,722. However, this early disclosure did not include Kelvin connections to the cell/battery, nor did it take into consideration the effect of the distance between the measuring circuitry and the cell/battery being tested.


The A-B current-carrying conductors 360 of the battery-connecting cable are shown in FIG. 3. These conductors include twisted-pair 140 of section 30 as well as the A and B conductors of spaced-apart section 35 of FIG. 2. They may also include a mutual-inductance-canceling section, and their total length can extend several meters.


The current-excitation circuitry 160 disclosed in FIG. 3 comprises the series combination of resistor 300, n-channel MOSFET 310, and the A and B battery-cable terminals, 200 and 210, respectively. This circuitry also includes operational amplifier 320 having its output terminal coupled to the gate of MOSFET 310 through resistor 350. The common connection of resistor 300 and MOSFET 310 couples to the inverting (−) input of operational amplifier 320 through resistor 330, thus providing negative feedback to amplifier 320. As a result, the instantaneous voltage at the amplifier's inverting (−) input, R300 x i(t), tracks the voltage v(t) applied to its non-inverting (+) input. Accordingly, computation/control circuitry 180 controls the current waveform i(t) flowing through cell/battery 10 by applying an appropriate voltage signal v(t) to the noninverting (+) input of amplifier 320. Resistors 330, 350, and capacitor 340 are compensation components—introduced specifically to ensure circuit stability at high frequency.


Note that current i(t) can only pass through n-channel MOSFET 310 from drain to source. Accordingly, MOSFET 310 cuts off, and no current flows through cell/battery 20, when v(t)<0. Cell/battery current can only flow when v(t)>0; and it can then only flow in the discharging direction.


Similar feedback current-excitation circuitry, disclosed in U.S. Pat. Nos. 6,466,026 and 6,621,272, includes a p-channel MOSFET and a dc power supply. With that circuitry, v(t)<0 causes the p-channel MOSFET to conduct—resulting in current flowing from the dc power supply into cell/battery 10 in the charging direction. Thus, cell/battery current can flow in either direction with the advanced circuitry disclosed in U.S. Pat. Nos. 6,466,026 and 6,621,272. In other respects, that circuitry functions just like the circuitry of FIG. 3.



FIG. 4 shows a voltage waveform sometimes observed across series-resistor 300 in prior-art current-excitation circuitry 160 when it is exciting cell/battery 20 with a 22 Hz square wave. One notes large hf oscillations in the A-B current during conduction of MOSFET 310. Close observations have shown that the frequency of these oscillations is greater than 10 MHz. Furthermore, the usual techniques for suppressing hf oscillations in feedback circuits, such as introducing compensation components 330, 340, and 350, or placing picofarad-size bypass capacitors at various points within the circuit, have proven to be surprisingly ineffective. Suppressing such oscillations is an object of the present invention.


SUMMARY OF THE INVENTION

I have discovered that hf reflected waves on Kelvin cables can oscillate back and forth, thus causing seriously degraded low-frequency measurement accuracy. At high-frequency, the current-carrying conductors and the voltage-sensing conductors of Kelvin cables comprise two distributed-parameter twisted-pair transmission lines—not unlike those found in Category-5 Ethernet cables—which may extend several meters in length. As with all distributed-parameter transmission lines, internal wave reflections can occur unless the lines are terminated in their characteristic impedances—a situation which virtually never occurs in practice. Such oscillating reflected waves can interact with measuring circuitry to seriously degrade the accuracy of low-frequency dynamic measurements performed with circuitry connected through Kelvin cables.


Apparatus for suppressing hf oscillations on Kelvin cables is disclosed herein. It comprises magnetic material surrounding the cable, and/or circuitry inserted at the input end and/or the output end of the cable's current-carrying and/or voltage-sensing conductors.





BRIEF DESCRIPTION OF THE DRAWINGS


FIG. 1 is a drawing illustrating prior-art dynamic measuring circuitry connected to a cell/battery by means of Kelvin connections.



FIG. 2 is a schematic representation of a prior-art conductor arrangement commonly employed with the apparatus of FIG. 1.



FIG. 3 is a schematic diagram depicting prior-art current-excitation circuitry commonly employed in the dynamic battery testing apparatus of FIG. 1.



FIG. 4 is an oscilloscope image showing the voltage waveform sometimes seen across series resistor 300 in a prior-art circuit such as that depicted in FIG. 3.



FIG. 5 is a depiction of the A-B current-carrying conductors of FIG. 2 modeled as a short-circuited transmission line.



FIG. 6 is a frequency plot of the real part of the input impedance of the transmission line of FIG. 5 near its quarter-wavelength resonance frequency.



FIG. 7 is a frequency plot of the imaginary part of the input impedance of the transmission line of FIG. 5 near its quarter-wavelength resonance frequency.



FIG. 8 is a drawing of measuring apparatus which includes oscillation suppression devices 390, 400 and 410.



FIG. 9A is a schematic diagram showing one embodiment of suppression circuitry 400 and/or 410 applied to either end of the current-carrying A-B transmission line.



FIG. 9B is a schematic diagram showing another embodiment of suppression circuitry 400 and/or 410 applied to either end of the current-carrying A-B transmission line.



FIG. 9C is a schematic diagram showing still another embodiment of suppression circuitry 400 and/or 410 applied to either end of the current-carrying A-B transmission line.



FIG. 10A is a schematic diagram showing one embodiment of suppression circuitry 400 and/or 410 applied to either end of the voltage-sensing C-D transmission line.



FIG. 10B is a schematic diagram showing another embodiment of suppression circuitry 400 applied to the input end of the voltage-sensing C-D transmission line.



FIG. 10C is a schematic diagram showing another embodiment of suppression circuitry 410 applied to the output end of the voltage-sensing C-D transmission line.



FIG. 11 is an oscilloscope image showing the voltage waveform across resistor 300 after inserting suppression circuitry 400—comprising a 10 μF bypass capacitor 420—at the input of the A-B transmission line.



FIG. 12 is a drawing of two cells connected in series showing the definitions of impedances ZA, ZB, and ZC measured in a 3-point impedance experiment.



FIG. 13 is a frequency plot of the percent differences between (RA+RB) and RC for six series-connected cell-pairs measured in a 3-point impedance experiment before introducing any suppression circuitry.



FIG. 14 is a frequency plot of the percent differences between (RA+RB) and RC for six series-connected cell-pairs measured in a 3-point impedance experiment after inserting suppression circuitry 400 comprising a 10 μF bypass capacitor 420 at the input end of the A-B transmission line.





DETAILED DESCRIPTION OF THE INVENTION

Consider twisted pairs 140 and 150 of the 4-wire Kelvin cable section 30 depicted in FIG. 2. Except for the wire size, these twisted pairs are very much like the twisted-pair transmission lines found in Category-5 Ethernet cables. (See, e.g., http://en.wikipedia.org/wiki/Category_5_cable). Accordingly, we will assume that these lines have characteristic impedances of Z0=100Ω and that their propagation velocities are vp=0.64·c, where c=3·108 m/s is the velocity of light in free space. We will also assume that the A-B transmission line has length l=2 m and comprises twisted wires of size AWG #12 (Cat-5 cables use AWG #24). This assumption yields an approximate ac wire resistance of Rac=0.199 Ω/m near the quarter-wavelength frequency fλ/4=vp/4l=24.0 MHz. (See, e.g., http://www.cvel.clemson.edu/emc/calculators/Resistance_Calculator/wire.html).


The impedance of cell/battery 20 is typically only a few milliohms—a value much less than the A-B line's characteristic impedance Z0≅100Ω. Accordingly, the cell/battery will be modeled herein as a short-circuit terminating the A-B transmission line.


Consider FIG. 5. This figure depicts an A-B transmission line 140 of length l=2 m terminated in short-circuit 370. According to well-known transmission line theory, the input impedance Zin of such a transmission line can be written

Zin=Z0 tan hl)   (1)
where
γ=α+  (2)
with
α=2Rac/Z0   (3)
and
β=2πf/vp.   (4)



FIGS. 6 and 7 show calculated frequency plots of the real and imaginary parts of Zin in the vicinity of the quarter-wavelength frequency fλ/4=24.0 MHz. One notes a very sharp resonance at 24.0 MHz—with the input resistance of the short-circuited A-B line rising above 12,000Ω at the resonance frequency. The calculated Q of this resonance is

Qλ/4=πfλ/4/αvp=99   (5)

which classifies this as a “high-Q” resonance.


Accordingly, the A-B line's input impedance at frequency fλ/4 is very large compared with the excitation circuit's hf output impedance (R300≅0.02Ω; RDS(on)≅0.005Ω). This ensures that any switching transients of MOSFET 310 that possess frequency components near fλ/4 will excite large hf voltage wavefronts on the A-B transmission line. Furthermore, the line's high Q, along with its unmatched terminations, ensures that such wavefronts, once excited, will undergo multiple reflections. These large oscillating wavefronts, if they arrive back at circuitry 160 in the proper phase, can cause MOSFET 310 to switch states—thus reinforcing this spurious excitation process.



FIG. 8 discloses general means for suppressing such oscillations according to several embodiments of the present invention. One embodiment comprises magnetic core material 390 surrounding a section of four-wire cable 30 to introduce hf loss and attenuation into both two-wire transmission lines contained therein. Alternatively, suppression circuitry 400 or suppression circuitry 410 can be introduced at the cable's input interface between measuring circuitry 10 and four-wire cable 30, or its output interface between four-wire cable 30 and spaced-apart cable section 35. Suppression circuitry 410 may actually be an integral part of cable section 35 or of Y-junction 40.



FIGS. 9A, 9B, and 9C disclose examples of suppression circuitry inserted at the input end 400 and/or the output end 410 of the A-B transmission line. This circuitry comprises bypass capacitor 420 connected across the A-B terminals to provide a hf signal-path between conductors, and/or magnetic cores 430 surrounding the A-B conductors to impede hf current flow. As shown in these three figures, the bypass capacitor and the magnetic cores can be either utilized separately, or in combination with one another. Such circuitry at the A-B line's input 400 functions by preventing excitation circuitry 160 from exciting spurious wavefronts on the A-B transmission line. Such circuitry at the line's output 410 prevents spurious wavefronts, once excited, from being reflected back.


The C-D transmission line presents a different problem and must be treated differently. Unlike current excitation circuitry 160, voltage sensing circuitry 170 cannot excite hf wavefronts on the line. Such wavefronts can, however, be excited by transient switching currents passing through cell/battery 20 during measurement. This mechanism can be particularly troublesome when measuring UPS and telecom cells/batteries while they are in service.



FIG. 10A discloses suppression circuitry similar to that disclosed in FIG. 9B applied to the C-D transmission line. This circuitry comprises bypass capacitor 425 along with magnetic cores 435. Again, the bypass capacitor and the magnetic cores can be either utilized separately, or in combination with one another, and can be connected at the line's input end 400, and/or its output end 410. However, there is a significant difference between such suppression circuitry applied to the C-D transmission line and that applied to the A-B transmission line. The very large input impedance of voltage-sensing circuitry 170 compared with the very small output impedance of current-excitation circuitry 160 dictates that the value of bypass capacitor 425 connected across C-D conductors will be much smaller than that of bypass capacitor 420 connected across the A-B conductors.



FIG. 10B discloses another form of suppression circuitry that can be applied to the circuitry end 400 of the C-D transmission line. A resistance 440 of approximate value to the line's characteristic impedance—in series with blocking capacitor 450—can be connected directly across the line. Blocking capacitor 450 is necessary to prevent the battery's dc current from flowing through resistance 440. Because the hf input impedance of voltage-sensing circuitry 170 is much larger than resistance Z0 in parallel, the C-D line will be essentially terminated in its characteristic impedance Z0—thus preventing hf reflections from occurring at the circuitry-end of the C-D transmission line.



FIG. 10C discloses a similar suppression technique that can be applied to the cell/battery-end 410 of the C-D transmission line. Resistances 460, whose sum value approximates the line's characteristic impedance, are connected in series with the C and/or D conductors at the cell/battery-end. Resistances 460 may actually be an integral part of cable section 35 or of Y-junction 40. Essentially no dc voltage drop occurs across these resistances because of the very small dc current flowing in the voltage-sensing circuit. Furthermore, because of the very small series impedance of cell/battery 20 (<10 mΩ), the C-D line will be essentially terminated in its characteristic impedance Z0—thus preventing reflections from occurring at the cell/battery-end of the line.



FIG. 11 is an oscilloscope image showing the voltage waveform across series resistor 300 after inserting suppression circuitry 400, comprising bypass capacitor 420 depicted in FIG. 9A, at the input of the A-B transmission line. The value of capacitor 420 is 10 μF. Such a surprisingly large value is necessary to completely suppress oscillations because of the very small hf output impedance of current-excitation circuitry 160 (R300≅0.02Ω; RDS(on)≅0.005Ω). Note that the spurious high-frequency oscillations observed in prior-art FIG. 4 have completely disappeared in FIG. 11.



FIG. 12 is a drawing depicting a “3-point impedance measurement” experiment devised to investigate the effect of suppression circuitry upon measurement accuracy. Two cells, connected in series with a conventional strap, are open-circuited. The three impedances defined in FIG. 12—ZA, ZB, and ZC—are then measured. If these three measurements are accurately performed, one should find that ZA+ZB=ZC—to within a high degree of accuracy. Any deviation from this simple result would indicate measurement error.


This 3-point experiment was performed before, and after, connecting the 10 μF bypass capacitor 420 across the A and B terminals at the A-B transmission line input 400. The subject battery was a 25 Ah 6-cell Hawker Cyclon battery—chosen because of its exposed cell-terminals and interconnecting straps. The six cells of the open-circuited battery were measured as six pairs, each pair comprising two adjacent cells. Three complex impedance measurements were performed on each adjacent cell-pair at frequencies of 2.58, 22.22, 44.44, and 90.91 Hz. FIGS. 13 and 14 show the results of these measurements.



FIGS. 13 and 14 are frequency plots of the percent differences between (RA+RB) and RC for the six adjacent cell-pairs. (R is the real part of measured impedance Z.) FIG. 13 displays prior-art results obtained from data measured before connecting the 10 μF bypass capacitor 420 across the A and B terminals at 400. FIG. 14 displays new results obtained after connecting the 10 μF bypass capacitor 420 across the A and B terminals at 400.


One sees from FIGS. 13 and 14 that the 10 μF bypass capacitor dramatically improves measurement accuracy. Before inserting capacitor 420, the observed percent differences varied from nearly 4% to more than 10%. A trend for the errors to increase with frequency is very apparent. After inserting capacitor 420, all percent differences are less than 0.8%, and most are less than 0.4%. In addition, the frequency dependence of the errors has disappeared.


This completes the disclosure of my invention. The invention comprises a magnetic material surrounding the cable, and/or circuitry inserted at the input end and/or the output end of the cable's current-carrying and/or voltage-sensing conductors. A particular embodiment of the invention simply comprises a large bypass capacitor connected directly across the current-carrying conductors at the interface between the measuring circuitry's output and the Kelvin cable's input. Other embodiments include magnetic cores placed on the current-carrying and/or the voltage-sensing conductors and/or characteristic-impedance resistances terminating the voltage-sensing conductors. These embodiments represent simple, yet effective solutions to an important, but previously unrecognized problem.


Although suppression circuitry has been disclosed inserted at the line's input, its output, or both, it could also be inserted internally to the line, at say, the terminus of a mutual-inductance cancellation section. These, and other variations, will be apparent to those skilled in the art and are intended to be covered by the appended claims.

Claims
  • 1. Apparatus employing time-varying signals to test an electrochemical cell or battery comprising: measuring circuitry containing current-excitation circuitry and voltage-sensing circuitry, said current-excitation circuitry adapted to couple to said cell or battery with an A-B conductor pair and said voltage-sensing circuitry adapted to couple to said cell or battery with a separate C-D conductor pair, a four-wire cable section connected to said measuring circuitry, said four-wire cable section comprising said A-B conductor pair and said C-D conductor pair bound together in close proximity to one-another within the same four-wire cable section, wherein A-B conductor pair and the C-D conductor pair of the four-wire cable section acts as a transmission line at high frequency and introduces an impedance mismatch between the four-wire cable section and the measurement circuitry,a spaced-apart cable section interconnecting said four-wire cable section with positive and negative terminals of said electrochemical cell or battery, wherein the A-B conductor pair and the C-D conductor pair in the spaced apart cable section acts as a transmission line at high frequency and introduces an impedance mismatch between the spaced apart cable section and said electrochemical cell or battery; and,a bypass capacitor connected directly across said A-B conductor pair, said bypass capacitor suppressing high-frequency reflected waves oscillating on a two-wire transmission line comprising said A-B conductor pair due to said impedance mismatches.
  • 2. The apparatus of claim 1 wherein said bypass capacitor is connected at an interface between said measuring circuitry and said four-wire cable section.
  • 3. The apparatus of claim 1 wherein said bypass capacitor is connected at an interface between said four-wire cable section and said spaced-apart cable section.
  • 4. The apparatus of claim 2 wherein said bypass capacitor is at least 1 microfarad in value.
  • 5. Apparatus employing time-varying signals to test an electrochemical cell or battery comprising: measuring circuitry containing current-excitation circuitry and voltage-sensing circuitry, said current-excitation circuitry adapted to couple to said cell or battery with an A-B conductor pair and said voltage-sensing circuitry adapted to couple to said cell or battery with a separate C-D conductor pair, a four-wire cable section connected to said measuring circuitry, said four-wire cable section comprising said A-B conductor pair and said C-D conductor pair bound together in close proximity to one-another within the same four-wire cable section, wherein A-B conductor pair and the C-D conductor pair of the four-wire cable section acts as a transmission line at high frequency and introduces an impedance mismatch between the four-wire cable section and the measurement circuitry,a spaced-apart cable section interconnecting said four-wire cable section with positive and negative terminals of said electrochemical cell or battery, wherein the A-B conductor pair and the C-D conductor pair in the spaced apart cable section acts as a transmission line at high frequency and introduces an impedance mismatch between the spaced apart cable section and said electrochemical cell or battery; and,one or more magnetic cores placed upon said A-B conductor pair, said magnetic cores suppressing high-frequency reflected waves oscillating on a two-wire transmission line comprising said A-B conductor pair due to said impedance mismatches.
  • 6. The apparatus of claim 5 wherein said magnetic cores are placed at an interface between said measuring circuitry and said four-wire cable section.
  • 7. The apparatus of claim 5 wherein said magnetic cores are placed at an interface between said four-wire cable section and said spaced-apart cable section.
  • 8. Apparatus employing time-varying signals to test an electrochemical cell or battery comprising: measuring circuitry containing current-excitation circuitry and voltage-sensing circuitry, said current-excitation circuitry adapted to couple to said cell or battery with an A-B conductor pair and said voltage-sensing circuitry adapted to couple to said cell or battery with a separate C-D conductor pair, a four-wire cable section connected to said measuring circuitry, said four-wire cable section comprising said A-B conductor pair and said C-D conductor pair bound together in close proximity to one-another within the same four-wire cable section, wherein A-B conductor pair and the C-D conductor pair of the four-wire cable section acts as a transmission line at high frequency and introduces an impedance mismatch between the four-wire cable section and the measurement circuitry,a spaced-apart cable section interconnecting said four-wire cable section with positive and negative terminals of said electrochemical cell or battery, wherein the A-B conductor pair and the C-D conductor pair in the spaced apart cable section acts as a transmission line at high frequency and introduces an impedance mismatch between the spaced apart cable section and said electrochemical cell or battery; and,a bypass capacitor connected directly across said C-D conductor pair said bypass capacitor suppressing high-frequency reflected waves oscillating on a two-wire transmission line comprising said C-D conductor pair due to said impedance mismatches.
  • 9. The apparatus of claim 8 wherein said bypass capacitor is connected at an interface between said measuring circuitry and said four-wire cable section.
  • 10. The apparatus of claim 8 wherein said bypass capacitor is connected at an interface between said four-wire cable section and said spaced-apart cable section.
  • 11. Apparatus employing time-varying signals to test an electrochemical cell or battery comprising: measuring circuitry containing current-excitation circuitry and voltage-sensing circuitry, said current-excitation circuitry adapted to couple to said cell or battery with an A-B conductor pair and said voltage-sensing circuitry adapted to couple to said cell or battery with a separate C-D conductor pair, a four-wire cable section connected to said measuring circuitry, said four-wire cable section comprising said A-B conductor pair and said C-D conductor pair bound together in close proximity to one-another within the same four-wire cable section, wherein A-B conductor pair and the C-D conductor pair of the four-wire cable section acts as a transmission line at high frequency and introduces an impedance mismatch between the four-wire cable section and the measurement circuitry,a spaced-apart cable section interconnecting said four-wire cable section with positive and negative terminals of said electrochemical cell or battery, wherein the A-B conductor pair and the C-D conductor pair in the spaced apart cable section acts as a transmission line at high frequency and introduces an impedance mismatch between the spaced apart cable section and said electrochemical cell or battery; and,one or more magnetic cores placed upon said C-D conductor pair, said magnetic cores suppressing high-frequency reflected waves oscillating on a two-wire transmission line comprising said C-D conductor pair due to said impedance mismatches.
  • 12. The apparatus of claim 11 wherein said magnetic cores are placed at an interface between said measuring circuitry and said four-wire cable section.
  • 13. The apparatus of claim 11 wherein said magnetic cores are placed at an interface between said four-wire cable section and said spaced-apart cable section.
  • 14. Apparatus employing time-varying signals to test an electrochemical cell or battery comprising: measuring circuitry adapted to couple to said cell or battery with separate current-carrying and voltage-sensing conductors,a Kelvin cable interposed between said measuring circuitry and said cell or battery, said Kelvin cable comprising a pair of current-carrying conductors and a pair of voltage-sensing conductors, said pair of voltage-sensing conductorspossessing a particular characteristic impedance value; and,a blocking capacitor and a resistor connected in series across said pair of voltage-sensing conductors at an interface between said measuring circuitry and said Kelvin cable, said resistor having a value essentially equal to said particular characteristic impedance value.
  • 15. Apparatus employing time-varying signals to test an electrochemical cell or battery comprising: measuring circuitry adapted to couple to said cell or battery with separate current-carrying and voltage-sensing conductors,a four-wire cable section interfaced with said measuring circuitry, said four-wire cable section comprising a pair of current-carrying conductors and a pair of voltage-sensing conductors, said pair of voltage-sensing conductors possessing a particular characteristic impedance value,a spaced-apart cable section interposed between said four-wire cable section and said cell or battery, said spaced-apart cable section possessing a pair of voltage-sensing conductors that separately contact positive and negative terminals of said cell or battery; and,one or more resistances connected in series with said voltage sensing conductors in said spaced-apart cable section, said resistances being essentially equal in sum value to said particular characteristic impedance value.
CROSS-REFERENCE TO RELATED APPLICATION

The present application is based on and claims the benefit of U.S. provisional patent application Ser. No. 61/665,456, filed Jun. 28, 2012,the content of which is hereby incorporated by reference in its entirety.

US Referenced Citations (904)
Number Name Date Kind
85553 Adams Jan 1869 A
2000665 Neal May 1935 A
2254846 Heyer Sep 1941 A
2417940 Lehman Mar 1947 A
2437772 Wall Mar 1948 A
2514745 Dalzell Jul 1950 A
2727221 Springg Dec 1955 A
3178686 Mills Feb 1960 A
3025455 Jonsson Mar 1962 A
3267452 Wolf Dec 1963 A
3215194 Sununu et al. Nov 1965 A
3223969 Alexander Dec 1965 A
3356936 Smith Dec 1967 A
3562634 Latner Feb 1971 A
3593099 Scholl Jul 1971 A
3607673 Seyl Sep 1971 A
3652341 Halsall et al. Mar 1972 A
3676770 Sharaf et al. Jul 1972 A
3699433 Smith, Jr. Oct 1972 A
3729989 Little May 1973 A
3745441 Soffer Jul 1973 A
3750011 Kreps Jul 1973 A
3753094 Furuishi et al. Aug 1973 A
3776177 Bryant et al. Dec 1973 A
3796124 Crosa Mar 1974 A
3808522 Sharaf Apr 1974 A
3811089 Strezelewicz May 1974 A
3816805 Terry Jun 1974 A
3850490 Zehr Nov 1974 A
3857082 Van Opijnen Dec 1974 A
3873911 Champlin Mar 1975 A
3876931 Godshalk Apr 1975 A
3879654 Kessinger Apr 1975 A
3886426 Daggett May 1975 A
3886443 Miyakawa et al. May 1975 A
3889248 Ritter Jun 1975 A
3906329 Bader Sep 1975 A
3909708 Champlin Sep 1975 A
3920284 Lane et al. Nov 1975 A
3936744 Perlmutter Feb 1976 A
3939400 Steele Feb 1976 A
3946299 Christianson et al. Mar 1976 A
3947757 Grube et al. Mar 1976 A
3969667 McWilliams Jul 1976 A
3979664 Harris Sep 1976 A
3984762 Dowgiallo, Jr. Oct 1976 A
3984768 Staples Oct 1976 A
3989544 Santo Nov 1976 A
3997830 Newell et al. Dec 1976 A
4008619 Alcaide et al. Feb 1977 A
4023882 Pettersson May 1977 A
4024953 Nailor, III May 1977 A
4047091 Hutchines et al. Sep 1977 A
4053824 Dupuis et al. Oct 1977 A
4056764 Endo et al. Nov 1977 A
4057313 Polizzano Nov 1977 A
4070624 Taylor Jan 1978 A
4086531 Bernier Apr 1978 A
4106025 Katz Aug 1978 A
4112351 Back et al. Sep 1978 A
4114083 Benham et al. Sep 1978 A
4126874 Suzuki et al. Nov 1978 A
4160916 Papasideris Jul 1979 A
4176315 Sunnarborg Nov 1979 A
4178546 Hulls et al. Dec 1979 A
4193025 Frailing et al. Mar 1980 A
4207610 Gordon Jun 1980 A
4207611 Gordon Jun 1980 A
4217645 Barry et al. Aug 1980 A
4218745 Perkins Aug 1980 A
4280457 Bloxham Jul 1981 A
4297639 Branham Oct 1981 A
4307342 Peterson Dec 1981 A
4315204 Sievers et al. Feb 1982 A
4316185 Watrous et al. Feb 1982 A
4322685 Frailing et al. Mar 1982 A
4351405 Fields et al. Jun 1982 A
4352067 Ottone Sep 1982 A
4360780 Skutch, Jr. Nov 1982 A
4361809 Bil et al. Nov 1982 A
4363407 Buckler et al. Dec 1982 A
4369407 Korbell Jan 1983 A
4379989 Kurz et al. Apr 1983 A
4379990 Sievers et al. Apr 1983 A
4385269 Aspinwall et al. May 1983 A
4390828 Converse et al. Jun 1983 A
4392101 Saar et al. Jul 1983 A
4396880 Windebank Aug 1983 A
4408157 Beaubien Oct 1983 A
4412169 Dell'Orto Oct 1983 A
4423378 Marino et al. Dec 1983 A
4423379 Jacobs et al. Dec 1983 A
4424491 Bobbett et al. Jan 1984 A
4425791 Kling Jan 1984 A
4441359 Ezoe Apr 1984 A
4459548 Lentz et al. Jul 1984 A
4514694 Finger Apr 1985 A
4520353 McAuliffe May 1985 A
4521498 Juergens Jun 1985 A
4564798 Young Jan 1986 A
4620767 Woolf Nov 1986 A
4626765 Tanaka Dec 1986 A
4633418 Bishop Dec 1986 A
4637359 Cook Jan 1987 A
4659977 Kissel et al. Apr 1987 A
4663580 Wortman May 1987 A
4665370 Holland May 1987 A
4667143 Cooper et al. May 1987 A
4667279 Maier May 1987 A
4678998 Muramatsu Jul 1987 A
4679000 Clark Jul 1987 A
4680528 Mikami et al. Jul 1987 A
4686442 Radomski Aug 1987 A
4697134 Burkum et al. Sep 1987 A
4707795 Alber et al. Nov 1987 A
4709202 Koenck et al. Nov 1987 A
4710861 Kanner Dec 1987 A
4719428 Liebermann Jan 1988 A
4723656 Kiernan et al. Feb 1988 A
4743855 Randin et al. May 1988 A
4745349 Palanisamy et al. May 1988 A
4773011 VanHoose Sep 1988 A
4781629 Mize Nov 1988 A
D299909 Casey Feb 1989 S
4816768 Champlin Mar 1989 A
4820966 Fridman Apr 1989 A
4825170 Champlin Apr 1989 A
4847547 Eng, Jr. et al. Jul 1989 A
4849700 Morioka et al. Jul 1989 A
4874679 Miyagawa Oct 1989 A
4876495 Palanisamy et al. Oct 1989 A
4881038 Champlin Nov 1989 A
4885523 Koench Dec 1989 A
4888716 Ueno Dec 1989 A
4901007 Sworm Feb 1990 A
4907176 Bahnick et al. Mar 1990 A
4912416 Champlin Mar 1990 A
4913116 Katogi et al. Apr 1990 A
4926330 Abe et al. May 1990 A
4929931 McCuen May 1990 A
4931738 MacIntyre et al. Jun 1990 A
4932905 Richards Jun 1990 A
4933845 Hayes Jun 1990 A
4934957 Bellusci Jun 1990 A
4937528 Palanisamy Jun 1990 A
4947124 Hauser Aug 1990 A
4949046 Seyfang Aug 1990 A
4956597 Heavey et al. Sep 1990 A
4965738 Bauer et al. Oct 1990 A
4968941 Rogers Nov 1990 A
4968942 Palanisamy Nov 1990 A
4969834 Johnson Nov 1990 A
4983086 Hatrock Jan 1991 A
5004979 Marino et al. Apr 1991 A
5030916 Bokitch Jul 1991 A
5032825 Kuznicki Jul 1991 A
5034893 Fisher Jul 1991 A
5037778 Stark et al. Aug 1991 A
5047722 Wurst et al. Sep 1991 A
5081565 Nabha et al. Jan 1992 A
5083076 Scott Jan 1992 A
5087881 Peacock Feb 1992 A
5095223 Thomas Mar 1992 A
5108320 Kimber Apr 1992 A
5109213 Williams Apr 1992 A
5126675 Yang Jun 1992 A
5130658 Bohmer Jul 1992 A
5140269 Champlin Aug 1992 A
5144218 Bosscha Sep 1992 A
5144248 Alexandres et al. Sep 1992 A
D330338 Wang Oct 1992 S
5159272 Rao et al. Oct 1992 A
5160881 Schramm et al. Nov 1992 A
5164653 Reem Nov 1992 A
5168208 Schultz et al. Dec 1992 A
5170124 Blair et al. Dec 1992 A
5179335 Nor Jan 1993 A
5187381 Kondo Feb 1993 A
5187382 Kondo Feb 1993 A
5194799 Tomantschger Mar 1993 A
5204611 Nor et al. Apr 1993 A
5214370 Harm et al. May 1993 A
5214385 Gabriel et al. May 1993 A
5223747 Tschulena Jun 1993 A
5241275 Fang Aug 1993 A
5254952 Salley et al. Oct 1993 A
5266880 Newland Nov 1993 A
5278759 Berra et al. Jan 1994 A
5281919 Palanisamy Jan 1994 A
5281920 Wurst Jan 1994 A
5295078 Stich et al. Mar 1994 A
5296823 Dietrich Mar 1994 A
5298797 Redl Mar 1994 A
5300874 Shimamoto et al. Apr 1994 A
5302902 Groehl Apr 1994 A
5309052 Kim May 1994 A
5313152 Wozniak et al. May 1994 A
5315287 Sol May 1994 A
5321626 Palladino Jun 1994 A
5321627 Reher Jun 1994 A
5323337 Wilson et al. Jun 1994 A
5325041 Briggs Jun 1994 A
5331268 Patino et al. Jul 1994 A
5332927 Paul et al. Jul 1994 A
5336993 Thomas et al. Aug 1994 A
5338515 Dalla Betta et al. Aug 1994 A
5339018 Brokaw Aug 1994 A
5343380 Champlin Aug 1994 A
5345384 Przybyla et al. Sep 1994 A
5347163 Yoshimura Sep 1994 A
5349535 Gupta Sep 1994 A
5352968 Reni et al. Oct 1994 A
5357519 Martin et al. Oct 1994 A
5365160 Leppo et al. Nov 1994 A
5365453 Startup et al. Nov 1994 A
5369364 Renirie et al. Nov 1994 A
5381096 Hirzel Jan 1995 A
5384540 Dessel Jan 1995 A
5387871 Tsai Feb 1995 A
5394093 Cervas Feb 1995 A
5402007 Center et al. Mar 1995 A
5410754 Klotzbach et al. Apr 1995 A
5412308 Brown May 1995 A
5412323 Kato et al. May 1995 A
5425041 Seko et al. Jun 1995 A
5426371 Salley et al. Jun 1995 A
5426416 Jefferies et al. Jun 1995 A
5430645 Keller Jul 1995 A
5432025 Cox Jul 1995 A
5432426 Yoshida Jul 1995 A
5434495 Toko Jul 1995 A
5435185 Eagan Jul 1995 A
5442274 Tamai Aug 1995 A
5445026 Eagan Aug 1995 A
5449996 Matsumoto et al. Sep 1995 A
5449997 Gilmore et al. Sep 1995 A
5451881 Finger Sep 1995 A
5453027 Buell et al. Sep 1995 A
5457377 Jonsson Oct 1995 A
5459660 Berra Oct 1995 A
5462439 Keith Oct 1995 A
5469043 Cherng et al. Nov 1995 A
5485090 Stephens Jan 1996 A
5488300 Jamieson Jan 1996 A
5504674 Chen et al. Apr 1996 A
5508599 Koenck Apr 1996 A
5519383 De La Rosa May 1996 A
5528148 Rogers Jun 1996 A
5537967 Tashiro et al. Jul 1996 A
5541489 Dunstan Jul 1996 A
5546317 Andrieu Aug 1996 A
5548273 Nicol et al. Aug 1996 A
5550485 Falk Aug 1996 A
5561380 Sway-Tin et al. Oct 1996 A
5562501 Kinoshita et al. Oct 1996 A
5563496 McClure Oct 1996 A
5572136 Champlin Nov 1996 A
5573611 Koch et al. Nov 1996 A
5574355 McShane et al. Nov 1996 A
5578915 Crouch, Jr. et al. Nov 1996 A
5583416 Klang Dec 1996 A
5585416 Audett et al. Dec 1996 A
5585728 Champlin Dec 1996 A
5589757 Klang Dec 1996 A
5592093 Klingbiel Jan 1997 A
5592094 Ichikawa Jan 1997 A
5596260 Moravec et al. Jan 1997 A
5596261 Suyama Jan 1997 A
5598098 Champlin Jan 1997 A
5602462 Stich et al. Feb 1997 A
5606242 Hull et al. Feb 1997 A
5614788 Mullins et al. Mar 1997 A
5621298 Harvey Apr 1997 A
5631536 Tseng May 1997 A
5631831 Bird et al. May 1997 A
5633985 Severson et al. May 1997 A
5637978 Kellett et al. Jun 1997 A
5642031 Brotto Jun 1997 A
5644212 Takahashi Jul 1997 A
5650937 Bounaga Jul 1997 A
5652501 McClure et al. Jul 1997 A
5653659 Kunibe et al. Aug 1997 A
5654623 Shiga et al. Aug 1997 A
5656920 Cherng et al. Aug 1997 A
5661368 Deol et al. Aug 1997 A
5666040 Bourbeau Sep 1997 A
5675234 Greene Oct 1997 A
5677077 Faulk Oct 1997 A
5684678 Barrett Nov 1997 A
5685734 Kutz Nov 1997 A
5691621 Phuoc et al. Nov 1997 A
5699050 Kanazawa Dec 1997 A
5701089 Perkins Dec 1997 A
5705929 Caravello et al. Jan 1998 A
5707015 Guthrie Jan 1998 A
5710503 Sideris et al. Jan 1998 A
5711648 Hammerslag Jan 1998 A
5712795 Layman et al. Jan 1998 A
5717336 Basell et al. Feb 1998 A
5717937 Fritz Feb 1998 A
5721688 Bramwell Feb 1998 A
5732074 Spaur et al. Mar 1998 A
5739667 Matsuda et al. Apr 1998 A
5744962 Alber et al. Apr 1998 A
5745044 Hyatt, Jr. et al. Apr 1998 A
5747189 Perkins May 1998 A
5747909 Syverson et al. May 1998 A
5747967 Muljadi et al. May 1998 A
5754417 Nicollini May 1998 A
5757192 McShane et al. May 1998 A
5760587 Harvey Jun 1998 A
5772468 Kowalski et al. Jun 1998 A
5773962 Nor Jun 1998 A
5773978 Becker Jun 1998 A
5778326 Moroto et al. Jul 1998 A
5780974 Pabla et al. Jul 1998 A
5780980 Naito Jul 1998 A
5789899 Van Phuoc et al. Aug 1998 A
5793359 Ushikubo Aug 1998 A
5796239 van Phuoc et al. Aug 1998 A
5808469 Kopera Sep 1998 A
5811979 Rhein Sep 1998 A
5818201 Stockstad et al. Oct 1998 A
5818234 McKinnon Oct 1998 A
5820407 Morse et al. Oct 1998 A
5821756 McShane et al. Oct 1998 A
5821757 Alvarez et al. Oct 1998 A
5825174 Parker Oct 1998 A
5831435 Troy Nov 1998 A
5832396 Moroto et al. Nov 1998 A
5850113 Weimer et al. Dec 1998 A
5862515 Kobayashi et al. Jan 1999 A
5865638 Trafton Feb 1999 A
5869951 Takahashi Feb 1999 A
5870018 Person Feb 1999 A
5871858 Thomsen et al. Feb 1999 A
5872443 Williamson Feb 1999 A
5872453 Shimoyama et al. Feb 1999 A
5883306 Hwang Mar 1999 A
5884202 Arjomand Mar 1999 A
5895440 Proctor et al. Apr 1999 A
5903154 Zhang et al. May 1999 A
5903716 Kimber et al. May 1999 A
5912534 Benedict Jun 1999 A
5914605 Bertness Jun 1999 A
5916287 Arjomand et al. Jun 1999 A
5927938 Hammerslag Jul 1999 A
5929609 Joy et al. Jul 1999 A
5935180 Fieramosca et al. Aug 1999 A
5939855 Proctor et al. Aug 1999 A
5939861 Joko et al. Aug 1999 A
5945829 Bertness Aug 1999 A
5946605 Takahisa et al. Aug 1999 A
5950144 Hall et al. Sep 1999 A
5951229 Hammerslag Sep 1999 A
5953322 Kimball Sep 1999 A
5955951 Wischerop et al. Sep 1999 A
5961561 Wakefield, II Oct 1999 A
5961604 Anderson et al. Oct 1999 A
5963012 Garcia et al. Oct 1999 A
5969625 Russo Oct 1999 A
5973598 Beigel Oct 1999 A
5978805 Carson Nov 1999 A
5982138 Krieger Nov 1999 A
5990664 Rahman Nov 1999 A
6002238 Champlin Dec 1999 A
6005489 Siegle et al. Dec 1999 A
6005759 Hart et al. Dec 1999 A
6008652 Theofanopoulos et al. Dec 1999 A
6009369 Boisvert et al. Dec 1999 A
6016047 Notten et al. Jan 2000 A
6031354 Wiley et al. Feb 2000 A
6031368 Klippel et al. Feb 2000 A
6037745 Koike et al. Mar 2000 A
6037749 Parsonage Mar 2000 A
6037751 Klang Mar 2000 A
6037777 Champlin Mar 2000 A
6037778 Makhija Mar 2000 A
6046514 Rouillard et al. Apr 2000 A
6051976 Bertness Apr 2000 A
6055468 Kaman et al. Apr 2000 A
6061638 Joyce May 2000 A
6064372 Kahkoska May 2000 A
6072299 Kurle et al. Jun 2000 A
6072300 Tsuji Jun 2000 A
6075339 Reipur et al. Jun 2000 A
6081098 Bertness et al. Jun 2000 A
6081109 Seymour et al. Jun 2000 A
6081154 Ezell et al. Jun 2000 A
6087815 Pfeifer et al. Jul 2000 A
6088652 Abe Jul 2000 A
6091238 McDermott Jul 2000 A
6091245 Bertness Jul 2000 A
6094033 Ding et al. Jul 2000 A
6097193 Bramwell Aug 2000 A
6100670 Levesque Aug 2000 A
6100815 Pailthorp Aug 2000 A
6104167 Bertness et al. Aug 2000 A
6113262 Purola et al. Sep 2000 A
6114834 Parise Sep 2000 A
6121880 Scott et al. Sep 2000 A
6136914 Hergenrother et al. Oct 2000 A
6137269 Champlin Oct 2000 A
6140797 Dunn Oct 2000 A
6141608 Rother Oct 2000 A
6144185 Dougherty et al. Nov 2000 A
6147598 Murphy et al. Nov 2000 A
6149653 Deslauriers Nov 2000 A
6150793 Lesesky et al. Nov 2000 A
6158000 Collins Dec 2000 A
6161640 Yamaguchi Dec 2000 A
6163156 Bertness Dec 2000 A
6164063 Mendler Dec 2000 A
6167349 Alvarez Dec 2000 A
6172483 Champlin Jan 2001 B1
6172505 Bertness Jan 2001 B1
6177737 Palfey et al. Jan 2001 B1
6181545 Amatucci et al. Jan 2001 B1
6184656 Karunasiri et al. Feb 2001 B1
6191557 Gray et al. Feb 2001 B1
6202739 Pal et al. Mar 2001 B1
6211651 Nemoto Apr 2001 B1
6211653 Stasko Apr 2001 B1
6215275 Bean Apr 2001 B1
6218805 Melcher Apr 2001 B1
6218936 Imao Apr 2001 B1
6222342 Eggert et al. Apr 2001 B1
6222369 Champlin Apr 2001 B1
D442503 Lundbeck et al. May 2001 S
6225808 Varghese et al. May 2001 B1
6225898 Kamiya et al. May 2001 B1
6236186 Helton et al. May 2001 B1
6236332 Conkright et al. May 2001 B1
6236949 Hart May 2001 B1
6238253 Qualls May 2001 B1
6242887 Burke Jun 2001 B1
6242921 Thibedeau et al. Jun 2001 B1
6249124 Bertness Jun 2001 B1
6250973 Lowery et al. Jun 2001 B1
6254438 Gaunt Jul 2001 B1
6255826 Ohsawa Jul 2001 B1
6259170 Limoge et al. Jul 2001 B1
6259254 Klang Jul 2001 B1
6262563 Champlin Jul 2001 B1
6262692 Babb Jul 2001 B1
6263268 Nathanson Jul 2001 B1
6263322 Kirkevold et al. Jul 2001 B1
6271643 Becker et al. Aug 2001 B1
6271748 Derbyshire et al. Aug 2001 B1
6272387 Yoon Aug 2001 B1
6275008 Arai et al. Aug 2001 B1
6285191 Gollomp et al. Sep 2001 B1
6294896 Champlin Sep 2001 B1
6294897 Champlin Sep 2001 B1
6304087 Bertness Oct 2001 B1
6307349 Koenck et al. Oct 2001 B1
6310481 Bertness Oct 2001 B2
6313607 Champlin Nov 2001 B1
6313608 Varghese et al. Nov 2001 B1
6316914 Bertness Nov 2001 B1
6320385 Ng et al. Nov 2001 B1
6323650 Bertness et al. Nov 2001 B1
6324042 Andrews Nov 2001 B1
6329793 Bertness et al. Dec 2001 B1
6331762 Bertness Dec 2001 B1
6332113 Bertness Dec 2001 B1
6346795 Haraguchi et al. Feb 2002 B2
6347958 Tsai Feb 2002 B1
6351102 Troy Feb 2002 B1
6356042 Kahlon et al. Mar 2002 B1
6356083 Ying Mar 2002 B1
6359441 Bertness Mar 2002 B1
6359442 Henningson et al. Mar 2002 B1
6363303 Bertness Mar 2002 B1
RE37677 Irie Apr 2002 E
6377031 Karuppana et al. Apr 2002 B1
6384608 Namaky May 2002 B1
6388448 Cervas May 2002 B1
6389337 Kolls May 2002 B1
6392414 Bertness May 2002 B2
6396278 Makhija May 2002 B1
6407554 Godau et al. Jun 2002 B1
6411098 Laletin Jun 2002 B1
6417669 Champlin Jul 2002 B1
6420852 Sato Jul 2002 B1
6424157 Gollomp et al. Jul 2002 B1
6424158 Klang Jul 2002 B2
6433512 Birkler et al. Aug 2002 B1
6437957 Karuppana et al. Aug 2002 B1
6441585 Bertness Aug 2002 B1
6445158 Bertness et al. Sep 2002 B1
6448778 Rankin Sep 2002 B1
6449726 Smith Sep 2002 B1
6456036 Thandiwe Sep 2002 B1
6456045 Troy et al. Sep 2002 B1
6465908 Karuppana et al. Oct 2002 B1
6466025 Klang Oct 2002 B1
6466026 Champlin Oct 2002 B1
6469511 Vonderhaar et al. Oct 2002 B1
6470385 Nakashima et al. Oct 2002 B1
6473659 Shah et al. Oct 2002 B1
6477478 Jones et al. Nov 2002 B1
6495990 Champlin Dec 2002 B2
6497209 Karuppana et al. Dec 2002 B1
6500025 Moenkhaus et al. Dec 2002 B1
6501243 Kaneko Dec 2002 B1
6505507 Imao Jan 2003 B1
6507196 Thomsen et al. Jan 2003 B2
6526361 Jones et al. Feb 2003 B1
6529723 Bentley Mar 2003 B1
6531848 Chitsazan et al. Mar 2003 B1
6532425 Boost et al. Mar 2003 B1
6533316 Breed et al. Mar 2003 B2
6534992 Meissner et al. Mar 2003 B2
6534993 Bertness Mar 2003 B2
6536536 Gass et al. Mar 2003 B1
6544078 Palmisano et al. Apr 2003 B2
6545599 Derbyshire et al. Apr 2003 B2
6556019 Bertness Apr 2003 B2
6566883 Vonderhaar et al. May 2003 B1
6570385 Roberts et al. May 2003 B1
6577107 Kechmire Jun 2003 B2
6586941 Bertness et al. Jul 2003 B2
6597150 Bertness et al. Jul 2003 B1
6599243 Woltermann et al. Jul 2003 B2
6600815 Walding Jul 2003 B1
6611740 Lowrey et al. Aug 2003 B2
6614349 Proctor et al. Sep 2003 B1
6618644 Bean Sep 2003 B2
6621272 Champlin Sep 2003 B2
6623314 Cox et al. Sep 2003 B1
6624635 Lui Sep 2003 B1
6628011 Droppo et al. Sep 2003 B2
6629054 Makhija et al. Sep 2003 B2
6633165 Bertness Oct 2003 B2
6635974 Karuppana et al. Oct 2003 B1
6636790 Lightner et al. Oct 2003 B1
6667624 Raichle et al. Dec 2003 B1
6679212 Kelling Jan 2004 B2
6686542 Zhang Feb 2004 B2
6696819 Bertness Feb 2004 B2
6707303 Bertness et al. Mar 2004 B2
6732031 Lightner et al. May 2004 B1
6736941 Oku et al. May 2004 B2
6737831 Champlin May 2004 B2
6738697 Breed May 2004 B2
6740990 Tozuka et al. May 2004 B2
6744149 Karuppana et al. Jun 2004 B1
6745153 White et al. Jun 2004 B2
6759849 Bertness Jul 2004 B2
6771073 Henningson et al. Aug 2004 B2
6777945 Roberts et al. Aug 2004 B2
6781344 Hedegor et al. Aug 2004 B1
6781382 Johnson Aug 2004 B2
6784635 Larson Aug 2004 B2
6784637 Raichle et al. Aug 2004 B2
6788025 Bertness et al. Sep 2004 B2
6795782 Bertness et al. Sep 2004 B2
6796841 Cheng et al. Sep 2004 B1
6805090 Bertness et al. Oct 2004 B2
6806716 Bertness et al. Oct 2004 B2
6825669 Raichle et al. Nov 2004 B2
6832141 Skeen et al. Dec 2004 B2
6842707 Raichle et al. Jan 2005 B2
6845279 Gilmore et al. Jan 2005 B1
6850037 Bertness Feb 2005 B2
6856162 Greatorex et al. Feb 2005 B1
6856972 Yun et al. Feb 2005 B1
6871151 Bertness Mar 2005 B2
6885195 Bertness Apr 2005 B2
6888468 Bertness May 2005 B2
6891378 Bertness et al. May 2005 B2
6895809 Raichle May 2005 B2
6904796 Pacsai et al. Jun 2005 B2
6906522 Bertness et al. Jun 2005 B2
6906523 Bertness et al. Jun 2005 B2
6906624 McClelland et al. Jun 2005 B2
6909287 Bertness Jun 2005 B2
6909356 Brown et al. Jun 2005 B2
6911825 Namaky Jun 2005 B2
6913483 Restaino et al. Jul 2005 B2
6914413 Bertness et al. Jul 2005 B2
6919725 Bertness et al. Jul 2005 B2
6930485 Bertness et al. Aug 2005 B2
6933727 Bertness et al. Aug 2005 B2
6941234 Bertness et al. Sep 2005 B2
6957133 Hunt et al. Oct 2005 B1
6967484 Bertness Nov 2005 B2
6972662 Ohkawa et al. Dec 2005 B1
6983212 Burns Jan 2006 B2
6988053 Namaky Jan 2006 B2
6993421 Pillar et al. Jan 2006 B2
6998847 Bertness et al. Feb 2006 B2
7003410 Bertness et al. Feb 2006 B2
7003411 Bertness Feb 2006 B2
7012433 Smith et al. Mar 2006 B2
7015674 VonderHaar Mar 2006 B2
7029338 Orange et al. Apr 2006 B1
7034541 Bertness et al. Apr 2006 B2
7039533 Bertness et al. May 2006 B2
7042346 Paulsen May 2006 B2
7049822 Kung May 2006 B2
7058525 Bertness et al. Jun 2006 B2
7069979 Tobias Jul 2006 B2
7081755 Klang et al. Jul 2006 B2
7089127 Thibedeau et al. Aug 2006 B2
7098666 Patino Aug 2006 B2
7102556 White Sep 2006 B2
7106070 Bertness et al. Sep 2006 B2
7116109 Klang Oct 2006 B2
7119686 Bertness et al. Oct 2006 B2
7120488 Nova et al. Oct 2006 B2
7126341 Bertness et al. Oct 2006 B2
7129706 Kalley Oct 2006 B2
7154276 Bertness Dec 2006 B2
7170393 Martin Jan 2007 B2
7173182 Katsuyama Feb 2007 B2
7177925 Carcido et al. Feb 2007 B2
7182147 Cutler et al. Feb 2007 B2
7184866 Squires Feb 2007 B2
7184905 Stefan Feb 2007 B2
7198510 Bertness Apr 2007 B2
7200424 Tischer et al. Apr 2007 B2
7202636 Reynolds et al. Apr 2007 B2
7208914 Klang Apr 2007 B2
7209850 Brott et al. Apr 2007 B2
7209860 Trsar et al. Apr 2007 B2
7212887 Shah et al. May 2007 B2
7212911 Raichle et al. May 2007 B2
7219023 Banke et al. May 2007 B2
7233128 Brost et al. Jun 2007 B2
7235977 Koran et al. Jun 2007 B2
7246015 Bertness et al. Jul 2007 B2
7251551 Mitsueda Jul 2007 B2
7272519 Lesesky et al. Sep 2007 B2
7287001 Falls et al. Oct 2007 B1
7295936 Bertness et al. Nov 2007 B2
7319304 Veloo et al. Jan 2008 B2
7339477 Puzio et al. Mar 2008 B2
7363175 Bertness et al. Apr 2008 B2
7376497 Chen May 2008 B2
7398176 Bertness Jul 2008 B2
7408358 Knopf Aug 2008 B2
7425833 Bertness et al. Sep 2008 B2
7446536 Bertness Nov 2008 B2
7453238 Melichar Nov 2008 B2
7479763 Bertness Jan 2009 B2
7498767 Brown et al. Mar 2009 B2
7501795 Bertness et al. Mar 2009 B2
7505856 Restaino et al. Mar 2009 B2
7538571 Raichle et al. May 2009 B2
7545146 Klang et al. Jun 2009 B2
7557586 Vonderhaar et al. Jul 2009 B1
7590476 Shumate Sep 2009 B2
7592776 Tsukamoto et al. Sep 2009 B2
7595643 Klang Sep 2009 B2
7598699 Restaino et al. Oct 2009 B2
7598743 Bertness Oct 2009 B2
7598744 Bertness et al. Oct 2009 B2
7619417 Klang Nov 2009 B2
7642786 Philbrook Jan 2010 B2
7642787 Bertness et al. Jan 2010 B2
7656162 Vonderhaar et al. Feb 2010 B2
7657386 Thibedeau et al. Feb 2010 B2
7667437 Johnson et al. Feb 2010 B2
7679325 Seo Mar 2010 B2
7684908 Ogilvie et al. Mar 2010 B1
7688074 Cox et al. Mar 2010 B2
7690573 Raichle et al. Apr 2010 B2
7696759 Raichle et al. Apr 2010 B2
7698179 Leung et al. Apr 2010 B2
7705602 Bertness Apr 2010 B2
7706991 Bertness et al. Apr 2010 B2
7710119 Bertness May 2010 B2
7723993 Klang May 2010 B2
7728556 Yano et al. Jun 2010 B2
7728597 Bertness Jun 2010 B2
7743788 Schmitt Jun 2010 B2
7744149 Murray et al. Jun 2010 B2
7751953 Namaky Jul 2010 B2
7772850 Bertness Aug 2010 B2
7774130 Pepper Aug 2010 B2
7774151 Bertness Aug 2010 B2
7777612 Sampson et al. Aug 2010 B2
7791348 Brown et al. Sep 2010 B2
7808375 Bertness et al. Oct 2010 B2
7848857 Nasr et al. Dec 2010 B2
7883002 Jin et al. Feb 2011 B2
7902990 Delmonico et al. Mar 2011 B2
7924015 Bertness Apr 2011 B2
7940053 Brown et al. May 2011 B2
7990155 Henningson Aug 2011 B2
7999505 Bertness Aug 2011 B2
8024083 Chenn Sep 2011 B2
8164343 Bertness Apr 2012 B2
8222868 Buckner Jul 2012 B2
8226008 Raichle et al. Jul 2012 B2
8306690 Bertness Nov 2012 B2
8310271 Raichle et al. Nov 2012 B2
8449560 Roth May 2013 B2
8594957 Gauthier Nov 2013 B2
8827729 Gunreben Sep 2014 B2
9037394 Fernandes May 2015 B2
20010012738 Duperret Aug 2001 A1
20010033169 Singh Oct 2001 A1
20010035737 Nakanishi et al. Nov 2001 A1
20010048215 Breed et al. Dec 2001 A1
20010048226 Nada Dec 2001 A1
20020003423 Bertness et al. Jan 2002 A1
20020004694 McLeod Jan 2002 A1
20020007237 Phung et al. Jan 2002 A1
20020010558 Bertness et al. Jan 2002 A1
20020021135 Li et al. Feb 2002 A1
20020027346 Breed et al. Mar 2002 A1
20020030495 Kechmire Mar 2002 A1
20020036504 Troy et al. Mar 2002 A1
20020041175 Lauper et al. Apr 2002 A1
20020044050 Derbyshire et al. Apr 2002 A1
20020047711 Bertness et al. Apr 2002 A1
20020050163 Makhija et al. May 2002 A1
20020074398 Lancos et al. Jun 2002 A1
20020116140 Rider Aug 2002 A1
20020118111 Brown et al. Aug 2002 A1
20020121901 Hoffman Sep 2002 A1
20020128985 Greenwald Sep 2002 A1
20020130665 Bertness et al. Sep 2002 A1
20020171428 Bertness Nov 2002 A1
20020176010 Wallach et al. Nov 2002 A1
20030006779 Youval Jan 2003 A1
20030009270 Breed Jan 2003 A1
20030017753 Palmisano et al. Jan 2003 A1
20030025481 Bertness Feb 2003 A1
20030030442 Sugimoto Feb 2003 A1
20030036909 Kato Feb 2003 A1
20030040873 Lesesky et al. Feb 2003 A1
20030060953 Chen Mar 2003 A1
20030078743 Bertness et al. Apr 2003 A1
20030088375 Bertness et al. May 2003 A1
20030090272 Bertness May 2003 A1
20030124417 Bertness et al. Jul 2003 A1
20030128011 Bertness et al. Jul 2003 A1
20030128036 Henningson et al. Jul 2003 A1
20030137277 Mori et al. Jul 2003 A1
20030169018 Berels et al. Sep 2003 A1
20030169019 Oosaki Sep 2003 A1
20030171111 Clark Sep 2003 A1
20030177417 Malhotra et al. Sep 2003 A1
20030184262 Makhija Oct 2003 A1
20030184306 Bertness et al. Oct 2003 A1
20030187556 Suzuki Oct 2003 A1
20030194672 Roberts et al. Oct 2003 A1
20030197512 Miller et al. Oct 2003 A1
20030212311 Nova et al. Nov 2003 A1
20030214395 Flowerday et al. Nov 2003 A1
20030236656 Dougherty Dec 2003 A1
20040000590 Raichle et al. Jan 2004 A1
20040000891 Raichle et al. Jan 2004 A1
20040000893 Raichle et al. Jan 2004 A1
20040000913 Raichle et al. Jan 2004 A1
20040000915 Raichle et al. Jan 2004 A1
20040002824 Raichle et al. Jan 2004 A1
20040002825 Raichle et al. Jan 2004 A1
20040002836 Raichle et al. Jan 2004 A1
20040032264 Schoch Feb 2004 A1
20040036443 Bertness Feb 2004 A1
20040044452 Bauer et al. Mar 2004 A1
20040044454 Ross et al. Mar 2004 A1
20040049361 Hamdan et al. Mar 2004 A1
20040051532 Smith et al. Mar 2004 A1
20040051533 Namaky Mar 2004 A1
20040051534 Kobayashi et al. Mar 2004 A1
20040054503 Namaky Mar 2004 A1
20040064225 Jammu et al. Apr 2004 A1
20040065489 Aberle Apr 2004 A1
20040088087 Fukushima et al. May 2004 A1
20040104728 Bertness et al. Jun 2004 A1
20040108855 Raichle Jun 2004 A1
20040113588 Mikuriya et al. Jun 2004 A1
20040145342 Lyon Jul 2004 A1
20040150494 Yoshida Aug 2004 A1
20040164706 Osborne Aug 2004 A1
20040172177 Nagai et al. Sep 2004 A1
20040178185 Yoshikawa et al. Sep 2004 A1
20040189309 Bertness et al. Sep 2004 A1
20040199343 Cardinal et al. Oct 2004 A1
20040207367 Taniguchi et al. Oct 2004 A1
20040221641 Moritsugu Nov 2004 A1
20040227523 Namaky Nov 2004 A1
20040239332 Mackel et al. Dec 2004 A1
20040251876 Bertness et al. Dec 2004 A1
20040257084 Restaino Dec 2004 A1
20050007068 Johnson et al. Jan 2005 A1
20050009122 Whelan et al. Jan 2005 A1
20050017726 Koran et al. Jan 2005 A1
20050017952 His Jan 2005 A1
20050021197 Zimmerman Jan 2005 A1
20050021294 Trsar et al. Jan 2005 A1
20050025299 Tischer et al. Feb 2005 A1
20050043868 Mitcham Feb 2005 A1
20050057256 Bertness Mar 2005 A1
20050060070 Kapolka et al. Mar 2005 A1
20050073314 Bertness et al. Apr 2005 A1
20050076381 Gross Apr 2005 A1
20050096809 Skeen et al. May 2005 A1
20050102073 Ingram May 2005 A1
20050119809 Chen Jun 2005 A1
20050128083 Puzio et al. Jun 2005 A1
20050128902 Tsai Jun 2005 A1
20050133245 Katsuyama Jun 2005 A1
20050134282 Averbuch Jun 2005 A1
20050143882 Umezawa Jun 2005 A1
20050159847 Shah et al. Jul 2005 A1
20050162172 Bertness Jul 2005 A1
20050168226 Quint et al. Aug 2005 A1
20050173142 Cutler et al. Aug 2005 A1
20050182536 Doyle et al. Aug 2005 A1
20050212521 Bertness et al. Sep 2005 A1
20050213874 Kline Sep 2005 A1
20050218902 Restaino et al. Oct 2005 A1
20050231205 Bertness et al. Oct 2005 A1
20050254106 Silverbrook et al. Nov 2005 A9
20050256617 Cawthorne et al. Nov 2005 A1
20050258241 McNutt et al. Nov 2005 A1
20050269880 Konishi Dec 2005 A1
20050273218 Breed Dec 2005 A1
20060012330 Okumura et al. Jan 2006 A1
20060017447 Bertness et al. Jan 2006 A1
20060026017 Walkder Feb 2006 A1
20060030980 St. Denis Feb 2006 A1
20060043976 Gervais Mar 2006 A1
20060079203 Nicolini Apr 2006 A1
20060089767 Sowa Apr 2006 A1
20060095230 Grier et al. May 2006 A1
20060102397 Buck May 2006 A1
20060152224 Kim et al. Jul 2006 A1
20060155439 Slawinski Jul 2006 A1
20060161313 Rogers et al. Jul 2006 A1
20060161390 Namaky et al. Jul 2006 A1
20060217914 Bertness Sep 2006 A1
20060244457 Henningson Nov 2006 A1
20060282323 Walker et al. Dec 2006 A1
20070005201 Chenn Jan 2007 A1
20070024460 Clark Feb 2007 A1
20070026916 Juds et al. Feb 2007 A1
20070046261 Porebski Mar 2007 A1
20070088472 Ganzhorn et al. Apr 2007 A1
20070108942 Johnson et al. May 2007 A1
20070159177 Bertness et al. Jul 2007 A1
20070182576 Proska et al. Aug 2007 A1
20070194791 Huang Aug 2007 A1
20070194793 Bertness Aug 2007 A1
20070205752 Leigh Sep 2007 A1
20070205983 Naimo Sep 2007 A1
20070210801 Krampitz Sep 2007 A1
20070259256 Le Canut et al. Nov 2007 A1
20070279066 Chism Dec 2007 A1
20080023547 Raichle Jan 2008 A1
20080036421 Seo Feb 2008 A1
20080053716 Scheucher Mar 2008 A1
20080059014 Nasr et al. Mar 2008 A1
20080064559 Cawthorne Mar 2008 A1
20080086246 Bolt et al. Apr 2008 A1
20080094068 Scott Apr 2008 A1
20080103656 Lipscomb May 2008 A1
20080169818 Lesesky et al. Jul 2008 A1
20080179122 Sugawara Jul 2008 A1
20080303528 Kim Dec 2008 A1
20080303529 Nakamura et al. Dec 2008 A1
20080315830 Bertness Dec 2008 A1
20090006476 Andreasen et al. Jan 2009 A1
20090024266 Bertness Jan 2009 A1
20090024419 McClellan Jan 2009 A1
20090085571 Bertness Apr 2009 A1
20090146800 Grimlund et al. Jun 2009 A1
20090198372 Hammerslag Aug 2009 A1
20090203247 Fifelski Aug 2009 A1
20090237086 Andelfinger Sep 2009 A1
20090247020 Gathman et al. Oct 2009 A1
20090265121 Rocci Oct 2009 A1
20090276115 Chen Nov 2009 A1
20090311919 Smith Dec 2009 A1
20100023198 Hamilton Jan 2010 A1
20100066283 Kitanaka Mar 2010 A1
20100117603 Makhija May 2010 A1
20100145780 Nishikawa et al. Jun 2010 A1
20100214055 Fuji Aug 2010 A1
20100314950 Rutkowski et al. Dec 2010 A1
20110004427 Gorbold et al. Jan 2011 A1
20110015815 Bertness Jan 2011 A1
20110215767 Johnson et al. Sep 2011 A1
20110273181 Park et al. Nov 2011 A1
20120041697 Stukenberg Feb 2012 A1
20120046824 Ruther et al. Feb 2012 A1
20120062237 Robinson Mar 2012 A1
20120074904 Rutkowski et al. Mar 2012 A1
20120116391 Houser May 2012 A1
20120249069 Ohtomo Oct 2012 A1
20120256494 Kesler et al. Oct 2012 A1
20120256568 Lee Oct 2012 A1
20130115821 Golko May 2013 A1
20130158782 Bertness et al. Jun 2013 A1
20130311124 Van Bremen Nov 2013 A1
20140002094 Champlin Jan 2014 A1
20140117997 Bertness May 2014 A1
Foreign Referenced Citations (77)
Number Date Country
2470964 Jan 2002 CN
201063352 May 2008 CN
29 26 716 Jan 1981 DE
40 07 883 Sep 1991 DE
196 38 324 Sep 1996 DE
10 2008 036 595 Feb 2010 DE
0 022 450 Jan 1981 EP
0 391 694 Apr 1990 EP
0 476 405 Sep 1991 EP
0 637 754 Feb 1995 EP
0 772 056 May 1997 EP
0 982 159 Mar 2000 EP
1 810 869 Nov 2004 EP
1 807 710 Jul 2007 EP
1 807 710 Jan 2010 EP
2 749 397 Dec 1997 FR
154 016 Nov 1920 GB
2 029 586 Mar 1980 GB
2 088 159 Jun 1982 GB
2 246 916 Oct 1990 GB
2 275 783 Jul 1994 GB
2 387 235 Oct 2003 GB
59-17892 Jan 1984 JP
59-17893 Jan 1984 JP
59017894 Jan 1984 JP
59215674 Dec 1984 JP
60225078 Nov 1985 JP
62-180284 Aug 1987 JP
63027776 Feb 1988 JP
03274479 Dec 1991 JP
03282276 Dec 1991 JP
4-8636 Jan 1992 JP
04095788 Mar 1992 JP
04131779 May 1992 JP
04372536 Dec 1992 JP
05211724 Aug 1993 JP
5216550 Aug 1993 JP
7-128414 May 1995 JP
09061505 Mar 1997 JP
10056744 Feb 1998 JP
10232273 Sep 1998 JP
11103503 Apr 1999 JP
11-150809 Jun 1999 JP
11-271409 Oct 1999 JP
2001057711 Feb 2001 JP
2003-346909 Dec 2003 JP
2006331976 Dec 2006 JP
2009-244166 Oct 2009 JP
2010-172142 Aug 2010 JP
2089015 Aug 1997 RU
WO 9322666 Nov 1993 WO
WO 9405069 Mar 1994 WO
WO 9601456 Jan 1996 WO
WO 9606747 Mar 1996 WO
WO 9628846 Sep 1996 WO
WO 9701103 Jan 1997 WO
WO 9744652 Nov 1997 WO
WO 9804910 Feb 1998 WO
WO 9821132 May 1998 WO
WO 9858270 Dec 1998 WO
WO 9923738 May 1999 WO
WO 9956121 Nov 1999 WO
WO 0016083 Mar 2000 WO
WO 0062049 Oct 2000 WO
WO 0067359 Nov 2000 WO
WO 0159443 Feb 2001 WO
WO 0116614 Mar 2001 WO
WO 0116615 Mar 2001 WO
WO 0151947 Jul 2001 WO
WO 03047064 Jun 2003 WO
WO 03076960 Sep 2003 WO
WO 2004047215 Jun 2004 WO
WO 2007075403 Jul 2007 WO
WO 2009004001 Jan 2009 WO
WO 2010007681 Jan 2010 WO
WO 2011153419 Dec 2011 WO
WO 2012078921 Jun 2012 WO
Non-Patent Literature Citations (95)
Entry
“Electrochemical Impedance Spectroscopy in Battery Development and Testing”, Batteries International, Apr. 1997, pp. 59 and 62-63.
“Battery Impedance”, by E. Willihnganz et al., Electrical Engineering, Sep. 1959, pp. 922-925.
“Determining The End of Battery Life”, by S. DeBardelaben, IEEE, 1986, pp. 365-368.
“A Look at the Impedance of a Cell”, by S. Debardelaben, IEEE, 1988, pp. 394-397.
“The Impedance of Electrical Storage Cells”, by N.A. Hampson et al., Journal of Applied Electrochemistry, 1980, pp. 3-11.
“A Package for Impedance/Admittance Data Analysis”, by B. Boukamp, Solid State.
“Precision of Impedance Spectroscopy Estimates of Bulk, Reation Rate, and Diffusion Parameters”, by J. Macdonals et al. J. Electronal, Chem., 1991, pp. 1-11.
Internal Resistance: HArbinger of Capacity Loss in Starved Electrolyte Sealed Lead Acid Batteries, by Vaccaro, F.J. et al., AT&T Bell Laboratories, 1987 IEEE, Ch. 2477, pp. 128-131.
IEEE Recommended Practice for Maintenance, Testings, and Replacement of Large Lead Storage Batteries for Generating Stations and Substations, The Institute of Electrical and Electronics Engineers, Inc., ANSI/IEEE Std. 450-1987, Mar. 9, 1987.
“Field and Laboratory Studies to Assess the State of Health of Valve-Regulated Lead Acid Batteries: Part I Conductance/Capacity Correlation Studies”, by D. Feder et al., IEEE, Aug. 1992, pp. 218-233.
“JIS Japanese Industrial Standard-Lead Acid Batteries for Automobiles”, Japanese Standards Association UDC, 621.355.2:629.113.006, Nov. 1995.
“Performance of Dry Cells”, by C. Hambuechen, Preprint of Am. Electrochem. Soc., Apr. 18-20, 1912, Paper No. 19, pp. 1-5.
“A Bridge for Measuring Storage Battery Resistance”, by E. Willihncanz, The Electrochemical Society, preprint 79-20, Apr. 1941. pp. 253-258.
National Semiconductor Corporation, “High Q Notch Filter”, Mar. 1969, Linear Brief 5, Mar. 1969.
Burr-Brown Corporation, “Design a 60 Hz Notch Filter with the UAF42”, Jan. 1994, AB-071, 1994.
National Semiconductor Corporation, “LMF90-4th-Order Elliptic Notch Filter”, Dec. 1994, RRD-B30M115, Dec. 1994.
“Alligator Clips with Wire Penetrators” J.S. Popper, Inc. product information, downloaded from http://www.jspopper.com/, prior to Oct. 1, 2002.
“#12: LM78S40 Simple Switcher DC to DC Converter”, ITM e-Catalog, downloaded from http://www/pbcafe.com, prior to Oct. 1, 2002.
“Simple DC-DC Converts Allows Use of Single Battery”, Electronix Express, downloaded from http://www.elexp.com/t—dc-dc.htm, prior to Oct. 1, 2002.
“DC-DC Converter Basics”, Power Designers, downloaded from http://www.powederdesigners.com/InforWeb.design—center/articles/DC-DC/converter.shtm, prior to Oct. 1, 2002.
“Notification of Transmittal of the International Search Report or the Declaration”, PCT/US02/29461, filed Sep. 17, 2002 and dated Jan. 3, 2003.
“Notification of Transmittal of the International Search Report or the Declaration”, PCT/US03/07546, filed Mar. 13, 2003 and dated Jul. 4, 2001.
“Notification of Transmittal of The International Search Report or the Declaration”, PCT/US03/07837, filed Mar. 13, 2003 and dated Jul. 4, 2003.
“Notification of Transmittal of The International Search Report or the Declaration”, PCT/US03/41561; Search Report completed Apr. 13, 2004, dated May 6, 2004.
“Notification of Transmittal of The International Searc Report or the Declaration”, PCT/US03/27696, filed Sep. 4, 2003 and dated Apr. 15, 2004.
“Programming Training Course, 62-000 Series Smart Engine Analyzer”, Testproducts Division, Kalamazoo, Michigan, pp. 1-207, (1984).
“Operators Manual, Modular Computer Analyzer Model MCA 3000”, Sun Electric Corporation, Crystal Lake, Illinois pp. 1-1-14-13, (1991).
Supplementary European Search Report Communication for Appl. No. 99917402.2; dated Sep. 7, 2004.
“Dynamic modelling of lead/acid batteries using impedance spectroscopy for parameter identification”, Journal of Power Sources, pp. 69-84, (1997).
Notification of Transmittal of the International Search Report for PCT/US03/30707, filed Sep. 30, 2003 and dated Nov. 24, 2004.
“A review of impedance measurements for determination of the state-of-charge or state-of-health of secondary batteries”, Journal of Power Sources, pp. 59-69, (1998).
“Search Report Under Section 17” for Great Britain Application No. GB0421447.4, date of search Jan. 27, 2005, dated Jan. 28, 2005.
“Results of Discrete Frequency Immittance Spectroscopy (DFIS) Measurements of Lead Acid Batteries”, by K.S. Champlin et al., Proceedings of 23rd International Teleco Conference (INTELEC), published Oct. 2001, IEE, pp. 433-440.
“Examination Report” from the UK Patent Office for App. No. 0417678.0; dated Jan. 24, 2005.
Wikipedia Online Encyclopedia, INDUCTANCE, 2005, http://en.wikipedia.org/wiki/inductance, pp. 1-5, mutual Inductance, pp. 3,4.
“Professional BCS System Analyzer Battery-Charger-Starting”, pp. 2-8, (2001).
Young Illustrated Encyclopedia Dictionary of Electronics, 1981, Parker Publishing Company, Inc., pp. 318-319.
“DSP Applications in Hybrid Electric Vehicle Powertrain”, Miller et al., Proceedings of the American Control Conference, Sand Diego, CA, Jun. 1999; 2 ppg.
“Notification of Transmittal of the International Search Report and the Written Opinion of the International Searching Authority, or the Declaration” for PCT/US2008/008702 filed Jul. 2008; 15 pages.
“A Microprocessor-Based Control System for a Near-Term Electric Vehicle”, Bimal K. Bose; IEEE Transactions on Industry Applications, vol. IA-17, No. 6, Nov./Dec. 1981; 0093-9994/81/1100-0626$00.75 © 1981 IEEE, 6 pages.
Notification of Transmittal of the International Search Report and the Written Opinion of the International Searching Authority, or the Declaration for PCT/US2011/038279 filed May 27, 2011, dated Sep. 16, 2011, 12 pages.
U.S. Appl. No. 60/387,912, filed Jun. 13, 2002 which is related to U.S. Pat. No. 7,089,127.
“Conductance Testing Compared to Traditional Methods of Evaluating the Capacity of Valve-Regulated Lead-Acid Batteries and Predicting State-of-Health”, by D. Feder et al., May 1992, pp. 1-8; (13 total pgs.).
“Field and Laboratory Studies to Assess the State of Health of Valve-Regulated Lead Acid Batteries: Part I—Conductance/Capacity Correlation Studies”, by D. Feder at al., Oct. 1992, pp. 1-15; (19 total pgs.).
“Field Application of Conductance Measurements Use to Ascertain Cell/Battery and Inter-Cell Connection State-of-Health in Electric Power Utility Applications”, by M. Hlavac et al., Apr. 1993, pp. 1-14; (19 total pgs.).
“Conductance Testing of Standby Batteries in Signaling and Communications Applications for the Purpose of Evaluating Battery State-of-Health”, by S. McShane, Apr. 1993, pp. 1-9; (14 total pgs.).
“Condutance Monitoring of Recombination Lead Acid Batteries”, by B. Jones, May 1993, pp. 1-6; (11 total pgs.).
“Evaluating the State-of-Health of Lead Acid Flooded and Valve-Regulated Batteries: A Comparison of Conductance Testing vs. Traditional Methods”, by M. Hlavac et al., Jun. 1993, pp. 1-15; (20 total pgs.).
“Updated State of Conductance/Capacity Correlation Studies to Determine the State-of-Health of Automotive SLI and Standby Lead Acid Batteries”, by D. Feder et al., Sep. 1993, pp. 1-17; (22 total pgs.).
“Field and Laboratory Studies to Access the State-of-Health of Valve-Regulated Lead-Acid Battery Technologies Using Conductance Testing Part II—Further Conductance/Capacity Correlation Studies”, by M. Hlavac et al., Sep. 1993, pp. 1-9; (14 total pgs.).
“Field Experience of Testing VRLA Batteries by Measuring Conductance”, by M.W. Kniveton, May 1994, pp. 1-4; (9 total pgs.).
“Reducing the Cost of Maintaining VRLA Batteries in Telecom Applications”, by M.W. Kniveton, Sep. 1994, pp. 1-5; (10 total pgs.).
“Analysis and Interpretation of Conductance Measurements used to Access the State-of-Health of Valve Regulated Lead Acid Batteries Part III: Analytical Techniques”, by M. Hlavac, Nov. 1994, 9 pgs; (13 total pgs.).
“Testing 24 Volt Aircraft Batteries Using Midtronics Conductance Technology”, by M. Hlavac et al., Jan. 1995, 9 pgs; (13 total pgs.).
“VRLA Battery Monitoring Using Conductance Technology Part IV: On-Line State-of-Health Monitoring and Thermal Runaway Detection/Prevention”, by M. Hlavac et al., Oct. 1995, 9 pgs; (13 total pgs.).
“VRLA Battery Conductance Monitoring Part V: Strategies for VRLA Battery Testing and Monitoring in Telecom Operating Environments”, by M. Hlavac et al., Oct. 1996, 9 pgs; (13 total pgs.).
“Midpoint Conductance Technology Used in Telecommunication Stationary Standby Battery Applications Part VI: Considerations for Deployment of Midpoint Conductance in Telecommunications Power Applications”, by M. Troy et al., Oct. 1997, 9 pgs; (13 total pgs.).
“Impedance/Conductance Measurements as an Aid to Determining Replacement Strategies”, M. Kniveton, Sep. 1998, pp. 297-301; (9 total pgs.).
“A Fundamentally New Approach to Battery Performance Analysis Using DFRA™/DTIS™ Technology”, by K. Champlin et al., Sep. 2000, 8 pgs; (12 total pgs.).
“Battery State of Health Monitoring, Combining Conductance Technology With Other Measurement Parameters for Real-Time Battery Performance Analysis”, by D. Cox et la., Mar. 2000, 6 pgs; (10 total pgs.).
Search Report and Written Opinion from PCT Application No. PCT/US2011/026608, dated Aug. 29, 2011, 9 pgs.
Examination Report under section 18(3) for corresponding Great Britain Application No. GB1000773.0, dated Feb. 6, 2012, 2 pages.
Communication from GB1216105.5, dated Sep. 21, 2012.
Notification of Transmittal of the International Search Report and Written Opinion from PCT/US2011/039043, dated Jul. 26, 2012.
Notification of Transmittal of the International Search Report and Written Opinion from PCT/US2011/053886, dated Jul. 27, 2012.
“Field Evaluation of Honda's EV PLUS Battery Packs”, by A. Paryani, IEEE AES Systems Magazine, Nov. 2000, pp. 21-24.
Search Report from PCT/US2011/047354, dated Nov. 11, 2011.
Written Opinion from PCT/US2011/047354, dated Nov. 11, 2011.
First Office Action (Notification of Reasons for Rejections) dated Dec. 3, 2013 in related Japanese patent application No. 2013-513370, 9 pgs. Including English Translation.
Official Action dated Jan. 22, 2014 in Korean patent application No. 10-2012-7033020, 2 pgs including English Translation.
Official Action dated Feb. 20, 2014 in Korean patent application No. 10-2013-7004814, 6 pgs including English Translation.
First Office Action for Chinese Patent Application No. 201180011597.4, dated May 6, 2014, 20 pages.
Office Action from Korean Application No. 10/2012-7033020, dated Jul. 29, 2014.
Office Action for Chinese Patent Application No. 201180038844.X, dated Jul. 1, 2014.
Office Action for Chinese Patent Application No. 201180030045.8, dated Jul. 21, 2014.
Office Action for German Patent Application No. 1120111020643 dated Aug. 28, 2014.
Office Action from Japanese Patent Application No. 2013-513370, dated Aug. 5, 2014.
Office Action from Japanese Patent Application No. 2013-531839, dated Jul. 8, 2014.
Office Action for German Patent Application No. 103 32 625.1, dated Nov. 7, 2014, 14 pages.
Office Action from Chinese Patent Application No. 201180038844.X, dated Dec. 8, 2014.
Office Action from CN Application No. 201180011597.4, dated Jan. 6, 2015.
Office Action for Chinese Patent Application No. 201180030045.8, dated Mar. 24, 2015.
Office Action for Japanese Patent Application No. 2013-531839, dated Mar. 31, 2015.
Notification of Transmittal of the International Search Report and Written Opinion from PCT/US2014/069661, dated Mar. 26, 2015.
Internal Resistance: Harbinger of Capacity Loss in Starved Electrolyte Sealed Lead Acid Batteries, by Vaccaro, F.J. et al., AT&T Bell Laboratories, 1987 IEEE, Ch. 2477, pp. 128,131.
“Improved Impedance Spectroscopy Technique for Status Determination of Production Li/SO2 Batteries” Terrill Atwater et al., pp. 10-113, (1992).
“Notification of Transmittal of The International Search Report or the Declaration”, PCT/US03/06577, filed Mar. 5, 2003 and dated Jul. 24, 2003.
“Notification of Transmittal of The International Search Report or the Declaration”, PCT/US03/07837, filed Mar. 14, 2003 and dated Jul. 4, 2003.
Office Action for Chinese Patent Application No. 201180038844.X, dated Jun. 8, 2015.
Office Action from Chinese Patent Application No. 201180011597.4 dated Jun. 3, 2015.
European Search Report from European Application No. EP 15151426.2, dated Jun. 1, 2015.
Notification of Transmittal of the International Search Report and the Written Opinion from PCT/US2016/014867, dated Jun. 3, 2016.
Office Action from Japanese Patent Application No. 2015-014002, dated Jul. 19, 2016.
Notification of Transmittal of the International Search Report and the Written Opinion of the International Searching Authority from PCT/US2016/02696, dated Aug. 24, 2016.
Office Action from German Patent Application No. 10393251.8, dated Nov. 4, 2016, including English translation.
Related Publications (1)
Number Date Country
20140002094 A1 Jan 2014 US
Provisional Applications (1)
Number Date Country
61665456 Jun 2012 US