Many industries deal with the application of color to manufactured products and other objects. In these industries, it is often a difficult challenge to effectively define and communicate object color. For example, in the automotive finish industry, it is difficult to match and verify the finish of a car for purposes of quality control in manufacturing, auto body repair, identifying and matching replacement parts, and other similar activities. In the commercial printing industry, it is difficult to define a color and predict how the color will appear when applied to objects having different surface properties (e.g., different paper types). Many other industries experience similar problems including, for example, the commercial paint industry, the architectural paint industry, the clothing/textile industry, etc.
These challenges are addressed to some extent using comparison samples. Each comparison sample has a single color applied to a single surface type. A user verifies or matches a color applied to an unknown surface by manually comparing the unknown surface to different comparison samples and finding the best match. For example, before painting a room, a homeowner may take a number of paint chips from a hardware store and manually select the chip that best matches the other features of the room. In another example, before refinishing a car, an auto body shop may compare the car's original finish to a number of finished plates and select a new finish by determining which plate best matches the original. Often, the process of comparing involves viewing the comparison samples in a number of different orientations and ambient lighting situations.
Although comparison samples can be effective in the hands of a skilled user, they also have certain drawbacks. First, it is costly to produce, distribute and store comparison samples. For example, auto body shops, hardware stores, etc., expend considerable resources purchasing and stocking comparison plates for all surface types. In addition, the number of colors for comparison is strictly limited by the number of available comparison samples. Accordingly, to obtain the best comparison possible, there is no way to avoid acquiring and stocking a large number of samples.
According to one general aspect, the present invention is directed to a processor-based device for displaying simulated or modeled surface appearances based on surface color and surface texture data stored in a data storage. By selecting different combinations of color and texture, different surface appearances may be modeled and displayed. Also, the device may comprise an orientation sensor. Accordingly, the device may additionally consider the orientation of the device when generating surface appearances.
According to another general aspect, the processor may be configured to generate a plurality of Bidirectional Reflectance Distribution Functions (BRDF's) considering surface type parameters stored at data storage. Each of the BRDF's may correspond to a point positioned on a surface. The processor may solve the plurality of BRDF's for a given set of environmental conditions and also map the results to a display.
According to various embodiments, the processor may communicate with a surface measurement device that measures at least one property of a surface. The processor may also be configured to generate the simulated surface appearance based on the property of the surface and environmental factors. The surface measurement device may be in wired or wireless communication with the device, and/or may be integrated with the device, for example, in a common enclosure.
Various embodiments of the present invention are described herein by way of example in conjunction with the following figures wherein:
Various embodiments of the present invention are directed to a device for computing and displaying simulated or modeled surface appearances and methods of operating and using the device. The device may have the capability to display a modeled surface appearance as it would be perceived under different environmental conditions (e.g., different viewing angles, different ambient lighting conditions, etc.). The device may compute the modeled surface appearances considering data stored in the device that allows it to display multiple surface types. The device may have a number of uses. For example, the devices may be used as a replacement for and improvement over traditional comparison samples, such as paint samples, carpet samples, etc. When a surface appearance is displayed by the device, a user may compare the device display to other surfaces/objects just as they would with a comparison sample.
The surface type to be displayed and the environmental conditions under which it is modeled may be specified, for example, by the user. Also, some embodiments of the device may include sensors for sensing environmental conditions, such as viewing angle, ambient lighting, etc. This may allow the device to display surface appearances based on the actual ambient conditions surrounding the device, causing the device to behave more like a traditional comparison sample. Also, devices according to the present disclosure may be integrated or used in conjunction with surface measuring instruments, such as spectrophotometers, colorimeters, etc. For example, a user may use the surface measuring instrument(s) to measure a known surface, and later use the device of the present invention to recreate the surface under any desired environmental conditions.
The display 302 preferably has a resolution high enough to render desired surfaces and surface appearances. Preferably, the display 102 has a resolution of 72 dots per inch (dpi) or greater. For example, displays with resolutions of 300 dpi, 600 dpi, 1200 dpi, 2400 dpi, or higher may also be used. Preferably, the display 102 may also be chosen with a suitably wide color gamut, such as that of standard Red Green Blue (sRGB) or greater. In various embodiments, the display 102 may be chosen with a color gamut similar to the gamut perceptible by human sight.
The display 102 may be constructed according to any emissive or reflective display technology with a suitable resolution and color gamut. For example, the display 102 may be constructed according to liquid crystal display (LCD) technology. The LCD may be backlight by any suitable illumination source. The color gamut of an LCD display, however, may be widened or otherwise improved by selecting a light emitting diode (LED) backlight or backlights. In another example, the display 102 may be constructed according to emissive polymeric or organic light emitting diode (OLED) technology. According to various embodiments, the display 102 may be constructed according to a reflective display technology, such as electronic paper or ink. A reflective display may have the added advantage of being viewed predominantly using ambient light, which may simplify the consideration of environmental factors. Known makers of electronic ink/paper displays include E INK and XEROX.
Preferably, the display 102 also has a suitably wide field of view that allows it to generate an image that does not wash out or change severely as the user views the display 102 from different angles. Because LCD displays operate by polarizing light, some models exhibit a high degree of viewing angle dependence. Various LCD constructions, however, have comparatively wider fields of view and may be preferable for that reason. For example, LCD displays constructed according to thin film transistor (TFT) technology may have a suitably wide field of view. Also, displays 102 constructed according to electronic paper/ink and OLED technologies may have fields of view wider than many LCD displays, and may be selected for this reason. Some degree of viewing angle dependence may be tolerated in the display 102, according to various embodiments, however, depending on desired performance.
The processor 104 may be any suitable kind of processor. According to various embodiments, the processor 104 may comprise a graphics processing unit (GPU) specifically designed to handle graphics processing. For example, suitable GPU's are available from NVIDIA and ATI GRAPHICS. The processor 104 may also be in communication with memory 112 and suitable input/output devices 114. The input/output devices 114 may allow a user to configure the device 100 and/or select parameters of the surface appearance to be displayed (e.g., surface type, environmental conditions such as ambient light parameters, surface orientation parameters, etc.). In various embodiments, the device 100 may provide a menu-driven user interface on the display 102 or on a secondary display (not shown) allowing the user to enter this information. In addition to other peripherals, the processor 104 may be in communication with a computer 116 via wired or wireless data link 115, such as, for example, a RS232 or Universal Serial Bus (USB) link.
The databases 106, 108, 110 may store color, texture and shape information describing surfaces which may be rendered by the device. The color database 106 may include color information describing surfaces. The color information may be described, for example, as tristimulus values (e.g., RGB), which may describe color in terms of human perception. The color information may also be described, for example, as a spectral curve describing the scatter off of the surface over a plurality of wavelengths. The colors stored in the database 106 may include those of one or more color libraries (e.g., MLTNSELL, PANTONE, NCS, etc.). The texture database 108 may include information regarding surface textures and/or patterns to be modeled including wood finishes, carpets, wallpapers, fabrics, paints, automotive finishes, different paper types, etc. Texture information stored at database 108 may include, for example, indications of surface roughness, indications of the spatial frequency of surface features, images of example surface textures, etc. The shape database 110 may include information regarding various shapes that a surface may be modeled on including, for example, the shape of a car fender, geometric shapes, etc. For example, shape information may define a shape in terms of facets or sides, or in terms of its vertices. Other surface information (e.g., additional patterns, dielectric constants and/or other material properties, etc.) may be stored in one or more other databases, such as other database 107. In various embodiments, the color, texture and shape information stored at the databases 106, 108, 110 may be tailored to a particular industry in which the device will be used. For example, a device 100 to be used in the automotive industry may store the colors and textures of auto finishes, the shapes of auto body pieces, etc. Information stored at the databases 106, 108, 110 may be uploaded to and/or downloaded from the device 100 from the computer 116.
Referring again to
Before displaying a surface, the device 100 may either generate a model of surface appearance, or receive data from a pre-generated model. Models of surface appearance may be based on properties of the surface to be rendered (e.g., color characteristics, surface features/texture, etc,) as well as the environmental conditions under which the surface is to be viewed (e.g., ambient lighting conditions, viewing angles, etc.). The contributions of each of these factors to surface appearance can be modeled for any given point on the surface with a Bi-Directional Reflectance Distribution Function (BRDF) of the surface point. The BRDF may be expressed as:
BRDF=BRDF(λ,G(f,r)) (1)
Lambda (λ) is the wavelength of illumination considered. The vector f represents the properties of ambient illumination (e.g., Lux level, spectral content, directional properties, etc.). The vector r represents the position vector of the surface at the surface point relative to the user's vantage point. The function G represents the relationship between f and r. The relationship between λ, f, r and C (e.g., the BRDF function) may depend on the properties of the surface. To generate a surface appearance, the BRDF may be solved for each point on the surface and for each desired wavelength given values of f and r.
It will be appreciated that, according to various embodiments, the BRDF may be expressed at differing levels of complexity. For example, the relationships between G, f, r, and λ may be expressed at different levels of mathematical detail. According to various embodiments, G(f,r) may be represented as shown below in Equation (2):
G(f,r)=(1/A0)|∫A0drei2πfrP(r)|2 (2)
where P(r) represents the way that illumination will be scattered by the surface, and may be expressed as:
P(r)=Psys(r)·Psam(r) (3)
Referring to Equation (3), Psys may represent a pupil function of the measuring system and Psam nay represent a contribution of the sample. Also, the BRDF may be expressed to consider factors in addition to λ, f, r and G. For example, Equation (4) below considers a polarization factor, Φba and a factor due to Fresnel reflection, Ra.
BRDFba=(1/λ2)Φba(φ2)Ra(θi)G(f) (4)
In addition, BRDF may be approximated according to various methods, for example, as described below with respect to process flows 301 and 303.
The level of mathematical complexity used to represent the BRDF for any given embodiment may be chosen based on various factors. For example, the complexity of the BRDF function used may be determined considering the processing power and/or memory constraints of the device 100. Also, the complexity of the surface to be rendered may be considered. If a particular parameter (e.g., polarization, Fresnel reflection, etc.) has a negligible effect on BRDF for a given surface/illumination condition combination, that particular parameter may be dropped from the BRDF.
The modeled ambient light sources 404 may collectively bring about ambient illumination conditions, f such as Lux level, spectral content, dominate illumination direction(s), etc. Lux level may describe the general level of ambient light incident on the surfaces 401, 403. Spectral content may describe the spectral components of the ambient light. The dominant illumination direction or directions may represent the primary direction or directions from which ambient light is incident. If the appearance of the surface is modeled in an environment where there are one or a few ambient light sources 404, then there may be one or a few distinct dominant illumination directions. On the other hand, if the appearance of the surface is modeled in a diffuse ambient environment including multiple sources or diff-use sources, there may not be a dominant illumination direction. Also, according to various embodiments, the contributions of the individual modeled illumination sources 404 to Lux level, spectral content and illumination directions may be considered collectively or individually.
At step 304, a BRDF may be generated to represent the appearance of the surface at each of the points. The BRDF may be derived based on information regarding, color, texture and/or other perceptual spatial effects stored, for example, at data storage 105. According to various embodiments, the actual combination of color texture, etc., used to generate the BRDF's may be received from a user. For example, the user may select various surface features from a menu provided on the display 102.
At step 306, the ambient illumination conditions under which the surface appearance will be modeled may be received and/or derived. The ambient illumination conditions may be represented as one set of values describing all ambient illumination (e.g., Lux level, spectral content, dominant illumination direction) or as the individual contributions of individual modeled light sources 404, 407. For example, if there are a large number of illumination sources, or the modeled illumination is to be diffuse, then one set of values generally describing the ambient illumination may be used. In contrast, if there are only a few modeled illumination sources 404 or the modeled sources 404 are not diffuse, then the contribution of each may be considered individually. According to various embodiments, a user may specify actual values of Lux level, spectral content, etc. describing individual illumination sources. The device (e.g., with processor 104) may then determine whether to model the sources individually or collectively and derive the relevant values.
At step 308, the directional position of each surface appearance point relative to a vantage point may be determined. For example, the distances (e.g., d1, d2, d3, etc.) and angles (e.g., 406, 408) between the vantage point 402 and each appearance point may be found. According to various embodiments, the location of the vantage point 402 may be assumed. For example, it may be assumed that a typical user looks at the display 102 and holds it at a given angle and distance relative to their eyes. Also, according to various embodiments, the location of the vantage point 402 may be entered and/or modified by the user. It will be appreciated that the physical distance between the surface and vantage point may have a substantial effect on surface appearance, especially for surfaces with extreme texture.
At step 310, the BRDF functions for each modeled point may be solved over a desired range of wavelengths given the environmental conditions derived at steps 306 and 308. According to various embodiments, the desired wavelength range may include a series of wavelengths across the visible spectrum. The precise wavelengths and wavelength intervals may be determined according to any suitable method. The result may be a modeled appearance of the surface at each point.
The appearances of each modeled point may be mapped to the display 102 at step 312, causing the display 102 to show an appearance of the surface. When the surface is two-dimensional, such as surface 401 shown in
When using some existing graphics hardware/software, it may not be practical to derive and solve a complete BRDF for each modeled point on a surface, as described above. Instead, it may be preferable to make approximations for the various BRDF components to generate an approximate surface appearance. The process flow 301, shown in
At step 316, a texture map for the surface may be selected. The texture map may represent a portion of the complete BRDF due to surface texture, including relief texture as well as subsurface features (e.g., metal flakes in pearlescent auto finishes, etc.). The texture map may be selected by the user from a pre-measured and/or modeled selection of texture maps (e.g., stored at database 108). The texture map may take any suitable form. For example, the texture map may be represented as a spatial frequency and amplitude. Also, the texture map may include the measured physical dimensions of an actual surface and/or an image of a given surface texture with color information removed (e.g., a grayscale image).
At step 318, the average BRDF and texture map may be combined to form an approximation of the complete BRDF. This approximate BRDF may mathematically express the appearance of the surface for each modeled point on the surface in terms of one or a number of environmental factors. The environmental factors may include any other factors that affect the appearance of the surface including, for example, observed wavelength, ambient illumination conditions, and positional conditions, as described above. The number of points whose appearance is to be modeled may be determined, for example, based on the resolution of the available texture map. At step 320, the approximate BRDF may be solved for each point given a set of model environmental factors. The set of model environmental factors may be default factors, or may be selected by the user, for example, as described above. The result of solving the approximate BRDF may be a set of pixel values or a modeled surface appearance, which may be mapped to the display 102 at step 322.
When the surface to be displayed is a three-dimensional surface, the process flow 301 may be modified, for example, as shown by process flow 303 shown in
According to various embodiments of the process flows 300, 301, 303, after the surface appearance is displayed, the user may be able to adjust various environmental factors in real time or near real time (e.g., using the thumb wheel 204, directional switch 202 and/or touch screen 206). For example, the vantage point 402 and/or modeled illumination sources 404, 407 may be virtually moved relative to the surfaces 401, 403. Also, the surfaces 401, 403 themselves may be moved relative to the sources 404 and/or vantage point 402 by virtually rotating them about axes 501, 503, 505. In response, the device 100 may recalculate the surface appearance given the changed environmental factors and display the modified surface appearance.
As shown by
Orientation sensor(s) 602 may sense the pitch, roll and yaw of the device, for example, about axes 501, 503 and 505 shown in
Orientation sensors 602 may be placed within the enclosure 201 and may include any suitable types of sensors capable of sensing motion of the device 100 about one or more of the axes 501, 503, 505. For example, sensors 602 may include a micro-electro-mechanical (MEM) gyroscopic sensor or sensors, such as those available from INVENSENCE CORP. of Santa Clara Calif. Sensors 602 may also include one or more inclinometers, accelerometers, etc., instead of or in addition to gyroscopic sensors. When the user is encouraged to tip, tilt or rotate the device 100, as described, the user's viewing angle relative to the display 102 may physically change. The degree to which the user may vary the viewing angle may be limited by the field of view of the display 102. Accordingly, it may be preferable to select a display 102 with a relatively wide field of view, such as, for example, a TFT LCD display, an electronic paper/ink display, an OLED display, etc.
Illumination sensor(s) 606 may sense ambient illumination conditions surrounding the device 100 including, for example, Lux level, spectral content, and dominant illumination direction. Because of the illumination sensor(s) 606, the device 100 may be able to consider the effects of real illumination sources 420 (
The vantage point sensor 608 may be used to locate the vantage point 402 and may also be implemented as a CMOS imaging module, embedded camera, or similar device. The location of the vantage point 402 may be derived from the resulting images. For example, a human eye or eyes may be identified in the image according to any suitable algorithm. It may be assumed that the eye or eye(s) are directed toward the display 102. Also, the distances to the respective points (e.g., d1, d2, d3) may be assumed based, for example, on the orientation of the device 100 as sensed by the orientation sensors 602. For example, when the user holds the device 100 at a position near eye level, they may tend to initially hold it at a more upright angle than when they hold it at a position near the waist. The distances may also be derived by considering the complexity of the surface. For example, when a displayed surface has many fine features, the user may tend to hold the display 102 closer to the eyes.
From the position of the eye(s) in the image, the direction of the eye(s), and the distances (e.g., d1, d2, d3), the vantage point 402 position may be derived and incorporated into the dependant environmental factors considered by the BRDF or approximate BRDF (e.g., as the vector r). Also, according to various embodiments the vantage point sensor 608 and illumination sensor 606 may be implemented as a single sensor 604 with both vantage point position and illumination information derived from resulting images.
According to various embodiments, it may be desirable to provide tactile feedback to a user of the device 100 regarding the touch or feel of the surface 401, 403. Accordingly, the device 100 may include a texture plaque or chip. The texture plaque may exhibit a variable texture based on input. For example, the texture plaque may include a MEM device having multiple retractable features, and/or may include an electrostatic device capable of recreating the sensation of texture. The texture plaque may be in communication with the processor 104 and may receive as input a texture map, such as the texture map described above with respect to the approximate BRDF. In response, the texture plaque may generate a tactile surface that, to the touch, approximates the physical texture of the surface (e.g., as derived from texture map). According to various embodiments, the texture plaque may be substantially transparent and may be positioned over the display 102. This may allow the user to see and touch a modeled surface at the same location. According to certain embodiments, the texture plaque may be embedded within the enclosure 201 in a field 902 separate from the display 102, for example, as shown by
Many of the embodiments described herein can be implemented as stand-alone devices. It will be appreciated, however, that the functionality of the device 100 may be implemented on any other instrument having a screen, sensors, data storage, etc., as desired. For example, devices such as cell phones, personal digital assistants (PDA's), computers, televisions, etc., may be manufactured with the functionality of the device 100.
According to various embodiments, the functionality of the device 100 may be added to a variety of other devices. For example, a surface appearance card 1100 may be provided with a processor 1102, data storage 1104, sensors 1106, and a color/texture device 1108 as described in more detail below. The surface appearance card 100 may be introduced into another device, such as cell phone 1110 or PDA 1112. For example, the surface appearance card 1100 may be configured to mimic a flash memory card or other peripheral device and may be received into a peripheral device socket of the device 1110 or 1112. The card 1100 may then allow the device 1110 or 1112 to model and display surface appearances on their preexisting displays. According to various embodiments, the card 1100 may interrogate the device display and modify the rendered surface appearances according to the capabilities of the display (e.g., resolution, field of view, etc.). Also, it will be appreciated that certain components of the card 1100 may be omitted based on the device into which it will be introduced. For example, the card 1100 may utilize a processor, data storage, and/or sensors already included in the device 1110 or 1112.
According to various embodiments, the device 100 described herein may be coupled with the capability to capture surface properties of real surfaces (e.g., color, texture, BRDF, etc.). For example,
Referring back to
It will be appreciated that the appearance of a surface may be recreated from the surface BRDF measured by a spectrophotometer or similar instrument. According to various embodiments, the BRDF may used directly to calculate the appearance of the surface at each point or pixel considering relevant environmental conditions, for example, as described above with respect to process flow 300. Alternatively, an average BRDF and texture map may be derived from the full BRDF and used, for example, as described above with respect to process flows 301, 303.
According to other various embodiments, the device 1302 may comprise a calorimeter or other color measuring device and a second instrument for generating a texture, such as a multi-angle illuminator, flatbed scanner, or laser scanner. Again, these devices may be integrated into the device 1300 or simply placed in communication with it. The colorimeter or other color measuring device may be any suitable calorimeter including, for example, model DTP22, available from X-RITE. The colorimeter may be used to measure a quantity equivalent to the color of the device and/or the average BRDF described above. The other texture instrument may then be used to generate a texture map. For example, a multi-angle illuminator such as the PLATE SCAN available from X-RITE may be used. A multi-angle illuminator may be able to generate an orientation dependent texture map of a surface because it is able to illuminate the surface from multiple angles. Alternatively, a flat bed scanner may be used to generate the texture map. Because many flat bed scanners only illuminate from one direction, however, multiple readings from different surface orientations may be combined to generate a robust texture map. Also, it will be appreciated that texture may be measured directly using a laser scanner or other similar device. According to various embodiments, a texture map scanning device may be omitted, and a texture map for recreating a surface scanned by the colorimeter may be recreated using a texture map selected from the texture database 108.
As described, the surface measurement device 1302 may be integrated with the device 1300, or may be a stand-alone unit in communication with the device 1300. For example,
According to various embodiments, the devices 100, 1300 may include functionality for matching and/or selecting colors/surface appearances. According to various embodiments, the devices 100, 1300 may select a surface appearance that matches or complements a second surface appearance. For example, the user may select a first surface appearance from the various databases 106, 108, 110 or by scanning a physical surface as described above. The device 100, 1300 may then select a second surface appearance considering the first appearance. For example, the device 100, 1300 may select a second surface appearance that is equivalent to the first. This may be useful, for example, to match coatings in an auto body repair setting. According to various embodiments, both surface appearances may be displayed on the display 102 simultaneously.
According to various embodiments, the second surface appearance may be selected to complement the first. For example, an interior designer may measure the surface appearance of a first object in a room and select a wall or floor covering surface appearance based thereon. The complementary surface appearance may be selected according to any suitable criteria. For example, the complementary surface appearance may be selected based on color theory (e.g., dyadic and triadic colors). Also, the complementary surface appearance may be selected based on color and appearance relationships that are currently popular or trendy. In addition, the complementary surface appearances may be selected based on input from the user. For example, the devices 100, 1300 (e.g., via display 102) may prompt the user to enter information to help identify the complementary/trendy surface appearance. The information may include, for example, illumination characteristics of a room or place where the second surface will be located, other colors or surface appearances to be used nearby, texture differences between surfaces in the room or area, etc.
It is to be understood that the figures and descriptions of the present invention have been simplified to illustrate elements that are relevant for a clear understanding of the present invention, while eliminating other elements, for purposes of clarity. Those of ordinary skill in the art will recognize that these and other elements may be desirable. However, because such elements are well known in the art and because they do not facilitate a better understanding of the present invention, a discussion of such elements is not provided herein.
As used herein, a “computer,” “computer system,” and the like, may be, for example and without limitation, either alone or in combination, a personal computer (PC), server-based computer, main frame, server, microcomputer, minicomputer, laptop, personal data assistant (PDA), cellular phone, pager, processor, including wireless and/or wireline varieties thereof, a virtual computer system and/or any other computerized device or construct capable of configuration for processing data for standalone application and/or over a networked medium or media. Computers and computer systems disclosed herein may include operatively associated memory for storing certain software applications used in obtaining, processing, storing and/or communicating data. It can be appreciated that such memory can be internal, external, remote or local with respect to its operatively associated computer or computer system. Memory may also include any means for storing software or other instructions including, for example and without limitation, a hard disk, an optical disk, floppy disk, ROM (read only memory), RAM (random access memory), PROM (programmable ROM), EEPROM (extended erasable PROM), and/or other like computer-readable media.
The described systems may include various modules and/or components implemented as software code to be executed by a processor(s) of the systems or any other computer system using any type of suitable computer instruction type. The software code may be stored as a series of instructions or commands on a computer readable medium. The term “computer-readable medium” as used herein may include, for example, magnetic and optical memory devices such as diskettes, compact discs of both read-only and writeable varieties, optical disk drives, and hard disk drives. A computer-readable medium may also include memory storage that can be physical, virtual, permanent, temporary, semi-permanent and/or semi-temporary. A computer-readable medium may further include one or more data signals transmitted on one or more carrier waves.
While several embodiments of the invention have been described, it should be apparent that various modifications, alterations and adaptations to those embodiments may occur to persons skilled in the art with the attainment of some or all of the advantages of the present invention. It is therefore intended to cover all such modifications, alterations and adaptations without departing from the scope and spirit of the present invention.
Any patent, publication, or other disclosure material, in whole or in part, that is said to be incorporated by reference herein is incorporated herein only to the extent that the incorporated materials does not conflict with existing definitions, statements, or other disclosure material set forth in this disclosure. As such, and to the extent necessary, the disclosure as explicitly set forth herein supersedes any conflicting material incorporated herein by reference. Any material, or portion thereof, that is said to be incorporated by reference herein, but which conflicts with existing definitions, statements, or other disclosure material set forth herein will only be incorporated to the extent that no conflict aisles between that incorporated material and the existing disclosure material.
Number | Name | Date | Kind |
---|---|---|---|
5710876 | Peercy et al. | Jan 1998 | A |
5774357 | Hoffberg et al. | Jun 1998 | A |
5805782 | Foran | Sep 1998 | A |
5903454 | Hoffberg et al. | May 1999 | A |
5912739 | Fowler et al. | Jun 1999 | A |
6023523 | Cohen | Feb 2000 | A |
6141725 | Tucker et al. | Oct 2000 | A |
6184847 | Fateh et al. | Feb 2001 | B1 |
6222937 | Cohen et al. | Apr 2001 | B1 |
6268857 | Fishkin et al. | Jul 2001 | B1 |
6349300 | Graf et al. | Feb 2002 | B1 |
6359603 | Zwern | Mar 2002 | B1 |
6411275 | Hedberg | Jun 2002 | B1 |
6445364 | Zwern | Sep 2002 | B2 |
6486879 | Nagano et al. | Nov 2002 | B1 |
6639594 | Zhang et al. | Oct 2003 | B2 |
6741655 | Chang et al. | May 2004 | B1 |
6765573 | Kouadio | Jul 2004 | B2 |
6903738 | Pfister et al. | Jun 2005 | B2 |
6906643 | Samadani | Jun 2005 | B2 |
6928454 | Menner et al. | Aug 2005 | B2 |
6937272 | Dance | Aug 2005 | B1 |
6977675 | Kotzin | Dec 2005 | B2 |
7079137 | Borshukov | Jul 2006 | B2 |
7109967 | Hioki et al. | Sep 2006 | B2 |
7200262 | Sawada | Apr 2007 | B2 |
7250998 | Narutaki et al. | Jul 2007 | B2 |
7456823 | Poupyrev | Nov 2008 | B2 |
7565005 | Sawada | Jul 2009 | B2 |
20020126117 | Grzeszczuk | Sep 2002 | A1 |
20020184232 | Menner et al. | Dec 2002 | A1 |
20030011596 | Zhang | Jan 2003 | A1 |
20030030639 | Ritter | Feb 2003 | A1 |
20030038822 | Raskar | Feb 2003 | A1 |
20030195901 | Shin et al. | Oct 2003 | A1 |
20030198008 | Leapman et al. | Oct 2003 | A1 |
20030234797 | Williams et al. | Dec 2003 | A1 |
20040001059 | Pfister et al. | Jan 2004 | A1 |
20040008191 | Poupyrev et al. | Jan 2004 | A1 |
20040070565 | Nayar et al. | Apr 2004 | A1 |
20040078299 | Down-Logan et al. | Apr 2004 | A1 |
20040150643 | Borshukov | Aug 2004 | A1 |
20040204859 | Knobloch | Oct 2004 | A1 |
20050083293 | Dixon | Apr 2005 | A1 |
20050090919 | Pogue | Apr 2005 | A1 |
20050280648 | Wang et al. | Dec 2005 | A1 |
20060106146 | Xia | May 2006 | A1 |
20060158881 | Dowling | Jul 2006 | A1 |
20060210153 | Sara | Sep 2006 | A1 |
20060238502 | Kanamori et al. | Oct 2006 | A1 |
20060262140 | Kujawa et al. | Nov 2006 | A1 |
20060279732 | Wang et al. | Dec 2006 | A1 |
20070004513 | Wells et al. | Jan 2007 | A1 |
20070061101 | Greene et al. | Mar 2007 | A1 |
20070153357 | Noh et al. | Jul 2007 | A1 |
20070222922 | Jin et al. | Sep 2007 | A1 |
20070238957 | Yared | Oct 2007 | A1 |
20070247422 | Vertegaal et al. | Oct 2007 | A1 |
20070276590 | Leonard et al. | Nov 2007 | A1 |
20110301453 | Ntziachristos et al. | Dec 2011 | A1 |
Number | Date | Country |
---|---|---|
1202222 | May 2002 | EP |
WO 2004018984 | Mar 2004 | WO |
Entry |
---|
Ikei et al., Texture Presentation by Vibratory Tactile Display, Proceedings of the IEEE 1997 Virtual Albuqurque, Mar. 1-5, 1997 and Proceedings of the IEEE Virtual Realtiy Alamitos, IEEE Comp. Soc. Press, US, Mar. 1, 1997, pp. 199-205. |
Dana, et al., Textured Surface Modeling, IEEE Workshop on the Integration of Appearance and Geometric Modelling, 1999, pp. 199-2005. |
PCT International Search Report dated Oct. 23, 2008. |
Andy Lindsay, “Accelerometer—Tilt, Graphics and Video Games,” last revised on Apr. 24, 2005, printed from www.parallax.com/dl/docs/prod/compshop/TiltDispCntrl.pdf on Dec. 21, 2006. |
William Yerazunis et al., “Active Display Stabilization,” White Paper, Mitsubishi Electronics Research Laboratories, last revised on Jul. 18, 2001, printed from www.merl.com/projects/shaky-display on Dec. 21, 2006. |
Sergey Ershov et al., “Rendering Peralescent Appearance Based on Paint-Composition Modelling,” Eurographics 2001, vol. 20, No. 3 (2001). |
James Elmer Harvey, “Light Scattering Characteristics of Optical Surfaces,” The University of Arizona, Ph.D. Thesis, 1976. |
Number | Date | Country | |
---|---|---|---|
20080158239 A1 | Jul 2008 | US |