The present invention relates to backings for surface coverings, and more particularly relates to backings which contain recycled material as well as methods of making such products and incorporating them into surface coverings.
At the present time, most of the post-consumer vinyl backed carpets and carpet manufacturing waste go to landfills or are destroyed by other means such as burning. With the environment being of a global concern, the disposal of vinyl backed carpets and manufacturing waste which is currently done is not an acceptable option.
Further, recycling of vinyl backed carpets has been attempted but at most, manufacturers have taken recycled material and reduced it to liquid plastisol form in order to form a carpet backing with conventional coating and curing processes. However, such a process has limitations in that only very small amounts of recycled material can be incorporated into a plastisol mix, such as about 5% or less by weight, and because the oil absorption of recycled material is very high, high levels of plasticizers in plastisols are needed which can lead to further problems. With high levels of plasticizers and plastisols, further processing by conventional methods can become difficult, if not impossible.
Thus, there is a desire by manufacturers to develop ways to use recycled material like carpet backing, such that large amounts of recycled material can be incorporated into products.
A feature of the present invention is to provide a material, e.g., a surface covering, that can contain up to 100% recycled material in one or more components or layers.
Another feature of the present invention is to provide a backing for a surface covering containing recycled material.
An additional feature of the present invention is to provide a surface covering containing a backing or intermediate layer which uses up to 100% recycled material.
A further feature of the present invention is to provide a method of making a backing from recycled material and incorporating the backing into surface coverings.
Additional features and advantages of the present invention will be set forth in part in the description which follows, and in part will be apparent from the description, or may be learned by the practice of the present invention. The objectives and other advantages of the present invention will be realized and attained by means of the elements and combinations particularly pointed out in the written description and appended claims.
To achieve these and other advantages and in accordance with the purposes of the present invention, as embodied and broadly described herein, the present invention relates to a backing or an intermediate layer for a surface covering which contains a fused recycled powder. The recycled powder contains at least a thermoplastic material and the backing or intermediate layer can optionally include other materials, including virgin thermoplastic materials.
The present invention further relates to a surface covering which contains the backing described above.
The present invention, in addition, relates to a method of making a backing or intermediate layer for a surface covering and includes the steps of applying at least recycled powder to a substrate to form a layer, where the recycled powder contains at least one thermoplastic material; and fusing the recycled powder to form a continuous backing, or intermediate layer.
It is to be understood that both the foregoing general description and the following detailed description are exemplary and explanatory only and are intended to provide a further explanation of the present invention, as claimed.
The accompanying drawings, which are incorporated in and constitute a part of this application, illustrate embodiments of the present invention and together with the descriptions serve to explain the principles of the present invention.
a-e are cross-sectional views of surface coverings according to several embodiments of the present invention.
The present invention relates to a backing (also known as a backing layer) and can be a secondary backing or an intermediate backing layer for a surface covering. In one embodiment, the backing layer or intermediate layer contains at least a fused recycled material. The recycled material contains at least one thermoplastic material. Various coatings or layers are discussed herein, and unless stated otherwise, are preferably of a substantially uniform thickness and can be applied using techniques known to those skilled in the art.
For purposes of the present invention, a surface covering can be any surface covering which makes use of a backing and/or intermediate layer, such as a floor covering, wall covering, ceiling covering, countertop covering, and the like. Examples of floor coverings include, but are not limited to, textile substrates, such as carpets, and resilient flooring, such as vinyl flooring or vinyl surface coverings. Particularly preferred examples of textile substrates are hard backed and cushion backed textile substrates. While the present invention will be described with respect to the preferred embodiment which is floor coverings, and in particular textile substrates and resilient flooring, the present invention can be applied to other types of surface coverings containing backing and/or intermediate layers in view of the disclosure herein.
Preferably, the textile substrate is a broadloom carpet, modular tile, or a wide roll carpet (e.g. 6 ft. wide). Most preferably, the textile substrate is tile or 6 ft. roll goods.
The textile substrate comprises textile fibers defining a fibrous face, a primary backing to which the textile fibers are secured, and a secondary backing secured to the primary backing. For purposes of the present invention, the term “textile substrate” relates to, but is not limited to, a fiber, web, yarn, thread, sliver, woven fabric, knitted fabric, non-woven fabric, upholstery fabric, tufted carpet, and piled carpet formed, from natural and/or synthetic fibers.
The backing or backing layer for purposes of the present invention can be any layer or substrate which has one or more additional layers adhered to a surface of the backing layer. Thus, the backing can be the layer which is in contact with the sub-surface, such as a sub-floor, or can be an intermediate layer with other layers above and below the intermediate backing layer.
The recycled material, preferably a powder, contains at least one type of thermoplastic material. The recycled powder used in the present invention is preferably a powder obtained from post-consumer products which contain at least one thermoplastic material. Preferably, the post-consumer product is a carpet and/or carpet manufacturing waste, and more preferably is a vinyl backed carpet and/or vinyl backed carpet manufacturing waste. Preferably, substantially no thermosetting material is part of the recycled material (e.g. less than 5% by weight), and more preferably no thermosetting material is present with the recycled material.
With regards to the backing material, for purposes of the present invention, the backing is a thermoplastic material. The thermoplastic material can be an aliphatic thermoplastic resin such as one derived by polymerization or copolymerization of an ethylenically unsaturated monomer. The monomer can be a ethylenically unsaturated hydrocarbon such as an olefin or a nitrite (such as an acrylonitrile), vinyl or vinylidene chloride, vinyl acetate, or an acrylate, such as ethylacrylate or methylmethacrylate. More particularly, the thermoplastic material can be a polyethylene, ethylene/vinyl acetate, polyvinyl chloride, polyisobutylene, and the like. Preferably, the thermoplastic material is a vinyl-type material such as a vinyl resin and more particularly a polyvinyl chloride-type material.
Thermoplastic materials are not subject to chemical change when heated. Thermoplastic materials are not infusible, consequently they will gel or soften when a solvent is applied. Suitable polymers for the backing layers of the present invention are derived from at least one monomer selected from the group consisting of acrylic, vinyl, chlorinated vinyl, styrene, butadiene, ethylene, butene, and copolymers or blends thereof. A preferred coating composition is a polymer or copolymer of a vinyl compound, e.g., polyvinyl chloride, polyvinylidine chloride, polyethylene chloride, polyvinyl acetate, polyvinyl acetal, and the like, and copolymers and mixtures thereof. A specific example of a resin coating, composition is a vinyl chloride, resin-based plastisol, wherein the plasticizer component of the plastisol is a phthalate-based compound, such as an alkyl phthalate substituted one or two times with a linear or branched C5-C12 alkyl group, which is included in an amount by weight equal to between about 15 to 60 percent of the weight of the vinyl chloride resin component. Particular vinyl chlorides include Vinycel 124 (Policyd SA DE CV, Mexico), Geon Registered™ 13 oz (Geon Company, Cleveland, Ohio), Pliovic—70 (The Goodyear Tire and Rubber Company, Akron, Ohio), and Oxy 67SF (Occidental Chemical Corp., Dallas, Tex.). Particular alkyl phthalate plasticizers include Santicizer Registered™ 160 (Monsanto Company, Saint Louis, Mo.), Palatinol Registered™ 711P (BASF Corporation, Parsippany, N.J.), and Jayflex DHP (Exxon Chemical America, Houston, Tex.).
The backing can be a cushion-back or a hard back backing. In more detail, the backing can be a solid thermoplastic backing or a foamed thermoplastic backing. Preferably, the thermoplastic foamed backing is a foamed vinyl backing, and more preferably a polyvinyl chloride foamed backing, such as a closed-cell vinyl foamed backing. Generally, the backings will contain a sufficient amount of at least one blowing agent and plasticizer and can include other ingredients conventionally used in backings.
Chemically expanded thermoplastic foamed backings can be used as the secondary backing and can be prepared by casting a thermoplastic resin plastisol containing a blowing agent onto the back of the primary backing and heating to expand and fuse the plastisol. Alternatively, a pre-blown foamed secondary backing can be laminated, such as by heat, to the primary backing. The solid thermoplastic secondary backing can be similarly prepared by casting or by lamination.
Conventional blowing agents can be used and include, but are not limited to azodicarbonamite, oxybissulfonyl hydroxide, substituted thiatriazole, and the like such as the ones described in U.S. Pat. No. 3,661,691 incorporated its entirety by reference herein.
The recycled powder is obtained from post-consumer products by subjecting the product, such as a vinyl backed product, to a process which reduces the post-consumer product into a number of pieces (e.g., chunks or granules) which can eventually be further reduced in size to form a powder. One operation that can be used to reduce, for instance, the vinyl backed carpet or vinyl backed manufacturing waste, to a suitable recycled powder is to first subject the carpet or waste to a face shear operation to remove at least a portion, if not most of the face fiber that may be present. While this step is an optional step, it is preferred that at least a portion of the face fiber, and even more preferably at least 50% of the face fiber, and even more preferably at least 75% of the face fiber, be removed to improve the end use purity of the recycled material which eventually will be formed into a surface covering backing layer. While there are various types of devices which can remove the face fibers, like pure nylon fiber, which may be attached to the vinyl backed carpet, one preferred device is a shearing machine, such as one commercially available from Sellers, Inc., United Kingdom.
Whether or not any face fiber is removed from the vinyl backed carpet or vinyl backed manufacturing waste, the carpet or waste is then fed into a shredder which breaks down the carpet and waste into various pieces, chunks, or granules. The particular size of the pieces is not critical, so long as the carpet or waste is somehow “cut up” or formed into pieces so that the carpet or waste can eventually and preferably be reduced to powder form. Preferably, these chunks or granules have a diameter of about 4″ or less, and more preferably have a diameter of about 3″or less, and most preferably have a diameter of about 2″ or less. Preferably, the diameter range of these chunks or granules is from about 1″ to about 2″. One device that can be used to reduce the carpet and/or waste to such chunks or granules is a shredder, such as one commercially available from Nordfab. Inc., Model #1350K.
The chunks or granules are then reduced to a smaller size by subjecting them to any operation which can accomplish this purpose. For example, a granulator can be used; for instance, one available from Rapid Granulator, Model 3260 with a screen size of ¼ inch, which can reduce the chunks or granules to a size of about ½″ or less, more preferably about ⅜″ or less, and most preferably about ¼″ or less. Preferably, the chunks or granules are reduced to a size of from about ½″ to about ¼″, more preferably from about ⅜″ to about ¼″. With the use of a granulator or similar device, the size of the resulting chunks or granules can be adjusted to any desired size and thus it is certainly within the hounds of the present invention to vary the size of the particles to sizes desired by the ultimate use of the recycled material.
The chunks or granules now reduced to a smaller size, are then optionally subjected to an operation which can separate substantially any existing fiber from the chunks or granules present. This fiber which may be present is generally face fibers and this operation preferably removes any low density fibers from the granules or chunks which are typically of a high density. One method of separating at least a portion of the fibers from the granules or chunks at this stage, is an aspirator using, an air stream separation design. One machine capable of doing this separation is a KF-60 extended aspirator available from Kongskilde. In this optional step, it may be desirable to have a portion of the fiber remain with the granules or chunks of the recycled material or it may be desirable to remove almost all of the fiber, if not all of the fiber, depending upon the end use of the backing which will be formed from the recycled material.
The granules or chunks, which may have some fibers attached or present, are then preferably reduced in size to form a powder. Any means can be used to reduce the larger sized granules or chunks to a powder. Preferred ways of doing so is with the use of a grinder or cryogenic grinding process. If very fine powder is required for the particular end use, then a cryogenic grinding process is preferred which can be accomplished by spraying the granules or chunks of recycled material with liquid nitrogen and then subjecting the sprayed recycled material to a grinding process. The cryogenic process forms finer powder because of the brittleness of the material resulting from the liquid nitrogen treatment and because of the reduced agglomeration of the material during the grinding process. If the powder size is not as important, then an ambient grinding process can be used with any type of grinder such as a Wedco Therm-O-Fine UR-28 grinding system available from Wedco, Inc. Any size of recycled material can be used in the backing or intermediate layer, so long as the material can take the form of a backing or intermediate layer by fusing, which will be described in more detail below. It is preferred that the recycled powder have a particle size of 3,000 microns or less and more preferably 1,000 microns or less. A preferred range of powder size would be from about 250 microns to about 1,500 microns, and a more preferred range would be from about 300 microns to about 900 microns.
The recycled powder upon analysis typically contains at least one thermoplastic material, such as a vinyl-based material, and can also contain at least one plasticizer, at least one inorganic filler, at least one stabilizer, and generally a small amount of face fibers, such as nylon, polypropylene, polyester, and/or glass fibers. These fibers which may be present can assist as acting like a reinforcement fiber material in the backing layer once the recycled powder is fused.
The recycled material, preferably in powder form, which is formed can be used alone to form a backing or intermediate layer or can be mixed with other conventional ingredients, such as virgin thermoplastic material to form the backing or intermediate layer. Any combination of the recycled material with virgin material is possible. For instance, from about 1% by weight recycled material to about 100% recycled material can be used along with from about 0% virgin material to about 99% by weight virgin material to form a mixture which can ultimately be fused into a backing layer or intermediate layer. Preferably, when forming the final backing layer, a backing layer containing about 100% recycled material is preferred. When an intermediate backing layer is formed, it is preferred that at least 10% by weight virgin thermoplastic material is also present with the recycled material, and more preferably at least about 50% by weight virgin thermoplastic material is present along with the recycled material, and most preferably at least about 90% by weight virgin thermoplastic material is present along with the recycled material.
Besides virgin thermoplastic material, other conventional ingredients can be present along with the recycled material to form a backing or intermediate layer, such as inorganic fillers, resins, plasticizers, stabilizers, foaming agents, blowing agents, and the like. The amount of any one of these ingredients can be the same as conventionally used by those skilled in the art in forming such layers. Since a foaming or blowing agent can be incorporated into the recycled material, a foam layer or cushion-backed layer can be formed with the recycled material of the present invention.
In forming the backing or intermediate layer, the recycled material, preferably powder, with or without additional ingredients or components, is applied onto a substrate in any manner in which powders can be applied to eventually form a continuous layer, which is preferably substantially uniform in thickness. The substrate can be a release paper, a belt, or preferably, the bottom surface of a primary backing or other layer in a carpet or other surface covering. Once the recycled powder with or without other ingredients or components is applied, preferably in a uniform nor substantial uniform fashion, the recycled material is fused to form a continuous layer. Fusing or fused, for purposes of the present invention, is understood to mean that the recycled material, preferably a powder, is not completely reduced to a liquid state, like liquid plastisol, but instead, is the joining of the individual particles or granules of the recycled material, in any manner, preferably with the application of heat, to form a continuous layer. Generally, some of the recycled particles or granules, and preferably a majority, and most preferably over 90% of the recycled particles or granules substantially maintain their identity as particles on a macroscopic level, hut ire part of the continuous layer. In one embodiment of the present invention, after the recycled material has been fused to form a continuous layer, visually, one can identify many of the individual recycled particles in the backing layer. The fusing of the recycled material is preferably with the application of heat and pressure. More preferably, the fusing of the recycled material is accomplished with the use of a double-belt press such as one available from Schilling-Knobel of Germany.
With a double-belt press, the recycled material and any other layers of the surface covering travel between a moving top belt and a moving bottom belt where heat is applied through each belt onto the recycled material. Generally, a heated platen is located above the top belt and below the bottom belt to provide the application of heat onto the belt and then onto the recycled material. This platen can also provide pressure onto the recycled material. Preferably, the heated platen provides up to about 100 psi and more preferably about 40 psi or less, and even more preferably about 0.1 psi to about 10 psi onto the recycled material. Most preferably, no pressure is applied onto the recycled material at this point. Preferably, any pressure that may be applied through the platens is at a consistent pressure. The temperature applied to the recycled material is generally a temperature sufficient to fuse the recycled particles of the recycled material together without causing any substantial melting of the recycled particles. The top belt is preferably maintained at a temperature of from about 215° C. to about 220° C. while the bottom belt which is the furthest away from the recycled material is preferably kept at a temperature of from about 110° C. to about 130° C. so as to avoid any damage to the other layers which may exist with the recycled material. Once the recycled material with or without other layers present is heated and fused, the material then preferably goes between two sets of nip rolls which apply a pressure of about 75 psi or less onto the material traveling on the belts and then the material goes through a cooling zone wherein cold water or other cooling medium is circulated through additional platens located above the top belt and below the bottom belt which cools the belt and cools the surface covering. Preferably, during the fusing stage, the pressure and temperature are held constant or substantially held constant. The material then can be rolled if desired onto a roller or fed into a cutter.
In a more preferred embodiment, a surface covering, in this case, a hard backed carpet can be made as follows. Unbacked carpet is placed on an unwinding station where this unbacked carpet is fed face down on a moving belt preferably the bottom belt of a double-belt press. The unbacked carpet can be a primary backing with textile fibers extending upwardly from the backing and forming a surface. With the carpet face down on the bottom belt of the double-belt press, an adhesive or polymeric pre-coat is applied, for instance, by applying a dispersion grade or suspension grade thermoplastic resin onto the primary backing or unbacked carpet. This adhesive or polymeric pre-coat layer can be a 100% virgin dry blend or can be a mixture of virgin material along with recycled material. In lieu of a dry blend, a liquid grade resin can be applied as the adhesive or polymeric pre-coat layer. Preferably, a dry blend is applied. The adhesive or polymeric pre-coat layer is applied in conventional amounts, hut preferably the amount is from about 15 ounces per square yard to about 60 ounces per square yard. Preferably, the adhesive or polymeric pre-coat layer is a dry blend of at least one PVC resin, at least one plasticizer, and at least one stabilizer.
If the adhesive or polymeric pre-coat layer is a dry grade, the material along with the unbacked carpet is vibrated by a plate underneath the bottom belt which aids in the particles in the adhesive or polymeric pre-coat layer to fall between the fiber bundles and improves the dispersion of the particles on the unbacked carpet. The material can then be subjected to a process which will gel the adhesive or polymeric pre-coat layer, such as with the use of infrared heat. Then, a reinforcement material is applied onto the surface of the adhesive or polymeric pre-coat layer. Examples of reinforcement materials include, hut are not limited to, a non-woven material or woven material, such as a non-woven fiber glass mat or fleece and the like. This reinforcement material is generally placed on the surface of the adhesive or polymeric pre-coat layer while the layer is still in a liquid or gel state. Prior to or after the reinforcement material is applied, an intermediate layer can be applied.
The intermediate layer can be formed from 100% recycled material or can contain lesser amounts of the recycled material or can contain 100% virgin material. Preferably, the intermediate layer contains at least 50% virgin material and more preferably at least 75% virgin material and most preferably at least 90% virgin material with the remaining balance being substantially recycled material. This intermediate backing layer is also an optional layer and can be made from the same material as the secondary backing layer. Preferably, the intermediate backing layer is a hard backed and is not a foamed layer. The intermediate layer is preferably a thermoplastic material and more preferably is a polymer or copolymer of a vinyl compound, such as polyvinyl chloride. The intermediate backing layer is preferably applied in the form of a dry blend but can be applied as a liquid coating. The intermediate backing layer whether applied as a dry blend or as a liquid coating can be applied in the manners conventionally known to those skilled in the art. Preferably, the amount of intermediate layer applied is an amount of from about 10 oz/yd2 to about 150 oz/yd2.
Once the reinforcement material is applied, the carpet can then be subjected to a suitable pressure to create a good bond between the individual fibers and/or yarns the adhesive or polymeric or pre-coat layer as well as the reinforcement material with the pre-coat layer. An application of pressure of this sort can be applied by a pressure roller or other suitable device.
The unbacked carpet can then move to a station where the final backing is applied which preferably is from a 100% recycled powder. This material can be applied with the use of a scattering machine or other conventional application device just like the dry adhesive or polymeric pre-coat layer. Preferably, the recycled material powder is applied in an amount of from about 40 to about 150 ounces per square yard, and more preferably from about 70 to about 90 ounces per square yard, and most preferably about 80 ounces per square yard. As described above, the material, once substantially uniformly applied to the unbacked carpet, is then subjected to a fusing process. The carpet can then be subjected to a cooling, zone also described previously and then rolled or fed to a cutter.
Referring to
a) through e) depict various embodiments of the preferred surface covering which is a textile product. In each embodiment in the Figure, fibers (65) are located on top and a secondary backing (70) is located at the very bottom of the covering and a primary backing layer (66) secures the fibers (65). A reinforcement layer (68) can be located beneath the pre-coat layer (67) and/or beneath an intermediate layer (71). An intermediate layer (69) can also be located beneath the reinforcement layer (68). In each case, each layer is affixed in some manner such as by casting, adhesive, or other means conventional in the art.
As an alternative to using the primary backing as the substrate in which all other layers are applied thereto, it is certainly within the bounds of the present invention to make any layer of the surface covering first and then add other desirable layers to the top and/or bottom surface of the first layer made. For instance, the secondary or final backing layer can be made first and then all layers applied thereto.
Besides the above embodiment relating to the use of recycled material in one or more layers of a surface covering, another aspect of the present invention is a surface covering wherein the secondary backing layer and preferably the adhesive or polymeric pre-coat layer are made from dry powder blends instead of liquid blends. The advantage with such a system would be that the powder blends are less expensive and are easier to handle in the manufacturing process. In such a process, the layers can be formed in the same manner described above with respect to the formation of a layer using recycled material such that the virgin material forming the secondary backing, or other layer will form a continuous layer by fusing or be subjected to sufficient heat to melt the powder to form a continuous layer. The use of the double-belt press described above would be preferred in forming a surface covering containing one or more layers from a dry powder blend. Preferably, the secondary backing would contain a dry blend of a polymeric resin such as polyvinyl chloride along with other optional conventional ingredients in a dry blend form, such as at least one plasticizer, at least one filler, at least one stabilizer, and the like. A foaming agent in the form of a dry blend can also be included. An intermediate backing layer and/or an adhesive or polymeric pre-coat layer can be formed in the same fashion as described earlier. It is within the bounds of the present invention to first form one layer and subject the dry powder blend in the shape of a layer to appropriate heat to form a continuous layer and then add a second layer in powder form to the top or bottom surface of the first formed continuous layer and so on. Alternatively, the layers can all be formed on top of each other in powder form and then subjected at one time to sufficient heat to form a continuous multi-layered surface covering.
Whether a surface covering contains recycled material or 100% virgin material, the process of curing all at one time is particularly preferred in making resilient vinyl flooring where all layers are first formed and then the entire surface covering is subjected to sufficient heat to form a multi-layered resilient vinyl flooring which can then have optional strengthening layers, wear layers and/or top coat layers applied afterwards, such as in the manner described in U.S. Pat. No. 5,458,953 incorporated in its entirety by reference herein.
In combination with the other embodiments of the present invention or as a separate alternative, the recycled material of the present invention can be added to the adhesive and/or pre-coat layer. In this embodiment, the adhesive and/or pre-coat layer are preferably applied as a liquid and the recycled material is added to the liquid in any fashion, such as by mixing with the liquid before the liquid is applied as a coat or the recycled material can be applied by introducing the recycled material on top of the liquid once the liquid is applied as a coat (e.g., applying the recycled material on top of the liquid coat by scattering techniques). Any amount of recycled material can be applied in this fashion, and preferably the amount is from about 1% by weight of the liquid coat to about 50% by weight, and more preferably, from about 5% to about 15% by weight of the liquid coat. Similarly, any intermediate layer or even the backing layer, such as the ones described above, can have recycled material introduced and present in the same manner (i.e., recycled material added to liquids which form the layer) as a separate alternative; meaning, the backing layer need not contain recycled material as long as some other layer(s) contains recycled material. More than one layer can contain recycled material and preferably the entire surface covering has from about 1% by weight to about 20% by weight recycled material.
The present invention will be further clarified by the following examples, which are intended to be purely exemplary of the present invention.
A surface covering, such as a final hard backed carpet was made in the following manner. A carpet was made in the same manner as described above with respect to the preferred embodiment of using an adhesive or polymeric pre-coat layer having the formula A described below in Table 1 and the use of a fiberglass fleece (1.0 lb-2.0 lb/100 ft2, e.g. 1.4 lb/100 ft2) obtained from Johns Manville. The unbacked carpet used was a 26 ounce loop obtained from Mannington Carpets— 1/10 gauge. The final or secondary back coat was applied in powder form as shown in
The final back coat was formula R. Formula R is recycled powder resulting from vinyl back carpet tile and carpet waste which was subjected to a face shear operation to remove substantially all of the fiber with a Sellers Shearing Machine. The sheared carpet tile and carpet waste were then fed into a Nordfab 1350K shredder to form 2″ or less granules or chunks which were then reduced to a smaller size of ¼″ or less with the use of a Rapid Granulator 3260. Low density fiber was separated out of the material with a Kongskilde KF-60 aspirator and the material was reduced to a powder having a size of from about 330 microns to about 850 microns. Table 2 below, sets forth the various parameters used in making the carpet which was constructed on a double-belt press obtained from Shilling-Knobel of Germany.
A vinyl floor covering was made using the process of the present invention. In particular, on a belt, recycled material having Formula R was applied in an amount to create a 40 mil thick layer which on top was applied PVC pellets to form a second layer of 40 mils in thickness. Both layers, in powdered form, were then fused to form a continuous multi-layer product. A top coat containing an UV curable urethane-based acrylate thermoset from Lord Corporation was then applied in the manner described in U.S. Pat. No. 5,405,674, incorporated in its entirety by reference herein, to form the final product.
A surface covering containing layers made from powder blends was made from using the double-belt press and procedure in Example 1. The process steps of Example 1 were followed except that in lieu of Formula R as the final backing layer. Formula B or Formula F were used to form the final backing layer.
Table 3 below sets forth some results from surface coverings made from Examples 1 and 3.
Other embodiments of the present invention will be apparent to those skilled in the art from consideration of the specification and practice of the present invention disclosed herein. It is intended that the specification and examples be considered as exemplary only, with a true scope and spirit of the present invention being, indicated by the following claims.
This application is a divisional of U.S. patent application Ser. No. 09/948,294 filed Sep. 7, 2001 now U.S. Pat. No. 6,936,201, which is a divisional of U.S. patent application Ser. No. 09/243,124 filed Feb. 3, 1999, and now U.S. Pat. No. 6,316,075 B1, which claims the benefit under 35 U.S.C. §119(e) of U.S. Provisional Patent Application No. 60/073,718 filed Feb. 4, 1998, which is incorporated in its entirety by reference herein.
Number | Name | Date | Kind |
---|---|---|---|
2537311 | Lyon | Jan 1951 | A |
2574588 | Piperoux | Nov 1951 | A |
2960727 | Bradshaw et al. | Nov 1960 | A |
3012901 | Reese | Dec 1961 | A |
3078510 | Rowe | Feb 1963 | A |
3223027 | Soda et al. | Dec 1965 | A |
3231457 | Meissner | Jan 1966 | A |
3367261 | Kashiwagi | Feb 1968 | A |
3399426 | Weasel, Jr. | Sep 1968 | A |
3400186 | Wiley | Sep 1968 | A |
3488411 | Goldman | Jan 1970 | A |
3607999 | Corbett | Sep 1971 | A |
3617590 | Neukomm | Nov 1971 | A |
3700483 | Gentach et al. | Oct 1972 | A |
3754065 | Hofmann et al. | Aug 1973 | A |
3764247 | Garrett et al. | Oct 1973 | A |
3801250 | Kaiser et al. | Apr 1974 | A |
3852387 | Bortnick et al. | Dec 1974 | A |
3883624 | McKenzie et al. | May 1975 | A |
3942927 | De Mets | Mar 1976 | A |
3942929 | De Mets | Mar 1976 | A |
3994648 | Kornylak et al. | Nov 1976 | A |
4002114 | Guttinger | Jan 1977 | A |
4008030 | Ampler | Feb 1977 | A |
4017657 | Foley et al. | Apr 1977 | A |
4020020 | Appleyard et al. | Apr 1977 | A |
4028159 | Norris | Jun 1977 | A |
4029839 | Lesti | Jun 1977 | A |
4037013 | Sprague | Jul 1977 | A |
4043719 | Jones | Aug 1977 | A |
4105593 | Stavrinou | Aug 1978 | A |
4128369 | Kemerer et al. | Dec 1978 | A |
4189291 | Longhi | Feb 1980 | A |
4213748 | Ahrweiler | Jul 1980 | A |
4216179 | Lamberts et al. | Aug 1980 | A |
4225643 | Lilley | Sep 1980 | A |
4234366 | Brewer et al. | Nov 1980 | A |
4238176 | Cottrell, Jr. et al. | Dec 1980 | A |
4239715 | Pratt | Dec 1980 | A |
4241192 | Goswami | Dec 1980 | A |
4254068 | Otsuka | Mar 1981 | A |
4254074 | Toyooka et al. | Mar 1981 | A |
4311657 | Koster | Jan 1982 | A |
4363771 | Murray | Dec 1982 | A |
4375350 | Sato | Mar 1983 | A |
4396566 | Brinkmann et al. | Aug 1983 | A |
4508771 | Peoples, Jr. et al. | Apr 1985 | A |
4563320 | Morgan | Jan 1986 | A |
4615853 | Aoyama et al. | Oct 1986 | A |
4675216 | DuForest et al. | Jun 1987 | A |
4689102 | Prawdzik et al. | Aug 1987 | A |
4689256 | Slosberg et al. | Aug 1987 | A |
4826560 | Held | May 1989 | A |
4844766 | Held | Jul 1989 | A |
4956140 | Rolles et al. | Sep 1990 | A |
4956222 | Matsuura et al. | Sep 1990 | A |
4966801 | Becker et al. | Oct 1990 | A |
4981876 | Grimmer | Jan 1991 | A |
5075057 | Hoedl | Dec 1991 | A |
5076870 | Sanborn | Dec 1991 | A |
5091133 | Kobayashi et al. | Feb 1992 | A |
5106534 | Wason et al. | Apr 1992 | A |
5106555 | Kobayashi et al. | Apr 1992 | A |
5106558 | Kobayashi et al. | Apr 1992 | A |
5143675 | Yamamoto et al. | Sep 1992 | A |
5145626 | Bastioli et al. | Sep 1992 | A |
5171501 | Yamamoto et al. | Dec 1992 | A |
5200129 | Kobayashi et al. | Apr 1993 | A |
5224367 | Ahrweiler et al. | Jul 1993 | A |
5240530 | Fink | Aug 1993 | A |
5272182 | Burnell | Dec 1993 | A |
5272967 | Held | Dec 1993 | A |
5286436 | Funk et al. | Feb 1994 | A |
5288349 | Fink | Feb 1994 | A |
5298209 | Pagani et al. | Mar 1994 | A |
5385951 | Soderberg | Jan 1995 | A |
5391585 | Grohman | Feb 1995 | A |
5395576 | Blauhut et al. | Mar 1995 | A |
5405674 | Wang et al. | Apr 1995 | A |
5415917 | Tesch | May 1995 | A |
5460764 | Held | Oct 1995 | A |
5466320 | Burt et al. | Nov 1995 | A |
5472763 | Schwarz et al. | Dec 1995 | A |
5481786 | Smith et al. | Jan 1996 | A |
5494628 | Beyer et al. | Feb 1996 | A |
5494723 | Erren et al. | Feb 1996 | A |
5497949 | Sharer | Mar 1996 | A |
5498667 | David et al. | Mar 1996 | A |
5518188 | Sharer | May 1996 | A |
5532035 | Corbin et al. | Jul 1996 | A |
5535945 | Sferrazza et al. | Jul 1996 | A |
5538776 | Corbin et al. | Jul 1996 | A |
5540968 | Higgins | Jul 1996 | A |
5560797 | Burt et al. | Oct 1996 | A |
5567497 | Zegler et al. | Oct 1996 | A |
5576031 | Uchida et al. | Nov 1996 | A |
5578357 | Fink | Nov 1996 | A |
5578648 | Beyer et al. | Nov 1996 | A |
5589260 | Ben Zvi et al. | Dec 1996 | A |
5591802 | David et al. | Jan 1997 | A |
5604009 | Long et al. | Feb 1997 | A |
5626912 | Hendrix et al. | May 1997 | A |
5630896 | Corbin et al. | May 1997 | A |
5645967 | Sato et al. | Jul 1997 | A |
5719198 | Young et al. | Feb 1998 | A |
5728444 | Fink | Mar 1998 | A |
5728741 | Zegler et al. | Mar 1998 | A |
5837769 | Graafland et al. | Nov 1998 | A |
5914353 | Grizzle et al. | Jun 1999 | A |
6059207 | Costello et al. | May 2000 | A |
6250575 | White | Jun 2001 | B1 |
6387967 | Muzzy et al. | May 2002 | B2 |
6756412 | Muzzy | Jun 2004 | B2 |
6860953 | Grizzle et al. | Mar 2005 | B1 |
6936201 | Desai et al. | Aug 2005 | B2 |
7037976 | Maris et al. | May 2006 | B2 |
20020025414 | Desai et al. | Feb 2002 | A1 |
20030125442 | Maris et al. | Jul 2003 | A1 |
20050118386 | Desai et al. | Jun 2005 | A1 |
20070043128 | Jenkines et al. | Feb 2007 | A1 |
20070173551 | Mancosh et al. | Jul 2007 | A1 |
20070275207 | Higgins et al. | Nov 2007 | A1 |
Number | Date | Country |
---|---|---|
19 28 405 | Dec 1969 | DE |
1 794 184 | Feb 1973 | DE |
2 319 254 | Apr 1973 | DE |
4118276 | Dec 1992 | DE |
4136444 | May 1993 | DE |
4225027 | Jul 1993 | DE |
94 21 584 | May 1996 | DE |
1006201 | Jul 1963 | EP |
1 098 946 | Feb 1968 | EP |
0 046 526 | Feb 1987 | EP |
0 518 014 | Apr 1992 | EP |
0 590 189 | Sep 1992 | EP |
0 595 063 | Oct 1993 | EP |
000604897 | Jul 1994 | EP |
0 867 557 | Sep 1998 | EP |
2 159 418 | Jun 1973 | FR |
1339329 | Nov 1962 | GB |
52-49280 | Apr 1977 | JP |
61063783 | Apr 1986 | JP |
93-012678 | Nov 1992 | JP |
40604278 | Feb 1994 | JP |
07032520 | Feb 1995 | JP |
409220156 | Aug 1997 | JP |
WO 9312285 | Jun 1993 | WO |
WO 9416138 | Jul 1994 | WO |
WO 9727242 | Jul 1997 | WO |
Number | Date | Country | |
---|---|---|---|
20050118386 A1 | Jun 2005 | US |
Number | Date | Country | |
---|---|---|---|
60073718 | Feb 1998 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 09948294 | Sep 2001 | US |
Child | 11027042 | US | |
Parent | 09243124 | Feb 1999 | US |
Child | 09948294 | US |