The present invention relates to a surface-mount inductor comprising: a coil formed by winding a winding wire; and a core containing a magnetic powder and including the coil therein, and to a method of producing the inductor.
A conventional surface-mount inductor includes a type which is obtained by: winding a winding wire to form a coil; and forming a core while allowing the coil to be included therein, through pressure molding using a magnetic powder and binder, or compressing molding using a composite material of a magnetic powder and a resin. External terminals are formed on the surface of the core, and the coil is connected therebetween.
This conventional surface-mount inductor is formed, as illustrated in
This conventional surface-mount inductor may also be formed, as illustrated in
Patent Document 1: JP 2010-245473A
Patent Document 2: JP 2009-170488A
In the conventional surface-mount inductor formed by using an E-shaped tablet, the E-shaped tablet may allow the coil to be disposed in a predetermined position in a mold, and prevent the coil from being displaced from a predetermined position in the core, or prevent the led-out ends from being buried in the core. However, when it is required to downsize the E-shaped tablet along with downsizing of the surface-mount inductor, it is difficult for such a conventional surface-mount inductor to form the E-shaped tablet due to its complicated shape. Even when the E-shaped tablet can be formed, there is a problem with the tablet that it is likely to be broken when the coil is mounted thereon or it is housed in the mold because it is impossible to keep the strength needed for mounting the coil thereon or for handling the tablet when housed in the mold. To keep the strength of the E-shaped tablet, it is necessary to make the thickness between outer surfaces of the tablet and the coil greater. However, this results in larger size of the surface-mount inductor, or limited size of the coil, and thus sufficient characteristics are often unobtainable.
On the other hand, in the conventional surface-mount inductor formed by holding the led-out ends of the coil by the mold, the mold may allow the coil to be disposed in a predetermined position in a mold, and prevent the coil from being displaced from a predetermined position in the core, or prevent the led-out ends from being buried in the core. However, such a conventional surface-mount inductor has a problem with generation of a large burr in the core due to a leakage of materials constituting the core from a portion of the mold which holds the led-out ends of the coil. In the event of generation of the large burr in the core, it is difficult to remove the burr because of the small size of the surface-mount inductor.
It is therefore an object of the present invention to provide a surface-mount inductor and a method of producing the inductor, where the surface-mount inductor is capable of positioning a coil in a predetermined position in a mold, thereby to position the coil in a predetermined position of a core and to prevent led-out ends from being buried in the core without using any special components or expensive units.
The present invention provides a surface-mount inductor comprising: a coil formed by winding a winding wire; and a core containing a magnetic powder and including the coil therein, wherein each of opposite led-out ends of the coil is exposed on respective ones of opposed side surfaces of the core, and each of the led-out ends of the coil is connected to an external electrode formed on the core.
The present invention also provides a method of producing a surface-mount inductor which comprises: a coil formed by winding a winding wire; and a core containing a magnetic powder and including the coil therein, wherein the coil is processed to allow each of opposite led-out ends thereof to come into contact with respective ones of opposed inner walls of a mold.
According to the present invention, there is provided a surface-mount inductor comprising: a coil formed by winding a winding wire; and a core containing a magnetic powder and including the coil therein, wherein each of opposite led-out ends of the coil is exposed on respective ones of opposed side surfaces of the core, and each of the led-out ends of the coil is connected to an external electrode formed on the core. This makes it possible to position the coil in a predetermined position of the core to ensure the coil to be connected to external electrodes without using any special components or expensive units.
According to the present invention, there is also provided a method of producing a surface-mount inductor which comprises: a coil formed by winding a winding wire; and a core containing a magnetic powder and including the coil therein, wherein the coil is processed to allow each of opposite led-out ends thereof to come into contact with respective ones of opposed inner walls of a mold. This makes it possible to position the coil in a predetermined position in the mold, thereby to position the coil in a predetermined position of the core and to expose the led-out ends on predetermined positions in a core surface without using any special components or expensive units.
A surface-mount inductor of the present invention comprises a coil formed by winding a winding wire, and a core containing a magnetic powder and including the coil therein. The coil has opposite led-out ends, each of which is exposed on respective ones of opposed side surfaces of the core, and each of the led-out ends of the coil is connected to an external electrode formed on the core.
Thus, in this surface-mount inductor, the coil position in the core can be determined by the led-out ends, so that it is not necessary to use a complicated shape of tablet or to use a particular kind of mold. Further, this surface-mount inductor does not use any complicated shape of tablet, and thus the coil size can be freely set within the range of core size. This makes it possible to provide contribution in improvement of inductance value, DC resistance value, efficiency, characteristics such as DC superimposition characteristics, and in downsizing of the surface-mount inductor.
A method of producing a surface-mount inductor of the present invention comprises forming a coil by winding a winding wire, and housing the coil and a material containing a magnetic powder in a mold to form a core including the coil therein. The coil has opposite led-out ends, each of which is processed to come into contact with respective ones of opposed inner walls of the mold.
Thus, in this method of producing a surface-mount inductor, the coil position in the mold can be determined by the led-out ends, so that the coil can be positioned in a predetermined position in the core, and the led-out ends can be exposed on predetermined positions in the core surface to ensure each of them to be connected to an external electrode without using a complicated shape of tablet or using a particular kind of mold. Further, this method of producing a surface-mount inductor does not use any complicated shape of tablet, and thus the coil size can be freely set within the range of core size. This makes it possible to provide contribution in improvement of inductance value, DC resistance value, efficiency, characteristics such as DC superimposition characteristics, and in downsizing of the surface-mount inductor.
[Embodiments]
Embodiments of the surface-mount inductor and the production method thereof according to the present invention will now be described with reference to
In
The coil 11 is formed by winding a rectangular wire in two tiers to allow its opposite ends to be positioned on an outer periphery of the coil. The coil 11 is disposed in the core 12 described below, and is processed to allow each opposite end of the rectangular wire which is led out from the outer periphery of the coil to be exposed along an end surface and respective ones of two opposed side surfaces adjacent to the end surface of the core 12 to form led-out ends 11A and 11B.
The core 12 includes the coil 11 using a composite material of a magnetic powder and a resin, and is formed to allow each of the opposite led-out ends 11A and 11B of the coil 11 to be exposed on the end surface and respective ones of two side surfaces which are adjacent to the end surface and opposed to each other. For the magnetic powder, a metal magnetic powder is used. For the resin, an epoxy resin is used. External electrodes 13A and 13B are formed on the surface of the core 12, as illustrated in
Then, the coil 11 is connected between the external electrodes 13A and 13B by the led-out ends 11A of the coil 11 being connected to the external electrodes 13A and the led-out ends 11B of the coil 11 being connected to the external electrodes 13B.
This surface-mount inductor is produced in the following manner. Firstly, a coil is formed by winding a rectangular wire in two tiers to allow its opposite ends to be positioned on an outer periphery of the coil.
Then, terminal ends of the rectangular wire positioned on an outer periphery of the coil are processed to allow each of them to be exposed along an end surface and respective ones of two opposed side surfaces adjacent to the end surface of the core to form led-out ends.
Next, as illustrated in
Further, the composite material of an iron-based metal magnetic powder and an epoxy resin is filled in the mold 30 in which the coil 31 is housed, or the tablet made by pre-forming the composite material of an iron-based metal magnetic powder and an epoxy resin into a plate is housed in the mold 30 in which the coil 31 is housed.
Subsequently, these are subjected to a compression molding performed by the mold 30 and a punch at a temperature from 120 to 250° C., thereby to form a core 12 including the coil, where the core 12 is formed to allow each of the opposite led-out ends of the coil to be exposed on the end surface and respective ones of two side surfaces which are adjacent to the end surface and opposed to each other.
Then, an electrically-conductive paste is applied on the core 12 and cured to form external electrodes 13A, 13B on the core 12. The external electrodes 13A, 13B may be plated with a material formed by appropriately selecting one or more from materials such as Ni, Sn, Cu, Au and Pd.
The coil 14 is formed by winding a rectangular wire in two tiers to allow its opposite ends to be positioned on an outer periphery of the coil. The coil 41 is disposed in the core 42, and is processed in a wave shape to allow each end of the rectangular wire which is led out from the outer periphery of the coil to be exposed on respective ones of opposed side surfaces of the core 42 to form led-out ends 41A and 41B.
The core 42 includes the coil 41 using a composite material of a magnetic powder and a resin, and is formed to allow each of the opposite wave-shaped led-out ends 41A and 41B of the coil 41 to be exposed on respective ones of two opposed side surfaces. For the magnetic powder, a metal magnetic powder is used. For the resin, an epoxy resin is used. External electrodes 13A and 13B are formed on the surface of the core, as illustrated in
Then, the coil 41 is connected between the external electrodes 13A and 13B by the led-out ends 41A of the coil 41 being connected to the external electrodes 13A and the led-out ends 41B of the coil 41 being connected to the external electrodes 13B.
This surface-mount inductor is produced in the following manner. Firstly, a coil is formed by winding a rectangular wire in two tiers to allow its opposite ends to be positioned on an outer periphery of the coil.
Then, terminal ends of the rectangular wire positioned on an outer periphery of the coil are processed to allow each of them to be exposed on respective ones of opposed side surfaces of the core to form wave-shaped led-out ends.
Next, as illustrated in
Further, a composite material of an iron-based metal magnetic powder and an epoxy resin is filled in the mold 50 in which the coil 51 is housed.
Subsequently, these are subjected to a compression molding performed by the mold 50 and a punch at a temperature from 120 to 250° C., thereby to form a core 42 including the coil, where the core 42 is formed to allow each of the opposite led-out ends of the coil to be exposed on respective ones of two side surfaces opposed to each other.
Then, an electrically-conductive paste is applied on the core 42 and cured to form external electrodes on the core 42. The external electrodes may be plated with a material formed by appropriately selecting one or more from materials such as Ni, Sn, Cu, Au and Pd.
While embodiments of a surface-mount inductor and a production method thereof according to the present invention have been described above, the invention is not limited to the embodiments. For example, the metal magnetic powder for use in the core may have a wide variety of compositions, and may be a metal magnetic powder having a surface coated with an insulator such as a glass, or a metal magnetic powder having an oxidized surface. Further, the resin for use in the core may be other thermosetting resin such as a polyimide resin or a phenol resin, or may be a thermoplastic resin such as a polyethylene resin or a polyamide resin. Furthermore, the core may be formed by filling a magnetic powder and binder in a mold in which a coil is housed, and subjecting them to pressure molding performed with the mold and a punch at a high pressure. In this case, the magnetic powder for use in the core may be a metal magnetic powder, a metal magnetic powder having a surface coated with insulators such as a glass, or a metal magnetic powder having an oxidized surface.
Number | Date | Country | Kind |
---|---|---|---|
2012-191117 | Aug 2012 | JP | national |
Number | Name | Date | Kind |
---|---|---|---|
20100259353 | Saito et al. | Oct 2010 | A1 |
20130033348 | Saito et al. | Feb 2013 | A1 |
Number | Date | Country |
---|---|---|
2009-170488 | Jul 2009 | JP |
2009170488 | Jul 2009 | JP |
2010-245473 | Oct 2010 | JP |
WO 2012105489 | Aug 2012 | WO |
Number | Date | Country | |
---|---|---|---|
20140062638 A1 | Mar 2014 | US |