This invention relates to systems for storing information.
Software developers continue to develop steadily more data intensive products, such as ever-more sophisticated, and graphic intensive applications and operating systems (OS). Each generation of application or OS always seems to earn the derisive label in computing circles of being “a memory hog.” Higher capacity data storage, both volatile and non-volatile, has been in persistent demand for storing code for such applications. Add to this need for capacity, the confluence of personal computing and consumer electronics in the form of personal MP3 players, such as iPod®, personal digital assistants (PDAs), sophisticated mobile phones, and laptop computers, which has placed a premium on compactness and reliability.
Nearly every personal computer and server in use today contains one or more hard disk drives for permanently storing frequently accessed data. Every mainframe and supercomputer is connected to hundreds of hard disk drives. Consumer electronic goods ranging from camcorders to digital video recorders (DVRs) use hard disk drives. While hard disk drives store large amounts of data, they consume a great deal of power, require long access times, and require “spin-up” time on power-up. FLASH memory is a more readily accessible form of data storage and a solid-state solution to the lag time and high power consumption problems inherent in hard disk drives. Like hard disk drives, FLASH memory can store data in a non-volatile fashion, but the cost per megabyte is dramatically higher than the cost per megabyte of an equivalent amount of space on a hard disk drive, and is therefore sparingly used. Consequently, there is a need for solutions which permit higher density data storage at a reasonable cost per megabyte.
Further details of the present invention are explained with the help of the attached drawings in which:
Ferroelectrics are members of a group of dielectrics that exhibit spontaneous polarization—i.e., polarization in the absence of an electric field. Ferroelectrics are the dielectric analogue of ferromagnetic materials, which may display permanent magnetic behavior. Permanent electric dipoles exist in ferroelectric materials. One common ferroelectric material is lead zirconate titanate (Pb[ZrxTi1-x]O30<x<1, also referred to herein as PZT). PZT is a ceramic perovskite material that has a spontaneous polarization which can be reversed in the presence of an electric field.
Ferroelectric films have been proposed as promising recording media, with a bit state corresponding to a spontaneous polarization direction of the media, wherein the spontaneous polarization direction is controllable by way of application of an electric field. Ferroelectric films can achieve ultra high bit recording density because the thickness of a 180° domain wall in ferroelectric material is in the range of a few lattices (1-2 nm).
Sensing of spontaneous polarization direction in a ferroelectric media by a probe tip (also referred to herein as a tip) can be performed destructively by applying a test potential to a portion of the ferroelectric media while monitoring for displacement current. If no displacement current is detected, the portion of the ferroelectric media has a polarity corresponding to the test potential. If a displacement current is detected, the portion of the ferroelectric media has a polarity that is opposite a polarity of the test potential. The opposite polarity of the portion is destroyed once detected, and must be re-written. Detecting and subsequently re-writing the portion (where an opposite polarity of the portion is destroyed) results in reduced data throughput performance. To minimize this reduction in data throughput performance, a separate write transducer can be employed. However, the separate write transducer includes potential write cycling with each read. Repeated probing and cycling can result in cycle and/or imprint fatigue failure of the probed and cycled portion of the ferroelectric media.
Referring to
Detrimentally, a relatively thick layer of hydrocarbon contamination 114 can build up on the surface of a ferroelectric media 102 which can interfere with collecting desirable signals at low contact forces and can interfere with relative movement between the tip 104 and the media 102, increasing tip wear. Further, the hydrocarbon contamination layer 114 is sensitive to humidity, reducing consistency of the properties of the layer. As a result, obtaining an RF-charge signal sufficient for acceptable read/write performance can be difficult at tip-to-media surface contact forces on the order of 100 nN. Increasing contact force between the tip and media can enable a more pronounced RF-charge signal. A useful RF-charge signal having an acceptable signal-to-noise ratio (e.g. 5:1 and greater) is achievable with a substantial increase in contact force (e.g. 600 nN and greater). One explanation for the increase in RF-charge signal is that a gap between the media and the tip is made smaller when the force applied is larger (e.g. by urging the tip through the hydrocarbon layer). In addition, it is also possible that the RF-charge signal amplifies with the increase in contact area between the media and the tip when the force applied is made larger. However, applying higher forces places the tip-media interface under higher stress, promoting wear on one or both of the tip and the media surface. Referring to
Methods and systems for storing information in accordance with the present invention include a ferroelectric media with a passivation layer disposed over the surface of the media for improving an RF-charge signal. Referring to
Referring to
The surface is made less hydrophilic (or hydrophobic) when a wet or dry nitrogen gas is introduced. The wet nitrogen may be a gaseous mixture of nitrogen and water vapor. The oxygen and/or carbon-oxygen enriched surface of the ferroelectric media 302 can be bathed in a nitrogen gas (e.g., 0-15% relative humidity for five minutes) (Step 104). The nitrogen gas causes the surface of the ferroelectric media to be enriched with N—C—O (and/or N—O) species forming a passivation layer 216, as shown in
In alternative embodiments of system for storing information in accordance with the present invention, a cavity between the tip and the media surface can be filled with nitrogen gas enables to continuously extract a good RF signal at low force (e.g., 100 nN) and under ambient humidity (approximately 45% relative humidity) and temperature (approximately 20-25° C.). It has been observed that adding excess water (approximately 80% relative humidity) after the surface treatment does not affect the signal integrity noticeably. RF signal traces were observed over the duration of approximately ten days and exhibited “long-term stability” with negligible variation in signal-to-noise ratio.
One such system implementing a nitrogen filled cavity is shown in
In still further embodiments of systems for storing information in accordance with the present invention, a layer of a high-K dielectric (i.e. a material having a high dielectric constant, relative to silicon dioxide) can be formed or otherwise disposed over the ferroelectric media surface to enhance capacitive/charge coupling, thereby amplifying a detected RF-charge signal. The “effective” high-K dielectric layer at the tip-media interface can be approximately a nanometer or less. A high-K dielectric layer thicker than one nanometer can begin to detrimentally affect an RF-charge signal by “smearing out” the desired amplification achieved due to spreading and/or weakening of capacitive/charge coupling above a threshold thickness.
The amplification effect has been observed using water as a high-K dielectric medium. By increasing relative humidity from approximately 45% to approximately 80% (an excess water condition) at an applied force of the tip on the media of approximately 700 nN, the RF-charge signal detected by the tip roughly doubles.
The foregoing description of the present invention has been presented for purposes of illustration and description. It is not intended to be exhaustive or to limit the invention to the precise forms disclosed. Many modifications and variations will be apparent to practitioners skilled in this art. The embodiments were chosen and described in order to best explain the principles of the invention and its practical application, thereby enabling others skilled in the art to understand the invention for various embodiments and with various modifications as are suited to the particular use contemplated. It is intended that the scope of the invention be defined by the following claims and their equivalents.