Surfactant formulations for foam flooding

Information

  • Patent Grant
  • 9951264
  • Patent Number
    9,951,264
  • Date Filed
    Thursday, December 15, 2016
    7 years ago
  • Date Issued
    Tuesday, April 24, 2018
    6 years ago
Abstract
A foam generating surfactant formulation includes a betaine, an alpha-olefin sulfonate and a nanofluid. The betaine is preferably a cocamidopropyl betaine or laurel betaine. The alpha-olefin sulfonate is preferably an anionic surfactant having between 8 and 18 carbon atoms per molecule. The nanofluid is preferably an oil-in-water nanofluid that includes an emulsifying surfactant, a solvent, a co-solvent and water. The addition of the nanofluid increases the thermal stability and salt resistance of the foam generating surfactant.
Description
FIELD OF THE INVENTION

The present invention generally relates to the production of petroleum and more particularly to compositions and processes for improving the recovery of petroleum from a subterranean geological formation.


BACKGROUND OF THE INVENTION

For many years, petroleum has been recovered from subterranean reservoirs through the use of drilled wells and production equipment. During the production of desirable hydrocarbons, such as crude oil and natural gas, a number of other naturally occurring substances may also be encountered within the subterranean environment.


Although supercritical carbon dioxide (CO2) flooding is a widely used method in tertiary oil recovery, the method presents many challenges, such as inefficient gas utilization, poor sweep efficiency and low oil recovery due to viscous fingering and gravity segregation. One recent development is the application of CO2 foam in order to reduce the CO2 mobility, especially in high permeability zones of the reservoir. In the past, CO2 foam has been produced using surfactant mixtures prepared through the combination of betaines and alpha-olefin sulfonates (AOS). The efficiency of these prior art CO2 foam efforts often decreases sharply during flooding as a result of contact with crude oil, retention of surfactants on the geologic formation, high salinity in formation water, a lack of reservoir pressure necessary to keep the CO2 as a supercritical fluid and high reservoir temperatures.


There is, therefore, a need for the development of inventive surfactant formulations which have better tolerance to these factors. It is to these and other objectives that the present invention is directed.


SUMMARY OF THE INVENTION

In preferred embodiments, the present invention includes a foam generating surfactant formulation that includes a betaine, an alpha-olefin sulfonate and a microemulsion. The betaine is preferably a cocamidopropyl betaine or laurel betaine. The alpha-olefin sulfonate is preferably an anionic surfactant having between 8 and 18 carbon atoms per molecule. The microemulsion is preferably an oil-in-water microemulsion that includes an emulsifying surfactant, a solvent, a co-solvent and water. The addition of the microemulsion increases the thermal stability and salt resistance of the foam generating surfactant.


In another aspect, preferred embodiments include suitable methods of using the foam generating surfactant to produce a treatment foam in a well. The method begins with the step of mixing together a betaine, an alpha-olefin sulfonate and a microemulsion to form a foam generating surfactant formulation. The method continues with the step of pumping the foam generating surfactant formulation into the well. The process continues by forcing gas into the well to contact the foam generating surfactant formulation to produce the treatment foam.





BRIEF DESCRIPTION OF THE DRAWINGS


FIG. 1 provides a graph showing the results of a laboratory test of a preferred embodiment.





DETAILED DESCRIPTION OF PREFERRED EMBODIMENTS

The present invention relates to a surfactant formulation optimized for use in connection with a foam flooding tertiary recovery method. In preferred embodiments, the surfactant formulation includes three components: (1) an alpha olefin sulfonate (AOS) surfactant, (2) a betaine surfactant and (3) a suitable microemulsion. The addition of a microemulson to the AOS and betaine surfactants mitigates adsorption and provides additional salt and oil tolerance beyond that of the individual AOS and betaine components. This presents a significant improvement over prior art foam systems.


Betaine is used as a foam booster and a stable CO2 foamer in fracturing at high temperatures. Suitable betaines include cocamidopropyl betaine and laurel betaine. Suitable cocamidopropyl betaines are commercially available from Rhodia under the Mackam OK50 trademark. Laurel betaine is particularly preferred because it is stable at high temperature and low pH and can generate CO2 foam.


The AOS component is used to maintain and stabilize the foam. The AOS component is preferably an anionic surfactant, shorter chain alpha olefin sulfonate (e.g., C8-C12). In lower salinity environments, it may be possible to substitute the shorter chain alpha olefin sulfonate with a longer chain AOS (e.g., C12-18), which may exhibit improved foam generation properties. One preferred AOS component is Stepan's Stephantan AS 1246. It is believed that the combination of different types of surfactants synergistically exhibits better foaming properties than those of individual components.


If the betaine and AOS components are combined with a microemulsion, the microemulsion is preferably an oil-in-water microemulsion that includes an internal oil phase distributed within an external water phase through use of one or more surfactants. The internal oil phase is preferably a solvent selected from the class of solvents referred to as citrus terpenes, with d-limonene being a particularly preferred solvent. Suitable microemulsion surfactants include surfactants and surfactant mixtures having a hydrophile-lipophile balance (HLB) of between 8-20. Particularly preferred surfactants include mixtures of ethoxylated castor oils and ethoxylated alcohols. In a more particularly preferred embodiment, the selected surfactant or surfactant mixture has an HLB value of between 8 and 18.


In a particularly preferred embodiment, the surfactant component is an ethoxylated alcohol. In a more preferred embodiment, the surfactant component is an ethoxylated C8-C18 alcohol. In a still more preferred embodiment, the surfactant component is an ethoxylated C8-C18 alcohol with 5-20 moles of ethylene oxide (EO). In a particularly preferred embodiment, the surfactant component is an ethoxylated vegetable oil. In a more preferred embodiment, the surfactant component is an ethoxylated castor oil. In a still more preferred embodiment, the surfactant component is an ethoxylated castor oil with 25-45 moles of EO. U.S. Pat. No. 7,380,606 issued to Pursley, et. al on Jun. 3, 2008 entitled “Composition and Process for Well Cleaning,” which is incorporated herein by reference, discloses several microemulsion formulations that may function as the microemulsion component of the CO2 foam surfactant formulation. In certain applications, it may be desirable for the microemulsion component to include a mixture of different surfactants and surfactant packages.


The effectiveness of the preferred embodiments was evaluated against control foam generating systems using laboratory testing procedures. As a control, a foam generating surfactant mixture was prepared using AOS and betaine surfactants, but without the addition of a microemulsion component (Formulation 1). The control surfactant formulation included a mixture of AOS and betaine at about a 4 to 1 ratio.


For the preferred embodiments, the AOS and betaine surfactant mixture (formulation #1) was combined with a microemulsion component in varying amounts (Formulations #2, #3 and #4). The microemulsion component included an emulsifying surfactant, a solvent, a co-solvent and water. The control and test formulations are identified in Table 1 below:









TABLE 1







Test Formulations











Formulation
1
2
3
4





AOS
75.0%  
66.4% 
57.6%
49.6%


Betaine
25.0%  
16.6% 
14.4%
12.4%


Emulsifying surf
0%
6.1%
10.1%
13.7%


Solvent
0%
3.7%
 6.2%
 8.4%


Cosolvent
0%
5.1%
 8.4%
11.4%


Water
0%
2.0%
 3.4%
 4.6%


Total
100.0%   
100.0% 
100.0% 
100.0% 









Formulations 2-4 represent examples of the preferred embodiments in which the AOS and Betaine are combined with increasing amounts of microemulsion ranging from 16.9% by weight (formulation #2) to 38.1% by weight (formulation #4). The AOS and betaine were mixed in a 4:1 weight ratio in each case.


The stability of the surfactant formulations was evaluated in brines to determine the resilience of the surfactant formulation under varying salinity (15% to 25%) and varying temperature (room temperature and 150° F.). The results of this study are presented in Table 2 below:









TABLE 2







Surfactant Solution phase behaviors at room


temperature and 150° F. at varying salinity (CS - clear


single phase; TP - two phase; LH - light hazy single phase)


Surfactant Concentration = 5 gpt














15%
20%
22.5%
25%


Formu-
ME
Salinity
Salinity
Salinity
Salinity
















lation
W%
RT
150° F.
RT
150° F.
RT
150° F.
RT
150° F.



















#1
0
CS
CS
CS
CS
TP
TP
TP
TP


#2
16.9
CS
CS
CS
CS
LH
TP
LH
TP


#3
28.1
CS
CS
CS
CS
LH
LH
LH
TP


#4
38.1
CS
CS
CS
CS
LH
LH
LH
TP









Phase stabilization tests have determined that the ratio of AOS to betaine in the control formulation (#1) provides the best tolerance to salinity. When used at typical or expected injection concentrations (e.g., 5 gallons per thousand gallons=gpt), this surfactant solution remains clear in up to 20% salinity at both room temperature (RT) and reservoir temperature (150° F.).


As noted in Table 2, the preferred embodiments of the surfactant formulation exhibit increased resistance to salinity over the control formulation. If 16.9 wt % microemulsion is added, the surfactant solution becomes light hazy at room temperature up to 25% salinity and phase separation is apparent at 150° F. The surfactant solution maintains a light hazy but homogenous single phase at up to 22.5% salinity with increasing microemulsion concentration to 28.1 wt % and 38.1 wt %. These solutions remained stable at 150° F. for more than 4 weeks.


The increased stability achieved through the addition of the microemulsion is believed to be the result of a reduction of the critical micelle concentration. Betaine has a lower critical micelle concentration than AOS. The critical micelle concentration of a mixture of AOS and betaine follows the mixture rule. Adding the microemulsion to the betaine/AOS mixtures further reduces the critical micelle concentration, which makes the formulation more efficient and stable.


In addition to an increased resistance to salinity, laboratory tests have also confirmed that the preferred surfactant formulations exhibit lower formation retention rates than isolated betaine. FIG. 1 presents a comparison of the retention/adsorption (mg/m2) of betaine against the surfactant formulations in 15% salinity at room temperature.


It has been found that isolated betaine surfactant shows a much higher retention in the subterranean formation than AOS and the mixture of betaine and AOS (formulation 1), and adding the microemulsion into the betaine and AOS surfactant mixture (formulations 2-4) further reduces the betaine adsorption. Formulation #2 is a complex system that includes anionic, amphoteric, nonionic surfactants and solvents. It is believed that the dispersed microemulsion complex provides an oil/water interface that is occupied by the various surfactants thus minimizing the free energy between the betaine and the formation and thus decreasing retention. This reduced retention of betaine helps generate foam faster and decreases the amount of betaine needed for successful CO2 diversion.


Having established preferable retention and salinity properties, the performance of the novel surfactant formulations was evaluated using a series of four dual-core oil recovery tests. For the dual-core oil recovery tests, a pair of clean, dry cores was inserted into core holders. The cores were selected to have different permeabilities. The confining pressure was added to prevent any bypass. Each core was purged by CO2 gas for 60 minutes in order to eliminate any air inside, then the core was saturated using formation brine (FB) and the absolute permeability was measured. Crude oil was then injected from the top of the core until no further water came out. The oil saturated core was aged for 15 hours at 150° F. CO2 was co-injected at a certain ratio with FB or treatment chemicals at 10 ft/day. The same flow velocity (10 ft/day) was used for all of the tests.


Secondary production (from bottom to top) flooding was performed with brine to a residual oil saturation, followed by a CO2—Formation Brine (FB) co-injection as tertiary flooding. The CO2-surfactant solution was then co-injected and the apparent viscosity of CO2 foam in the presence of oil was measured. The volume of oil recovered in different stages was recorded.


In a first control test, 2 gpt of betaine in 15% salinity was used as the treatment product. The flooding by FB alone and CO2-FB (1:1) co-injection recovered 20.0% and 19.5% oil, respectively. CO2 diversion flooding recovered an additional 12.5% oil. The use of betaine alone produced a total oil recovery of 52.0%.


In a second control test, 5 gpt of formulation #1 (AOS to Betaine ratio of 4:1 surfactant mixture) in 15% salinity was used as treatment. The flooding by FB alone and CO2-FB (1:1) co-injection recovered 38.3% and 16.1% oil, respectively. CO2 diversion flooding recovered an additional 24.3% oil. Using a first preferred embodiment of the inventive surfactant formulation produced a total oil recovery of 78.7%.


In a third test, 5 gpt of formulation #2 (betaine, AOS and microemulsion) in 15% salinity was used as the treatment surfactant formulation. The flooding by FB alone and CO2-FB (1:1) co-injection recovered 27.0% and 30.0% oil, respectively. CO2 diversion flooding recovered an additional 25.1% oil. Using a second preferred embodiment of the novel surfactant formulation produced a total oil recovery of 82.1%.


For the final test, 5 gpt of formulation #2 (betaine, AOS and microemulsion) in 15% salinity was used as the treatment surfactant formulation. The flooding by FB alone and CO2-FB (1:1) co-injection recovered 41.2% and 26.1% oil, respectively. CO2 diversion flooding recovered an additional 22.2% oil for a total oil recovery of 89.5%.


Tests 1, 2 and 3 were conducted under immiscible conditions. CO2 is partially miscible with the crude oil and thus only a fraction of the oil is capable of being recovered. Test 4 was performed under miscible conditions.


It is believed that the flooding by formation brine (FB) alone and CO2-FB co-injection for Test 1 is lower because the CO2 foam was generated slowly due to the high adsorption of betaine and resulting low betaine concentration. The oil recovery from FB and CO2-FB co-injection for Test 2 and Test 3 is similar because they were conducted under the same flooding conditions, such as back pressure, salinity, temperature, and core permeability. Notably, however, the oil recovery rate during the CO2 foam flooding is different between these tests. It was observed that the microemulsion surfactant formulation used in Test 3 recovered oil within 2.5 pore volume (PV), whereas the surfactant formulation in test 2 took about 6 PV to get to the plateau. These results prove that the microemulsion formulation greatly enhanced the CO2 foamer properties and thus improved the oil recovery rate.


During use, it is currently contemplated that the inventive surfactant formulations may be used in concentrations ranging from 2-50 gallons-per-thousand gallons of carrier fluid, but more concentrated or dilute applications are contemplated as within the scope of the present invention and may be necessary depending on the wellbore conditions and treatment parameters. Particularly preferred concentrations are between 2-5 gallons-per-thousand gallons of carrier fluid.


Although preferred embodiments have been disclosed in the context of CO2 flooding, it will be appreciated that the novel surfactant formulations may also be used with other foam-inducing gases, including nitrogen, hydrocarbons, hydrocarbon/solvent, hydrogen sulfide and flue gases or a combination thereof. Additionally, the novel surfactant formulations may also be applied in water flooding and foam diversion applications.


It is clear that the present invention is well adapted to carry out its objectives and attain the ends and advantages mentioned above as well as those inherent therein. While presently preferred embodiments of the invention have been described in varying detail for purposes of disclosure, it will be understood that numerous changes may be made which will readily suggest themselves to those skilled in the art and which are encompassed within the spirit of the invention disclosed and as defined in the appended claims. For example, surfactant and surfactant mixture selections can be modified and changed to take into account varying reservoir conditions.

Claims
  • 1. A method of producing a treatment foam in a well, the method comprising the steps of: mixing together a betaine, an alpha-olefin sulfonate and a microemulsion to form a foam generating surfactant formulation;pumping the foam generating surfactant formulation into the well; andforcing gas into the well to contact the foam generating surfactant formulation to produce the treatment foam.
  • 2. The method of claim 1, wherein the step of pumping the foam generating surfactant formulation further comprises adding the foam generating surfactant formulation to a carrier fluid that is pumped into the well.
  • 3. The method of claim 2, wherein the foam generating surfactant formulation is added to the carrier fluid in a ratio of between about 2 and 5 gallons per thousand gallons of carrier fluid.
  • 4. The method of claim 1, wherein the step of forcing gas into the well further comprises forcing into the well a gas selected from the group consisting of nitrogen, hydrocarbon gases, hydrocarbon/solvent gas mixtures, hydrogen sulfide and flue gases or combinations thereof.
  • 5. The method of claim 1, wherein the betaine is selected from the group consisting of cocamidopropyl betaine and laurel betaine.
  • 6. The method of claim 1, wherein the alpha-olefin sulfonate is an anionic surfactant having between 8 and 18 carbon atoms per molecule.
  • 7. The method of claim 6, wherein the alpha-olefin sulfonate has between 8 and 12 carbon atoms.
  • 8. The method of claim 1, wherein the formulation includes about 1 part betaine to between about 2 and 5 parts alpha-olefin sulfonate.
  • 9. The method of claim 8, wherein the formulation includes about 1 part betaine to about 3.4 parts alpha-olefin sulfonate.
  • 10. The method of claim 1, wherein the microemulsion comprises an oil-in-water microemulsion.
  • 11. The method of claim 1, wherein the microemulsion comprises: an emulsifying surfactant;a solvent,a co-solvent; andwater.
  • 12. The method of claim 11, wherein the solvent is a citrus terpenes.
  • 13. The method of claim 12, wherein the solvent is d-limonene.
  • 14. The method of claim 11, wherein the emulsifying surfactant comprises a mixture of ethoxylated castor oils and ethoxylated alcohols.
  • 15. The method of claim 11, wherein the emulsifying surfactant has a hydrophile-lipophile balance value of between 8 and 18.
  • 16. The method of claim 11, wherein the emulsifying surfactant is selected from the group consisting of ethoxylated alcohol and ethoxylated vegetable oil.
  • 17. The method of claim 1, wherein the foam generating surfactant formulation comprises: between about 5 and about 70 percent by weight alpha-olefin sulfonate;between about 10 and about 20 percent by weight betaine;between about 5 and about 15 percent by weight emulsifying surfactant;between about 3 and about 10 percent by weight solvent,between about 3 and about 15 percent by weight co-solvent; andgreater than about 0 to about 10 percent by weight water.
RELATED APPLICATIONS

The present application is a divisional of U.S. patent application Ser. No. 13/863,205 filed Apr. 15, 2013 entitled “Surfactant Formulations for Foam Flooding,” which claims the benefit of U.S. Provisional Patent Application Ser. No. 61/624,337 filed Apr. 15, 2012 entitled “Microemulsion for Carbon Dioxide Foam Flooding,” and U.S. Provisional Patent Application Ser. No. 61/733,872 filed Dec. 5, 2012 entitled “Microemulsion for Foam Flooding,” the disclosures of which are herein incorporated by reference.

US Referenced Citations (236)
Number Name Date Kind
3047062 Meadors Jul 1962 A
3060210 De Groote et al. Oct 1962 A
3347789 Dickson et al. Oct 1967 A
3368624 Heuer et al. Feb 1968 A
3483923 Darley Dec 1969 A
3710865 Kiel Jan 1973 A
3756319 Holm et al. Sep 1973 A
3760881 Kiel Sep 1973 A
3850248 Carney Nov 1974 A
3919411 Glass et al. Nov 1975 A
4206809 Jones Jun 1980 A
4276935 Hessert et al. Jul 1981 A
4360061 Canter et al. Nov 1982 A
4414128 Goffinet Nov 1983 A
4511488 Matta Apr 1985 A
4650000 Andreasson et al. Mar 1987 A
5008026 Gardner et al. Apr 1991 A
5034140 Gardner et al. Jul 1991 A
5074358 Rendall Dec 1991 A
5076954 Loth et al. Dec 1991 A
5083613 Gregoli et al. Jan 1992 A
5095989 Prukop Mar 1992 A
5217531 Cheung Jun 1993 A
5247995 Tjon-Joe-Pin et al. Sep 1993 A
5310002 Blauch et al. May 1994 A
5356482 Mehta et al. Oct 1994 A
5358046 Sydansk Oct 1994 A
5587354 Duncan, Jr. Dec 1996 A
5587357 Rhinesmith Dec 1996 A
5604195 Misselyn et al. Feb 1997 A
5652200 Davies et al. Jul 1997 A
5665689 Durbut Sep 1997 A
5676763 Salisbury et al. Oct 1997 A
5697458 Carney Dec 1997 A
5707940 Bush et al. Jan 1998 A
5762138 Ford et al. Jun 1998 A
5784386 Norris Jul 1998 A
5811383 Klier et al. Sep 1998 A
5830831 Chan et al. Nov 1998 A
5874386 Chan et al. Feb 1999 A
5925233 Miller et al. Jul 1999 A
5975206 Woo et al. Nov 1999 A
5977032 Chan Nov 1999 A
5990072 Gross et al. Nov 1999 A
5996692 Chan et al. Dec 1999 A
6046140 Woo et al. Apr 2000 A
6090754 Chan et al. Jul 2000 A
6110885 Chan Aug 2000 A
6112814 Chan et al. Sep 2000 A
6165946 Mueller et al. Dec 2000 A
6173776 Furman et al. Jan 2001 B1
6191090 Mondin et al. Feb 2001 B1
6228830 Vlasblom May 2001 B1
6260621 Furman et al. Jul 2001 B1
6302209 Thompson, Sr. et al. Oct 2001 B1
6364020 Crawshaw et al. Apr 2002 B1
6486115 Weaver et al. Nov 2002 B1
6581687 Collins et al. Jun 2003 B2
6593279 VonKrosigk et al. Jul 2003 B2
6613720 Feraud et al. Sep 2003 B1
6729402 Chang et al. May 2004 B2
6770603 Sawdon et al. Aug 2004 B1
6793025 Patel et al. Sep 2004 B2
6800593 Dobson, Jr. et al. Oct 2004 B2
6818595 Benton et al. Nov 2004 B2
6911417 Chan et al. Jun 2005 B2
6939832 Collins Sep 2005 B2
6984610 VonKrosigk et al. Jan 2006 B2
7021378 Prokop Apr 2006 B2
7134496 Jones et al. Nov 2006 B2
7205262 Schwartz et al. Apr 2007 B2
7205264 Boles Apr 2007 B2
7231976 Berry et al. Jun 2007 B2
7380606 Pursley et al. Jun 2008 B2
7392844 Berry et al. Jul 2008 B2
7407915 Jones et al. Aug 2008 B2
7468402 Yang et al. Dec 2008 B2
7481273 Javora et al. Jan 2009 B2
7514390 Chan Apr 2009 B2
7514391 Chan Apr 2009 B2
7533723 Hughes et al. May 2009 B2
7543644 Huang et al. Jun 2009 B2
7543646 Huang et al. Jun 2009 B2
7544639 Pursley et al. Jun 2009 B2
7547665 Welton et al. Jun 2009 B2
7552771 Eoff et al. Jun 2009 B2
7559369 Roddy et al. Jul 2009 B2
7581594 Tang Sep 2009 B2
7615516 Yang et al. Nov 2009 B2
7621334 Welton et al. Nov 2009 B2
7622436 Tuzi et al. Nov 2009 B2
7655603 Crews Feb 2010 B2
7677311 Abad et al. Mar 2010 B2
7687439 Jones et al. Mar 2010 B2
7709421 Jones et al. May 2010 B2
7712534 Bryant et al. May 2010 B2
7727936 Pauls et al. Jun 2010 B2
7727937 Pauls et al. Jun 2010 B2
7730958 Smith Jun 2010 B2
7825073 Welton et al. Nov 2010 B2
7833943 Van Zanten et al. Nov 2010 B2
7838467 Jones et al. Nov 2010 B2
7846877 Robb Dec 2010 B1
7851414 Yang et al. Dec 2010 B2
7855168 Fuller et al. Dec 2010 B2
7857051 Abad et al. Dec 2010 B2
7886824 Kakadjian et al. Feb 2011 B2
7893010 Ali et al. Feb 2011 B2
7902123 Harrison et al. Mar 2011 B2
7906464 Davidson Mar 2011 B2
7910524 Welton et al. Mar 2011 B2
7931088 Stegemoeller et al. Apr 2011 B2
7960314 Van Zanten et al. Jun 2011 B2
7960315 Welton et al. Jun 2011 B2
7963720 Hoag et al. Jun 2011 B2
7971659 Gatlin et al. Jul 2011 B2
7976241 Hoag et al. Jul 2011 B2
7989404 Kakadjian et al. Aug 2011 B2
7992656 Dusterhoft et al. Aug 2011 B2
7998911 Berger et al. Aug 2011 B1
8043996 Harris Oct 2011 B2
8053396 Huff et al. Nov 2011 B2
8053397 Huang et al. Nov 2011 B2
8057682 Hoag et al. Nov 2011 B2
8091644 Clark et al. Jan 2012 B2
8091645 Quintero et al. Jan 2012 B2
8091646 Quintero et al. Jan 2012 B2
8100190 Weaver et al. Jan 2012 B2
8148303 Van Zanten et al. Apr 2012 B2
8183182 Oliveira et al. May 2012 B2
8206062 Hoag et al. Jun 2012 B2
8207096 van Zanten et al. Jun 2012 B2
8210263 Quintero et al. Jul 2012 B2
8220546 Kakadjian et al. Jul 2012 B2
8227382 Dakin et al. Jul 2012 B2
8231947 Vaidya et al. Jul 2012 B2
8235120 Quintero et al. Aug 2012 B2
8242059 Sawdon Aug 2012 B2
8293687 Giffin Oct 2012 B2
8342241 Hartshorne et al. Jan 2013 B2
8349771 Seth et al. Jan 2013 B2
8356667 Quintero et al. Jan 2013 B2
8357639 Quintero et al. Jan 2013 B2
8372789 Harris et al. Feb 2013 B2
8383560 Pich et al. Feb 2013 B2
8403051 Huang et al. Mar 2013 B2
8404623 Robb et al. Mar 2013 B2
8413721 Welton et al. Apr 2013 B2
8415279 Quintero et al. Apr 2013 B2
8431620 Del Gaudio et al. Apr 2013 B2
8453741 van Zanten Jun 2013 B2
8499832 Crews et al. Aug 2013 B2
8517100 Ali et al. Aug 2013 B2
8517104 Kieffer Aug 2013 B2
8524643 Huff et al. Sep 2013 B2
8551926 Huang et al. Oct 2013 B2
8592350 van Zanten et al. Nov 2013 B2
8684079 Wattenbarger et al. Apr 2014 B2
8778850 Andrecola Jul 2014 B2
20010007663 Von Corswant Jul 2001 A1
20030022944 Gumkowski et al. Jan 2003 A1
20030069143 Collins Apr 2003 A1
20030166472 Pursley et al. Sep 2003 A1
20030232095 Garti et al. Dec 2003 A1
20040068050 Miller et al. Apr 2004 A1
20050039919 Harris et al. Feb 2005 A1
20060014648 Milson et al. Jan 2006 A1
20060211593 Smith Sep 2006 A1
20060258541 Crews Nov 2006 A1
20070123445 Tuzi et al. May 2007 A1
20070293404 Hutchins et al. Dec 2007 A1
20070295368 Harrison et al. Dec 2007 A1
20080274918 Quintero et al. Nov 2008 A1
20080287324 Pursley et al. Nov 2008 A1
20090078415 Fan et al. Mar 2009 A1
20090137432 Sullivan et al. May 2009 A1
20090151943 Nguyen et al. Jun 2009 A1
20090159288 Horvath Szabo et al. Jun 2009 A1
20090221456 Harrison et al. Sep 2009 A1
20090260819 Kurian et al. Oct 2009 A1
20090275488 Zamora et al. Nov 2009 A1
20100022421 Gutierrez et al. Jan 2010 A1
20100173805 Pomerleau Jul 2010 A1
20100209991 Hecht et al. Aug 2010 A1
20100216670 Del Gaudio et al. Aug 2010 A1
20100243248 Golomb et al. Sep 2010 A1
20100252267 Harris et al. Oct 2010 A1
20100263863 Quintero Oct 2010 A1
20100307757 Blow et al. Dec 2010 A1
20110021386 Ali et al. Jan 2011 A1
20110136706 Carroll et al. Jun 2011 A1
20110146983 Sawdon Jun 2011 A1
20110220353 Bittner et al. Sep 2011 A1
20110237467 Cornette et al. Sep 2011 A1
20110253365 Crews et al. Oct 2011 A1
20110275546 Zamudio Rivera Nov 2011 A1
20110290491 Gupta et al. Dec 2011 A1
20120004146 Van Zanten Jan 2012 A1
20120015852 Quintero et al. Jan 2012 A1
20120035085 Parnell et al. Feb 2012 A1
20120066839 Man et al. Mar 2012 A1
20120080232 Muller et al. Apr 2012 A1
20120129738 Gupta et al. May 2012 A1
20120149626 Fluck et al. Jun 2012 A1
20120168165 Holcomb et al. Jul 2012 A1
20120181019 Saini et al. Jul 2012 A1
20120193095 Varadaraj et al. Aug 2012 A1
20120208726 Smith et al. Aug 2012 A1
20120234548 Dyer Sep 2012 A1
20120241155 Ali et al. Sep 2012 A1
20120241220 Quintero et al. Sep 2012 A1
20120255887 Holms et al. Oct 2012 A1
20120261120 Del Gaudio et al. Oct 2012 A1
20120285690 Weaver et al. Nov 2012 A1
20120285694 Morvan et al. Nov 2012 A1
20120318515 Cawiezel et al. Dec 2012 A1
20120322697 Zhang Dec 2012 A1
20120325492 Fefer et al. Dec 2012 A1
20130029883 Dismuke et al. Jan 2013 A1
20130048281 Van Zanten et al. Feb 2013 A1
20130079255 Del Gaudio et al. Mar 2013 A1
20130109597 Sarkar et al. May 2013 A1
20130133886 Quintero May 2013 A1
20130137611 Pierce et al. May 2013 A1
20130146288 Smith et al. Jun 2013 A1
20130146545 Pabalan et al. Jun 2013 A1
20130153232 Bobier et al. Jun 2013 A1
20130153234 Bobier et al. Jun 2013 A1
20130192826 Kurian et al. Aug 2013 A1
20130233559 van Zanten et al. Sep 2013 A1
20130244913 Maberry et al. Sep 2013 A1
20130261033 Nguyen Oct 2013 A1
20140110344 Hoag et al. Apr 2014 A1
20140202700 Blair Jul 2014 A1
20140299325 Zelenev et al. Oct 2014 A1
20140332212 Ayers et al. Nov 2014 A1
Foreign Referenced Citations (14)
Number Date Country
102127414 Jul 2011 CN
102277143 Dec 2011 CN
103614128 Mar 2014 CN
103642477 Mar 2014 CN
1 051 237 Nov 2003 EP
1 378 554 Jan 2004 EP
2 374 530 Oct 2011 EP
1 786 879 Feb 2012 EP
2 195 400 Aug 2012 EP
1 880 081 Mar 2013 EP
WO 9214907 Sep 1992 WO
WO 1999049182 Sep 1999 WO
WO 2007011475 Jan 2007 WO
WO 2012158645 Nov 2012 WO
Non-Patent Literature Citations (14)
Entry
Extended European Search Report for Application No. EP 13778466.6 dated Sep. 11, 2015.
International Search Report and Written Opinion for Application No. PCT/US2013/036650 dated Sep. 6, 2013.
[No Author Listed], The HLB system: a time-saving guide to emulsifier selection. ICI Americas Inc. 1976. 22 pages.
ADM, Evolution Chemicals E5789-117 Description. Jun. 2014.
Brost et al., Surfactants assist water-in-oil monitoring by fluroescence. World Oil. Oct. 2008;229(10).
Champagne et al., Critical assessment of microemulsion technology for enhancing fluid recovery from tight gas formations and propped fractures. SPE European Formation Damage Conference. Noordwijk, The Netherlands. Jun. 7-10, 2011. SPE-144095. 10 pages.
Crafton et al., Micro-emulsion effectiveness for twenty four wells, eastern green river, wyoming. 2009 SPE Rocky Mountain Petroleum Technology Conference. Denver, Colorado, USA, Apr. 14-16, 2009. SPE-123280. 13 pages.
Haw, The HLB system: a time saving guide to surfactant selection. Presentation to the Midwest chapter of the society of cosmetic chemists. Uniqema. Mar. 9, 2004. 39 slides.
Howard et al., Comparison of flowback aids: understanding their capillary pressure and wetting properties. SPE Production & Operations. Aug. 2010;:376-87.
Kunieda et al. Evaluation of hydrophile-lipophile balance (HLB) of nonionic surfactants. J Colloid and Interface Sci. Sep. 1985;107(1):107-21.
Yang et al., Optimizing nanoemulsions as fluid flowback additives in enhancing tight gas production. J Petroleum Sci Eng. 2014;121:122-5.
Zelenev et al., Microemulsion technology for improved fluid recovery and enhanced core permeability to gas. 2009 SPE European Formation Damage Conference. Scheveningen, The Netherlands. May 27-29, 2009. SPE 122109. 13 pages.
Zelenev et al., Microemulsion-assisted fluid recovery and improved permeability to gas in shale formations. 2010 SPE International Symposium and Exhibition on Formation Damage Control. Lafayette, Louisiana, USA. Feb. 10-12, 2010. SPE 127922. 7 pages.
Zelenev, Surface energy of north American shales and its role in interaction of shale with surfactants and microemulsions. SPE International Symposium on Oilfield Chemistry. The Woodlands, Texas, USA. Apr. 11-13, 2011. SPE-141459. 7 pages.
Related Publications (1)
Number Date Country
20170190953 A1 Jul 2017 US
Provisional Applications (2)
Number Date Country
61733872 Dec 2012 US
61624337 Apr 2012 US
Divisions (1)
Number Date Country
Parent 13863205 Apr 2013 US
Child 15380881 US